$\omega$ $\aleph$ $\infty$
Mathematical Logic at Fudan

2022 Fudan Logic Summer School

Zoom Meeting invitation for the second week has been send. Please let us know if you have enrolled for the second week yet not received the email.

Date: Jul 4 - 8, Jul 18 - 22

Location: Zoom Meeting (Meeting ID To be send via email according to the registration)

In case the Zoom Meeting room if full, you can watch the live here.

Schedule

The first week (Jul 4 - Jul 8):

叶谨赫 Jinhe Ye (Vincent): 赋值域 Valued Fields (in Chinese).

  • Lecture1: 15:00 - 16:15 (GMT+8)
  • Lecture2: 16:45 - 18:00 (GMT+8)
  • Section: (Next day) 10:00 - 12:00 (GMT+8)

The second week (Jul 18 - Jul 22):

Gabriel Goldberg: Large cardinals beyond the Axiom of Choice.

  • Lecture 1: 12:00 - 13:15 (GMT+8)
  • Lecture 2: 13:45 - 15:00 (GMT+8)
  • Section: 9:00 - 10:00 (GMT+8)
The section of the second week will be lead by Jason Chen (陈泽晟) and start from Jul 18, which is before the first lecture.


Model Theory

赋值域 Valued Fields

赋值域(valued fields)是数学的重要研究对象,Zariski 通过引入赋值的概念来研究代数曲面的奇点消解理论,而经典数学中p进数(p-adic numbers)以及各类函数域正是赋值域重要的例子。模型论上对于赋值域的研究最早起源于 Robinson 关于代数闭赋值域(algebrically closed valued fields)的量词消去的结果,并在其后的发展中出现很多对于主流数学的应用:如 Denef, Loeser 等人的 motivic integration 理论和 Hrushovsk, Loeser 对于 Berkovich space 的研究等。本课程将从赋值域的代数基础讲起,并借用这些代数工具去理解赋值域的模型论,我希望介绍其中的一些如 Ax-Kochen/Ershov 定理等经典结果。时间允许的话,我们也会介绍 p-进数的模型论以及一些基础的 p-进积分理论(p-adic integration)。

The lectures will be in Chinese.

Reference:

Program:

  • Day 1: Normed fields, valued fields and Henselianity. Video
  • Day 2: Extensions of valuations. Video
  • Day 3: Algebraically closed valued fields. Video
  • Day 4: Henselian fields and Kaplansky theory. Video
  • Day 5: Ax-Kochen-Ershov and Artin conjecture. Video

Lecturer:

叶谨赫,巴黎第六大学,博士后研究员,博士毕业于美国圣母大学,师从 Sergei Starchenko。曾于美国 MSRI 从事博士后工作。主要研究领域是模型论与其在代数几何和非阿几何中的应用。在 J. Eur. Math. Soc,J. Inst. Math. Jussieu,Isr. J. Math,J. Sym. Log 等杂志上被接受和发表文章多篇。

Set Theory

Large cardinals beyond the Axiom of Choice

Program:

  • Day 1: Introduction to choiceless large cardinals. Video Slides Exercise
    Section: Prerequisite (by Jason Chen). Video Notes
  • Day 2: Measurable cardinals and constructibility, ordinal definablility and the HOD conjecture. Video Slides Notes Exercise
    Section: Exercise 01 (by Jason Chen). Video
  • Day 3: Periodicity in the cumulative hierarchy. Video Notes Exercise
    Section: Exercise 02 (by Jason Chen). Video
  • Day 4: Simulating the Axiom of Choice, the structure of the club filter. Video Notes Exercise
    Section: Exercise 03 (by Jason Chen). Video
  • Day 5: Measures on ordinals, the $\theta_\alpha$ sequence. Video
    Section: Exercise 04 (by Jason Chen). Video

Reference:

Lecturer:

Gabriel Goldberg is an assistant professor at the department of mathematics, at UC Berkeley. He is working in set theory, interested in large cardinals, inner models, and infinite combinatorics. He has published some important papers in large cardinal and inner models in JML and JSL in recent years. He is also writing the book The Ultrapower Axiom.

Organizers

Contact: logic@fudan.edu.cn

2022复旦大学数理逻辑暑期学校由复旦大学教务处主办,复旦大学哲学学院逻辑学教研室承办