Exercises 4

Gabriel Goldberg

July 21, 2022

Work in ZF unless otherwise noted.

- Show that every almost supercompact cardinal is rank reflecting.
- Show in ZFC that every supercompact cardinal is Σ_2 -reflecting and a limit of Σ_2 -reflecting cardinals.
- Show that every Σ_2 -reflecting cardinal is rank reflecting.
- Show in ZFC that every almost supercompact cardinal is either supercompact or a limit of supercompacts.
- Question: in ZFC, must rank reflecting cardinals be Σ_2 -reflecting?
- Prove the dichotomy theorem mentioned in class:

Theorem. Suppose λ is the least rank Berkeley cardinal.

- A cardinal $\kappa \leq \lambda$ is almost supercompact iff it is supercompact or a limit of supercompacts.
- A cardinal $\kappa \geq \lambda$ is almost supercompact iff it is rank reflecting.
- The first bullet is similar to the fact in ZFC that every almost supercompact cardinal is either supercompact or a limit of supercompacts.
- The second is similar to the proof from lecture that a rank Berkeley implies a proper class of almost supercompacts.
- See "Choiceless cardinals and the continuum problem" if you get stuck.
- Prove that for any ordinal α , the least rank reflecting cardinal above α has countable cofinality.
- Show that if F is a κ -complete filter on an ordinal and κ is not the surjective image of V_{α} for any $\alpha < \kappa$, then for any family $\langle A_x \rangle_{x \in V_{\alpha}} \subseteq F$, $\bigcap_{x \in V_{\alpha}} A_x \in F$.
- Show that if κ is rank reflecting, then for $\alpha < \kappa$, there is no surjection from V_{α} to κ .
- Show that if the wellordered collection lemma holds at λ , then λ^+ is regular.
- Show that in fact, for any set X such that X surjects onto $X \times X$ and $\lambda \leq X$, the supremum of all ordinals η that are the image of X under a surjective function has cofinality at least λ^+ .

- Show that for any ordinal γ , for all sufficiently large α , the least Berkeley cardinal $\delta \geq \alpha$ has cofinality greater than γ .
 - Recall that δ is *Berkeley* if for all structures M in a language of size less than δ , if $|M| \ge \delta$, then there is a nontrivial elementary embedding $j: M \to M$.
 - Note that the least Berkeley above α can be characterized as the least ordinal δ such that for all transitive sets M containing δ , there is an elementary embedding $j: M \to M$ with $\operatorname{crit}(j) > \alpha$.
 - Woodin gave a simple proof that Berkeley cardinals are incompatible with AC: fix $(\gamma_{\xi})_{\xi < cf(\delta)}$ cofinal in the least Berkeley cardinal δ , and choose M_{ξ} such that there is no $j : M_{\xi} \to M_{\xi}$ with $crit(j) < \gamma_{\xi}$; Berkeleyness yields an embedding from $\left(\bigcup_{\xi < cf(\delta)} M_{\xi}, \langle M_{\xi} \rangle_{\xi < cf(\delta)}\right)$ to itself, which easily gives a contradiction.
 - The exercise can be solved by using the wellordered collection lemma to simulate Woodin's proof.
- Question: can one refute Berkeley cardinals outright in ZF?