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How the continuum hypothesis might have been a

fundamental axiom

Joel David Hamkins, University of Notre Dame

Abstract: I shall describe a historical thought experiment showing how
our attitude toward the continuum hypothesis could easily have been very
different than it is. If our mathematical history had been just a little
different, I claim, if certain mathematical discoveries had been made in a
slightly different order, then we would naturally view the continuum
hypothesis as a fundamental axiom of set theory, necessary for

mathematics and indeed indispensable for calculus.
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Metaphysical Problems for Plenitudinous Platonism

A.C. Paseau, University of Oxford

Abstract: Plenitudinous Platonism is the thesis that there are as many
types of mathematical object as possible. Because it takes mathematics to
be the study of abstract objects, it is a form of platonism; and because it
takes any coherently describable mathematical structure to exist, it is also
a form of structuralism. An umbrella term, Plenitudinous Platonism also
goes by the name of Full-Blooded Platonism or Egalitarian Platonism.
My talk will raise some problems for the view. As my title indicates, I

will focus on the metaphysical side of things.
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Set Theory with Plenitudinous Urelements

Bokai Yao, Peking University

Abstract: The Axiom of Plenitude asserts that every set is equinumerous
with a set of urelements. We offer philosophical motivations for treating
Plenitude as a natural axiom and examine its interaction with other
foundational principles in ZF set theory with urelements. Assuming that
cardinality is definable, Plenitude unifies the Collection and Reflection
principles (which are otherwise conjectured to be non-equivalent) and

implies both if every set is equinumerous with its cardinality.
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The Norm for Logical Proof:

Speech Act, Natural Deduction, and the Connecting Force

HU Yang

School of Philosophy and Social Development, South China Normal University
00 (+86) 18570714219
yhu219@163.com

The norm for proof indicates the compelling character of a given proof: “to follow
a proof is to be in some sense compelled to its conclusion.” (Restall, 2024) The question
to be addressed here is where this kind of proof norm, namely that the premises of a
given proof are forced to be stepwise connected and to go forward its conclusion, comes
from. Put it differently, how does such forceful compulsion arise?

There seem to be two reasons to investigate this question.

From a practical point of view, the accounts of mathematical or logical proof have
social-cultural impact and even give rise to genuine legal disputes. In 1980’s, the UK
Ministry of Defence’s Royal Signals and Radar Establishment (RSRE) intended to use
varieties of formal proof methods to verify the correctness of a commercially designed
microprocessor for safety-related systems. This was then an important UK hardcore
verification program called “VIPER”. However, due to the widespread controversy on
how a mathematical proof can verify the physical chips, RSRE was charged by a
licensed production company of the microprocessor that RSRE claimed in the brochure
that “the chip was proven faultless. Even though the lawsuit never came to court, this
was the first case in which the meaning of mathematical proof became a legal
case.”(Heintz, 2003)

From a theoretical point of view, it is quite reasonable to say that the forceful
compulsion of proof comes from mathematical or logical rigor. The proof is usually
said to be rigorously rule-governed. However, as Tanswell (2024) observes, a practical
turn has occurred recent decades in the philosophical inquiry about mathematics. It
turns out to thus be highlighted that mathematicians or logicians’ interest, value or
activity play an important role in a well-rounded understanding of the rigor. Obviously,
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given the rapid development of various automatic proof assistants like Lean, Coq, and
Z3 (etc.), alongside Al tools, how to untangle the distinct role of Auman provers in
contribution to the proof norm in question seems to be a philosophically engaging
question.

Our approach to the proof norm focuses on the role of speech act in constructing a
formal proof. We shall first argue that the origin of (formal) proof norm has to do with
speech acts pervasively performed therein.

It has been widely held that speech act theory focuses on the use of natural language,
while logic and mathematics typically rely on formal languages whose rigor is supposed
to be exclusive of pragmatic factors as much as possible (Ganesalingam, 2013). This
common view has been challenged.

Ruffino et al. (2020, 2021) argue that mathematical texts are shot through with
speech acts, with “blocks” like theorems, lemmas, propositions, corollaries, and
definitions reflecting the author’s “assertions” or “declarations” [following Searle &
Vanderveken’s (1985) classification of speech acts]. Through these speech acts,
mathematical content is organized into hierarchical mathematical theories. Schmidt &
Venturi (2023) examine the speech acts in mathematical axioms and postulates, viewing
them as “hybrid acts” of declarations, assertions, and directives. They suggest that
analyzing the hybrid nature of axioms and postulates not only clarifies the differing
approaches of Frege and Hilbert to axiomatic systems but also offers a new perspective
for fully understanding mathematical practice. While Ruffino et al. (2021) and Schmidt
& Venturi (2023) focus on static mathematical texts from the prover’s perspective,
Tanswell (2023, 2024) and Weber (2023) use empirical studies of mathematical
research papers and set theory textbooks to highlight the role of various speech acts in
the process of prove and the interaction between provers and proof-readers. As Restall
(2022) notes, proofs involve more than just assertions, revealing the complexity of
proof structures: “There are different steps where objects are given names, and speech
acts, other than asserting, are involved as well. Proofs have complex structure. A crucial
constraint, though, is that a proof is not simply a statement of the premises and the
conclusion — at least, not in most cases. To prove some conclusion C from some
premises pi, . . . , Pn, you must somehow trace the connection from pi, ..., pnto C.”
Clearly, Restall emphasizes the “connectivity” of speech acts in proofs, which leads to
the second argument of our approach.

We shall argue that the proof norm has two resources both of which are closely
related with the performance of speech acts in proof. The first consist in the
conventionally illocational forces ascribed to varieties of speech acts. Restall (2024)
recognizes both polar question (performed with interrogative force) and justification
request (preformed with imperative force) revolving around the assertions of a given
proof as the impetus for the rule-governed dynamics of proof. Pagin (2024) gives a
detailed explanation of the force of speech acts performed as parts of a natural
deduction proof like assumption, hypothetical and quantified assertion. According to
his index application model, the force of a given speech act s is an ascription of the
content of s to an actual index i for it to have a truth value at i. Particularly, Pagin thinks
of the endorsement of a proof as bearing the inferential force which ascribing the
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content of both the premises and conclusion to an index to yield a truth value sequence.
Pezlar (2023) takes the absurdity involved in the rules like EFQ, —“,—E and RAA to be
an impossible command bearing the imperative force. This command is interpreted as
“stopping derivation”. Since the absurdity is considered as an impossible command, it
means that such a command cannot be followed, the derivation is thus compelled to go
forward. This is a special case showing the compelling character of a proof.

The second resource for proof norm is what I intend to further develop: the
conversationally illocational force ascribed to the explicit or implicit speech acts in the
inference rules, which is commonly presumed between the prover and proof-
readers.(Stalnaker, 2014 & Corredor, 2017) I call it “connecting force”.

We here focus on one of logical proofs: natural deduction. Taking for instance V-
introduction rule, 3-elimination rule and some specific proofs in natural deduction, we
shall analyze such a kind of connecting force in two dimensions. The first dimension is
how different types of speech acts bearing the connecting force enhance the
internally procedural norm of a given proof. The second dimension is how these speech
acts foster the externally interactive norm between provers and proof-readers. By
establishing a“connection coordinate”, the role of speech acts in the proof norm can
be concretely illustrated.

It should be noted that speech acts in proof don’t imply that proof content cannot
be attainable without illocutionary force. Instead, we can clearly identify and separate
this force to preserve the content’s “purity”. Frege emphasized illocutionary force in
his logical system to clarify its role and avoid mixing it with content. Later, some hid
this force, creating an illusion that it either doesn’t exist or is everywhere. By
recognizing the force and its role in proofs, we prevent this misconception.
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Symmetry Groups of Boolean Self-referential
Systems

Hangjie Cao Ming Hsiung

Abstract.

The no-no paradox is a semantic paradox arising from symmetry, consisting
of two self-referential statements that mutually declare each other false. Sorensen
regards it as paradoxical because classical logic assigns different truth values to these
two statements, which conflicts with their symmetry. Sorensen also generalizes the
original no-no paradox to many other paradoxes of the same type. The paradoxical
nature of the paradoxes of such type stems from the violation of a symmetry principle:
in a self-referential statement system, statements with specific symmetry should be
assigned the same truth value.

Our work in this paper is mainly based on a symmetry characterization for no-no
type paradoxes proposed by [3]. Informally, the symmetry of a no-no type paradox
can be characterized by a permutation group: all permutations within this group (and
only these permutations) keep this paradox invariant when applying these permuta-
tions to interchange the indices of its constituent statements. For example, the no-no
paradox remains invariant under the identity mapping e and the transposition (12)
(swapping the two statements). The cyclic group C,, generated by these two permu-
tations, is defined as the “symmetry group" of the no-no paradox [3, p. 1926].

The notation of a symmetry group can be further generalized to Boolean sys-
tems. A Boolean system is a finite set of self-referential statements, where each
statement is a Boolean combination of statements within the system. The no-no type
paradoxes we focus on belong to the class of Boolean systems. Meanwhile, Boolean
systems that are paradoxical in the more classical sense—those generating contradic-
tion under classical truth valuations—are called Boolean paradoxes.

A natural question arises: which permutation groups characterize the symmetry
of no-no type paradoxes? To this question, [3] posits the following conjecture: for
every permutation group , there exists a no-no type paradox whose symmetry group

Hangjie Cao  School of Philosophy and Social Development, South China Normal University
caohangjie@163.com

Ming Hsiung  School of Philosophy and Social Development, South China Normal University
mingshone@163.com
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isjust. In [1], it is demonstrated that the alternating group A4 cannot be the symmetry
group of any Boolean system, and thus, it cannot be the symmetry group of any no-no
type paradox. In our current work, we extend this result by proving that for all n > 4,
the alternating group A,, cannot be the symmetry group of any Boolean system.

We use binary sequences to represent possible assignments of statements in a
Boolean system, and the semantic properties of the system are determined by a tran-
sition function defined between these sequences. By introducing permutations that
act on binary sequences, we characterize the symmetry of a Boolean system as the
equivariance of its transition function under permutation actions. To be specific, a
Boolean system has symmetry with respect to (o-symmetry) if its transition function
is equivariant under the action of o. Furthermore, a Boolean system has symme-
try with respect to all permutations in a given group G if its transition function is
equivariant under the action of all permutations in G. The main non-representation
result adopts the existing methods for studying symmetry of Boolean functions. As
established in [4, p. 384] (cf. [2, p. 571]), a representation theorem states that a per-
mutation group is representable by a Boolean function (i.e. it is the symmetry group
of this Boolean function) if and only if it is the maximal one among all the groups
with the same orbit partition on binary sequences. The sufficiency argument proceeds
as follows: given two distinct groups sharing identical orbit partitions, any Boolean
function preserving the symmetry of one group necessarily acquire extraneous sym-
metries from the other. As a consequence, functions intended to represent the smaller
group invariably exhibit excessive symmetry, rendering the non-representability of
the smaller group.

The proof of our main results requires, beyond these foundations, a further
analysis of the specific symmetry requirements for transition functions. Crucially,
we demonstrate that in addition to orbit partitions, the invariance preorder relations
among stabilizers also play a fundamental role in determining a transition function
constructions with specified symmetries. Our central theorem establishes that when
two distinct groups induce identical structures in both aspects—that is, they share
the same orbit partition on the binary sequences set and identical invariance preorder
relation among stabilizers —then any transition function maintaining the symmetry
of the smaller group must acquire extraneous symmetries from the larger group. This
consequently demonstrates the non-representability of the smaller group.

As noted in [1], the alternating group A4 and the symmetric group S, induce
identical structures in both these two aspects. This paper generalizes this to any A,
and S, with n > 4, thereby proving that A, is non-representable in the sense described

earlier. Therefore, no alternating group A, can be the symmetry group of a Boolean
system.
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A corollary of the non-representability proof is the preorder relation among
sequences induced by the action of S,. This enables us to delineate all possible
constructions of transition functions endowed with maximal symmetry. We further
analyze the sense in which transition functions reflect the paradoxical property of
Boolean systems: one is the classical Boolean paradox, and the other is the no-no
type paradox, which is of particular interest to us. Based on these, we provide con-
struction procedures for both types of paradoxes with S, as their symmetry group
respectively.

By applying group-theoretic tools to the structural analysis of logical systems,
we provide a novel perspective for the study of semantic pathology. Building on ex-
isting work, this paper further clarifies the limitations of symmetry in paradoxes and
the broader class of self-referential systems they represent: specifically, no alternat-
ing group A, for n > 4 can serve as the symmetry group of such systems. Addition-
ally, we provide constructive procedures for several types of paradoxes under specific
symmetry constraints, revealing the intrinsic connection between broader symmetry
and semantic paradoxes.
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Polymorphism and the Ontology of Number

Guanglong Luo

Nankai University

Abstract

In English, (1) “Jupiter has four moons” and (2) “The number of Jupiter’s moons
is four” appear to have the same truth conditions, the inference from (1) to (2)
seems to be trivial. But this also raises several puzzles, one of prominent ones is
the so called FREGE’S OTHER PUZZLE (FOP): Whereas ”four” in (1) appears
to be an adjective, functioning as a modifier, ”four” in (2) appears to be a name,
functioning as a singular term, so how can a single expression (e.g.,” four”) pos-
sess different semantic functions while the inference from (1) to (2) seems to be
trivial? From Frege on, several authors have attempted to resolve FOP without
success. In this paper, following Snyder’s Polymorphic approach, we will argue
that Polymorphism is the best solution to FOP. We will accompany apart from
Snyder et al. on the philosophical consequences of Polymorphism: while Snyder et
al. conclude that the polymorphic nature of number words supports Referential-
ism and Realism about numbers, we will conclude that the polymorphic analysis
of number expressions results in at most Referentialism but not Realism.

Keywords: Frege’s Other Puzzle, Polymorphism, Numericals, Degrees, Type-Shifting

1 Introduction

In English, the following pair of sentences appear to have the same truth conditions:

(1) Jupiter has four moons.
(2) The Number of Jupiter’s moons is four.

The inference from (1) to (2) seems to be trivial. The trivial character of the infer-

ence has also been employed by many philosophers(Wright,Hale, 2001, Schiffer, 2005,
Thomasson, 2009) as an easy argument to establish the existence of numbers. But
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this has raised several puzzles, one is the ontological puzzle: how can we obtain some-
thing from nothing? i.e., how can we get abstract objects so easily by understanding
(1) and (2) while the ontological status of abstract objects is still hotly debated by
philosophers? Another is called by Hofweber (2016) as FREGE’S OTHER PUZZLE
(FOP):

On the one hand, “four” occurs as an adjective [in (1)], which is to say that it occurs
grmammatically in sentences in a position that is commonly occupied by adjectives...
similar to “green” in [(3)]

(3) Jupiter has green moons.

On the other hand, “four” occurs as a singular term [in (2)], which is to say that
it occurs in a position that is commonly occupied by a paradigmatic cases of singular
terms,...[so that] “four” [in (2)] seems to be just like “Wagner” in

(4) The composer of Tannhaeuser is Wagner.

And both of these statements seem to be identity statements, ones with which we claim
that what four singular terms stand for is identical.

But that number words can occur both as singular terms and as adjectives is puzzling.
Usually adjectives cannot occur in a position occupied by a singular term, and the other
round, without resulting in ungrmammaticality and nonsense. To give just one example, it
would be ungrmmatical to replace “four” with “the number of moons of Jupiter” in [(5)]:

(5) Jupiter has the number of Jupter’s moons moons.

This ungrammaticality results even though “four” and “the number of moons of Jupiter”
are both apparently singular terms standing for the same object in [(5)]. So, how can it
be that number words can occur both as singular terms and as adjectives, while other
adjectives cannot occur as singular terms, and other singular terms cannot occur as
adjectives?

Even though Frege raised this question more than 100 years ago, I dare say that no
satisfactory answer has ever been given to it.(Hofweber, 2016, XXX)

Compared with the ontological puzzle, FOP in this form is a puzzle about seman-
tics and syntax, it asks how a single expression of certain category can have different
semantic functions in different syntactic positions while other expressions of the
same category cannot without leading to ungrammaticality. It should also be noted
that FOP arises not only in the pair (1) and (2), but also arises in other situations
where the number word “four” possesses very different functions, as witnessed in the
following sentences:!

(6)a. Jupiter’s moons are four (in number). (predicative)
b. Those are Jupiter’s four moons. (attributive)
c.Jupiter has four moons. (quantificational)

d. Mary drank four ounces of water. (meausrement)

1Here we use Snyder’s examples in Snyder (2021) with minor changes
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e. Jupiter’s moons number four (in total). (verbal complement)
. The number of Jupiter’s moons is four. (specificational)

g. Mary is contestant number four. (ordinal)

h. Four is an even number. (numeral)

i. The number four is even. (predicative numeral)

In the above sentences, the labels “predicative”, “attributive”, etc. are employed
to indicate how “four” is used in the accompanying examples. Those different usages
of “four” are semantically significant in the following sense: on the one hand, just as
Hofweber observed, when “four” is in different syntactic positions, it will probably
obtain different semantic functions. For example, when “four” occurs in a predicative
position (e.g., (6a)), it functions more like “green” in (7) below, where “green” has
the semantic type of (e, t) :

(7) Jupiter’s moons are green.

But when it is used as a numeral (as in (6h), semantically it is more like “green”
in the following sentence, where it has the semantic type e:

(8) Green is a color.

On the other hand, just as “green” in (7) and (8) are systematically connected,
the meaning of the number expression “four” in the above sentences are also system-
atically related: they are all the potential application of the number words in different
situations: counting, measuring, and ordering.

So a successful resolution of FOP has to cope with these differences as well as con-
nections. To be more specific, a good semantics for number words has to meet two
desiderata: i) it should compositionally provide a semantics for all uses of number
words, and ii) it should provide an account for the systematic connection of different
meanings of number words. In this paper,following Snyder et. al.(2017, 2021, 2022,
2024) we will argue that the only kind of semantic theory capable of meeting both
desiderata is Polymorphism, i.e., number expressions are polysemic, and they accom-
plish a systematic connection via the well-attested type-shifting principles. But we
depart from Snyder et.al. on the philosophical consequences of Polymorphism and
type-shifting: while Snyder et. al. argue that Polymorphism supports Referentialism
and thus Realism about numbers, we will argue below that Polymorphism at most
supports Referentialism but not realism. To be more specific, we will argue that words
can function as singular terms in some cases and therefore are capable of referring, but
that the most appropriate candidacy for this reference is a concrete property, degree,
rather than numbers.

The paper is structured as follows: In section 2, we will review the literature on the
different proposals to resolve FOP and argue that most of them are empirically unsup-
ported. In section 3, we will present Snyder’s (2021) Polymorphism and vindicate that
it is one of most successful semantic theories to the number expression “four” in sen-
tences like (6a)-(6g) listed above when we take “four” primarily as an adjective. We
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suggest then in section 4, when taking “four” as an adjective, its semantic value had
better be a nominalized property correlate,degree. We will also develop an empirically
more adequate but confined semantics for degrees, and conclude that when explaining
for the differences as well as connections of meanings of “four” in (6a)-(6g), a nomi-
nalist friendly semantic theory of degree is enough, thereby debunking that Snyder’s
claim that Referentialism entails Realism. Then we will expand this semantic theory
to the numerals cases such as (6h)-(61), we will conclude that degree as an object is
also capable of accounting for the fact that number words can be used in arithmetic
cases without obviating the fact that number expressions are polymorphic and they
are connected via a type-shifting principle. In section 5, we will consider two potential
objections to our polymorphic approaches and argue that they are not worrisome as
they appear. Section 6 is the conclusion.
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Abstract

Intuitionism provides a constructive theory for understanding mathematical
objects grounded in temporal perception. Brouwer emphasized that the perception and
retention (memory) of time form the core of mathematical intuition, which generates
mathematical objects through a process of self-unfolding. Brouwer employed the
concept of "two-ity" to describe the fundamental structure within temporal
consciousness, specifically how consciousness perceives the relation between the
present moment and the immediately preceding moment. This structure is crucial for
mathematical construction, as it lays the groundwork for creating mathematical
entities.

Brouwer’s essential viewpoint is that mathematical intuition is deeply rooted in
the perception of the flow of time. This perception can be described as the splitting of
a lived moment into two distinct units, where one unit sequentially gives way to
another. Thus, the subject initially perceives the first unit; as this unit gives way to the
subsequent one, the subject experiences perception of a new, second unit while
simultaneously retaining in memory the perception of the first. Within this perceptual
mode, "two-ity" emerges.

Brouwer further pointed out that when we become aware of this "two-ity" purely
as a form, disregarding the sensory content present at each stage, we achieve what he
termed "the fundamental intuition of mathematics." The subject can strip this two-ity
of all qualitative and sensory materials, thereby obtaining what Brouwer called
"empty two-ity." This empty form constitutes the fundamental mathematical
intuition.Brouwer further pointed out that when we become aware of this "two-ity"
purely as a form, disregarding the sensory content present at each stage, we achieve

what he termed "the fundamental intuition of mathematics." The subject can strip this
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two-ity of all qualitative and sensory materials, thereby obtaining what Brouwer
called "empty two-ity." This empty form constitutes the fundamental mathematical
intuition. All constructions of mathematical concepts begin with the two units
contained in empty two-ity as a starting point and the iterability of forming duality.
These constructions are based on introspective consciousness and reflective acts that
are independent of language. Through introspective awareness, we treat one unit of
two-ity as the fundamental operation for a new two-ity, continuously generating an
infinite sequence of natural numbers and the infinite ordinal ® through the invariant

retention provided by memory.
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The Internal Applications of Mathematics and the Structuralist Account

—Taking Combinatorics as a Case Study

Daheng Ju (School of Philosophy, Fudan University)

Abstract: The applicability of mathematics in the natural sciences has long been a central topic in
the philosophy of mathematics. A prevalent account for this phenomenon is the "structuralist
account," which attributes applicability to structural relations, or its refined version, the "mapping
account," which attributes applicability to structure-preserving mappings. Recently, in the paper
Internal Applications and Puzzles of the Applicability of Mathematics, Marshall examined the
internal applications of mathematics—where one branch of mathematics is applied to
another—and extended the aforementioned accounts to such cases. In this paper, we advance
Marshall’s work by taking combinatorics as a case study, examining some internal applications of
mathematics in detail and analyzing what kind of structural relations they occur by means of. Our
findings will refine the structuralist account, revise the mapping account, and provide insights into

accounting for the external applicability of mathematics.
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On a Mereotopological Series-style Answer to Special
Composition Question

Mingkun CHEN, University of Cambridge

Abstract. The Special Composition Question (SCQ) asks: “When do some things
compose something?” The most popular answer is Universalism, while Nihilism has gained
increasing attention in recent years. Restrictivism attempts to specify certain conditions
under which composition occurs. The Series-Style Answer (SSA), an important approach
within Restrictivism, claims that different types of objects have different composition
criteria. However, SSA faces challenges such as the Circularity Problem, the Sorites
Paradox, and especially the Transitivity Problem. This paper focuses on the Transitivity
Problem, arguing that Carmichael’s current strategy fails to fully resolve it. To address this,
a mereotopological version of SSA is proposed, using exterior boundaries to characterize
series-style composition relations, aiming to provide a stronger theoretical foundation for
SSA.

1. Introduction

It is natural to suppose that ordinary material objects, e.g. tables, chairs, atoms, walls,
and so on, exist, and they can compose further material objects. Van Inwagen reflects
this commonsense supposition (Van Inwagen, 1995) by introducing the Special
Composition Question (SCQ): “when does something compose other things”? This
question investigates the conditions that, once which are satisfied, material
compositions to compose further objects would happen. SCQ is a request to fill the
following blank:

Special Composition Schema: necessarily, for any xs, there is some y such
that, xs compose y
(when)

The most popular answer to SCQ is Universalism, according to which, composition
always happens, automatically. Universalism fills “at any time” in the blank and holds
that for any things that no two of which have a common part, there is something that
they compose. (See Lewis, 1986; Sider, 2001; Varzi, 2005; Bigelow, 2006. For
objections to Universalism, see Markosian, 1998; Comesana, 2008) Thus, according to
this view, there is a further object composed of the Eiffel Tower plus the moon plus
Donald Trump’s hair.

Meanwhile, the second popular answer, which grows in popularity, especially in recent
years, is Nihilism, according to which, compositions never happen. Nihilism fills “at no
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time” in the blank and holds that two or more things never compose or add up to
anything. (See Cameron, 2010; Sider, 2013; Cornell, 2017; Merricks, forthcoming. For
objections to Universalism, see Shaffer, 2009; Rea, 1998; Lewis, 1991) In this view,
ordinary objects like gloves, atoms, tables, etc. never exist.

Restrictivism, as the least popular answer, plans to fill some conditions in the blank.
This view holds that sometimes, under certain conditions, two or more non-overlapping
things compose something, and that sometimes they do not compose anything. (See,
Markosian, 1998; Korman, 2015; Carmichael, 2015) This strategy can intuitively accept
the existence of ordinary objects to which we are so familiar, while rejecting the
existence of those composites, such as the Eiffel Tower plus the moon plus Donald
Trump’s hair, or trout-turkey, which are, after all, so exotic and strange, at least in our
everyday language.

Among Restrictivism, Series-Style Answer (SSA) is a controversial but highly
appealing project. According to its most typical and standard version, there are different
composition criteria for different types of objects. In Van Inwagen’s word, “multigrade
relations for certain relata” (Van Inwagen, 1995: 63). I am composed of my cells, which
are composed of particles. Particles stand in nuclear relation to compose cells, and cells
stand in biochemical relation to compose me. And the story ends.

However, although this seems to be very intuitive, it still faces many rebuttals. For
example, some philosophers argue that SSA suffers from Van Inwagen’s Circularity
problem, which says that any proposed SSA answer to SCQ is covertly mereological in
nature, e.g. particles already compose cells in our case. (For this objection, see Van
Inwagen, 1995; for the response to this objection, see Silva, 2013; Carmichael, 2015); in
addition, some philosophers also argue that SSA involves Sorites Paradox, namely, there
are no cut-off criteria for composition to happen. Then every answer in the series is
impossible. (For this objection, see Unger, 1980; Varzi, 2007; for the response to this
objection, see Korman, 2015; Carmichael, 2011), etc.

In this paper, speaking for SSA theorists, I do not force myself to solve all the
objections. Rather, I only focus on one of them, the Transitivity problem. In section 1,
will present SSA and non-transitivity in mereology with plural logic. In section 2, I
argue that Carmichael’s strategy to solve this problem fails to solve the Transitivity
problem between different kinds of composition, so we have reasons to improve it; in
section 3, in order to save transitivity, I will raise a mereotopological version of SSA,
using mereotopological exterior boundaries to characterize series-style compositions; in
section 4 and 5, I will offer my positive justifications for this SSA and show why it is a
better choice for SSA theorists.

Before I start my work, however, two things should be noted: 1) indeed, some SSAs can
be built, based on “non-standard” versions of mereological composition, which can
avoid the transitivity problem. For instance, some philosophers have proposed several
understandings of “Fusion” “Sum” “Non-transitivity sum” to define compositions. (See
Tarski, 1935; Lewis, 1991; Gruszczynski, 2013; Pietruszczak, 2014). But in this paper,
limited by space and my purpose, I will suppose a standard understanding of
composition, namely, the composition sum in classical mereology. 2) I do not promise
that my solution can remove all objections to SSA. My purpose is only to solve the
transitivity problem. So the conclusion I can reach is merely that given a standard
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understanding of composition, if there is at least hope for SSA to be true, then my
version of SSA is a promising one.

2. SSA and transitivity problem

Let me first make some background clarifications. The general lesson of SSA is that
there are different criteria of composition corresponding to different types of material
objects. Formally, SSAs are of this form:

SSA-Form: For any xs (where xs are material objects), there is a further
material object, y, composed of those xs iff the xs are of the kind F1 and
stand in relation R1, or the xs are of the kind F2 and stand in

relation R2, or ..., the xs are of the kind Fn and stand in relation Rn.

For instance, there are some particles, and some cells. When particles stand in nuclear
relation, or when cells stand in biochemical relation, material composition happens.
More precisely, SSA-Form entails two theses, respectively about kinds and relations:

Level-kind Thesis: There are kinds of material objects, where some of some
kind (F1) can be composed of material objects of a distinct kind (F2, ..., Fn).

Exclusion Thesis: There are some kinds and relations such that a relation
sufficient for some composition to happen among some kind of material
objects (F1), is not sufficient for composition to happen among some other
distinct kind of objects (F2, ..., Fn) even if the F2s can stand in the same
relation as the F1s when the F1s compose something'.

Both theses satisfy our commonsense knowledge and intuitions about the world, where
things of a kind can compose things of other kinds: cells are composed of atoms; organs
are composed of cells; tables are composed of pieces of wood, etc. (Level-kind), and for
relations, the biochemical relation for cells to compose organs is insufficient for the
composition among atoms, pieces of woods, etc., to happen (Exclusion).

In order to construct it more precisely, I form SSA in mereological composition. In
classical mereology, parthood is viewed as a partially ordered relation. Take x, y, z...as
singular variables and P as a primitive predicate for parthood “is a part of”, then we
have:

Reflexivity Vx(xPx)
Transitivity VxVyVz((xPy A\ yPz)—xPz)
Anti-symmetry VxVy((xPy A yPx) —x=y)

Then, mereology investigates the features of the relation of parthood (P) and of some
other connected relations, such as proper parthood (PP) and overlap (O). According to
the standard definition:

I Silva (2013), p.72
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Proper Parthood x PPy =df xPy A x#y
Overlap x O y =df 3z(zPx A zPy)

As composition deals with relations between single variables and plural variables, we
need to introduce a non-standard first-order logic that allows us to quantify over plural
variables, where xx, yy...are plural variables and <is a predicate for the relation of
“being one of”’, we can introduce an essential axiom of plural logic:

Plural Comprehension  Ix¢(x)—IxxVu(u<xx—o(u))

Plural Comprehension says that, if there is at least one thing that is a ¢, then there are
some things such that something is one of them iff it is a ¢. For example, if ¢p(x) stands
for “x is a human being”, then we can get a plurality Zs of “all human beings”, that is,
anything which is a human being is one of Zs, and anyone of Zs is a human being.

Then the definition of composition “Y.” in plural language:
Composition? xxY y=df Vz(z< xx—zPy) AVz(zPy—3Iw(WOZAW< XX))

(“y is something as a composition of some xs, iff anyone of xs is a part of y, and any
part of y overlaps something that is one of xs”’) Now SSA-Form can be formulated in
mereology with plural language:

SSA-FormVxx3y, Vz(z< xx—F1(z)) AR1(xx) (SSA-R1 disjunct)

xxYyeo
VVz(z< xx—F2(z)) AR2(xx)  (SSA-R2 disjunct)

VVz(z< xx—Fn(z)) ARn(xx)  (SSA-Rn disjunct)

Take an oversimplified example to show how SSA works. Assume that, within the
spacial region of my body, there are only two kinds of things, particles, and cells (this
three-layer case is simple but enough to show how SSA works).

When xx are particles, and R1 is “standing in nuclear relations” (the covalent bond
happens and the positive nuclei from different atoms are held together by the attraction
for the shared pair of electrons held between them), there are the composite cells,
according to our oversimplified example. Further, when xx are cells, and R1 is
“standing in biochemical relations” (adhere together through cell-surface proteins called
CAM cell adhesion molecules, a category that includes the transmembrane adhesion
proteins), they compose my body.

2 Here I present the most common definition of composition. There are some alternative versions, see
Varzi (2019), section 4.
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Me

Stands in biochemical relation (R2)

Cells (F2)

Stands in nuclear relation (R1)

Particles (F1)

(1) SSA-Form in this case: For any xs, there is some y such that the xs
compose Y, iff the xs are particles (F1) and stand in nuclear relation (R1), or
the xs are cells and stand in biochemical relation (R2), or there is only one of
the xs.

And then, we have the level-kind thesis and exclusion:

(i1) Level-kind Thesis: I am composed of cells, and cells are composed of
particles.

(ii1) Exclusion Thesis: Standing in biochemical relation R2, or any other
relations rather than R1, is not sufficient for particles F1 to compose any
composite things.

(iv) Proper Parts: x is a proper part of y, iff there are zs other than x that x and
the zx compose y.

(v) Transitivity: Parthood is transitive.

The Transitivity problem reveals the inconsistency involved in SSA-Form through
Plural Comprehension, (i)-(iii), and Transitivity. For instance, if we accept (i) and (v),
mereologically, an x could be a part of a y which was itself part of a z (particles are
parts of me):

(i)-R1 disjunct Vxx3y (xx Y ye= Yw(w< xx—F1(w)) AR1(xx))

(i)-R2 disjunct Vyy3dz (yy Y z— VYm(m< yy—F2(m)) AR2(yy))
xPy A yPz

(v) Transitivity VxVyVz((xPy /\ yPz)—xPz)

Conclusion: xPz

On the other hand, as per the SSA, zs can only be composed of ys related by R2, but not
the xs, therefore, xs are not parts of z. (i), (ii), and (iii) fail to include a condition for
when particles can compose me. If there is a condition for particles (F1) plus other
particles (F1) plus cells (F2) to compose me, what is it? SSA fails to tell this, since F1
and F2 are not of the same kind, and there is no condition given by SSA for their
composition. If one wants to give a condition for F1s and F2s to compose something,
his answer will be no longer in the Series style, and violates (iii) Exclusion Thesis.
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(1)-R1 disjunct and (iii) says that particles only compose something when standing in R1
relation and (ii) says that when in R1 relation, they compose cells. Taken together,
particles cannot compose anything when standing in other relations rather than R1, or
with anything that are not F1s. Therefore, particles are not among anything that
composes me. Then, from the right-to-left direction of (iv), we can conclude that no
particles are proper parts of me (— xPz). SSA stops the transitivity between its different
disjuncts.

(ii) Level-kind Thesis  Ixx3yydz (xx> yy Ayy > z)
(iii) Exclusion Thesis  Vxx3y, Vw(w< xx—F1(w)) AR2(xx)— xx> y

(iv) Proper Parts VxVz (— (xPz A\ x#z) <> —xPPz)
x #z (obviously, a particle is not me)
Conclusion: —xPz

The consequence of SSA is unacceptable, as it conflicts with Transitivity. Transitivity
says that x is a part of z “xPz”, while SSA says that, x would not be part of z “— xPz”.

Note that Van Inwagen’s Transitivity problem only aims at the cross-disjunct cases of
SSA, where different kinds and relations are involved, for example, xs are F1s and stand
in R1 to compose ys (according to the R1 disjunct), while ys are F2s and stand in R2 to
compose z (according to the R2 disjunct). It is not a problem about the transitivity when
things are of the same kind and in the same relations. Within a single disjunct, the
Transitivity clearly follows and poses no problems.

The root of this problem is that parthood, characterized by different disjuncts of SSA,
seems to be non-transitive. The whole is only achieved by the last step, namely, the last
disjunct closest to the composite objects. If SSA is true, then the smaller parts are not
parts of the composite whole. However, not only Transitivity but also our commonsense
intuition suggests that they actually are parts of the whole. Given the fact that particles
are obviously my parts, SSA defenders seem to be trapped in a self-contradiction.

3. Carmichael’s two-category SSA

Although intuitive, SSA is currently the most less-popular answer to SCQ, as very few
philosophers gave proposals for it. The most representative SSA proposal is from
Carmichael. In this inspiring article “Toward A Commonsense Answer to SCQ”,
Carmichael suggests a two-category SSA, which makes a distinction between event-
based composition and lump-like composition, and claims to avoid the transitivity
problem.

His SSA idea seems quite natural. Lump-like composition is the most common kind in
daily talking. When lump-like objects (e.g. woods, metals), are bonded, they compose
other things (tables, the Eiffel Tower). For lump-likeness, I will detail analyze it later in
section 4. On the other hand, some events may impose a kind of composition on the
objects involved in them. For instance, the atmospheric event imposes unity on those
unbonded parts, winds, water droplets, etc., involved in a tornado.
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The general lesson is, in Carmichael’s words, “there is an intuitive distinction between
objects that are event-based and those that are lump-like” (Carmichael, 2015: 479).
Therefore. If we can figure out compositions into two kinds, and at the same time, find
transitivity in each, it is possible for SSA to be true. Carmichael gives a two-category
SSA, and his story begins by introducing two different kinds of composition:

For any material objects xs, there is a further object y, composed of those xs,
iff either

(1) lump-like composition: the xs are lump-like objects (F1s) and the xs are
bonded (R1)

(i1) event-based composition: the xs are event-based objects (F2), and the
activities of the xs constitute an event that imposes sufficient unity on the xs
(R2)

There are different ways to define “bond”. Van Inwagen tries different kinds of bonding,
such as “contact’™, “fastening™, “cohesion™, and “fusion™, each of which involves a
greater strength of bond (roughly, the biochemical relation in our oversimplified
example can be viewed as “fastening”). Here, Carmichael takes fastening, cohesion, and

fusion as “bonding”, as we will see this in his argument for Lump-like Transitivity

For the definition of “Event-based”, Carmichael has two steps. First, some objects are
event-based, when there are underlying events that pose sufficient unity to hold parts
together. Moreover, for “sufficient unity”, Carmichael technically defines it as “the
activities of the xs constitute a self-sustaining’ and homeodynamic?® event”.

Some examples will illustrate how this two-category SSA works. A model airplane is
composed of several pieces of wood that are glued together. This is because the pieces
of wood (and clumps of glue) are lump-like and bonded together, and so compose an
object by condition (i).

In a hurricane, there are water droplets, quantities of air, debris, and so on, whose
activities constitute the relevant atmospheric event. The event in question imposes
sufficient unity on these objects. Thus, by condition (ii), these objects compose the
hurricane.

3 Define CONTACT: The xs are "in contact" if they do not overlap spatially and are “clumped together”.
That is, the xs are in contact if (1) no two of them overlap spatially, and (2) if Y and z are among the xs,
then y is in contact with z, or y is in contact with w, which is one of the xs, and w is in contact with z-
and so on. See Van Inwagen (1990). p.33.

4 Define FASTENING: Objects are in contact and suppose that they are so arranged that, among all the
many sequences in which forces of arbitrary directions and magnitudes might be applied to either both
of them, at most only a few would be capable of separating them without breaking or permanently
deforming or otherwise damaging each one of them. Then these objects are fastened to each other. See
Van Inwagen (1990). p.56.

3> Define COHESION: Fastened and cannot be separated. See Van Inwagen (1990). p.58.

¢ Define FUSION: objects are melted into each other in a way that leaves no discernible boundary. See
Van Inwagen (1990). p.59.

7 e is self-sustaining: earlier stages of € cause later stages of e. See Carmichael (2015). p.482.

8 ¢ is homeodynamic: possibly, there are xs such that the activities of the xs constitute € at one time, but
none of the xs participates in e at another time (at which e occurs). See Carmichael (2015). p.482.
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Why must rely on a new distinction between different kinds of composition? Indeed,
according to the most natural understanding of composition, things compose something,
just as (i) shows, when they are bonded together in some appropriate way. However,
there are some different composition situations. If we glue two people together,
although they are bonded, they compose nothing. Or, in a hurricane, parts are not
bonded, but they still compose the whole. Solely having (i) cannot fully address these
composition cases.

However, according to the new two-category SSA, there is a new “event-based”
category. For event-based objects, bonding relation is not the condition for composition.
In such a way, two people glued together do not compose anything. People are not
lump-like—they are event-based objects and so do not meet condition (i). And merely
gluing together the hands of two people does not result in an event that imposes
sufficient unity on them. So they do not meet condition (ii), either. Therefore, according
to Carmichael, the following two statements reflect composition in different manners:

A:  xLPy (lump-like) Cells are composed of particles.
B: xEPy (event-based) 1 am composed of my cells.

Having illustrated Carmichael’s SSA, we can now start to discuss the transitivity within
it. Namely, under what circumstances are some parthood relations transitive? And,
under what circumstances should this transitivity stop? This indeed depends on how we
find the transitivity within two categories.

At first, let me state Carmichael’s solution:
Lump-like Transitivity (LT) VxVyVz((xPy A yLPz)—xPz)

(“If x is a part of y, and y is a lump-like part of z, then x is a part of z.””) Here is
Carmichael’s argument for LT (Carmichael, 2015: 481): according to LT, suppose that
y1, ..., yn are lump-like and bonded, and that they compose object z. And suppose that
x1 is among some objects x1, ..., xn that are lump-like and bonded, and that compose
y1. Then we have (1) - (3):

(1) yl is bonded to y2, ..., yn, and x1 is bonded to x2, ..., xn.

(2) If y1 is bonded to the rest of z, then it is impossible that all parts of y1 is
unbonded to the rest of z, i.e., there must be some part, let it be x1, of y1 bonded to
one of y2, ..., yn.

(3) Bonding is transitive’.

From (1)+(2)+(3), we have

(4) Lump-like x1, ..., xn (all parts of y1) are bonded to lump-like y2, ..., yn.

From (4)+Definition of Lump-like composition,

% It is necessary to clarify what “Bonding” in LT precisely means. Recall Van Inwagen’s different kinds
of bonding. By saying “bonding is transitive”, it is very obvious that Carmichael takes Fastening,
Cohesion, and Fusion as “Bonding” here, but not Contact (Consider this counterexample against Contact
transitivity. Three cubes are placed in this way: A contacts B, and B contacts C, A does not contact C,
where Contact transitivity fails.
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(5) x1, ..., xn and y2, ..., yn compose something

(6) It is extremely implausible to say that x1, ..., xn and y2, ..., yn compose something
other than z. (for y2, ..., yn are parts of z; and x1, ..., xn compose y1, the remaining
part of z.)
(7) x1, ..., xn and y2, ..., yn compose z, as its parts.

Carmichael arrives at:
(8) Conclusion: Parthood relation involved in a lump-like composition is transitive.

In Carmichael’s LT argument, the lump-like transitivity follows from the transitivity of
bonding. Parts of a lump-like object must be parts of the further lump-like object
composed by those objects, because the transitivity of bonding bans the possibility for
them to be scattered. For example, If I bond the right half of a model airplane to the left
half, then every part of them must be bonded as well. This is how Carmichael’s LT
works.

Event-based Transitivity  (ET) VxVyVz((xPy /\ yEPz)—xEPz)

Similarly, Carmichael finds the transitivity in event-based cases. (“If x is a part of y, and
y is an event-based part of z, then x is an event-based part of z.””) Here is how his
argument goes:

(1) Event constitution (C) The activities of xs constitute event e iffdf the fact that e
occurs is grounded in facts about the activities of xs.

(2) The facts about a composite object are grounded in facts about its parts'®.

(3) Grounding is transitive'!.

(4) Any parthood relation involved in an event-based composition is transitive.

For example, Some event e is constituted of composite objects x1 , ..., xn. Then, by (C),
the occurrence of e is grounded in facts about x1 , ..., xn. According to (2), Facts about
x1, ..., xn that ground the occurrence of e are themselves grounded in their parts. As
grounding is transitive, the occurrence of e is grounded in facts about the parts of

x1, ..., Xn, in other words, parts of X1, ..., xn are ‘caught up’ in the event as well. The
event-based transitivity follows from the transitivity of grounding.

Taken together, Carmichael intuitively claims that transitivity follows and Van
Inwagen’s transitivity problem fails. But at least two objections might be raised.

The first one is quite short and general: Carmichael’s SSA is unclear in its ontology.
First, its distinction between the two categories is unclear. Lump-like objects are
defined as “the non-event-based objects” (2015: 479) and event-based objects are
defined as “objects united by an event” (2015: 478). But, as shown in many cases, some

19 The premise is an analogue for grounding of mereological supervenience. Proponents of the latter
thesis include Horgan (1982); Kim (1984); Zimmerman (1997); Markosian (2005); Koslicki (2008).
Strictly speaking, a weaker premise suffices for ET: if some facts about the activities of a composite
object x partially ground the occurrence of event e, then these facts about x are grounded in facts about
the parts of x.

1 Proponents of this premise include Schaffer (2009); Fine (2010); Correia (2010); Whitcomb (2012);
Cameron (2008). For some alleged counterexamples, see Schaffer (2012). For replies, see Litland (2013)
and Raven (2013).
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objects are also possible to be both lump-like and event-based. For instance, for
Carmichael’s SSA, when the simples compose particles, they are lump-like objects. But
when the same simples constituting me (suppose that he really solves the transitivity
problem), being united by the occurrence of my life, they are event-based objects.
Therefore, this ambiguity shakes the root of his distinction.

Second, Carmichael’s SSA is ambiguous in answering this question: which one is the
“lump-like” or “event-based” object, the candidate objects for composition, or the
composites after composition? He did not give a clear answer to this, saying that is the
former, the latter, or both. When saying “the existence of an (event-based) composite
object is grounded in the occurrence of an event” (2015: 478), and “for some composite
objects, there is no underlying event at all. For example, in the case of an object like a
rock, there does not seem to be an underlying event that unifies its parts...rocks are
lump-like” (2015: 479), Carmichael seems to view the composite object after
composition as the lump-like or event-based objects. But, as per his SSA, xs, as the
candidate parts before the composition, should be those lump-like or event-based
objects. If a clear material ontology is what we desire, this is not a small problem that
can be ignored.

The second objection is much more substantial: Carmichael’s LT fails. Formally, take
F1 as “lump-like objects”, R1 as “bonding”, F2 as “event-based objects”, and R2 as
“united by events” we have:

Carmichael’s SSAVxx3y, Vz(z< xx—F1(z)) AR1(xx) (Lump-like

XXy disjunct)
VVz(z< xx—F2(z)) (Event-based
AR2(xx) disjunct)

Then, within this two-category SSA, consider all the four basic transitivity cases that we
have at hand now:

Lump-like first, then Lump-like xLPy A yLPz (LD
Event-based first, then Lump-like xEPy A yLPz (No proof)
Event-based first, then Event-based xEPy A\ yEPz

Lump-like first, then Event-based ~ xLPy /A yEPz (ET)
Examples are the best way to show these four cases. For “Lump-like first, then Lump-
like” cases, a handle can be a part of a door, and the door is a part of the house; for
“Event-based first, then Event-based” cases, | am a part of the football team, while my
team is a part of a game; for “Lump-like first, then Event-based”, a simple is a part of a
particle, and the particle is a part of me; for “Event-based first, then Lump-like”, it is
hard to give an example, and I will provide mereotopological reasons for this later in
section 4.4.

Here I attack LT that having (7) is not sufficient for getting (8). Given (1) - (3) and the
definition of lump-like composition, we cannot arrive at (8), because one important
situation is lacking for getting it. According to two categories, if x is a part of y, then x
can be a lump-like or event-based part of y. This suggests that LT should involve two
cases: “xLPy /A yLPz” and “xEPy /\ yLPz”. Only transitivity is found in both cases, can
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we say that LP is successful. However, Carmichael’s argument for LP only deals with
the former, while leaving the latter to be unsolved. If LT does not involve both two
cases, it is not justified to claim that transitivity is saved, as the conclusion (8) does.

Take a closer look. According to SSA, “xEPy A yLPz” is:

Event-based objects (F2)———Lump-like objects (F1)———o0objects

Sufficient united by an bonded (R1)
event (R2)

The remaining question for him to answer is that, “why event-based objects, through
event-based composition, cannot compose lump-like objects?”, in other words, “why
the composite objects, from event-based compositions, cannot be bonded to compose
further objects?” Carmichael’s SSA may respond to this that, this case is actually
impossible, because it is very unlikely for composite objects, from event-based
composition, to be lump-like, and thus be appropriate candidates'? for an upcoming
lump-like composition. However, he just ignores this, without giving a justification for
doing so.

In this situation, does the two-category SSA really offers a way to fully solve the
transitivity problem? I doubt it. Since, in the first place, it lacks clarity in the
fundamental distinction between two categories of composition, and has an unclear
material ontology; in the second place, even if we adopt this SSA, lump-like transitivity
is still uncompleted and unsolved. Taken together, my provisional diagnosis is that,
Carmichael’s SSA is a good step towards a commonsense answer to SCQ, but it is
incomplete and imprecise, which means that more work needs to be done in his
direction.

4. Mereotopological SSA

Through my argument in section 2, it seems that the two-category SSA does not fully
solve the Transitivity problem. However, although I am not persuaded by Carmichael’s
argument, I am still happy to accept his general proposal, namely, the distinction
between “lump-like” compositions and “event-based” ones. Different from the most
common understanding of the “bonding” condition for composition, Carmichael’s SSA
finds a new category for material objects to be united by some events, as shown in the
SSA Event-based disjunct, for which bonding is no more the criteria for composition at
all.

The general lesson is, therefore, that as long as Carmichael’s two-category SSA
proposal is correct, transitivity needs to be found in its two categories. Thus I am
motivated to update his proposal, to reach the same conclusion as Carmichael’s, to save
transitivity. And my strategy is quite straight: follow his direction and add some more
precise work to fill his proposal.

121 use the word “candidates” rather than “participants”, because I cannot confirm that the composition
really happens. If I can confirm so, then I use the word “participants”.
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My plan has two steps: first, make a further distinction between many-to-many
composition and many-to-one composition, within the two-category SSA, to save
transitivity (aiming at my second substantial objection to Carmichael); second, add a
clear definition to “lump-like” objects through “exterior boundary” characterization in
mereotopology (aiming at my first short objection). In this way, to update Carmichael’s
proposal into a better SSA and give a clear material ontology.

To formalize this idea, the first step:
(Many-to-one composition) xxY y=df Vz(z< xx—zPy) AVz(zPy—Iw(WOzZAW< XX))
Same as the standard mereological definition of composition, introduced in section 1.

(Many-to-many composition'®) xx > *yy=df Vz3y(z<xxAy<yy—zPy)
A Vm(Vy(y<yy A mPy)—3w(wOm A w< xx))
AVx1Vx2(x1, x2<xx— ~(x10x2))

(“When many things compose many other things, the xs compose* the ys=df each one

of the xs is a part of exactly one of the ys, every part of each one of the ys overlaps at
least one of the xs, and no two of the xs overlap'#.”) Similarly, we can have many-to-
many lump-like composition “LY *”, many-to-one event-based composition “E> ",
many-to-many event-based composition“E) *”, many-to-one lump-like

composition“L)"”.

The standard many-to-one composition deals with relations between plural variables
and singular variables, while many-tfo-many composition deals with relations between
plural variables. It is evident to see that, in all four basic cases of the Transitivity
problem, they are the combination of many-to-many composition and many-to-many
composition. If we can add a recursive clause to SSA “if xx many-to-many compose yy,
and yy many-to-one compose z, then xx compose z”, then the parthood transitivity from
X to z, in our four cases, follows. This will be analyzed in detail in section 4.3.

The second step: I define “lump-like” objects as those objects have only 1
mereotopological exterior boundary in 3-dimensional space, at a time point t, where
“EB” is “being an exterior boundary of” (I will explain EB in mereotopology later), and
“31” is the uniqueness quantification “only one”:

Lump-like** objects 3!z, zZEBx

(“if z is an exterior boundary of x in space, and there is only one z, then x is a lump-like
object”)

Combining these two steps, my proposed SSA can be stated as follows:

Mereotopological SSA
Vxx3y, XX) y« att, (Vn(n<xx—3!z, zEBn) A 3!z’, z2EBxx) (Lump-like**)

13 Here I borrow the many-to-many composition characterization of Silva (2013). p.78.
14 See Silva (2013). pp.78-80.
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V in At, (Vn(n<xx—Event-based (n)) ASufficiently  (Scattered Event-based*)
United (xx)
A~ (3!z, zEBxx))
VIxIxx (Xx=X)
Vazzaw (xx3 *zzAzz3'W) (Recursive'?)

Lump-like**ness, and Scattered event-based*ness will be analyzed in detail in sections
4.1 and 4.2.

For any xs, there is some y such that the xs compose y iff: at a time point t, 3-
dimensionally, the xs are lump-like objects and they compose further lump-like objects
(e.g. several pieces of wood compose a model airplane); or, during a time period, 4-
dimensionally, the xs are event-based objects and are sufficiently united (e.g. winds,
droplets, ..., compose a hurricane); or, there is only one of the xs; or, there are some zs
and some w such that the xs many-to-many compose the zs and the zs many-to-one
compose w (Recursive).

If we want to make SSA philosophically convincing, we need more precise work: not
only should we offer a clear definition of what are the fundamental building bricks of
our ontology, but also should we offer justified composition conditions for SSA, to use
those bricks to build the material world. Only in this way can we have a fine material
ontology. This is exactly the work I will do in the next section.

5. An argument through mereotopology

5.1 Why “Lump-like”?
My story begins with ordinary objects. Compared with the strange composite objects of
Universalism, or the simples or gunk of Nihilism, we do have more commonsense
reasons, empirical or not, to believe in the existence of ordinary objects, e.g., tables,
chairs, walls, stones, and so on.

Among them, there are some lump-like objects, e.g. a grain of rice, a cube of metal, a
wooden block, etc., which are generally used by us to compose other ordinary objects,
just like we use wooden blocks to make a table, or bricks to build a wall, etc. Then, I
pick these lump-likes as the building bricks to build a commonsense material ontology.

Why do so? Three reasons can justify my choice. First, this choice can make our
material ontology as clear as possible. If we want to have a plausible ontology, we then
want everything within it, speaking from a mereological point of view, the composite
material beings or the building bricks, to be as safe as possible. Then, lump-like
ordinary objects can maximally satisfy our requirements, compared with two camps of
alternatives:

15 See Silva (2013) for a precise articulation of the recursive clause. By adding this clause, he did not
actually give a specific SSA proposal, but only a possible schematic form of SSA that is free from the
attack of the transitivity problem.
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Compared with postulated gunks and simples, or strange objects in Nihilism’s or
Universalism’s ontology, lump-like objects are more concrete, because they are
empirically accessible and trustworthy. For simples'®, at least, no one knows whether
there are them. Moreover, even if there are them, it is uncertain that which entities, like
quarks, Bosons, etc., are really simples, as there is the possibility that currently most
successful theories about the building bricks may be defeated by later theories, and the
postulated entities may later be found no more the simples.

Similarly, for Gunks, no one will be able to, via any instruments or not, get empirical
access to every one of those gunks. And no one can exhaust empirical access to every
one of the strange objects. But we can get access to tables, atoms, ice cubes, and other
lump-likes. The ontological trustworthiness of the lump-likes often comes from an
empirical basis. At least, whether a table exists is not as controversial as whether
simples, gunks, and strange objects exist.

Compared with Carmichael’s SSA, which admits the lump-likes and the event-baseds,
plus their distinction, my choice is more ontological parsimonious, since it posits fewer
types of building bricks of the universe. This leads to a more elegant and clear
foundation layer of material ontology: lump-like only. In my picture, there is no longer
any burden to admit the distinction between lump-like objects and event-based objects,
as criticized in section 2.

Second, this choice does not contradict common sense. A lump-like metal cube in front
of my eyes exists. Somebody might deny this existent. For instance, supporters of
Nihilism definitely deny it, because they radically deny the existence of any composite
objects (this is indeed contradictory to our commonsense intuition!). But people who
admit this extent are not necessarily supporters of Universalism, as they can still say
that this metal cube exists while composite objects from unrestricted composition, like
“the Eiffel Tower and Donald Trump’s hair bonded to the moon” (also contradictory to
commonsense) do not.

Third, this choice has maximal explanatory power for ordinary objects. Obviously, it is
hard for Universalists to explain what is the difference between “lump-like”
compositions and “event-based” compositions, as for them, all compositions are
unrestricted. Putting Universalism aside, compared with Nihilism which admits only
gunks or simples, My choice does have stronger explanatory power for ordinary objects.
What is there in the spatio-temporal region of the table? An answer like “four wooden
legs plus one wooden desk bonded together” indeed seems more convincing than “a
cluster of simples, or gunks”.

Taken together, lump-like objects are now the starting point for my SSA to build a
commonsense material ontology.

5.2 “Lump-like” in mereotolopogy
After justifying my choice, before I start my argument, however, it is necessary to make
our understanding of “lump-like” more clear: when I say that something is lump-like, I

16 Here I mean the real simples. Mereologicaly, Sx=df =3y, yPPx (“entities with no proper parts”), but
not the postulated building bricks, molecules, atoms, Bosons, etc., of physical theories.
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am not saying that they are “non-event-based” (as what Carmichael’s SSA does), rather,
I wish to give a solid definition of “lump-like” objects.

What lump-like objects, like metal cubes, wooden blocks, etc., share in common? In
formal ontology, mereotopologically, when saying some object is a “lump”, technically
we are saying that it occupies a region in space, while every part of a “lump” is
connected (actually, a connected point set).

To articulate this view, in mereotopology, where C is “connected”!”:

Reflexivity (C1) xCx
Symmetry (C2) xCy—yCx

Then “lump-like” can be characterized as:
Lump-like* objects vxvVmVvn (mPxAnPxAmCn)

(“x is lump-like iff, for any two parts of it, they are mereotopologically connected!®”)
This seems to be the most intuitive prima facie characterization for lump-like material
objects, through mereotopology. For instance, no matter how you find two parts in a
metal cube, they are always mereotopologically connected. The path connectivity
between m and n ensures that there must be a path inside the object (without leaving the
object) connecting them. Lump-like* seems to be a proper definition for lump-likeness.
But, is this true?

Unfortunately not, as there are some problematic cases against Lump-like*. Consider a
hollow sphere with small balls inside, which is tangential to its inner surface, thus not
connected. Is there one composite thing, or many things? When each of them is super
small in a molecule-level size, actually, this is the case similar to a football, which itself
is a hollow sphere, and contains many air molecules inside it. Lump-like* would answer
“many things”, and say that there is no composition, as parts are not mereotopologically
connected. However, our commonsense intuition is likely to admit that there is only one
thing, a football. At least, no one is likely to say that a football is not one thing, but
many things, of the hollow sphere plus those air molecules inside it.

All lump-like objects satisfy Lump-like*, while Lump-like* fails to accommodate these
problematic non-connected cases, thus it is a necessary but not sufficient condition for
something to be lump-like, not strong enough. Therefore, we need to seek a more
appropriate definition.

171 do not adopt any Transitivity axiom here. And (MT1)-(MT3) do not involve anything from
Mereological transitivity. As I will use mereotopological treatment to prove mereological Transitivity in
section 4.4. This is to avoid the circularity to use mereotopological transitivity to prove mereological
Transitivity.

18 Someone may deny lump-like* by giving examples, such as “the leg and the back are both parts of a
chair, but they are not connected”. But this is wrong. Lump-like* shows “mereotopologically
connectivity” rather than “connectivity in everyday talking”. A subset of a topological space is connected
if it is connected in the subspace topology. A space is connected if any two points of it lie in some
connected subset, that is, can be joined by some connected set. “mCn” is of path connectivity, a property
of a space whereby any two of its points can be joined by a path, i.e., a continuous image of a segment.
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From (C1) and (C2), we may define other mereotopological relations as follows (the
definitions here follow the axiom system of Rachavelpula, 2017):

External Connection (MT1) xECy = xCyA—xOy

Tangential Part (MT2) xTPy := xPyA3z(zECxAZECy)
Internal Part (MT3) xIPy := xPyA—xTPy
Crossness xXy = "xPyAxOy

Straddleness xSTy =Vz(xIPz—zXy)

Crossness says that “x crosses y whenever x is not a part of y and overlaps y”, while
Straddleness says “x straddles y whenever x is such that everything of which it is an
interior part that crosses y”. From here we can define Boundaries and Tangents:

Boundary xBy :=Vz(zPx—zSTy)
Tangent xTy: = 3z(zPx A zBy)

Tangent says that “A tangent of y is an entity which has as part a boundary of y”. From
Tangent, we are able to prove that all tangents must be straddlers, and that every
boundary of y must be a tangent of y and therefore cannot be an interior part of y. We
can prove further (stronger) about boundaries, that:

Boundary Definition xBy=Vz(zPx—zTy)

Intuitively, among boundaries, there are two different kinds: inside and outside!®. Then,
from which one, can we get the proper mereotopological definition of lump-likeness?
Imagine a lump of cheese with air bubbles inside. Not only does it have an exterior
boundary (EB), but it also involves many internal boundaries of those holes or internal
cavities within it. But, as long as it is a lump, no matter how many interior boundaries
of air bubbles inside it, after all, it can only have one exterior boundary. It is the exterior
boundary that determines its “lump-likeness”.

Exterior Boundary (EB) is what I want to define lump-likeness. However, it is
mathematically very difficult, if not impossible, to formally distinguish the boundaries
of the holes inside an object and its exterior boundary?’. Several attempts are made by

19 See Casati and Varzi (1994).
201 tried to mathematically distinguish EBs and the boundaries of inner holes in three possible ways, but
each faced problems. Technically,
(a) Complementary approach: the complementary set of the lump of cheese has two disconnected
parts: internal holes, and external space. The external space is an infinite open set, while the holes
and cavities are finite.
Problem: although intuitive, it is hard to mathematically prove that the external space is infinite.
(b) Homeomorphism approach: the holes are homeomorphic to a ball, but the external space is not.
Problem: when the structures of the holes are more complex (e.g. in doughnut-like or Klein-bottle-
like structures), they are not homeomorphic to a ball. (b) fails.
(c) 3-dimensional approach: if the origin is within the object, 3-dimensionally, then any coordinates
of any points (x,y,z) within the geometrical space of the cheese is within the EB, but not within the
boundaries of interior holes.
Problem: Which point should we choose as the origin? By saying “the origin has to be within the EB”,
this method to define EB seems to be trapped in circularity.
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mereotopologists and topologists?! to formalize EB, but this remains to be a
controversial and currently unsolved?? hard problem in mereotopology.

This means that I have to add some intuitions about EB here, more than the
mereotopological characterization of Boundaries, to complete my lump-likeness
definition. EBs of x are boundaries that separate x from the (outside) remainder of the
universe. For instance, you can touch the EB of a lump of cheese without breaking it,
but you cannot do this to the boundaries of holes inside it; or, the EB of the lump of
cheese can be illuminated by the sunshine, but the boundaries of holes cannot. I believe
that readers will understand this intuitive metaphysical distinction between them. Using
EB to characterize lump-like objects, then we can achieve a new definition, through the
uniqueness quantification:

Lump-like** objects 3!z, zZEBx

Unlike Lump-like*, the new definition Lump-like** does accommodate non-
connectivity composition cases. It only defines a lump-like object in terms of itself, plus
its own exterior boundary. An object is lump-like, when it has only one exterior
boundary that separates it from the remainder of the universe. Therefore, Lump-like**
is the mereotopological definition that I want for the building bricks of a fine material
ontology. Here I get it. Then, Lump-like** should be put into SSA, to see how
compositions, lump-like ones or event-based ones, work. This is exactly the work I will
do in section 4.3.

5.3 Composition from the lump-like building bricks
Indeed, the most common motivation for SSA theorists is to divide compositions into
different types, to which different criteria may apply. Speaking for myself, I feel the
same motivation to apply different conditions for different composition cases. Having
Lump-like** objects at hand, now it is time to get to the bottom of how other material
objects are composed of them. Here I chose to follow Carmichael’s proposal of a two-
category SSA.

However, although I follow Carmichael’s direction, my SSA ontology is quite different
from his. As criticized in section 2, first, his route to building up the material ontology
starts from ambiguous distinctions between lump-like objects and event-based objects;
second, he uses the composition concept “being united by an event” to define “event-
based” objects, and furthermore using “non-event-based” to define “lump-like”. Both
lead to an unclear material ontology.

In contrast, my SSA material ontology has solid building bricks—“lump-like” objects
only. In other words, what exists there are only lump-like bricks, both lump-like
composition and event-based composition can be imposed onto them. More precisely,
my task is to use Carmichael’s two categories to compose further objects from the
Lump-like**s.

21 For different kinds of boundaries, see Brentano (1988), Part one; Smith (1992); Casati and Varzi
(1994).
22 See Rachavelpula (2017). p.15
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(a) Lump-like** composition
Now I can start my argument. Recall Carmichael’s Lump-like disjunct
“Vz(z<xx—F1(z)) AR1(xx)”, when xx are lump-like objects and bonded, then through
lump-like composition, they compose a further object. Because of the transitivity of
bonding relation, the new composite object is also lump-like.

Having Lump-like** and lump-like building bricks at hand, now, we can utilize them to
grasp lump-like composition: the lump-like** objects, as building bricks, have only 1
exterior boundary in ordinary 3-dimensional space “3!z, zEBx”, while the new
composite object composed of them has only 1 exterior boundary “3!z’, z’EBxx”, then
the Lump-like** composition happens.

Lump-like** Composition Vxx3y, xxL) y« at t, Vn(n<xx—3!z, zEBn) A 3!z’, ZEBxx
For instance, when we fuse two metal cubes to create a new one, two lump-like metal
cubes each have only 1 exterior boundary. When they are fused, the new fused thing has
only 1 exterior boundary too. Then, obviously, we can say that the lump-like**
composition happens.

Actually, Van Inwagen’s discussion on fusion, as the strongest kind of bonding relation,
has already suggested or implied, more or less, this way of thinking compositions in an
“exterior boundary” manner, between his words and lines. But so far, not much attention
has been paid to this:

“It is possible to cause objects to be joined more intimately than this, so that they melt
into each other in a way that leaves No Discoverable Boundary. If two very smooth
pieces of chemically pure metal are brought together, for example, they become
attached to each other in just this intimate way...Let us say that if two things are caused
to “merge” in this way, they become fused or that they fuse.” (Van Inwagen, 1995: 59)

By saying “no discoverable boundary” and “attached in this intimate way”, actually,
Van Inwagen means the boundaries between parts disappear. If I translate it into a
mereotopological reading, as I have argued that exterior boundaries, but not interior
boundaries, are the criteria for composition, then, taking the composite object as a
whole, through my lump-likeness**, there is no new exterior boundary added in the
composition. My work here is in line with Van Inwagen’s view on bonding, and just to
develop this idea further, through mereotopology.

After introducing the origin of my idea from Van Inwagen’s work, let us consider a
further objection. Someone may raise a quick “two EBs” rebuttal to my lump-like**
composition: when I stick a small sticker to a cup, do they lump-like**ly compose
something? Or, more radically, when a lump-like speck of dust is attached to a super big
lump-like metal cube, do they compose something? If so, there are 2 EBs of the
composite, including one of the bigger object and one of the smaller; if not, they are
actually bonded, and this contradicts our commonsense intuition (e.g. they do compose
a cup with a sticker on it, or a metal cube with one speck of dust). Lump-like**
composition seems to be trapped in a dilemma.

The root of this rebuttal is that candidates for lump-like** composition can differ
greatly in size. The cube and the dust are both lump-like**, with only 1 EB. When the
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candidates for composition are close in size, we are likely to ignore this “two EBs”
problem. However, when candidates differ greatly in size, guided by the commonsense
intuition, if I try to admit the composition, like a cup plus a sticker, then I have to admit
that lump-like** composite objects can have 2 EBs. Similarly, if I bond more and more
small lump-likes to a bigger one, I will get more and more EBs. And there would be
“three EBs” problems, “four EBs” problems, ..., and so on. Then my lump-like**
composition collapses.

To save my lump-like** composition, this problem must be solved. Luckily, the binary
relation “>>" (much greater than) and “V” (3-dimensional volume) can offer a solution,
where “xx-xn” is the remainder of xx out of xn:

Approximation Vxn3xa, 1<a, 2<n,

((3'zn, znEBxn)

A(xnEC(xx-xn))

A(Vxa>>Vx1, ..., Vxa-1, Vxatl, ..., Vxn) V(Vxx>>Vx], ..., Vxn)))

—(31z, zZEBxx))
(“when one lump-like** candidate xn’s, or the whole xx’s volume is much greater than
other ones of xx, and all the lump-like** candidates, in 3-dimensional space, then xx
approximately has only 1 boundary”.) The key point of Approximation is that, when an
object has actually more than one EB, but there is one candidate much greater than all
other ones, in 3-dimensional space, boundaries of the tiny ones can be ignored. The
composite object still has only 1 EB. Lump-like** composition holds.

Take a closer look at composition situations where the lump-like** candidates differ
greatly in size. What happens in this kind of composition, e.g. metal cube plus one
atom, or a cup plus a sticker? First, there are more than one lump-like** (“3!zn,
znEBxn”) candidates (“Vxn3xa, 1<a, 2<n”); then, the candidates are externally
connected (“xnEC(xx-xn)”), for, if the atom is away from the cube, or the sticker is not
attached to the cup, our commonsense (not Universalists nor Nihilists) would not say
that they compose something; moreover, among the candidates, one’s 3-dimensional
volume is much greater than the other ones (“Vxa>>Vxl, ..., Vxa-1, Vxa+l1, ..., Vxn”),
just like the volume of the cube is much greater than the speck of dust, or the volume of
the cup is much greater than the sticker. Then, Approximation says that they compose
further a lump-like** object.

My treatment of Lump-like** compositions here has two good implications. It will be
helpful in solving the Transitivity problem, which we will see in section 4.4. What is
more, the Approximation solution to Lump-like** can shed light on the Sorites Paradox,
which we will see in section 5 for a more detailed analysis of Approximation.

(b) Event-based* composition
Here I agree with Carmichael’s proposal on “event-based” composition and “sufficient
unity”. Limited by space and my argumentation purpose, I shall not repeat event-based
compositions here.

But two things need to be noted: first, unlike Carmichael’s, in my SSA, my lump-like
building bricks can undergo event-based compositions, as event-based participants.
When being involved in event-based compositions, they are as participants for them. To
put it bluntly, there are only lump-like building bricks as the keystones of the material
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ontology. But they can be put together in two different manners, lump-like** and event-
based composition. When undergoing event-based ones, the building bricks serve as
event-based object candidates.

Just like we can play different two games with the same deck of cards. Now, having all
“lump-like” cards at hand, there are different kinds of composition games that we can
play: the lump-like** one, the event-based ones, or the lump-like** and event-based
ones.

What is more, obviously, as shown in the cases of players in a football team, or winds
and droplets in a hurricane, event-based composite objects can have more than 1
exterior boundary. If they have 1 EB, according to my Lump-like** treatment, their
compositions are both Lump-like** and Event-based. In other words, some composite
objects are only results of event-based compositions, scattered in 3-dimensional space,
but completely not results of lump-like** compositions. Let me define two kinds of
Event-based* Compositions:

Scattered Event-based* Composition: candidates are scattered in space,
and only united by underlying events.

Lump-like and Event-based* Composition: candidates taken together are
with only 1 exterior boundary, united by underlying events, held together by
1 exterior boundary.

L INT

To avoid the confusion between “lump-like building bricks”, “candidates for

composition”, “composition”, and “composite objects”, here I give a picture to present
my material ontology:

The lump-like composites (lump-like & event-based The event-based composites
composites)
Lump-like composition Lump-like and evept-based composition Scattered| Event-based composition
Lump-like Composition Candidates Lump-like and event-based Candidates ~ Event-based Composition Candidates
(with 1 exterior boundary) (with 1 exterior boundary) (scattered in space)

Lump-like Building Bricks

At first, we have the lump-like building bricks as the keystones of our material
ontology, then, some of them can participate in lump-like** compositions, as lump-like
composition candidates, while some of them can undergo event-based compositions, as
event-based composition candidates. And it is also possible for the same kind of objects,
(e.g. particles, etc.), to have a double identity, to be both lump-like** composition
candidates and event-based ones, undergoing lump-like & event-based compositions.
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In Lump-like** compositions, composition candidates are with only 1 EB; in event-
based composition, composition candidates can be scattered in space or with 1 EB. As
an object can only have 1 exterior boundary, or not, namely, scattered in space, this
proposal is completed enough to exhaust all the possible situations for composite
objects to be. I arrived at a simple and elegant picture of material ontology.

Someone may ask about Carmichael’s most representative example, which says that a
person’s parts are united by the occurrence of his or her life. Therefore, I should be
something as a result of an event-based composition. Now, in my material ontology, |
shall respond that, as long as I (my body) satisfy the condition of having only 1 EB, I
am also from a lump-like** composition. I view it not merely as a case for event-based
composition, but as a lump-like** and event-based one. Apart from my life, the lump-
like**ness also plays its role in holding my parts together?3.

As suggested by Carmichael, the composite object in an event-based composition only
exists in a time period At, not at a time point. Then, add two things, the time period “A
t” and the scatted in space condition “— (3!z, zZEBxx)”, to the characterization of
scattered event-based compositions:

Scattered Event-Based* Vxx3y, xxE)y«— in At, Vn(n<xx—Event-based (n))
Composition ASufficiently United (xx) A— (3!z, zZEBxx)
Taking Lump-like** composition and (Scattered) Event-based* composition together,
plus Recursive, now I arrived at my general picture of a more precise version of SSA:

Mereotopological SSA

Vxx3y, XXY ye> at t, (Vn(n<xx—3!z, zEBn) /\ 3!z°, z”EBxx) (Lump-like**24)
V in At, (Vn(n<xx—Event-based (n)) ASufficiently (Scattered Event-based*)
United (xx)

A~ (3!z, ZEBxx))
V3ax3Ixx (xx=x)
V3zzaw (xx) *zzAzz) W) (Recursive)

5.4 Solve the transitivity problem of Carmichael’s SSA
Indeed, through sections 4.1-3, I have detailed stated my mereotopological SSA, as a
more precise version of the two-category SSA. Then, how do I save transitivity within
my SSA to solve the Transitivity problem? We need to take a closer look.

Unlike Carmichael’s SSA seeking transitivity from the transitivity of bonding and
grounding, plus a series of premises about events?®, fortunately, My SSA is more elegant
and palatable, entailing mereological Transitivity VxVyVz((xPy A yPz)—xPz), as we will
now see. Here I seek transitivity in the two cross-disjunct cases, as they are the only
concern for Van Inwagen’s Transitivity problem.

23 Aristotle’s famous case about part-whole relations, that a hand cut off from the body is not a part of
the man, can also support this lump-like** intuition.

24 Note that “lump-like and event-based” compositions can be treat as a special case included in lump-
like**,

25 See Carmichael (2015), pp.476-485
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(a) “Lump-like first, then Event-based”

First, the “Lump-like first, then Event-based” cases (XLPy A yEPz). In this case, x is a
lump-like part of y, while y is an event-based part of z. For instance, a particle is a part of
a droplet, while the droplet is a part of a hurricane. Rewriting this case into the many-to-
one composition and many-to-many composition, we have that, the particle is among
those participants for the many-to-many lump-like** composition to compose the droplet,
while the droplet is among those participants for the many-to-one event-based*
composition to compose the hurricane.

Then, from the Recursive clause: Ixx3yy (xx LY * yyAyy E}’ z), we can get Vxx,
xxYy*¢. The cross-disjunct composition happens, in which the particle is among the
participants of the composition to get the hurricane. Now, it is time to say that, the
particle is a part of the hurricane.

To formalize my argument:

P1: xLPye— xxL>*vyy (Lump-like** Many-to-many Composition)
P2: yEPz— yyE} z (Event-based* Many-to-one Composition)
P3:  3IxxTyyIz (XXD_*yyAyyD z)«= XX Z) (Recursive)

P4: VxVz (xx)ze— xPz) (Composition)

C:  VxVyVvz((xLPy /\ yEPz)—xPz) (Transitivity)

My SSA offers an adequate solution to the Transitivity problem in this case. P1 and P2
just say that something composes some further things, then it is a part of it, and vice
versa. P3 is the Recursive clause that passes the transitivity from many-to-many cases to
the many-to-one cases. P4 is the widely recognized definition of composition in
classical mereology.

It seems that given the basic concepts in classical mereology, this argument can be
wrong only if P3 is wrong. Withing P3 the recursive clause, there are two elements, the
distinction of many-to-many and many-to-one composition, and the recursive relation.
The former is perfectly intuitive, and obviously, very few people may feel reluctant to
admit that there are many-tfo-many and many-to-one compositions; while the latter is
not. Why must admit the recursive relation between many-to-many and many-to-one
composition? This recursion seems to suffer from the risk of being ad hoc.

To answer this, we need to get to the bottom of the definitions of many-to-many and
many-to-one composition. If, for any many-to-many then many-to-one composition
cases, the participants of many-fo-many composition, and the outcome composite object
of the many-to-one composition also satisfy the definition of many-to-one, then, this
recursive clause holds, as it is just entailed by the basic definitions.

(Many-to-one composition) xxY) y=df Vz(z< xx—zPy) AVz(zPy—3Iw(WOzAW< xX))
(Many-to-many composition) xx > *yy=df VzIy(z<xxAy<yy—zPy)

26 Here it is no more important to distinguish that this composition is event-based or lump-like, because

for my purpose to address the Transitivity problem, xx)'y is enough.
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AVm(Vy(y<yy A mPy)—3Iw(wOm A w< xx))
Avx1vx2(x1, x2<xx— ~(x10x2))

Now, suppose that we have xx “many-to-many ’ly composing yy, and yy “many-to-
one”’ly composing z at hand. What we need to do is to examine whether xx and z satisfy
the many-to-one definition.

According to the definitions above, we can make sure that now as “yy) 7z holds, anyone
of ys is a part of z, and any part of z overlaps something that is one of the ys. Then, as
“xx > *yy” holds, each one of the xs is a part of exactly one of the ys, every part of each
one of the ys overlaps at least one of the xs, and no two of the xs overlap.

Then, the composition definitions entail transitivity. For any one of ys is a part of z, plus
the fact that, any one of the xs is a part of exactly one of the ys, within each part of z,
there must be at least one of the xs. Why? Mereotopologically, I can give this ad
absurdum argument:

(1) Supposition: xx are not lump-like** parts of z.
(2) If any one of xx (let it be x1) is not a lump-like part of z, then from the lump-
like**ness, it locates outside the exterior boundaries of z.

(3) yy are parts of z, therefore, any one of yy locates inside the exterior boundaries of
z.

(4) x1 is a part of exactly one of the yy (let it be y1).

(5) If x1 is a part of y1, x1 locates inside the exterior boundary of y1, furthermore, x1

locates inside the exterior boundaries of z.

From (3) - (5), we have
(6) x1 locates within the exterior boundaries of z.

Then (2) contradicts (6),
Contradiction: x1 locates outside and within the exterior boundaries of z.

It is logically impossible for x1 to locate outside and inside the exterior boundaries of z
at the same time. As premises (2) - (5) come from the definitions of Lump-like**ness,
many-to-many and many-to-one composition, then if these three definitions are correct,
according to my SSA, then the supposition (1) must be wrong. It cannot be the case that
xs are not lump-like** parts of z. In other words, xx many-to-many compose yy, then yy
many-to-one z, then xs must be lump-like** parts of z. The parthood transitivity in the
recursive clause follows.

The finding here is that, as for quantification, as long as there are more things,
composing fewer things, the more things are always within the portions of fewer things,
while every one of the more things must overlap with the portions of fewer things.
Therefore, the recursive relation between many-to-many then many-to-one compositions
always holds.

For anyone willing to accept many-to-many and many-to-one compositions, he has to
admit the recursive relation between them. The recursive relation is not an additional
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supposition, but actually, a result that comes from the definition of two kinds of
compositions. The Recursive clause is crucial for my SSA to save the Transitivity.

(b) “Event-based first, then lump-like”
Second, the “event-based first, then lump-like” cases (XEPy /A yLPz). They are just
ignored by Carmichael’s solution to find LP. I do understand that it is difficult to find
examples for these cases in commonsense ordinary objects. But, now, from my more
precise SSA, I am able to provide characterizations and explanations for what happens
in this case.

With the help of my SSA, I can completely deny the possibility of “(Scattered) event-
based first, then lump-like” compositions. Rewrite “xEPy /A yLPz” into composition
sentences: X is among the things that event-based* compose y, and y is among the things
that lump-like** compose z, then:

Event-based first, then lump-like Composition xx EY* yy /A yyL) z (if possible)
Note that EY * here is the scattered event-based* composition. If it is a lump-
like**&Event-based* one, then we can easily prove the transitivity from “lump-like
first, then lump-like” cases (xx LY * yy A yy LY 2).

According to the first two disjuncts of my SSA:

Vxx3y, Xx)ye> at t, (Vn(n<xx—3!z, zEBn) /A 3!z’, z’EBxx) (Lump-like**)
V in At, (Vn(n<xx—Event-based (n)) (Scattered Event-based*)
ASufficiently United (xx)
A~ (3!z, ZEBxx))
At a glance, two difficulties of this case show their true faces. Speaking for the exterior
boundaries, if this case is possible, then the composite objects from the first step, the
strong event-based composition, will have only 1 exterior boundary in space, according
to the definition of Lump-like**, while it will have more than 1 exterior boundaries,
according to the definition of Strong Event-based*. Cases like “3!z, zEByyA— (3!z,
zEByy)” are logically impossible. In other words, event-based composite objects yy are
scattered in 3-dimensional space, so they cannot be proper candidates for Lump-like**
compositions, as they do not meet the 1-exterior-boundary condition to be involved.

Speaking for dimensional aspects, it is perfectly justified for 3-dimensional composite
objects, through Lump-like** compositions, to compose event-based objects in 4-
dimensionality. However, it would be impossible for 4-dimensional Event-based*
objects to lose their temporal dimension to be proper candidates for 3-dimensional
Lump-like** compositions. Therefore, from my point of view, I reject this case, as it is
indeed impossible, both logically and 4-dimensionally.
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Taken together, here is my general diagram?” for all the four basic transitivity cases.
Linking them together, we can get infinitely long sequences of Transitivity. Therefore,
My mereotopological SSA resolves the transitivity difficulty. We got what we want.

Lump-like first, then Lump-like VxVyVz (xLPy A yLPz) —xPz
Event-based first, then Event-based VxVyVz (xEPy A\ yEPz) —xPz
Lump-like first, then (Scattered) Event-based VxVyVz (XLPy A yEPz) —xPz

(Scattered) Event-based first, then Lump-like  {x,y,z | XEPy AyLPz)}=@ Impossible

6. Conclusion

In this paper, I start from a contradiction following the standard version of SSA, say, the
Transitivity problem. And I have argued that Carmichael’s SSA cannot fully solve this
problem while having an unclear material ontology. In order to raise a preciser SSA to
fully solve it, I choose to use mereotopological Exterior Boundaries to define lump-like
objects as the building bricks for a fine material ontology. Then I spend some time
defending my mereotopological SSA and offering the positive reasons why it is a
promising one, which solves the Transitivity problem. I do admit that there still can be
many objections to SSAs, but to convince all the detractors of SSA is not my main work
in this paper. In this sense, I have finished.
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A Preliminary Exploration of Conceptual Frameworks of Scientific

Discovery In the context of Al for Science

LI Hao-ning'
(School of Philosophy, Beijing Normal University, Beijing 100875)

Abstract:

Since Newton, scientific research has followed two main paradigms: the Keplerian (data-
driven) and Newtonian (principle-driven) paradigms. However, since the 1950s, principle-driven
science has faced two dilemmas: the increasing difficulty of acquiring empirical data and extracting
governing principles, and the exponential complexity of modeling and computation for real-world
systems. In response, Al for Science (AI4S) emerged, leveraging deep learning to address these
challenges by approximating complex functions and enabling principle discovery from data. This
shift revives the data-driven paradigm, exemplified by the success of AlphaFold, and reflects Jim
Gray’s “fourth paradigm” of data-intensive science.

Yet AI4S also raises concerns. Neural network models rely heavily on large, high-quality
datasets, obscure causal explanations, and operate as cognitive black boxes. This divergence
between prediction and explanation highlights the philosophical incompleteness of Al-led science.
To understand this shift, Paul Humphreys proposed that scientific progress is driven by "tractable
mathematics" and that AI4S marks a new phase after theoretical and computational science. His
“non-anthropocentric epistemology” views scientific cognition as a human-machine partnership,
suitable for handling the opacity of modern Al systems.

As neural network-based Al (connectionism) struggles with logic, causality, and verifiability,
symbolic Al—grounded in logical reasoning—offers a complementary path. These two approaches
correspond to distinct philosophies of mathematics: Mathematics I (analytical truths, aligned with
rationalism and symbolic AI) and Mathematics II (empirical patterns, aligned with empiricism and
connectionist Al). The tension and synthesis between these two traditions—rationalism and
empiricism—mirror the dual challenges and future potential of AI4S.

Keywords: Rationalism; Empiricism; Symbolism; Connectionism
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The Dual Sublimation of Geometric Realism

ZHOU Xingzhe
(Center for Studies of Values and Culture, School of Philosophy,

Beijing Normal University, Beijing 100875, China)

Abstract

We term the Euclidean geometric system within a singular interpretation as the mono-
Euclidean system. According to geometric realism within mono-Euclidean systems, the
entirety of Euclidean geometry describes properties of geometric entities such as points, lines,
planes, and solids. In reality, potential Euclidean geometric systems manifest not as singular
but pluralistic formations. We designate the collection of diverse Euclidean systems as multi-
Euclidean systems. These systems exhibit mutual transformability, which can be rigorously
defined as theoretical equivalence.

The first sublimation of geometric realism occurs through the conceptual evolution from
mono- to multi-Euclidean systems. The strength of realist commitments correlates with the
flexibility of theoretical equivalence criteria: more conservative and stringent equivalence
standards correspond to stronger realist tendencies, whereas more liberal and flexible
standards align with weaker realist inclinations. Within multi-Euclidean systems, inter-
systemic differences manifest as deviations from systemic identity while generating diverse
modal configurations. Simultaneously, systemic equivalences constrain such deviations within
the framework of geometric unity, thereby preserving the essential identity of Euclidean
geometry. Notably, Euclidean geometry as a theoretical entity demonstrates higher abstraction
compared to geometric object-entities like points or solids.

We categorize both mono- and multi-Euclidean systems collectively as intra-Euclidean
systems, while defining trans-Euclidean systems as the superset containing both Euclidean
and non-Euclidean geometric systems. The transition from intra- to trans-Euclidean systems
marks the second sublimation of geometric realism. This progression involves shifting from
intra-systemic transformability (which prohibits transformational incompatibility) to trans-
systemic transformability (which permits such incompatibility). Consequently, the theoretical
equivalence criteria for trans-Euclidean systems become more liberal, corresponding to
significantly weaker realist tendencies. This manifests paradigmatically through the
conceptual realization that Euclidean straight lines represent merely specific instantiations of

geodesic concepts within the particularized framework of Euclidean space.
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On Clifford’s Concept of Space: Dialogue with Riemann and

Helmbholtz

Abstract: In the 1870s William Kingdon Clifford became the first mathematician who
accepted and propagated the idea of Non-Euclidean Geometry in Britain. He translated
Riemann’s famous lecture into English and proposed his own opinions on foundation
of geometry and curved space. Klein was inspired by Clifford’s 1873 lecture and his
hypothesis that changing curvature of space manifests itself as the motion of matter,
anticipating later geometrical interpretations of matter. Klein’s advocacy made Clifford
an important figure in the reception of Non-Euclidean Geometry. Historians have
attributed Clifford’s courage in accepting the new geometry in the context of the British
conservative attitude towards geometry and space in the 19th century to his radical
personality or the rise of naturalism, and also mentioned that Clifford was influenced
by Riemann and Helmbholtz. It is still necessary to dig more deeply to identify in detail
the influences that Clifford got from the two mathematicians and what innovation he
therefore made in the theory of space and geometry.

In this talk, I will compare the geometric ideas and work of Riemann, Helmholtz and
Clifford, and then investigate the sources of Clifford’s thoughts on the concept of space.

102



“Gi— LT IR
—— BRI A

xR I AL

i - SR GIUE JEP 2 I SR RUE SUE JiE SN F Ay W i S E Kl i
G LR SN, ARR U SO LR LA R 58— X2 MM S 2 T s e dhik. SR
HX AR S, G TS AAR K =05 . TR g E s
RPUREEAR L SOR RIS, ATRUR LG — LR S 32 LA R SR O 25 1] B A 5
IARUART B0 725 () 327 2 T o F) S B 1) e, T e A 2 [ ) S R RS A A S A4 B R A 1 2 [
MG, X—FJEREE PRI ESEET 0. i, FIEORE A B LA R 04
TGO AT A BE, X6 AR SR A8 LA (I TORE RO BAC LT 272 R SR B

REET]: AR AR TR A B ; Gi— LA

I}

1 5

FER LR U2 SR LT @ e[ 8 e R g5, Ui m#E
BT AR IS R T RS R, Ve SR MR R AR O A
FROAVIR 2 —. AFRERES S IHERIE AR —, SR (H WeyD) il [X /)
FRIIA S 45, RS — U 5 RS 5 B, dEmse —f E
HA RIS HEER 2 MBS, a4, AR ESE 3 U, H A5G E X
[ R 55 2 k2R AR O A 2RI R 2 i 223 81 1) 2 e . gk, faghE Q.
Bernard) 5i%1% (C. Lobo) &8 NMEAAND SLRIRLAIT IR 1% Ah IR BB AR b 2 ] il R Y 2R 4
Pk, IR EORIA T O A A A RN S5 A BT A XU A

SR, A2 B T JURT R A BRAE, X4 — JUAT 2 [R) 3 A 2R Rl = R0
AR E BN RS RS B G — LT 22 A, $R gt — LT se R 148
B REEANE, IF HOU T [MREES k1R, A58 (A B AN S5 #4620 70 1 o

AT S AR R FE B 23 [ MUAS 5 22 (8] D], BB LR b i S 06 3 Uty
s I ANRIITE TS /INBIIAME 5] H A (8] ISR E, IS EESEANTE 75 /M & 0
DRI PR PR TR AR 3 2 SOMVER AR S, B IEX 228 [A) e RIESAE A5 & ] 3 80
AP SR 38 Ba, ASORIRH, BUROKEE A B B2 BT A2, X
SR A R B TR AN R B R, AT EAR) LT 22 5 2 () B A 3R BT A 2 2

103



A

2 RS SHRERERRLTEFRIFFT

X RAEN S, R EMAERRIE A, U5 N e R e & WA B, JERRIL
iy I h e 7 RO LR LT AE L A — M, (EAA R Rt AR H 7 2 2 A 15
JEo EREG— JUMHIECE S =, B A5 B L5 78 B 1 %6 R EA B FFAT A
ANREEE T Z W E 2% (H. von Helmholtz) 1518 5 X2k B R EE g, KRE T kA
(F. Klein) 17 [B) 02 7£ B S A A B b (R AN AR 20, AU 25 [A) I 3 2 1n) R
NHECTAERE L o AAGNVEEFIVEIRFRIN R 53 075 1 T 23 (6] () 254 [ T AN R 45 44 J= Thn v, B
R R EC S5 R AV A R BB, A AR B S S TUART, (HAN R H B A M Bl
B ARG E
2.1 JUIEEEREW ERG—

FEAER VAR, BREW S “TRAS AL 2 — MEAEMEN =400 R
IR 7 S PN AR I E B E R R, A RS R E 7 B8
PAMONAZ O U B B R 2 BRI — “ar A RE LA RS (430 JAR
MM EM, FAEA MRS F R 008 T 25 F k.

B2, WSS BEMAD R IEABE S IR R IAERTE 0 . B 8 2 YR PR R A
FE—E R L R T 3RAT 8 S 2 AL 3L A7 S R Rk e RO A 932, R 4 P A TR IR L
FEZS (B b AN E R AR BT, AR XIS 2 i W o FL T 5K B & 98 52 8 T T
. RERIL SR WA T EERK LR, KET RS ENIEER S B
BAE . ME—RRWHAE IR R ISeTn 1 A0y, DA 3k Je AT G 4k iX — 1)1
B, N E RS SURCRARE, IXAE BB ARE TR RS 5 4k 5 S R IR EOAA G

FERANRIR IR JEIE S 1 A U 2 P A0 s, RIDRE 25 TR g AR 2 56 i 40k BDW
AR U2 He R ER G FIMWT . EARAERK LA R R IS8 1 ) LA 2 BE5 S B 260 3 B SR TG
HW S5 EA RS L IRE T B LERAF LR, HRIX — RIS ) Jlont BB T 21 15
E o ZOEE 2L B RS EOAE R (R R, fRR R OGS B A PR P AN
gy, B (D REE B ARERE, G e M LERAF U2 2 e B i r ), IREIR R
FEHAH IR, G HAZHE () SR, ” N7 gz AR LS U 2 A R e RS A
Wr, (HIX— & BN AZAE HA I RB AL, AN Befil & 2= A T I 220Bs7, [mIRE, e
NN BRIRAAFAE — P 50 2% (B SR N B I FE S5 M, T4 N2 o RRAEAS KR L A3 L
TSR E LA o (HIX —TRIR AN RN FREAE A AR A UAAT 2 i S R &5 i R IR OR
U5, ERAWER, HHZGRME” B2 BRI, Sl sk — B AAHBAURIE Rk
XA ETK . AR X S e B AR (), J5 3 A el A, BEER TRIB M7
A E 1A o o1

JUT S AE 200 5 Se3a 1) () SR PR Z BAR LT 2 P A PR 206 . il (M. de Paz) #R
ZINEZZ AP IR T 7 RWXE A, —T7H, SRUeEH TR, 575
I, R 7T — T TR R, S50 R i R A7 5 BURIS, v &R (F

104



Biagioli) IANAEMBEMZE RV T LA ABEREA R, WA RS Hb
(91, FEAE I — W A S el = S sz . 5tk (M. Ivanova) 1121 FIAEF 44
(J. Folina) UBSP7HRH, P iNsicaR A7 B, RO H ) LA i FEAN M 5 R 73 H I e s
T FHAME B OB R BRSO A R AR 1) S R R Y

MR R T RAER S E 7, MHERRE 7R ER AT, PL=oi s m-EE
W) BRI T AR G 25 (8] -0 53 1) — e IRt SR SO0 S R 25 5 41 W 1 B AR i
AE SR eI AR A AR, FEHMET L B S H 2 e Ry e it JFEH,
EATREI AT 7 PR SRR B GRS RERE I, A7 5 B 28 T e Atk 2 T) W2 1)
Je RERG i B EL PR 73 14222 At O TR e W 2ot AT [X 93 56 R ER-6 I W FZ 58 4y A i
R, TRAAEARRR e LB T AT 57 BUR R TR I B e R E X — Tk

HNRWRARTE KRR TR =2 LA fE5 84 5 S0 SR ERTERT, AR 1 843
PSR A TR, B[R] PR Bo0] B2 8ok SR PR, I HLOT 59 Ok R S ok R ME— TRoE
BINZ, SR AT B 7 25 (B ) BE B b L HE AR 5T, B AR B2 BRI ) IR, HE R
BRI SR B0, XA AR R GNPR e B B A N 5 = YW R 2 58 1R 3215168 WA R T
YA SeI oM, A BERE W SLAE KR | B4 Bk BRI b 0 2 R 2 ) 1) Sl R AR o (2
2.2 ARENE X ERARRZERE

TEANRE AR, 70 AR A FR#EERRMEA SRR G — KR,
by 3K — [ MR 22 1) 57 DRI S 3HL 1) A F ik D7 (B 3R R IR S R o3 (RBABHE T, IRl
R SE R B A A AR REUISS . |y, AR08 18] () S 56 5 1 56 T R PRl 20 sl & o) 2
[ FR) S R B RN B 454 2 TR () (X 5o

AR SEES 3 SUBUR R AR 19 28 U2 i) — Moz b BIRER S P R ELE 240 il
7S S, AE AR AR NS A RS2 “HEMgasE T RIART” D68, Bl 5, JaoRBEIESRR
JRHEGE T 23 [ 071192, JEIg X AN i R A 45 T B U EDWL . 2 (R & ) S Ut
AW, — AR TEEER E S, o] DR EEN EEERE. AN REEAR T,
‘Boe EMEAA R E . 7 20 SR E, 19 tH2D ) UAnT 22 1 25 TR VA R H e 22 [0 &
WHITEHE .

P AT (Wesen) —ia] FBLR 48 F HH IRAE AR 2K 4% (J. F. Herbart) FSCA
. BEw i (E. C. Banks) USHA i /R ELRE A BE 2 [A] () 1 o b 20 BS HH R (R R R, FFR G
T 3RAT B IR R A (O . R K B () R AE R A [ R R B TR TR iZ AR R, I
I 55 1 3k An Je S B mT BRAN A 25 [R) g A ) B (A 3R . 8 A) AR A 2k EREAI M 3k AT Je
RAHIE T, AnY RIFEERRR ., X— WA 732, HFEERRKER. KRTH
71 L AT SR AR 23 (A AS TR BRI, AR IR B T /R A BT B, T AN A2 3R AT JE 7K
IR PENE S o

MRAEIAARLT (C. Parsons) A1 3K (E. Chudnoff) PO 42 BV A 52 BB AR
H, FEWFAFRRECE B X HBCEP R BN B ar R B AR B
A AEIX PR SR, AR /REEPEINSERITESE Eifie “IEAEM” D474, (R R Z %
B E IR B L R« EMIE SRR 7 (01360, Hodr, T555 kAR B R S A A0 57 R
K= —MERB R B b, R T A B TR AR R W, B Lk
e XA 18] P B R BEAR B o AR R BEAN B 8 2 A i e 1) 1 A R AR A T 2032 X

105



(B A PO FFAT 57 ORI ELSE 3 3 AR BRI —F 2 [0 G4 — ALy, SEREEX
EH A5 TS, A S EE M TR RSO 55 5 B Y B AUk S

A RRs A AN Xl o R E SRR EDAR 5, BN LA W i i X (1 221,
X DX SABAE A JRAA R AIAT 55 BUR 22 TR AR PR AT A S SRl R R R AR 2% LR
IR R TC T3 /INER 7 T 2 & s T B AR, DA s 5 A Bt 22 [ PR A I F)
SE, BRI S8 S5 R S ARG Z 40 BN A AR g3 X — 70 B IR IR AR 1R AE
aWIREES R EE A Ui E S IR

3 ZEFHES R

AN RK LA U s A ek B e B . b, i LR B ) LAAT (0 S Bkt A2 3RS DLEETA
B O SR R S B O R AMREIRBIEIX A A T — MR B AR,
FERE LTI AR R T AT LART, AR, DA AE T & R L 55 /AN U, “ (3R RIER
G JUAIAESSIRAETE 75/ LT AR T T R GE T — 2B 1% . FRATD IR BEH B S LR b R R s —
ANTCE——PEE 7 BV R BT (4 757202 F 07 S RS IR T S AE TE 55 /N T LA, ThiPE XA
HE R iR MR e MR B o T 4. BB 55 /N2 R RINHE 8. 382k
(N. Sieroka) TAR2100, GhIR FIE 55 /NGBR3 70 e SR A S O RN R R AR 2, X — 32
BT AR

CEA RN (S. Edgar) XHTCF5/INRESEMERI M. 82010 7 L0 A DUR A IR K
(E. Scholz) XAMRITAEMBITL, ToF5/NEBIBAMGREINH, FN M OAUELSL N . XAf
25 B 2 R T 2 LIRS, R0 E G — LRI BT T4 1D S 56 14 2 1) 1 A
H AL B T B
3.1 BEEZ WELRRN KR

PipE (S.Feferman) PIMMEZ S5 £ AL ARLEL T ELAA IS, b1 HiESAk
U HARSESW P ARG ZEARNE L, HEORESRN R RN LRSI E, 4
TIEEARPESA, SRR /RAFEX BE ] T U3 L%, oKkt =il
MESAANES, A8 eI 7 AL EE T LA TR IR

(D) JURBESAR: BRLEAFE S5 e RIES

PR SA R G R B L A RS R, T ERFTBNE, WA F KT EA,
XERE R LR A ROELAIN S, MEL LA SRR UL, LItdEh sk
FEAER AU S BB ANTE 75 /IR S R BT T ISk, B HORIIE S22 (8] AN RE TLAHHE
.

(2) HARGESELS A Bt 5 B 4 i H G s

B FES A RTIE SR AE S, BATRIEA T U, EREEAREM
MOME R, XTESARIIMIE S BHUSE K. FIEMBMESHE F S aiE HL 55, X5
e RHEE RS A AR b, BB AR IETINSETLE T, RIS HUCRIE D
TS T A S SR N SO b, fh DU SRS TR, Iy E e SOk
J3 /e

106



(3) i /RAARFIESA: PIEKIEA B S e &1k

=LA R A /R AR A GE SR, B R A BT EOREAR (VD) MELER
N (V2) PSR, SRR ERAA LR A R ESEE S . “ESEER, AR L,
T ANF R 7y BT EORE A AN S A B, JI M TR BB S EoR A E v, o
NN AR ARG 292, Bk S YO RIARFR & A (V2) S5 T8
fEEELE, (EARAXPIEREAE (VD AEEZ e, 2R RIAR RS 22
i, RJUTAAE SRS IR G . BAR KOS RZEFTNE SR, BihE ot
BIEOKRIE AR (VD) BN T LTI UG T (AAAE . e a (V2), /K
HFFLIE T HESARXT T T T5 /ML Stk

SRR 36 8O0t Ay AR AA AR SR I A+ 70 AL, BRSS9 A Ay AR A R EE SR A )
TR A A T AR e 5 04 IR 2 SEROE B K252, (H 2 50 SR DR Ay /R RS 5 REFEIK
RAE—EIS, AR SR AR A R AR LA A B ROR A, T2 B IR ORISR A 1Y
AR JUAESEAR . TR A ) 5 B 2 U SRR S T BORIE SRR, Mt iiE 701
BERELIMRA R, FFIORFEAE “NE R EFERAF MR 1,

(4) ELLR G M= R=FIC55 773K

TS, ANFIRESRAARR S AR R T3 LS AR R, Herp—JF ML 1 SR iR A
ToTFHIE e X T Ri#E, EEE ST /NI, W TeE, L5 AE 7Rk
St K. MR (H. Cohen) XfJfj sMAiel ik, SRAEINGRI 1 =R AR T8
26l ARR/MUATBR/ANE L AR TS 55 MR AR JE KK AN (inexhaustible) JE55 .

RN BRAN AR T X% GERAR 7 AR PR & A PR, R 2R T A AR 2 HE R A T AR
ZAEIL R IR TR o A T 75 AN T ARBR, B RE A 75 A U L TE 55 B
BEES, FFHIEFH S ERAZAST TA Y. AET T B A 55 BUKIE A SR
(exhaust), PRI AFAERAKA G I3 SR ET MR, At 5sEda 75
SEXTETS -

BBy, Tl 7e R B R T ANETE T, JF R AR AN TE 55 1 e SR U BRE
TR TE TS o ABIEASCIL 1R (T T3 /N AR, (B SR T3 IS I
Y PR U LU VR o I R A N AR B AR, KA R IR RS S T 5T M AR
W E252 TR, BRI TE 55 A8 SR R T BEsR | TS 1718 . RRITIESA NS &
DEWE R ESAR, A ERMAFHIERTLT, B RA R E S AT T3 %
BZo BKJLERAF AN IR LADESHA AU RRES S T 55/, e 555 % T4
73 B AR — 2

EIARESAE R R A A S IE LT, EAB LS MEHT, AN
BEEENEZ ST . IRE R — R0, SRR SVERITC 5 N Z AR e, BIEESE
PRRANRE R R O TR IRIZANE,  AMRIESE 1 IE 55 /NI AN T B O S 2 ]
e -

3.2 MRS MBI

AR BTS2 I 2 (AE SR @ AR BB G AT (V2) 2 b, “IXMhigs b e & St
TR A ) R R RBESENE (650, (EARXSPTHORIE AT (VDD KSR MH, R
ANE SRR TGS INIAEAE, (H A B SO B A

107



HMRVPIR T =FhESAR, AP #ERIEE X IC S5 KT e A 2 . BTN 2 — Rl
BARRAENER DA IR, ARV ERAE R AR TS RS AR T
A e S5, XA FRETCTS, JFH AL “ R BRIDRR R 56, ZHfth 5] IS e
W TR IR X AP E T, Al R LR SR AT JE IR A AR ST, BIBEBA LTI R, W
BHTT /e MRS =M s AR R S IR B SR, “ B LLSETC 55 AR 7 16158,
AR BAT WA B AR AT RPN b, AN RIR IR SCE S, 58008 LRI —
PG TERIMES, IERSEEETFIFE TR RIS, e Pidi (L. Crosilla) FIAANTE (0.
Linnebo) ANANRSCHF T AT T MM, A IR Wi, SRS R BOA IR
UERSET TS IIAFAE, AN A RS SO B ARSI, 4 R 58 27 P ATUPR P 1R SR 2K i
DR ER 1, A SR RIS AR B i J L R4

ANEARR BIERAESNRBE, I3 /NBIH A G AT LM S8, B TT /MR
ARERL PUONANREA BRI AR B AR T 75 /INAR I AL . K AR I IR AR A P AR T
NI/ EHERE (laws of nearby action), BIIX 2L g F AR I SEAE I 25 ml (B AR Ak I B B 1Y
(EIE AR - BA TR BEIIERAETE 55 /N FPa BB A (1 1y HL— B g 7 (009, X EkaE o
73 /NI A EE A R R AE S . 38D AR AR B RARFR SR, “ Py RE R
MR AT LA S O AR e 7 204 SR IRAE 2R A 5 X L 3R T I8 55 /AR A 4k
AP, E A <IN 2 P T FEORE 2 2 [ R AR 2

B AR SR TN AR B, SRR IRTETI A s ik, ANE
T T3 /NEAE AR WA TR, AT OB AR R LS/ BB R . SRR BB, H
T3 ANRIEAE “CBATTR” SIANJUASE . MRRESER 5 TE 55 NIRRT, H
FEESMEAF R R AT B ok, BEEIESEANTL 5 Z IR e —FH ISR A, R4
T WER S 2 BEAR, BN ] WA 21370 . BARSN RIS 2O ARETIN “ R B 1]
SERK I SEAE L ATE R AN B R IE " B8, (B M ARTBGT LR B 1 7 9 22 ) (R A o g
.

4 EZEERA TR UTHZEREE

Xt 2 A IR S R SN 15 S RS AAAE P B ) LA o AN AE R SR A T B LT
AR SA O, PR AR A S AR AR BILAE 23 (R A TE 55 /N B o R AR R R S E 17218

3K BRI PR3 K AR G 402 A B AR LT 22 7E A IR AT 22 S AR 32 ) LA FR 2 i 2
b TR UAT RS S R AR R B . DU LT =2 AR R K G N B S8 T AT
NIRRT 8 AR A3 18] 5 b 0 P A 2 ] BR AR S R P HOR P A B X —
B NGEGARRTE T3 /NI [ R AR RS, EATZ AR ek RA MR, H—24k
F3 /NI IERG A oRE E], BRI RE T G TR MO R L,
DEP RN 24N
4.1 HMREHIIE RS H

HMORIERE 7RG RS, BORMBLER 55 VaH A s A RIS B, EXTE
T3 GANRE, SRR 57 BURIE M. AR “HESGRT LU (A7 57 BUR

108



1) HMEPEERAAT PMESTR” SO I, AADURIESHAM Y — MBS, HAREE
BRI S RE AL T I E S T 1

o, HMRIFASESR 2S A BRI ONE SN, 11245 T 75 /N AT A i R 2
IS I8 R /NIRRT o T 55 /N AT sk P 2 () BEAR ARG AR R mT i, DA RGR A Mg e 4% 30
SRR T AR 2 () A P B A Rl R, AH B RS TR AR EOR AR (kG & . (H
& A TERCE A BE 5 R TE 55 /N LT HORG A I, AT T3 v R 392 i A ) S i o S 8 1k
AR AL E 2 MVBEAR PR 7 o Wi T SRR A SE AR RS Wt SO I RE — 2 ik, BT
R, BHZANLT/NBBZARTTTKE, HHIRA LT KB %K
Tl — € AR . & 5E, BORELEIEA S ITn Ik, (HIE Tl AN b IR g 5 i 2
P, BN 5 & R B AL TE T3 W] 78, AR EAEAR T A ANESE . A, ESERITETT /AT
IR I D IRRE NS A OB SE I S A B A . LR, the 75 /AR S IR PR A4, B
Lt A ReMg RN 0], X — R AR R AR

XA 1) PR A AT SR A et 2 T ] DA SRR ], AR B ok 7 34 22 R R X
SR, — 5T, EAEEMARE R VSR, F—Jrm, A8, “A
TRNESGLHAT A AL NS, SR MTETT/ANBIEOT G, FiE T A N R R
X ERBESVEBMIE T RIE. 255 255 DB G, SMRGE]T K078
HRag 2 M, XK _E AR AR — RN T2 5 (K AR FFE A B o SRR AR IR 2
e, BAEXE, MR MOIENR, B o E 2, LRI AN TR NAR
ko MA)TTIGEAE T B RAE S UORME AL S, @& TR MHRE ik, IF HAB AT
H AR TE N — AR 4RI 2

SR, RSN R BT W 1 S 3 T8 RE S I BGE , FEMLR 575 TS S 20 e ¢
B T R TCAR IR . AR T ZETE T3 /NBIRARAUE R S LT IR, JEH 2 BRI AR
shrb RS AR 2 - HER R, DUE T R LTS R LT 2 T . (BTl
SRRV IE BN T AN RRAS T (W) RS, U HOR A AN AR S5 40 5 00 55 /NSRS AN
FARF LT JE e, ARRLT R RT3 /N i e ik Ar i e B, R B, B2 L
A SR LRI U R . 57 T0 55 /DAL 2 — A 2 B EE, KA ES
I AT SR BEA T R 1R R B 7

FENRT % b, G R RS R iR AR EWZ b, B R IEER I n AR
AR T IS 18] L o X R A (BT 5, AR ANDURE 22 8 iR LA R AL N 4R BT
3 T Hal R A O I LT A A e R ER B PRt Tl RE . SRR G 1 2 E
ST ER, PR %R £ -5 RITH R S B R DO 4R s i de ot 1 T RERI P ke —
T, A5 EEATRE BRI E — MR O A (B TR a0, DAE ) Fe b 0 ) LT S5 W B P9
J3 I, ARSI TR] B A R IC VA B o, U At R LR AR 2 8] (1 4k
PE. SIARR, RPE/R (E. Cassirer) 7y B SRl DUBES U EDULR BT B 3 3L, Hexs
ZALIAE AR TN TSR
4.2 RP/REEEE

RVGRMAN R AR BB T Z B 2R WAE G 5 SR S5 N5, (HAh A b
R 5ese SURP B LLANRE 2 o AR EESE N B Se R B gs tH IR, R PR
WU SE W st LR <8 OU2RIRD RESEEMTE T3 1, AR AR — SR 2 it

109



e SR T AR L CR[R])) JRGE P BUE SR EAR Y OIS, Al g T BRI E
RUFIARE ELOLAE S LT 35 27 p B2 AR 8 4 i 2 S A S Je ok A s s b

AR T HNRI R AL, R RES S RN DG EBR. RIERRAD S
) PR A AT, O 2 TR RO ERAR AN TE 5 /INAR R R 1, b oxd 22 i) i /N B P i
MR “ i ME— R Z R T S, EORE TR — DN BARNESE. A
o, TGRSR N R R E R SR A 5 S B 5 EIREIE
R ARSI E AR RINIPES 5 R 7 1291925, W] U R PER AN R T3¢
At JE BRI L e A o

RVURGE B LTS5 R R LE 22 18], T AN IR AE A3 8] TP A5 A . B IRIEX B O 2ie
TRt AT PR XA MBS . Al AR S SRR 2R ARSI 2 BRAC AN 4R 5 A 1L,
JE B A AL O PR B R e A R SR, ox 2 T U — A 2o DU
MIPAETCER . P AR g R PH /R A B AR BRAE T A= RN K, IRV T B
B, RIURBARZHEAM SR BAELASZT .

AR S S E R T S AR, eATTHEE LR R Mgz b, Jf
FLARER I 150 R R AR RPURDTA T BEMFIREAAE,  M030A 1 IAXT R fE
38 1 LM, ik Bt BV R 38 B R OR (K 3 e s o 44 6 SRR AN
ATTREEATH AR RN E AR . XAIE T, ERPURIVEBA T Oh, W85 e
FeIG AR, IR R Y R B SR . TS5 T SOFAARH R B B AR, i dh
e RO E X R

B MG T SOIRER T /R ARG S AT 1), i AN SRR AT 21 )= E 75
Ny JEE RS BB ARIE S . ARTHOR RS A (B A SR, AR
ARG ] 5 J5E B2 1) A A 3 Y A B4R, 1R 7 J) DU B SR A ] 35 2B Ao LA e
o (B, ABATIHR A il fe N7 AR T 25 1 A 24 ) 8 e R 2 ) A I 8] ) 4t — ke, N
AU 223 18 27 22 HORZ o TR AN A B ISR SRR IR A ok . NER RIFIRTE L. 3
AR I B ARSI I RS 22 T PR AS 5 5 2 W) ) Rl 2 il A2 18 R EL R R T

5 Bg

TR RIELENE RS — U ATSR, R BRI e R IR, RS p B AR —
R 702 (RS B . ERORTE R AT R A FE LA 2 (R X D 5 M TR 5 AR T PR I
PIANZ T, AESREENLAETC 55 /NI ARG S SCRNR T bR B0 2 1 B A U=l 4
— JUMT A S PR S R

XS R B R P A B A [ P P B AT AR, LR

YRR T WARIRETIERIEE X A “An Sis holistic if and only if the following condition is satisfied by all the
things which are its constituents: with respect to the instantiation of some of the properties that belong to
such a family of properties, a thing is ontologically dependent in a generic way on there actually being
other things together with which it is arranged in such a way that there is an S.” (M. Esfeld, 2001, 16)

110



TSR POE SRR, A RS B JUESLAMET S, BARVOREMR S
AN UE SR L AR SR A, (H N AEAE T Qi o e 5 T Bl oL TSRORE SRR
2 ERIEY, SEERESESENPRBH AR, EIUTEEE , 45t
I SO HRRAE S AL AR AR ZE A WA R TT, AT 2
2958 2 R EeA S, T HAEAR FIREEE L EOR T RRSERE, X I gk T
Gl EIIPRINIAR

B OB AR AT, RS AR ECAR, T E e A
e RAEFMTEETEME, 4B IRENE B ZINESE BT, JFHE
IRBUPAC LT 022 [ & 5 ARBUE AR R

SRR

[1]  3E3K€H, 2008, @0l FIIRISEECE (BE—38) , FNDT, BRUE, BEREEE, ZE R AL

[2] J. Bernard, C. Lobo, 2019, “Structure and Philosophical Foundations of Hermann Weyl’s Work on Space”, in
C. Lobo and J. Bernard(eds.), Weyl and the Problem of Space: From Science to Philosophy, Springer Verlag:
V-XX1v.

[3]1 MK, 2024, = [al-IF R0, FREEDE, HPrai¥, Fho it

[4] E.C. Banks, 2013, “Extension and Measurement: A Constructivist Program from Leibniz to Grassmann”,
Studies in History and Philosophy of Science Part A, 44(1): 20-31.

[5] F. Biagioli, 2020, “Ernst Cassirer’s transcendental account of mathematical reasoning”, Studies in History
and Philosophy of Science Part A, 79(C): 30-40.

[6] 4MK, 2007, Hv 5 BB A2 B, SERKE, LIRHEE At

[7] F. Biagioli, 2019, “Intuition and Conceptual Construction in Weyl’s Analysis of the Problem of Space”, in C.
Lobo and J. Bernard(eds.), Wey! and the Problem of Space: From Science to Philosophy, Springer Verlag:
347-368.

[8] D. Cevik, 2024, “Riemann’s Philosophy of Geometry and Kant’s Pure Intuition”, ORGANON F, 31(2): 114-
140.

[9] L. Boi, 2019, “The Role of Intuition and Formal Thinking in Kant, Riemann, Husserl, Poincare, Weyl, and in
Current Mathematics and Physics”, KAIROS-JOURNAL OF PHILOSOPHY & SCIENCE, 22(1): 1-53.

[10] M. de Paz, 2011, “Thinking Geometry: A Matter of Philosophy, The Case of Helmholtz and Poincaré”, In H.
Tahiri(ed.), Poincaré’s Philosophy of Mathematics: Intuition Experience Creativity: 107-121.

[11] F. Biagioli, 2016, Space, Number, and Geometry From Helmholtz to Cassirer, Cham: Springer Verlag.

[12] M. Ivanova, 2015, “Conventionalism, structuralism and neo-Kantianism in Poincaré's philosophy of
science”, Studies in History and Philosophy of Science Part B, 52: 114-122.

[13] J. Folina, 2008, “Intuition between the Analytic-Continental Divide: Hermann Weyl’s Philosophy of the
Continuum”, Philosophia Mathematica, 16(1): 25-55.

[14] E. Scholz, 2019, “The Changing Faces of the Problem of Space in the Work of Hermann Weyl”, in C. Lobo

and J. Bernard(eds.), Weyl and the Problem of Space: From Science to Philosophy, Springer Verlag: 213-

111



230.

[15] 1. Folina, 2018, “After Non-Euclidean Geometry: Intuition, Truth and the Autonomy of Mathematics”,
Journal for the History of Analytical Philosophy, 6(3).

[16] %2, 2016, B2 AL, T, WSHHE B

[17] FE3KH, 2021, KTBRUA AR I LLECE 22, MBE, FhH3F0E, REM T R

[18] E.C. Banks, 2005, “Kant, Herbart and Riemann”, Kant Studien, 96(2): 208-234.

[19] C. Parsons, 1995, “Platonism and Mathematical Intuition in Kurt Godel’s Thought”, Bulletin of Symbolic
Logic, 1(1): 44-74.

[20] E. Chudnoff, 2014, “Intuition in Mathematics”, In L. Osbeck and B. Held(eds.), Rational Intuition,
Cambridge University Press.

[21] D. Pradelle, 2019, “Entre phénoménologie et intuitionnisme: la définition du continu”, in C. Lobo and J.
Bernard(eds.), Weyl and the Problem of Space: From Science to Philosophy, Springer Verlag: 161-188.

[22] N. Sieroka, 2019, “Neighbourhoods and Intersubjectivity”, In C. Lobo and J. Bernard(eds.), Wey! and the
Problem of Space: From Science to Philosophy, Springer Verlag: 99-122.

[23] S. Feferman, 2008, “Conceptions of the Continuum”, online.

[24] A5 /R1A%E, 2009, JUFTEEAE, TEERR, ARG, LR HARAL.

[25] Be3€[H, 2008, mMlA FIOWISEECE BB |, &FNDT, MRE, MEESERE, S H R AL

[26] S. Edgar, 2020, “Hermann Cohen’s Principle of the Infinitesimal Method: A Defense”, Hopos: The Journal
of the International Society for the History of Philosophy of Science, 10(2): 440-470.

[27] 4I/R,2007, REsRECEFRIGUTR, R RERm R, LIFBCE B

[28] L. Crosilla, @. Linnebo, 2024, “Weyl and two kinds of potential domains”, Noiis, 58: 409-430.

[29] RPU/R, 2016, SRS TRE, FIZRME A8, 2320, WHALR =R AR AL

Philosophy of Space in “the Unification of Geometry”
——Taking Weyl’s view on space as an example

Jie Liu, Yueer Wang

Abstract

Philosophy of space is one of the fundamental issues in philosophy of geometry. With the unification of
geometry as the background, Weyl distinguished the essence and structure of space, and his perspective can be
regarded as a synthesis between modern geometric philosophy and philosophy of space in relativity. By comparing
Wey!’s constructivism with Cassirer’s holism, it can be found that the unification of geometry, from a
transcendentalist standpoint, regards continuity as the essence of space. The difficulty faced by the philosophy of
space in modern geometry is to resolve the contradiction between the a priori continuity of space and the
constructiveness of the continuum, and the most prominent manifestation of this contradiction is the paradox of
continuity. Thus, the influence of the Archimedean axiom on geometric epistemology has surpassed that of the

parallel axiom, and the study of non-Archimedean geometry will become the key to modern geometry.
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The Intertwining of Ideal Pursuit and Empirical Grounding:
Re-examining the Epistemological Form of Ancient Greek
Mathematics

Zhang Wenxin
(School of Philosophy, Beijing Normal University, Beijing 100875, China)

Abstract

Traditional historiography of mathematics positions Greek mathematics as the origin of modern
abstract mathematics, based on its deductive methodology and idealistic pursuits: The Pythagorean
and Platonic schools emphasized mathematics’ transcendent essence, while the Euclidean system
pioneered axiomatic geometry. The 19th-century “geometric algebra” interpretive framework
further reduced Greek mathematics to geometric variants of modern algebra. Such linear progressive
historiography obscures the original characteristics of Greek mathematics, necessitating an
intellectual-historical dissection to reveal its unique cognitive paradigm.

The Greek concept of number (arithmos) remained anchored in the empirical world. Jacob
Klein’s etymological analysis demonstrates that ap10p6c refers to countable object collections, with
its indivisible unit (monas) maintaining concrete referentiality. This led Greek mathematics to reject
the existence of “one” (as unit rather than number), fractions (replaced by relations between
heterogeneous units), and irrationals (contravening commensurability). Although Plato
distinguished theoretical arithmetic from practical calculation, his “number itself” (auto to arithmos)
remained constrained by indivisible units, forming a paradigm of concrete abstraction—numbers as
ordered manifestations of the sensible world rather than an autonomous symbolic system.

Greek geometry similarly exhibited intuitive-constructive traits: Geometric space was not
abstract entity but the totality of figural relations. Straightedge-and-compass constructions delimited
object generation, rendering Greek geometry an operational science of idealized “proximate things”.
Its terminology employed deictic references rather than universal quantification, achieving
generality through exhaustive instantiation. This finite intuitive framework fundamentally diverges
from the infinite-dimensional structures of modern topology, revealing Greek abstraction as purified
idealization of empirical objects.

Ontologically, Greek mathematics manifested tensions between transcendental ideals and
empirical grounding: Pythagoras deified numbers as cosmic principles, while Plato elevated
geometric forms to ideal prototypes. Yet numbers remained bound to empirical units, and geometry
relied on constructive intuition. Aristotle’s concept of “abstract entities” mediated this contradiction,
asserting mathematical objects’ independence from matter while rooting abstraction in sensory
experience. This dialectic exposes the Greek rational paradox—aspiring to grasp infinite truth
through finite means while rejecting symbolic abstraction.

Heidegger’s ontological analysis of “the mathematical” (ta pabnquata) provides profound
insights: Greek mathematics was not formal system but fundamental disposition toward things. The
Pythagorean dictum “all is number” essentially positioned measurability as the horizon for Being’s
disclosure, while geometric construction as “productive seeing” (herstellendes Sehen) revealed truth
through manual operations. This cognitive paradigm fundamentally diverges from modern
mathematics’ symbolic systems—where math&mata denoted graspable objecthood, “mathematics”
has degenerated into Gestell (technological enframing).

Re-evaluating Greek mathematics holds dual contemporary significance: Firstly, it deconstructs
the “abstract evolution” mythos, revealing its concrete-abstraction paradigm’s critical potential
against formalist hegemony; Secondly, it reasserts mathematics’ philosophical essence as
civilizational cognitive schema, emphasizing mathematical truth’s dialectical genesis through
intuition-logic and experience-idea interactions. The “incompleteness” of Greek mathematics
constitutes a warning against modernity’s crisis: When mathematics becomes fully symbolicized as
computational instrument, have we forgotten its primordial mission as revelator of ontological truth?
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Institutional Formation of an Interdisciplinary Community:

ZAMM, GAMM, and the Interwar Revolution in German Applied Mathematics

(1921 - 1933)

PENG Zhen'!

(1.Department of Philosophy of Sciences and Technologies, University of Science and Technology of China, Hefei, Anhui, 230026)
Abstract: This study examines how the Journal of Applied Mathematics and Mechanics (ZAMM) and the Society for Applied
Mathematics and Mechanics (GAMM) facilitated the institutionalization of applied mathematics in post-World War I Germany
through a synergistic "journal-society" model. Drawing on archival documents, correspondence records, and textual analyses of
publications, the research reveals that mathematician Richard von Mises initiated an interdisciplinary integration experiment by
founding ZAMM (1921) and establishing GAMM (1922). ZAMM bridged the divide between pure mathematics and engineering

through methodological manifestos (e.g., advocating graphical computation and problem-oriented research) and editorial innovations
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(e.g., a scientific advisory board). Meanwhile, GAMM institutionalized a scholarly community via annual conferences, membership
networks, and international collaborations. Their synergy manifested in content complementarity (linking conference reports with
journal special issues), power-balancing strategies (negotiating nomenclature and dual disciplinary positioning), and mentorship for
early-career scholars. However, tensions between mathematicians and engineers over disciplinary dominance persisted. The Nazi
regime’ s political purges disrupted this process after 1933, yet its institutional legacies—such as international membership
frameworks and practical analytical paradigms—shaped postwar global applied mathematics. This study demonstrates that ZAMM
and GAMM not only served as institutional blueprints for interdisciplinary integration but also reflected the complex interplay of
nationalism, disciplinary discourse, and individual agency within scientific communities, offering critical insights into 20th-century
scientific institutionalization.

Key words: applied mathematics; institutionalization; ZAMM; GAMM; Richard von Mises; interdisciplinary community
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Reanalysis of Penrose’s New Argument and a
Modified Version of it Formalised in DTK System

Yujiang Long

Abstract. Penrose’s new argument tries to show that the idealised human mind outstrips the
idealised finite machine. It is an anti-mechanistic argument and is based on Godel’s incomplete-
ness theorems. The DTK system is a type-free theory of truth, which eliminates the semantic
paradoxes that might arise from the predicate T’s self-reference, through determinateness con-
ditions. In this paper, I propose a modified version of the argument and try to formalise it within
the DTK system. I compare two different reconstructions of Penrose’s new argument, showing
their difference and defects, and gaining insight into my modified version. The key innova-
tion lies in showing how the core insight of Penrose can survive formalisation when properly
bounded by language constraints and a proper modification of Penrose’s formulation.

1 Introduction

In his 1951 Gibbs Lecture, Godel proposed his famous disjunction:

...that is to say, the human mind (even within the realm of pure math-
ematics) infinitely surpasses the powers of any finite machine, or else
there exist absolutely unsolvable diophantine problems of the type spec-
ified (where the case that both terms of the disjunction are true is not
excluded, so that there are, strictly speaking, three alternatives). (Godel,
1995, p. 310)

This disjunction is known as Godel’s Disjunction in which the first disjunct expresses

an anti-mechanistic thesis. There are many rephrases of GD in the literature. Arnon

Avron summarised these rephrases(Avron, 2020), and I list some here:

4.

Rephrases of the first disjunct(anti-mechanistic thesis):

The human mind cannot be reduced to the working of the brain. (Godel, 1951)
The human mind is not equivalent to a (finite) machine. (Lucas, 1961)

. The operation of the mind in the field of arithmetics cannot be simulated by a

machine. (Krajewski, 2020)
The human mind is not a Turing machine. (Penrose, 1989; 1994)

Yujiang Long  School of Philosophy, Beijing Normal University
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5. There is no algorithm that can produce all the theorems that the human mind is
capable of producing. (Horsten & Welch, 2016)

6. The mathematical outputs of the idealised human mind cannot coincide with
the mathematical outputs of an idealised finite machine. (Koellner, 2016;
2018a; 2018b)

7. The collection of humanly knowable theorems cannot be recursively axioma-
tised in some formal theory. (Horsten & Welch, 2016)

8. No well-defined system of correct axioms can contain the system of all demon-
strable mathematical propositions. (Godel, 1951)

Rephrases of the second disjunct:

1. There are mathematical truths that cannot be proved by the idealised human
mind. (Koellner, 2016; 2018a; 2018b)

2. There are objective (mathematical) truths that can never be humanly demon-
strated. (Feferman)

3. There exists a particular true arithmetic statement that is impossible for human
mathematical reasoning to master. (Charlesworth)

We can observe that many of these formulations differ to varying degrees, while
some are essentially equivalent. First, I would like to declare that the version of
Godel’s disjunction I adopt is as follows and I’ll use GD to denote this specific ver-
sion:

The collection of humanly knowable sentences cannot be recursively
axiomatized in any formal theory, or there exist absolutely undecidable
sentences.

I maintain that this formulation faithfully captures Godel’s original intent. His
first disjunct aims to establish that no finite machine (by which he means Turing ma-
chine) can extensionally equal or surpass the set of all true propositions that the hu-
man mind can in principle know. Since we know Turing machines and formal systems
are equivalent, Godel’s terms ‘finite machine’ and ‘recursively axiomatised formal
theory’ are indeed interchangeable. When Gdodel refers to ‘diophantine problems’ he
essentially means number-theoretic or arithmetic problems. Therefore, ‘absolutely
undecidable diophantine problems’ specifically denote arithmetic propositions that
humans can neither prove nor refute in principle.

Godel argued that his disjunction was a result of his incompleteness theorems
and provided an informal argument and saying his disjunction is a mathematically
established fact(Godel, 1951, p.310). From Godel’s inclinations and Hao Wang’s
records, we know that he held an anti-mechanistic stance, meaning he believed the
first disjunct was true. However, at the time, he thought there was no way to provide a
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rigorous proof of the first disjunct. Still, he suggested that a satisfactory resolution to
the intensional paradoxes might establish the first disjunct in the future.(Wang, 1996)

Nevertheless, many others have attempted to formulate anti-mechanistic argu-
ments based solely on the incompleteness theorems. Notable among these are the
Lucas-Penrose argument and Penrose’s new argument (or Penrose’s second argu-
ment). The core idea of the Lucas-Penrose argument is that for any sufficiently
strong, consistent formal system, the incompleteness theorems imply the existence
of true propositions that the system cannot prove, yet humans can recognise their
truth through reflection. The literature primarily identifies a key issue with this argu-
ment: it requires the additional premise that we must also know the consistency of
all such consistent systems, which is arguably impossible. Penrose’s new argument
is far more refined, and we are solely dealing with this argument in this paper. Like
GD, this argument mainly involves three key concepts and we will treat them as three
predicates.

The first is a formal system (F), a recursive set of axioms closed under a set of
inference rules, where F must satisfy the conditions for applying the incompleteness
theorems. Thus, F is a strictly precise concept, and since F is known to be equivalent
to a Turing machine, the two terms are used interchangeably in this context. The
second concept is the idealised human mind, or more specifically, a set of humanly
knowable sentences, often referred to in the literature as absolute provability (K). So
K represents the collection of propositions that idealised humans(e.g. an idealised
mathematician) can, in principle, prove.! There is no unified principle for precisely
characterising K in the literature, as it remains a somewhat vague notion. The third
concept is truth(T), referring to all mathematically true propositions, or more broadly,
all true propositions.

Penrose’s new argument involves self-reference of K and T, which risks intro-
ducing semantic and also intentional paradoxes, such as the liar paradox. Typically,
theories of truth are hierarchical (typed), prohibiting self-reference of T to avoid such
paradoxes. However, typed truth theories cannot formally capture Penrose’s new ar-
gument. To address this, Peter Koellner, building on Feferman’s type-free truth the-
ory DT (Determinate Truth), constructed the DTK system to evaluate Penrose’s new
argument and Godel’s disjunction. DTK permits self-reference of T and K but uses a
predicate D to filter out semantic paradoxes. These paradoxes have an indeterminate
truth value. But sentences satisfying D have a determinate truth value—either true or
false—and are called determinate.

The following discussion will initially examine Penrose’s new argument, then

For this kind of idealisation, refer to Koellner, P., “On the question of whether the mind can be
mechanized, I: From Godel to Penrose”, The Journal of Philosophy CXV, 7: 337-360.
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its two reconstructions by Koellner, and Corradini and Galvan(henceforth CG). Sub-
sequently, I will modify Penrose’s new argument to propose a novel anti-mechanistic
argument and attempt to formalise it within the DTK framework.

2 Penrose’s New Argument

Penrose’s new argument is an anti-machanistic argument, which was first intro-
duced in his book Shadows of the Mind, but the exposition there is not centralised
and is somewhat circuitous. Later, in Beyond the Doubting of a Shadow (a response
to criticisms of his earlier work), he summarised his argument as follows, where F
denotes a formal system:

Though I don’t know that I necessarily am F, I conclude that if I
were, then the system F would have to be sound and, more to the point,
F’ would have to be sound, where F' is F supplemented by the further as-
sertion "I am F". I perceive that it follows from the assumption that I am
F that the Godel statement G(F') would have to be true and, furthermore,
that it would not be a consequence of F'. But I have just perceived that
"if I happened to be F, then G(F") would have to be true", and perceptions
of this nature would be precisely what F’ is supposed to achieve. Since I
am therefore capable of perceiving something beyond the powers of F/,
I deduce that, I cannot be F after all. Moreover, this applies to any other
(Godelizable) system, in place of F. (Penrose, 1996)

First, it should be noted that in Koellner’s papers (2018b, 2016), his direct quo-
tation of this passage from Penrose contains an error. In Koellner’s quotation, the last
two sentences read:

But I have just perceived that ‘if I happened to be F, then G(F+)
would have to be true,” and perceptions of this nature would be precisely
what F is supposed to achieve. Since I am therefore capable of perceiv-
ing something beyond the powers of F, I deduce that I cannot be F after
all.

However, in Penrose’s original text, the two instances of ‘F’ should actually be ‘F"’.
This discrepancy may have influenced the differences between Koellner’s and CG’s
reconstructions, as CG’s paper quotes the passage correctly. It is also possible that
Koellner intentionally made this change, believing it would not affect the essence of
Penrose’s argument—but if so, why did he not explain it in his paper?
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Second, the phrase “I am F” is, in Penrose’s words, merely shorthand for “F
encapsulates all the humanly accessible methods of mathematical proof.” Here, “en-
capsulate” could mean either that F contains or equals K (i.e. K C F) or that F equals
K (F = K), and these two interpretations are significantly different. However, based
on Penrose’s actual argument above, it seems he intends F = K, because only if
F = K (rather than merely containing K) can one derive the first statement’s claim
that F is sound (assuming, of course, that K is sound?). Both Koellner and CG also
interpret “I am F” as K = F. If Penrose indeed holds this view, it constitutes a crit-
ical flaw. His argument concludes that K # F, meaning there is no formal system
coincide with the idealised human mind, but this does not rule out the possibility of a
sound F such that K is a proper subset of F, meaning there is a machine not equal but
stronger than humans—a scenario that would actually support a stronger mechanist
thesis than the claim that “there exists an F such that F = K.” Later in this paper, we
will propose a modified argument that addresses this very weakness.

The following sections will first introduce Koellner’s DTK system and then anal-
yse his and CG’s reconstructions of Penrose’s new argument from the view of DTK.

3 Koellner’s DTK System?

The DTK system extends Feferman’s DT system, which in turn extends PA
(Peano Arithmetic).

3.1 The Language of DTK

The language Lprk expands the language of PA (Lpa) by including the usual
logical symbols (connectives, quantifiers, identity) along with the following non-
logical symbols: An individual constant ‘0’, A unary function symbol ‘S’ (successor),
Binary function symbols ‘+’ and ¢ - * (addition and multiplication), A binary predi-
cate symbol ‘<’. Terms are constructed from ‘0’ and individual variables by iterated
application of ‘S’, ‘+’, and ¢ - ’. Standard numerals are ‘0’, ‘SO’, ‘SS0’, etc. For
brevity, we use ‘0°, ‘1’, ‘2, etc., as shorthand.

Lprk further extends Lpy by adding: A primitive predicate T (for truth) and
a primitive predicate K (for absolute provability). Additionally, DTK introduces a
defined predicate D(determinateness), where D(x) abbreviates 7 (x) vV T'(—x). Well-
formed formulas in Lptxk are defined recursively in the standard way. " ¢ ' denotes the
Godel number of formula ¢. For convenience, we introduce a notation to represent
arithmetic operations on Godel numbers, making them reflect the syntactic operations

2K is sound” means that all the propositions belong to K is true.

3The content of this section is mainly from (Koellner, 2016)
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on the corresponding formulas. For this purpose, we will adopt Feferman’s ‘Dot
Notation’, which represents arithmetic operations on Godel numbers by adding dots
below the relevant syntactic symbols. For example, ‘—’ represents: for any formula
¢,wehave -T @ '="-¢@"

We need one more piece of notation. Notice that although it makes sense to write
Provps ("7, it does not strictly speaking make sense to write (Vx)Provpa (" ¢(x)™)
since x ranges over natural numbers but the intension here is to say that every numeral

=

substitution instance of ¢(x) is provable in PA. This is where we use the notation
with the understanding that (Vx)Provps ("¢ (X)) means that for every natural number
X, if you take the canonical numeral for x, substitute it for the dot in @(-), then the
Godel number of the resulting expression is in the range of the arithmetical relation
Provpy.

For a given language L, let Var(x), At-Sent(x), and Sent(x) be the arithmetical
formulas indicating that x is the Godel number of a variable, that x is the Godel
number of an atomic (quantifier-free) sentence of L, and that x is the Gédel number of
a sentence of L, respectively. Strictly speaking we should indicate ‘L’ in the notation.
But we will omit this since the relevant language will always be clear from context.

Finally, if x is the Godel number of a formula, z is the Godel number of a
variable, and y is a natural number, then x(y/z) is the Godel number of the formula
obtained by substituting the canonical numeral for y for (the variable numbered by)
z in (the expression numbered by) x.

3.2 Axiomatic system of DTK

In addition to the axioms and inference rules of first-order logic, DTK includes
four groups of axioms:
I. Arithmetic Axioms
These are the axioms of PA, but the induction schema is extended to all formulas
in Lprk (so T and K may appear in induction).
I1. Axioms governing D
(Dy) (Vx)[At-Senty,, (x) — D(x)].
(D) (Vx)[Sent(x) — (D(—x) <> D(x))].
(D3) (v)(W)[Sent(x) A Sent(y) = (D(xV'y) < D(x) AD(y))]
(D4) (Vx)(Vy)[Sent(x) ASent(y) = (D(x — y) > D(x) A (T (x) = D(y)))].
(Ds) (Vx)(Vz)[Var(z) ASent((Yz)x) — (D((Y2)x) <+ ¥yD(x(¥/2)))].
(Do) (vx)[D(T (%))  D(x)].
(D7) (vx)[D(K(%)) & D))
III. Axioms governing T
(Ty) for every atomic formula R(x,...,x,) of Lpa :
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(V1) .o (V20 [T (R(F1, .., %)) 4 R(x1, 0,0
(T) (Vx)[Sent(x) AD(x) — ( (—oc < =T (x))].
(T3)  (Vx)(Vy)[Sent (x) ASent(y) AD(xVy) = (T(xVy) <> T(x) VT (y))].
(Ta) (Vx)(Vy)[Sent(x) ASent(y) AD(x —y) = (T (x > y) <> T(x) = T(y))].
(Ts) (Vx)(Vz)[Var(z) ASent((Vz)x) AD((Vz)x) = (T ((Vz)x) <> VT (x(3/2)))].
(Te) (Vx)[D(x) = (T (T (x)) <> T (x))].

(T7) (Vx)[D(x) = (T (K(x)) > K(x))].
IV. Axioms governing K
(K1) (Vx)[Sent(x) — (K(x) — T(x))].
(K2) (Vx)(Vy)[Sent(x) ASent(y) — (K(x — y) AK(x) — K(¥))].
(K3) (Vx)[Sent(x) — (K(x) = K(K(x)))].
The inference rules are:

eAD("o")

Ko (DK-Intro)
pAD("o™)
(o (DT-Intro)

3.3 Some results of DTK*

Theorem 1. DTK is consistent.

Theorem 2. For each ¢ € Lpy, we have:
DTK- D("¢")

Theorem 3. For each ¢ € Lprg
DTKED("@") = (T (") < @)

Theorem 4. For each ¢ € Lprg such that DTK F @ <+ =T ("¢™), we have:
DTK F —D("¢")
Proof  Let @ be a sentence of Lprg and DTK = ¢ <> =T ("¢™). Suppose that
DTKF D("¢™). Then we have DTK & T (") <> @ by Theorem 3. And then the
contradiction DTK =T ("¢7) <> -T("¢") [ |

Theorem 5. For each ¢(x) € Lprk, we have:
DTK FD("3xo(x)7) <> VxD("@(x)™)

4Refer to (Koellner, 2016), pages 170-174 to see the proofs of theorem 1-3
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Proof  Let 3x@(x) be a determinate formula of Lprgx. Then —Vx—@(x) is
determinate. Then ¥Yx—@(x) is determinate by D,. Then we have for all x, ~¢(x) is
determinate by Ds. Then, by D, again, we have for all x, ¢(x) is determinate. The
proof of the opposite direction is similar. |

4 Two Reconstructions of Penrose’s New Argument

We compare the reconstructions between Koellner’s and CG’s, showing their
difference and gaining insight into our anti-mechanistic argument.

4.1 Koellner’s Reconstruction
Koellner’s rephrasing of Godel’s disjunction(GD') is:

The mathematical outputs of the idealized human mind cannot co-
incide with the mathematical outputs of an idealized finite machine or
there are mathematical truths that cannot be proved by the idealized hu-
man mind.

We use “WMT(for Weak Machanistic thesis) to denote the first disjunct in his
rephrasing. Following Koellner(2016), we show his reconstruction line by line, step
by step. But first, we need some abbreviations:

Definition 1 K = F := Vx(Sent(x) — (K(x) <> F(x)))

Definition 2 Sound(F) := Vx(Sent(x) — (F(x) — T (x))).

His reconstruction goes like:

1. Though I don’t know that I necessarily am F, I conclude that if I were, the
system F would have to be sound.

K =F — Sound(F) by K|

2. More to the point, F' would be sound, where F' is F supplemented by the
further assertion "I am F".

K=F — Sound(F')  where F'=FU{K =F} by DT-Intro

3. It follows from the assumption that I am F that the Godel statement G(F’)
would have to be true.

K=F — G(F') by 2 and the nature of Godel sentence

4. Furthermore, that it would not be a consequence of F'.

(@QK=F — F'¥ G(F') by 2 and the incompleteness theorem

LK =F —F¥F (K=F — G(F)) by 4a

5. But I have just perceived that "if I happened to be F, then G(F') would have
to be true"
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K("K=F = G(F")") by 3 and DK-Intro

6. and perceptions of this nature would be precisely what F is supposed to
achieve. Since I am therefore capable of perceiving something beyond the powers of
F

K=F—>K#F by 4b and 5

7. I deduce that I cannot be F after all.

K+#F by logic

The above presentation aligns with Koellner’s 2016 paper, except for a minor
difference in the ordering of step 4b, which he places after step 5S—an inconsequential
variation. Additionally, as previously noted, the two instances of F in step 6 appear
as F/ in Penrose’s original text.

As mentioned in the introduction part, formalising Penrose’s new argument re-
quires a type-free theory of truth and a type-free notion of K. In step 5, K applies
to ‘K = F — G(F’)’, thereby applying to itself. At first glance, this formulation
doesn’t appear to involve self-reference of T. However, upon closer examination, we
can observe that since K possesses an introduction rule’ (as evidenced by step 5), we
may derive sentences like K (Sound(K)) from Sound(K). Since Sound(K) involves
T, thereby K applies to T. Furthermore, in step 2, T applies to K, which means T
is ultimately applying to itself. This creates a situation where both K and T exhibit
self-referential behaviour, which may cause paradoxes like the liar sentence. And
this is why Koellner employs a type-free truth theory to analyse Penrose’s new argu-
ment. The DTK system, as a type-free truth theory, not only eliminates the semantic
paradoxes that might arise from T’s self-reference but also resolves the intensional
paradoxes potentially caused by K’s self-reference.

Koellner identifies two critical flaws in Penrose’s argument: First, in step 2, T
applies to K = F (employing the DT-Intro rule). However, in DTK, legitimate appli-
cation of the DT-Intro rule requires that the operated sentence (K = F) be determi-
nate. Koellner demonstrates that K = F' is precisely indeterminate—by considering
the substitution of liar-like statements into the K predicate, one obtains an indetermi-
nate instance.’ Second, in step 5, K applies to ‘K = F — G(F’)’ using the DK-Intro
rule, which similarly requires the operated sentence to be determinate for a valid rea-
soning within DTK. Yet ‘K = F — G(F’)’ is likewise indeterminate.” Consequently,
Koellner concludes that Penrose’s argument fails under DTK’s framework.

Sie., from ¢ deduce K("¢7)
SProof: For any liar-like statements @, i.e. the statements satisfy ¢ <> T ("¢™), we have =D("¢7)
by Theorem 4. Then K("¢™) is indeterminate by D7. Then K = F is indeterminate by D5 and Dy.

"Proof: Since K = F is indeterminate, K = F — G(F') is indeterminate by D.
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Koellner then examines whether there is any proof of GD/, “WMT, and the
second disjunct(AU) in DTK. Different versions of GD and “WMT can be distin-
guished. By restricting the predicates K, T, and F to the sub-language of Lprk, we
obtain the restricted versions of GD’, “-WMT, and AU.

He formalised the disjunction and disjuncts as follows:

—WMT,, := —JeVx(Sents(x) — (K(x) <> F.(x)))

AUy := (Ix)(Sentr(x) AT (x) A=K (x) A =K(—x))
GD} := ~WMT,V AU,

Where the subscript ‘L’ indicates language condition. When there is no subscript
sign, it indicates that it is in the full language version. Koellner demonstrates that:

Koellner 1 DTKF GD'A-D("=WMT") A=D("AU™)

It means that the full-language versions of Godel’s disjunction and its disjuncts
are indeterminate, hence no valid argument for GD’, “WMT and AU in DTK. But
how about restricting predicats K, F, and T to the arithmetic language? These re-
stricted versions are:

“WMTpy = —FeVx(Sentps(x) — (K(x) <> F,(x)))

AUpy = (3x)(Sentpa(x) AT (x) A=K (x) A—K(—x))
GD/PA = —|WMTPA V AUPA

And Koellner shows:

Koellner 2* DTKF GD'pa /\D(I—GD/pA—I)/\K(I—GD/pA—I) .

But here Koellner made a mistake. GD’pa is not determinate, since AUpy is not
determinate:

Theorem 6. AUp, is indeterminate.

Proof  To show AUpy is indeterminate, we substitute liar sentence A into T (x),
and then we have T ("A7) indeterminate, by theorem 4 and Dg. Then AUpy is inde-
terminate by theorem 5 and D, and Ds. Although the component Sentps("A7) is
false and hence determinate, the rest components are indeterminate and render the
entire conjunction indeterminate.

What Koellner intended to demonstrate with his Koellner 2* is that at least we
have a legitimate proof of GD’py in DTK. But this cannot be due to theorem 6.
However, Koellner is right about:

Koellner3  DTKHt D("—WMTps™)
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And Koellner proves that both the restricted “WMTpa and AUpa remain inde-
pendent of DTK. That is:
Koellner 4 Assume that DTK is correct for arithmetical statements. Then
DTK can neither prove nor refute either “WMTpa or AUpa.
He therefore concludes that no valid proof of the anti-mechanistic thesis exists
within DTK’s framework.

4.2 Corradini and Galvan’s Reconstruction

Koellner achieved a determinate result of “WMT within the restricted language.
Antonella Corradini and Sergio Galvan (CG) observed that the illegitimacy of Koell-
ner’s reconstruction of Penrose’s argument in DTK stemmed from its inclusion of
steps involving indeterminate sentences, while the application of inference rules (namely
DK-Intro and DT-Intro) requires these sentences to be determinate. This led them
to propose that by similarly restricting Penrose’s argument to the language of PA,
these indeterminate sentences could be rendered determinate, thereby potentially le-
gitimising Penrose’s new argument within DTK. This approach mirrors Koellner’s
strategy restricting “WMT to “WMTp,, applying similar constraints to maintain
validity within DTK while preserving the argument’s essential structure. The key in-
novation lies in showing how Penrose’s core insight can survive formalisation when
properly bounded by language constraints. Below, we present their reconstructed
version line by line, and first, we need some abbreviations:

Definition 3 K =ps F := Vx(Sentps(x) = (K(x) <> F(x)))

Definition 4  Soundps(K) := Vx(Sentps(x) — (K(x) = T (x))).

Soundpy (F) := Vx(Sentps (x) — (F(x) — T(x))).

1. Though I don’t know that I necessarily am F, I conclude that if I were, the system
F would have to be sound.

K =ps F — Soundpy (F) by K,
2. More to the point, F' would be sound, where F’ is F supplemented by the further
assertion "I am F".

K =ps F — Soundps (F') where F' = FU{K =p4 F} by (1) and DT-
Intro
3. It follows from the assumption that I am F that the Godel statement G(F) would
have to be true.

K=p F = G(F') by (2) and the nature of Godel sentence
4. Furthermore, that it would not be a consequence of F'.
K=prF > F' ¥ G(F') by (2) and the incompleteness theorem
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5. But I have just perceived that "if I happened to be F, then G(F') would have to be
true"

K("K=ps F — G(F")7) by (3) and DK-Intro
6. and perceptions of this nature would be precisely what F’ is supposed to achieve.
Since I am therefore capable of perceiving something beyond the powers of F’

(a) K=pr F > F¥F (K=ps F — G(F")) by (4a) and the deduction
theorem

b)K=pr F = Ix(x="K =ps F = G(F')"AK(x) A\=F(x)) by (6a)
and 5
7. I deduce that I cannot be F after all.

K#F by logic

A more detailed deduction of step 7 goes like this: From step (6b) we have:

K=p F - K 75 F
and by pure logic:

K# pF —-K+#F
So the result of step 7 follows.

Note that CG’s citation of Penrose’s new argument aligns the same with the
original text. However, their reconstruction appears to overlook that the formal sys-
tem in step 6 should be F’ rather than F—though this ultimately doesn’t affect their
reconstruction’s result. The primary distinction from Koellner’s reconstruction lies in
restricting all sentences from steps 1 through 6 to the language of PA. Consequently,
steps 2 and 5, which were invalid in Koellner’s version, become legitimate in DTK,
as they have proven:

CG1 DTKF D("K =p4 F )

CG2 DTKF D("K =ps F — G(F')™)

This demonstrates that K =p4 F in step 2 is now determinate, thus permitting
the use of the DT-Intro rule to derive Soundps (F’). Similarly, the sentence operated
by DK-Intro in step 5 becomes determinate, rendering step 5 valid in DTK. The re-
maining steps don’t involve reasoning that requires determinate sentences. Therefore,
their reconstruction remains legitimate within DTK.

Crucially, their conclusion doesn’t contradict Koellner’s results, as by Koellner
4 we have:

DTKVF —3eVx(Sentps (x) — (K(x) <> F,(x)))

Whereas by the step 7 they established:

DTKF —3eVx(Sent (x) — (K(x) <> F(x)))

Note the crucial distinction between language conditions. Koellner’s results did not
rule out the possibility that there is a non-arithmetical sentence that K knows, but F
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do not. Therefore, they have established:

CG3 K=pyFltprg Elx(SentﬁpA (x) /\D(x) VAN K(x) AN —|F(x))
where Sent_ps(x) menas that x is the Godel number of a non-PA sentence. Unfor-
tunately, we cannot fully accept this result, as the sentence in it is indeterminate—
substituting liar-like statements A into predicate K yields an instance which is inde-
terminate, and this existential quantified statement becomes indeterminate. And what
they can actually establish in view of DTK is:

Theorem 7. DTK proves:
K=ps F — K('_K =ps F — G(F/)—l) VAN —|F('_K =pr F — G(F,)—I))
and it is provably determinate.

It says: If there exists a formal system F that knows as many arithmetic sentences
as same with the idealised human mind, then there exists at least one non-arithmetic
statement that the idealised human mind knows but F doesn’t. This precise state-
ment is non-arithmetic because it contains predicates K and F that don’t belong to the
language of arithmetic. I believe that the reason that CG 3 is indeterminate, while
Theorem 7 is determinate, is due to the insufficiency of the DT system. The inde-
terminateness of CG 3 is merely a purely technical reason rather than substantive.
Therefore, I think that due to the establishment of Theorem 7 (which actually says
the same as CG 3 with respect to the anti-mechanistic thesis, though they are not
equivalent), we can actually accept CG 3.

Note that there exists a fundamental difference between CG’s reconstruction and
Koellner’s, particularly evident in their respective final steps. Koellner’s reconstruc-
tion attempts to prove K # F through reductio ad absurdum by assuming K=F and
deriving a contradiction. In contrast, CG’s reconstruction assumes K =p4 F and con-
cludes with the existence of a non-PA language statement that belongs to K but not
to F—this argument does not follow the reductio structure. Therefore, they contend
that this is the true insight of Penrose’s new argument, though it only partially sup-
ports the anti-mechanistic thesis: “The argument does not reach a result that shows
there is no formalism capable of deriving all the true arithmetic propositions known
to man. Instead, it shows that, if such formalism exists, there is at least one true
non-arithmetic proposition known to the human mind that we cannot derive from the
formalism in question.”

Since Penrose’s original argument assumes K = F, even if we could validly con-
clude K # F, this would not exclude the possibility of there existing a sound formal
system F for which K is a proper subset of F. To put it in other words, this would not
rule out the scenario where a sound formal system (F) exceeds the capabilities of the
idealised human mind—which would in fact represent a stronger mechanist thesis.
Similarly, CG’s conclusion does not exclude the existence of a sound F of which K
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is a proper subset regarding the arithmetic domain. That is, it does not eliminate the
possibility of there existing an arithmetic proposition that F knows but K does not.
In the latter case, K =p4 F' would not hold, and consequently, we could not guaran-
tee the existence of a non-arithmetic statement where K knows but F does not. This
would allow for the possibility that F comprehensively surpasses K, meaning that in
the full language version, K would be a proper subset of F. Of course, the opposite
possibility also remains—that K might be stronger than F in the arithmetic domain.
To sum it up, they conclude:

CG 4 Fprx 3x(Sent—pa(x) AD(x) NK(x) A=F(x)) V Ix(Sentpa(x) A K(x) A
—F(x)) V 3x(Sentpa (x) A=K (x) AF(x))
This is a direct corollary from CG 3.

Thus, we observe that Penrose-style arguments based on either the K = F or
K =p4 F assumption are fundamentally flawed. Setting aside Koellner’s refutation,
neither Koellner’s reconstructed conclusion of K # F nor CG’s derived CG 3 actually
succeeds in establishing the anti-mechanistic thesis. Both approaches leave open pos-
sibilities that are actually compatible with mechanist positions, including some that
would represent even stronger forms of mechanism than those they attempt to refute.
This crucial limitation suggests the need for alternative argumentative strategies if
one aims to rigorously defend anti-mechanism.

S A Modification of Penrose’s Argument

We argue that Penrose’s new argument has a critical flaw: His initial assumption
is “There exists an F such that K = F”, leading via reductio to “For all F, K # F.”
However, “K # F” is not equivalent to the anti-mechanistic thesis, as it allows for
cases where K is a proper subset of F—a scenario that could support a stronger mech-
anistic claim. Koellner’s formulation of GD’ and the anti-mechanistic thesis also uses
K # F, which deviates from Go6del’s original phrasing “K surpasses F”. Like Koell-
ner, CG also frame the anti-mechanistic thesis as K % F' in their reconstruction of
Penrose’s argument and we deem that this is the true reason why their reconstruction
of Penrose’s argument is valid but inconclusive. We propose that the most accurate
formulation of the mechanistic thesis should be: “There exists an F such that K
is a subset of F and F is sound.” Conversely, a weaker but more defensible anti-
mechanistic thesis would be: “There exists a proposition belonging to K but not
to any F.’
Definition K Cpy F := Vx(Sentps(x) — (K(x) — F(x)))
F Cpa T :=Vx(Sentpa(x) = (F(x) = T(x)))

I propose that by modifying the assumption in CG’s reconstruction from K =p4
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F to K Cpy F, we might obtain the conclusion that K is not a subset of F in the full lan-
guage, i.e., "If K Cpy F, then there exists a non-arithmetic statement that K knows but
F does not." This proposition eliminates the third disjunct in CG 4, establishing that
in no case can F completely reduce K, thus constituting a genuine anti-mechanistic
thesis. However, with this modification, the first step of CG’s argument, Sound (F),
can no longer be established via rule K;. To apply the incompleteness theorem to F/,
we require additional assumptions. For this purpose, we assume that F is sound—a
reasonable assumption, since a mechanist argument would naturally prefer a sound F
that equals or exceeds K. Moreover, our assumption only needs Soundpa (F), mean-
ing every arithmetic sentence F produce is true.
The natural-language formulation of this new argument is as follows:

If there exists an F that matches or exceeds my arithmetic capacity,
where F is sound, then F' must also be sound, where F' extends F by
adding the assertions “F matches or exceeds me” and “F is sound.” I
recognise that, under these hypotheses, the Godel sentence G(F') must
be true and further cannot be a theorem of F'. Consequently, F cannot
derive the implication “if F matches or exceeds me and is sound, then
G(F').” But I just perceived that “if F matches or exceeds me and is
sound, then G(F').” Thus, under the assumed conditions, I am capable
of knowing something beyond the power of F.

I will first briefly demonstrate how to prove this argument in DTK, then explain
why the conclusion it yields is valid.

1. (KCpa FAF Cpu T) —F' Cp T

where F' = FU{K Cpy F, F Cpy T}. This line follows from the DT-Intro rule,
and is legitimate, as K Cpy F and F Cpy T both are determinate.

2. (K Cpa FAF Cpy T) — G(F,)

This line follows from 1 and the nature of Godel sentences.

3. (KCpu FAFCpa T) = F'¥ G(F')

This line follows from 2 and the incompleteness theorem.

4, (K Cpa FAF Cpy T) — F V¥ ((K Cpa FAF Cpy T) — G(FI))

This line follows from 3 by the deduction theorem.

5. K(F(K Cpa FAF Cpy T) — G(F/)—I)

This line follows from 2 by DK-Intro, and is legitimate, since line 2 is determi-
nate.

6. KCpu FANFCpaT)>KZF

This line follows from 4 and 5 by logic.

T.KEFVFZp T
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This line follows from (6) by logic.

8. F C pT —K g F

This line follows from (7) by logic.

Our conclusion demonstrates that if a formal system (Turing machine) F, of
which every arithmetic sentence it produces is true, then there exists at least one
statement ¢ in K that lies beyond F’s capabilities. In other words, for any finite
machine F that is arithmetically sound, the idealised human mind necessarily sur-
passes it(at least in some area)—we have thereby proved this anti-mechanistic thesis
in DTK. But, is it determinate?

Theorem 8. F Cpy T — K € F is indeterminate.

Proof By Da, it sufices to show that K ¢ F, i.e. 3x(Sent(x) NK(x) A —F (x))
is indeterminate. It can be achieve through a substitution of a liar sentence for x in
K(x). m

But we have:

Theorem 9. The sentence

(KCpaFAFCpaT) — (K(T(KCpa FAF Cpa T) = G(F) ) A=F(" (K Cpy
FAFCpT)— G(F'))

is provably determinate and provable in DTK.

Proof (1)K Cpy F is determinate as a result of CG 1. (2)F Cpa T is determi-
nate because for any x, F(x) is determinate(since x in F is recursively enumerable),
and T(x) is determinate for any x which is a Gddel number of an arithmetic sentence,
and iteratively using Dy we have F Cps T is determinate. (3)G(F') is determinate
because it is arithmetical. Adding all together, we have shown the sentence is de-

terminate. It is provable in DTK because of steps 4 and 5 in the above argument.
]

Again, as the reason mentioned above, due to the insufficiency of the DT system.
The indeterminateness result of Theorem 8 is merely a technical reason rather than
substantive. Therefore, I think that due to the establishment of Theorem 9 (which
says the same as step 8 in the above argument with respect to the anti-mechanistic
purpose, though these two sentences are not equivalent), we can accept F Cpy T —
K ¢ F as a conclusive result.

Furthermore, our argument explicitly identifies a particular ¢ that, under the
given premise, is known by K but not by F. This ¢ is:

(K Cpa FAF Cpy T) — G(F/)

While ¢ is a non-arithmetical statement, it nevertheless provides a robust anti-
mechanistic conclusion according to our understanding of the thesis. That is:
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The collection of humanly knowable sentences cannot be recursively
axiomatised in any reliable formal theory

The assumption of the arithmetic soundness of F is entirely reasonable—if a finitary

machine cannot even guarantee reliability in arithmetic, it would be incapable of

replicating the idealised human mind. After all, how could we possibly accept that

a machine prone to arithmetic errors could match the capabilities of an idealised

human mind? It is worth emphasising that while our argument requires assuming

F’s reliability for arithmetic statements, it makes no parallel assumption about K’s

soundness. This distinction may represent an advantage in our approach.
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The Coding Conception of In

Junhong Chen
May 3, 2025

Abstract

A large amout of justifications for ZF have been produced by
philosophers and mathematicians. Every such work focus on what
is set, and then why our theory about sets captured the nature of
our interpretation of sets before. Extending ideas in [4], we provide a
new justification focus on the € relation we use in the language of set
theory, and sets are just abstract entities that allows the € relation
acts on and above it.

The € relation happens between first order objects and second
order objects a long time ago. However, in arithmetic people come up
with a function that can ‘code’ bounded second order objects into a
single number. So here comes a ‘first-order-ization’ of the second order
€ over bounded second order objects: a number is ‘€’ another number
iff the latter codes a bounded ‘subset consists of numbers’ with the
former an element in it. Generalizing this idea, we can consider the
following extension of any first order theory in first order language £
with a highlighted binary relation <: adding a new binary relation
symbol €, then the axiom schema of seperation asserting for every
first order formula ¢(z,v1,...,v,) in the extended language

Yoy ..o, Vp(Ve(e — < p) = gV (p > x € q))

says there’s enough first order objects to code every definable bounded
second order objects. If we’re considering ‘purely coding objects’,
which we’ll denote by ‘sets’ in short, the language is only L< with this
<l just €, this axiom is equivalent to seperation and extensionality in
ZF together. If we’re considering natural numbers with <1 be <, this is
clearly how the € relation reacts from Ackermann interpretation(see
).

Notice that if there are at least two different first order objects
(that is, axiom JzJy(xz # y)) making our theory non-trivial, we must
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surely have infinitely coding objects, so intuitionally every finite sec-
ond order object should be potentially bounded. We want to make it
explicitly by using € for bounding them, which is the axiom schema

of finite collections: for every natural number n,
Vay .. Ve, y(zy EyA - ANxy €9)

There are other maximality principles that says there are abundant
coding objects for some concepts, first of which is collection principle:
for every (z,v) in the extended language,

Vovp(Ve < pIy(p) — 3qVz < p3y € q(p))

which states that we have abundant coding objects to collect evidences
for every single formula with parameters taking boundedly many val-
ues. For < we define z C gy iff Vz(z <z — 2 <y), and z < y iff
Jz(z <y ANz < z). The first relation, called z is virtually not larger
than y, means x preceeds y in any linear order extending <1. The
second relation, called x is far smaller than y, needs no explanation.
Now each of them leads to an axiom:

VpIaVy(yCp — y € x)

VpIaWyly < p — y € x)

stating that coding objects are enough for them. All these axioms are
reasonable no matter <1 is < for natural numbers or € for sets, and can
be part of formalizations for PA or ZF. In fact, the collection principle
in arithmetic and set theory share exactly the same model-theoretic
characterization, see [3] and [1] for detailed analysis.

The intuition that well-ordering captures our intuition for a gener-
ating process is useful in the justification based on iterative conception
of sets, where it takes the form of ordinals. Now we just adds the ax-
iom schema of €-induction: for every o(x,v),

Vo(Vz(Vy(y € 2 = ¢(y,0)) = ¢(2,0)) = Vz(po(z, ¢)))

That’s because we hope the whole coding can be implicitly done from
a generating process, which means € should be a subrelation of a

global well-ordering, so we have € is a well-founded relation and the
corresponding induction principle on it.

Taking everything here together, in arithmetic after adding defini-
tions for 0, S, 4, X we just recover PA—(3)q, with (3)q the third axiom
in Robinson’s arithmetic that claims every positive natural number is
successor of some natural number, it’s a property of 0,S instead of a
definition. In set theory we obtain ZF — Inf. So to get the full ZF, we
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must confirm a form of Inf. In fact, there is a reason why someone
choose to live in theories weaker than PA while others live in theories
stronger than ZF, named the indescribablility principle, more oftenly
called the reflection principle in set theory: for every formula ¢(z,v),

Vide(v € e AVz € cVy € 2(y € ¢) AVZ € c(p <> p=°))

which states that every formula with fixed parameters can be checked
coded inside of some c. The first two assertions makes sure the rel-
ativization that makes every quantifier €-bounded by ¢ don’t lost
objects when we do such to quantifiers that have been already e&-
bounded by other things. PA rejects it: (3)q is equivalent to negation

Y
of this principle on Vy3z(z = 22? ) with parameter 0. ZF accepts it:
it’s equivalent to axiom of infinity from everything else.
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A belated foundational role of set theory

The present work sets out to achieve something relatively straightforward:
to sketch a particular function served by set theory, and then attempt to
characterize it as foundational, perhaps on a par with those sketched in
Maddy’s insightful analysis of discourse regarding foundations (Maddy, [2017,
2019)). The challenges to be surmounted, however, are non-trivial; so let me
set the stage by saying something a little more precise about what I aim to
do.

The narrative in this paper will revolve around descriptive set theory and
the technical branch of set theory known today as Borel equivalence relations
theory (or invariant descriptive set theory, when the focus on Borel-ness is
suppressed. I shall use these two terms more or less interchangeably, cf. Gao
(2008) and Hjorth (2010)). More specifically, I intend to convey the idea
that, throughout its development, the theory has come to serve a peculiar
foundational purpose - which I shall call Brickwalling. I will do this by
isolating a latent thread that ran through the early disputes about the axiom
of choice, as well as in the pre-history of Borel equivalence relations theory.

To really draw out the thread, I return to the early days of descriptive set
theory, when the Borel sets were first introduced in Borel (1898). By studying
the introduction of Borel sets in its historical context, I argue that they
were introduced as a way to restrict attention to the tractable problems in
analysis. This point remains salient (although not always explicit) in the later
development of (descriptive) set theory amidst controversies surrounding the
axiom of choice, for instance in Luzin (1927), where abstract equivalence
relations were first considered. Particular attention will be paid, in this case,
to the common context and motivations of Borel and Luzin. The takeaway
is eventually summarized in the following maxim: intractable problems are
hopeless.

This thread is echoed in the more modern developments of Borel equiva-
lence relations theory, in particular in its applications to classification prob-
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lems in mathematics. The aforementioned maxim is attested in various cor-
ners of the technical literature, e.g., Foreman et al. (2011) and Ros (2021).
Now, if Borel-ness is taken to be the benchmark measure of tractability, as it
seems to be in the early days of the subject and more so recently, then I claim
the theory of Borel equivalence relations can be said to play a foundational
role in mathematics. In fact, it plays a two-fold role: one of organizing and
relating various structures from diverse fields of mathematics and their atten-
dant classification problems (akin to category theory’s Essential Guidance),
and the other of delineating the boundaries of the tractable and intractable
such problems.

If I am successful, I will have shown that the theory of Borel equivalence
relations (and its earlier “spiritual" ancestors in descriptive set theory) has
come to serve as a guide for when specific types of mathematical problems
are tractable or intractable. This is a role that is not often associated with
set theory in its capacity to provide interpretations for the whole of math,
and as it will become clear, it is rather with set theory’s initial, properly
mathematical goals. Nonetheless, I will argue that this is a role that can be
considered foundational.

More precisely, I will attempt to come to a conditional conclusion: this
role is as foundational as some of the other candidates considered in Baldwin
(2018} 2024) and Button et al. (2018). In other words, I will argue that insofar
as category theory and model theory can be said to play a foundational role
in mathematics, as evidenced in its providing the kinds of services outlined
by Maddy and Baldwin, the same kind of role is being played by set theory.

A few disclaimers in closing: I do not intend to argue in set theory’s favor
as a foundational theory or anything of that sort. The ulterior motive of this
little exercise here is really to reflect on what it means for a mathematical
purporse to be foundational. The bulk of philosophy here will center around
this, albeit scattered throughout the paper, sometimes in passing. Ulti-
mately, the objective is to sharpen the notion of a foundational role/purpose
and the ways it can be served by the mathematics. Of course, I should also
stress that almost all of the technical results that appear in this paper are
known to the specialists. Aside from a bit of intellectual history, not much is
new in terms of the relevant mathematics. My contributions here are solely
about the practice.
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(TT) 00 K A ) 2 HL:
Vxy((x + )" = x* + y* A(xy)* = y*x* A X™ = x),
P+1=0A+1=0, i*+i=0Aj"+j=0,
j+ji=0, Vx(x =x" & Vy(xy = yx));
(D) /7~ B 0<1, Vxyz(x < yAy<z—>x<zZAX#2),
Vxy(x#y—->(x=x"Ay=y" o x<yvy<x),
Vxyzw(x < yAz=zZ"AO<w o> x+z<y+zAxw < yw);

(V) SEECH R S IR
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VX(ExXx AVX(Xx > x =x)APVz(Xz > 2 < y)
- Ay(Vz(Xz - z<yVz=y)AVx(x <y - Fz(Xz A x < 2)))).

WA R UE A R A R, AR AS AR U B L A BE AL IERA Y
K. HQ b, Vga!sxyz(Aneisxyzy h =P Ag=s+xi+yj+z(j))

ER: PE—PE: HFIEA s+ xi+yj+2() =0 (Npesaph=hD, Ws=x=
y=2z=0, Ws+xi+yj+z(i)=G+xi)+y+zi)j=0 ©, OXNHLLAR, H
KEFe—ifd, (s+xi)—(+zi)j=0 @ O+OF1F, s+xi=0 @, @=L EILHE
B, s—xi=0 @. @+@fF, s=0; O-@fF, x=0. O-O1F, y+zi=0,
FIFEATHEH, y=2z=0.
RAERE: W4Rq = 1(a —igD) + B (g +ig)(—Dli- 4a=3@—ig) b=1(g+ig)(=)
—iai = —i%(qi +ig) = %(—iqi +q) =a
~ibi = ~i3(q +igDij = ~i3(qi ~ iq)j = — 3 (igi + q)j = b-

KT e, [%(c + c*)]* =(c* + c**)(%)* = %(c +c*); HilbAc = —ici, Wic =ci, N
[5(c = (D))" =3 (=) (c* — ¢**) = 3 (ie” —ie) = 3(c*i — c) = 5 (c = ¢*)(=D)s TR
XHe =3+ + [e—e)=Die B =1(a+a"), x=3(a—a")(-), y=
S +b", z=3(b— b)), BITEAM o

N U IR AR IR . 7R BT T R R R DY e —
B3 k. #R¥E Niven-Jacobson-Baer 7 CHAREUA ) F O A PR IS B R IAHE 1T
e SEV R ToHA) U eosd, my DU 40 R 1 A A BRAG DY o EUAR(H, +,-,0,1):
D) BRI LB (D) FEIEL#e: Ixp(xy # yx);
() AAREA: Va, ...a,3x" + Y a;x" = 0);
(V) 4%=4: 3x; ... x;(Ni<icjea X % AV ag (AN Clr g, A Y aix; =0 -
Aiia; =0) AVq3c, ...cy(A Ctr e, Ag =1 eix;) > Ho o Ctr x € Wy(xy = yx)

WA —MEE NHQ ™. T S AREHOIR S A, S ARECE U T Y oo B
EHA)—ERHQ A, XEWHEHQ I AREFIEZIE Y e #5I NH R
W N, JFEIN Peano F1 Archimedes A, FHQ MMiENHQ,, NI(H(A),N)&
HQ, MBI . itk ] 1 “é&i&Z;";ﬁWﬁﬁ?%i&” WAL THQ,, XEWRE TLIATE
HQ, MW FH M E it 7t . PRI i e i 4 — 2, 2R —PhiE & .

3 HQ KITETuBEM:

SARVTCHEAI D = (H, +,-,0,1,1, )%, <) ZHQIIMA, F7 8 ik — L B WIHQX!
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79, EFIEMHQERME X ERAHIX— A, BIHQHEA L. it
PR, AT MRS F oA AE HQ — ¢ ARTIFRAETE SR 1 i 4
AT R, JHATGIER— B “H/7 (B) BSSEMFALy “THE” M2,
M 7 S K =2 R SR AN BE VA 45 VHQH I I W] o B AR AT DU AR — i i 5
(b)) HETFEESE 4 Henkin i 30, {HAZALEITE T Lowenheim-Skolem & ¥,

S, EFHQANAT A TE W .

HE LA E XS RE A Ak BRI S A Be v B AR . BRSR BB
A REA P HE T RIE A, AT RERARSZFC HEfE “FHQ - ¢7.
“HQHEAJEWE” HIEMIA S B R AEZFC HsL Bl

ZFC | Vxy(Zy - Str. (x) A ZF - Str. () Ax E HQS A y = HQS — x = y)
PR G FRATT v A S B B8 ZFCT A @ HQ g oy L7 B 1) H A

T Vadnanen!® » 8 SE N ETERE RS, IR B AR S DTS A
H(CA) M E sl XA A £E 3 SUBARYET Putnaml®h 482 “ARRL R FR AT
AL H S REY” KETK, WEE AN “HQAEBRA” Fii NvESIRTEH
(LY - Str. (x) A x E HQSY), i & M4l — il 3IHIZHQY (7 /)& iz,
FHQM (7 /7€) ¥ HQH T A R84 T gt — B N R KA AR 76, FRAR XT3
—uiBiA H T3 A XK G B FEIXFERELAE N 2 B — b EL Y me P B R L R

FETORAUE W b T 2 AR 7 s E, BB S R RvrE 2w, AT
i, WAVE AR SR B Nx' = (H,S,P,0,1,1,),K, <}, HHS PKZ
BB+, MR L 06 R4, HAE— 0B RS HHQMGE W2 (15 A1 4EHQ :
(D) TIMARL: S, P KEA BRI (2) Kk KERET+, B A BEEEAN M o R T
KEAFFS, P KA (J7VEI[10], pp. 111-113); (3) ¥4 RIRAFRERFXTLEH I,
AR HO,HL Hi, Hj. FHHQ(7,)&R{EHQ A Z' -7 54— AR 2K
MLV, = {H,,S,, P, 0,, .1, j,. K, L, )45 BT 132 A B

AT WIRHQ(7) AHQ(Z) AL, A7\ 57, “IFM”, RIFERRIT
{F13Vxy(Ixy = H x A Hyy) AVx(H,;x = 3! yIxy) AVy(H,y — 3! xIxy) A 0,0, A
Tejey Aijin A jijo AYX XY V021 20X X9y ATy Yy Al 2125 = (S1x1,2; <
Sr%3¥220) A (P1x1 Y121 © Paxyy325) A (K X,y < KyXo¥,) AL x1y; < Lyxyy5))s
KX ANK AR HNISOMUT, 7, 75) -
EH. (HQHIWLETEWENE)

CA b+, V7\V7,( HQ(7)) AHQ(7,) — 31.ISOMU, 71, 73))
EB: E56E X7, B B AR B, AEEL S BRI
N,x ¥ VX(Xo, AVyz: H,(Xy A S,ye,z = Xz) — Xx),
Z,x ¥ N,xVvIAy(N,y A S,yx0,)
0,x % 3yz(Z,zA N,y Ay # o, A P,xyz),
R,x € K,xx, C,x % 3yz(R,y AR,z AJu: H,(P,zi,uA S,yux))o

HT0*=0,1" =1, HAEAE, SMEEneN, m+1D)*=n+1, FIKNCR; %
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neN, fin+x=0, WUBILESn+x* =0, TRx=x" FHHKZCR; #me
Z.n e N, FHxn=m, WILBILHIE* = x* n=m, THEx=x* KIHQCR;
P AT FEEHQ, C R, X ARAN RSBV e H O ts + xi + yj + z(ij), F
R s — xi — yj — 2(1j), WAEZJE U] P IC T B UERIE I R 5 IR FFK o
HTHQ(7,),CA , Vxy: H,(L,xy < R,x A R,y A 3zu: R,(P,zzu A S,xuy)), FTLA
FE2Z Ja W A REERAIE T IS WU OREFS,, PRRREORRFL, . (B IL[11], p. 56,
I 2.2.23)

1° 2ny(F) £ Fojo, AVXy1: NiVX, Y5t No(S)x €131 A Saxae,95 A Fxyx, A

Fy,y, = Fz,z,), {ifEIyxy :© VF(qy(F) — Fxy). Z%UEPHQ,CA F, PA,,

FH Button & Walshl!2}hpp-243-245 (GE 3 10.2), Iy: N; = Nyo

2° By (F)E Iy C F AVxy: Z\Vy: N\Vxy: ZVy,: Ny(S1y1%100 A S1y1x10; A
Iy v, = Fx,x,)s fF1EI,xy & VF(n,(F) = Fxy). HTBEM kAR A
249 BARBUI IR ASRIE . HUE IRBU A R U, AR IR EES,, P, o AFAEGXy -
S I;xyNZ\x A Zyy, MTZ, 2 N, HX “HWUHRE” BH, 5150,(G), #tiil,
H5GHAME . BERIEAVX: Z,3 vl ,xy: 1F1EAxy 1© [,xy A(N;x = Iyxy) A
(ANyx = Vel yxz — 2= y)) BT I RN, 5 NG00, ELAR Rl A —
MM K, MAVx: Z,3 yAxy, IEROAAEE B ARSI SO 2 B 2% (ORIAH
REE0), 2R bAny(A), M, 5A5ME, FBAEYy: Z,3! xT,xy. VL ik
W TI,:.Z, = Z,),

3° é\nQ(F) © I, CFAVYX:0\VY2: ZV%: Q)220 Zo(y) # 0y A Yy # 05 A
Pixy12) A Pyxoyozg ALy vy A 2120 = Fx(X,), T?EIQxy 1© VFE(no(F) —
Fxy)e BTGB 0.0 €2), piai' + 20y = (P14 +
P2a)@19)™" (P17 o) = (pip2)(a1gp)™" s VAEER T B INE . TRk BR
%, WU RIRREES,, Po STO M HNEESE ], HEEMERER oL,
HZIRAHIE 2° T IIJTIETTEL 20, 5 O, M XU, MM, 0) = 0,.

4° Bnp(F)¥ I, C F AVx): RiVxy: Ry(=0 x| A Xy = sup I [L 5 x| = Fx;x,),
HA T, [L1 5% y2 & 3910131 A Lyyixy Ay yy)s

xy =sup Iy [Li3yx| £ Vy,y (In[L191x1]|y2 = LoyyXy V s = X5) AVzy: Ry(Lyzyxy —
Ao [LiFix1]y2 A Lyzap))-

HIHQ',CA F,Archimedes Y5, Vy;: Q(Lyy,x; —> (3z;: Q)L x,z), HIy:0, =
Q> 32y:0,(Iz,2y Ay (I [Li31%,| vy = Lyyyzy)), Blitbsup I L, 7 x |47 1E-
HCA, fF{Elgxy :© VF(ngr(F) — Fxy).

fFEGxy 1 & Igxy A Rix A Ryy, HITR, 2 Q,HXI “HE#A” HH, 515
nr(G)s MR 5GHAME,

WRAEFEARIHEA TR (L[], p. 55, 218 2.2.15), SEHUa S A T
Dedekind 735 (“HQ’,CA F,” FH[IE), WAEEANLEX TN HEID, € (g€ Q|
g<r}o Mr+r =supD,+supD, =sup{q+4q' |q€ D,,q' €D, } =supD,,,;
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—supD,=inf{—q|q€ D,}=-r=supD_,; &r,r' >0, rr' =supD,-supD, =
sup{qq' |0<q€ D,,0<q" € Dy} =supD,,rs (—=r)r' =—=(rr"), (=r)(=r')=rr's
I SEI R IR FES,, P, o
NHEYX: R 3! ylpxy: fFEAxy (& Ipxy A(Qx — Ipxy) A(—Qx —
Vz(Igxz = z=y)), HT1,/20, 50, XU, HA LA BB L 2nE—
(), HAVx: R 3 yAxy, EHFNIGREFL,, MATpxy, Wy =sup{v | Iouv A
Lux}, %5 FAng(A), #HMIg5ALAME. FIFEATIEYy: Ry3! xIgxy.
DA ESRIER] T Tx: Ry = Ry (MLTETEAIUEEEE 2% [13], p. 84)
5° Bnc(F) € Iy C F A Fijiy AVxy;: R\Vzy: C\VX,0,: RV zy: Cy(Ipx vy A
Irx %y A Juy: Hi(Pyyyijug ASyxqu121) A Juy: Hy(Poy,igus A SoxoUyzy) = Fz125),
i EIcoxy & VF(e(F) > Fxy)o HTRANEEEH A ME—RIR Na + bi(a, b € R),
WAETE 3° HIITERTUET: C) = Cye
6° ny(F)¥ Io CF AFjj, AVxy: CVzy: HNX,y,: CoVzy: Hy(Iex, v, A
Toxyxo A Juy: Hi(Piyjiug NS xu120) A Juy: Hy(Poysjiotiy A S)Xour25) = Fzy2,),
HHEL Xy & VF(ny(F) > Fxy)o HTREMUTTEHTE MW + di(e,d € C), 514
J&5° [EEAET,: H, = Hy.
25 LRHIER TISOM yy, 74, 75)- 1

Vidninen(® P8 YN ETEBETER ] 100 FHSL: E4— P CAH Henkin 57
(M, )y (b (o) N2 o o” BB JE B, BRI K O HQ' 1y 4 Y
(M, %, 7"™), e FRK R SRR ME— KT e T SRS 2 B CA i
Henkin #% (Blo iy n JCIEIR SRR, H (o) = o(M™); o n JCEREL SRR,
H (o) =M™M") WFIRFERAE L o« A FRATTAAE B 8 g — B3 U ) A AL B
PAER] T HQ:E MY eI I IE A A~ PEAL

PFESE G S FEA ST UE T Hilbert “ 2 BRAE K145 1 50 R AE T X A A"

CRETH AT BRI AR ) (AT X E5K, SCFF 1 Putnam “XF G BATN T

BESHEZAAAE, EHRKEMIEIF AR MRAEE WA I HIXAERZ
aie)ik. SRR, AN RARATE SCEM, L IRATE I S T m 3 DY oA
AR SRR AR, T 7 R AR T B TR R IR S RE S

4 THIBCE R E

WM, K\, X MNFIU My, Hy, M) EHQ /MR, P 7E T I AN BE AR
kg M S Mo [ R H AT E AN, HQ AR Henkin FELAYIALE B G A T 1.
45T It Button & Walshl12} »- 232 ) g A 7E Y W P A B 1) R SCEGRCREM),  Fod KA B
TS HNEARRE A

R, (HQWWEAREM) &M (7)2BHETRAY HEREZTTIFAN L
B HIMERLL- A, WAEA 75 080 liE
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CA b, Y7 (HQ7) - ¢™ (7)) VYV HQZ) = =™ (7))

B RFEERIAT (7, %, X)IE5 0 20E P [ H 5] 2E.

CA b, V747580, 74, 73) — V3, X: Hy(@" (7,3, X) & ¢" (73, Tx, T°X))
HI'x = (y)Ixy, Yy, ... y,((IX)y) ...y, © 3x; .. x,(Xxq . x, Ay Al A
Ix,y,)). Button & Walshl!?}-p- 245246 (GE 3 10.3) SJii EOVUEM TIE R . 0

ANE DA R RS P OARE, BT EAE, 24 Buttonl!4: p- 170
KHQ ) B BRI P s T, TRAEAFZEEN S : 7 @)
BOBE, EHAME. T R AR B O N B R AL/ E AR
327, Button VY (HQ(Z) —» o™ (7)) EAE “oeffiEi”, MIMNTEAR 2R
I Tl R E .

WAERZ IR “XHMTEZ) BHHA, HQ E ¢oHQ E —¢” HftH
ZAEE, HAPW RARIE, SRR ETEWE I — 2 o TR AR B 42 4R 4510

(GFH “CAR,” H—HMALRTPAD, EHFAN B UFIEE “AEEF
£ A RMI A . H R8I E R ERAT TR P E A DR A
HQ' Fp ¢ELHQ' Fp —¢p, BIMZIE BEAT T BLHIE e 15 AL, {H Godel 5 PR — &
AEAEPASL THQ B A] o ARTX AN HARHQ AFEA R i AL, T2 ND
PIABEA L . N TG — MW L e atits, O “HQ Fp” o5 Z &M
) “HQ', A F,” (AR HE HE Ao ATERIMBAE HTHQ AR BELE [F 4 )= X
AR bRV DY TR R, SR RO I A B AR AR G2 DK AR B [ 8 R 5 R 1)
Henkin £it4. Kreisell!s) pp 150-151 FlLygiofig th 35 22 (X 43 S M = AR B B S, 49 e 48
G CHA Fraenkel & #tAFEReplI AL T [ Zermelo R4t “Z,,CAF,”; {H
J&Z, F CHHZ, F =CH, Z, ¥ ReplHZ, ¥ -Repl, X2 F NZ, A E LIHiZk B
R REEV,, o ABAEHIRE E IV, (o2 58— DANATIAEHO.

XA X b, WAEFE S AT BUE R Button iy 44 [ Skolem-Godel 7 X
—— “TRATMECEAE S BAA SR MR . SR T L8 58 SR i A B O 7R
=AM AR T AR 2 I, %% B8 S i — AN A A IR
ROURHER, FILERATEAR] 7 14 p 106——FE 5 Mui B Py 5, 5k
AR AR R RGHQ “HEHIR T U e 5 “ARes” ZH I, AF
EFE. WEAEDMERIEKHEEE 2 2AEME KR X EF U, Wi
Maddy & Viininen!'®->-47 F1 5, Button & Walsh FF3F s B #ffi 2 AR LL Ml ST fr B 22 B iA
PR E P, 17 ik B B ANATTA D FEAN i M B 1)

A. Bacon f)—XUHia TAE ([17], EH C2) fEEMAEHE P | se
W N E IR AN DN, T gl BEnT DL 3 AN gl b iy e 20 DY e B it .

%fﬁﬂki@iﬁﬁ%’%?‘y%’E‘JEBME‘Z#&%%E%o %S MR TTA MR TG
R TG. nGiEEA TG, — LSBT B0 i=x |0 1]i]j, AN

G=a| Xt ...t,|EX | t; =1, | Ht | Stytot5 | Ptityts | Kyt | 1) <15 | 26

| () = &) | Vx¢ | VX | VED | Vag |O ¢
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Sffé/ (7 2 ETOMEH W1~ A BRI e (1) mrdll@ i E 55 (2) AR E
] Ky Ty 5 AH; (3) Froy Y070 = d@®/0°); (4) From VXy(x =y © VX (Xx <
Xy ) HOAESTHBH, WHFow @ — v o ¢ = Voy ;s (6) H
From @ rom O @5 (7) Froy 3x(x = 1); (8) CA: oy I°~7VE(W™75 © ),
Ho " AMEpH L, SREEMAZTTFA, R, Moar@iieis (BI2ERY
R B, SHEFH.

H AR B A2 i B 3L AR F1IR AT A Barcan A 30 HI0Ve® QeO Ve®, SR
Vxy(x =y »0x = )R T ARVxy(x #y -0 x # y)EZTOMATHIE

WAE LIRS B LA QNI E 2R b

OAW: O3da(e AVA(OD (e = ) vO (a = —p))),

HEMWZEEBRZ, DARAGFE DU EHE A@, BIWIE T OAW A 6 & .
Wittgenstein #, 5 R FHLA G, TSR EHESIFE, FERAAEMA
TEAERNSE SEAE, Adfsere B, ([18], 1.1, 2, 2.06, 2.063) T HASKIIEEEGA
A e F R 1 A A 5 KRR, T LVAO (a > p) vO (a » —p) KA1
ol 1 E I A SR A8 S0, WA Saliar, A HakRAE—7]
Rt 72 & Wittgenstein BAR] . @A S oL, KR AER RIS . xfit A
M TRk, 0] DB IR R AE— A 1] gt 5
World(w’~7) € &I5w° s AVue~ (@A Vs(w®™"s = u®~75) vO Vs(w°~'s = —u’~7s))
FWorld(w® M, OVSw®”7s - u " SHPFERHM S Fw™" w7,

OAWH 2 —MREEERE, SINERHPZ 3B NS0 ZE 5 5.

5I# ([19], pp. 131, 135, #i7fl 2.6,2.10). {ETOM O AWZIR U T A6 1
ORC: OVXIY(@AMVZVI(YX -0 ZX) «OVX(YX - ZX)) AVI(XX < YX))
LP: Vo7 (OoT5v° 775 — Jw’ " (World(w® %) AOVS(w®~7s —» 1°775)))

EB: ORC: {4 X, HCATHUKEVI(YY «0(@ — XX)MY, IGIERITAT,
LP: #%<©350°°75, H Barcan AR, 3507775, FEM AN HERE, BUXHE
TEAES, HCABUM EVX(W' ™'Y & @ AX = Hw’™", SWiFw’ " HEER,
FRHOWT”SAAW)H B T oI’ (World(w® ") AOV5(w® 75 - v°~75)), H
Barcan A, FJw’ " (OGWorld(w’~") A & OVs(w’™s = v°775)), ARFHE -
OH 5 AHH 2, Ao Barcan A 35 UEoWorld(w™") — World(w’~%). B

ORCFANIHEMEFE A, BWE BAMBIEALIAE 5 2 SN E RIS .
IH 1A X NI, BIRigid(X) ¥ O0VZ(VX(YX -0 ZX) «0OVX(YX — ZX), HTA
H, Rigid(X) O VX(XX o0 XX), HIrIE WL RS 1 1 S e £ fir A w] Ret a6
2ZHE GRZEEE Barcan AF%). LP Bl Leibniz o] e 4514 Al RealEEEA AT RE
A AT
. (HQHIWELRAELM) #o@)RHELICREY H @ e, —
Bl AR e, B EIHAME B H M E R 20 - A,

OAW Froy OVZ (HQ(7) = (7)) vEOVZ (HQ(7') — —e(7))
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WEB: ESEHET, 5 R 1o B 1 AR o MBS TR A K, AME TR U0 A%
A, BIIRVX(Xx < Yx), #A¢ < ¢(Y/X).
SAEVE . B#0IAZ HQZ) A ~@(¥) AV HQT ) A (). WA CAZHQT ) -
THIUEHOIZHQ(Z) —» IZHQ(7), 4 THEVZ -HQ(Z') -OVZ -HQ(7). H
ORC, AW RFZREIFBLNIERZ . BEEEHQ HIAR, HVxy(x#y-0Ox#y)
M7 ez A NIMER) CEPE R )4 ELE B A AT Rt FHAHTRD 5 HTHQ' F(D)(ID)(I1D)
HAPERFEBUE A ME—JE~F LB R A S8 w3, tuE g 2 0
([17], Appx. pp. 18-19, F|F C.5).
T RAFENIERIZ A HQZ ) KA. N HAAAEE KR AT — XN,
HTENIE, At HEDEZ 18R . e ) RFHTAR, KA T 5 A
KoM FREH: VX:HYX: H(p =0 @) A VX: HYX: H(=¢ —00 —¢)-
1° Yo EF AR, Bz B FEENIE, ORCFLIRIFES X ILIMEFIF
PRV RAR IC, W SRAH R AT SR AH S A 2R, Ao
2° B A IR A, AN B — AR R E F A K A 515
3° el vxHx - y)If, HIHPEREARVYXHx -Oyw), HAENDOVXHx > w);
#iVx(Hx — y), Bl3x(Hx A ~w), HEGEEAHNIM, Ix@Hx AO~wy), i
A0 —~Vx(Hx — w)o
4° HVx, .. x,(Xx)...x, > Hx; A AHx) LN X CH' . B VXX C
H" - )i, ZiFeMrm O et iar. HARRE A OIX(X CH Awy), MIH
ORC, SEEX W ULRAAENER X 5 X LA E, FRA 0IX(X CH A
Rigid(X) A ~y). HICA, fEEEFIFVX(EX < X C H" ARigid(X) A ~y), HLP,
FAEY S World() AOVY(YY — EY), TRADOVY(YY - Y C H" ARigid(Y)).
tH CA M ORC, fF 1E W 1 1 G 18 45 Vx, ... x,(Gx; ... x, & Hx| A ... AHx, AO
VY(YY = Yx;...x,). H ([17], Appx. p. 19, 5IH C.6) AOVY(YY — VX(YX <
GX). TRAEDOVYYY - EY AVX(YX © GX)), X HWoddY)H o3YYY, 15
OIY(BY AVX(YX & GX)), I & fEH) T A B A Barcan A R H3IYY CH'A
Rigid(Y) A Oy). (H2 HeM AR LA VX (X C H" ARigid(X) »Oy), FJE!
[FIE A iE-e -0 ~@. 5/FUEE!
H ER S FBHQ O HQ - N EJEIE I & PRI A [F 4 5| 215
FromO V7 (HQ(Z) AHQ' — (¢ < 9(77))

HMAEOHQ Al —OVY (HQ(Z) = (7)), 1 XHHQ A (¢ V -¢@) -0OHQ' A
OevO-e), T & HQ A(pV @) -OVZHQZ) - (7)) vOVZ (HQ7) —
—p(7°)), FITHQZ)— B AL RN, B[0VY (HQ?) — o)) vO
Y7 HQ7) — —p(7)), SHBEFE! 1

P AE Db SRS A — R Wy I B D AR e P o (HX AN I Y 45
RXTNAEE T Z R IFRA N2, FARA 8 s bR 78BN
FA% SRS TR ) DA S B0 A R A NI S5 25 2 TIUIL R 25 51

155



5 HABEMEEME

Button!"h > 7V EEGIFE Y, NTEVEREME R NTE (R RBMEAE LRI E,
IZHQ(?7)AL . F Hilbert (UL sk, ZELRIEHQZ — 8, RIBHQINJulE 44
BHANE. 5 Godel wH, (E40ZHFIEHIZHQZ ) AT RER, FFH R nThe
TE— 8 g KR FHQHIE ARG H A BEIEHHIZHQ(?);  1MiHE Russell & Whitehead
E (EeERED) FRTAE, BEES AR T, £/ T M2 aeir
HIZHQ(7). BRWtt, BHEANHQA &EEAETFHIIER.

MMAHQM LA ? £y 4R ! Quine & 1
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(R B o

2 i KRR ATE e #, (HTEE 4 TR IRAMCERIN 71X — [ &,
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Axiomation of Classical Mathematics and Its Determinacy
Likai Liu
Abstract

This paper presents a second-order axiomatic theory HQ for quaternions. It
proves that HQ possesses internal categoricity and internal intolerance within
second-order calculus incorporating the full comprehension axiom. Furthermore,
within a modal third-order logic system TOM, under the premise of "it is
necessary that there is an actual world," it demonstrates that HQ exhibits internal
necessary intolerance. Employing the methodology of the axiomatic school, this
paper establishes the foundations of classical mathematics (as opposed to modern
mathematics) upon HQ. By leveraging internalism, it overcomes the Skolem-
Godel antinomy, thereby substantiating the certainty of classical mathematics.
Additionally, it employs conventionalism to argue for the truth of classical
mathematics.

Likai Liu Department of Philosophy, Peking University
1642773429@qq.com

158



	1 目录
	正文
	2 过渡页1
	3 会议手册
	4 过渡页2
	5 论文（摘要）集
	01 Hamkins
	02 Paseau
	03 姚博凯
	11 胡扬 The Norm of Logical Proof (July 25-27, 2025)
	12 曹航杰&熊明 Symmetry Groups of Boolean Self-referential Systems
	21 罗广龙 Polymorphism and the Ontology of Numbers
	Introduction

	22 于宝山 布劳威尔和胡塞尔对序数和基数的构造及其时间意识模型比较
	31 鞠大恒 （论文全文）数学的内部应用与结构主义解释——以组合学为例 鞠大恒 复旦大学哲学学院
	31 鞠大恒
	32 陈明坤 On a Mereotopological Series-style Answer to Special Composition Question
	33 李浩宁 AI for Science：两种科学、两种AI和两种数学
	41 周星哲 几何实在论的两次升华
	42 郭婵婵 克里福德的空间观：与黎曼、亥姆霍兹的对话
	43 王月儿 “统一几何”的空间哲学——以外尔的空间观为例
	61 张文馨 理念追求与经验根基之纠葛
	62 彭桢 跨学科共同体的制度化构建：从ZAMM到GAMM的战间期德国应用数学革命 (1)
	71 龙羽江 Reanalysis_of_Penrose_s_New_Argument_and_a_modified_Version_of_it_Formalized_in_DTK_System
	Introduction
	Penrose's New Argument
	Koellner's DTK System
	The Language of DTK
	Axiomatic system of DTK
	Some results of DTK

	Two Reconstructions of Penrose's New Argument
	Koellner's Reconstruction
	Corradini and Galvan's Reconstruction

	A Modification of Penrose's Argument

	72 陈俊宏 The Coding Conception of In
	91 陈泽晟 A belated foundational role of set theory
	92 刘力恺 古典数学的公理化及其确定性



