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Peoples

Main lecturer:
Joel David Hamkins, John Cardinal O’Hara Professor of
Logic at the University of Notre Dame

He is active on MathOverflow. He has earned the

top-rated reputation score.

He will start delivering lectures from July 7.
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Setup of the Course

Prerequisites
We do NOT intend to assume any particular background in
philosophy or mathematics. However, some experience with
mathematics will surely be helpful, and some familiarity with
logic will be great.



Setup of the Course

Grading and Evaluation

In-class discussion 40%: Students are encouraged to
participate by asking questions and presenting their views.

Final presentation 60%: The presentation should reflect
the readings and the student’s reflections.

Time: July 24 (and maybe July 22)

Format: TBA



Setup of the Course

Reference
Joel David Hamkins, Lectures on the Philosophy of Mathematics, The MIT
Press, 2021.

Øystein Linnebo, Philosophy of Mathematics，Princeton University Press, 2017

Stewart Shapiro, Thinking about Mathematics: The Philosophy of
Mathematics, Oxford University Press, 2000.

Jean van Heijenoort (ed.), From Frege to Gödel: A Source Book in
Mathematical Logic, 1879-1931, Harvard University Press, 1967.

Paul Benacerraf and Hilary Putnam (ed.), Philosophy of Mathematics: Selected
Readings, Cambridge University Press, 1984.



Setup of the Course

Course website
https://logic.fudan.edu.cn/event2025/jdh

https://jdh.hamkins.org/

https://logic.fudan.edu.cn/event2025/jdh
https://jdh.hamkins.org/


Setup of the Course
Scan to join the wechat group



Plan for the first three meetings

General introduction to philosophy of mathematics

The philosophical challenges from mathematics

The search for a foundation of mathematics

(If time permits) Topic that Joel might not cover

Type theory, proof assistants, and AI



Mathematics as universal character

... yet no one has attempted a language or characteris-

tic which includes at once both the arts of discovery and

judgement, that is, one whose signs and characters serve

the same purpose that arithmetical signs serve for num-

bers, and algebraic signs for quantities taken abstractly.

Leibniz, Zur allgemeinen Charakteristik



Mathematics as universal character

My intention was not to represent an abstract logic in

formulas, but to express a content through written signs

in a more precise and clear way than it is possible to do

through words. In fact, what I wanted to create was not

a mere calculus ratiocinator but a lingua characterica in

Leibniz’s sense.

Frege, 1882



Mathematics as universal character
Thus it happens that our entire present-day culture, in-

sofar as it rests on intellectual insight into and harnessing

of nature, is founded on mathematics. Already, Galileo

said: Only he can understand nature who has learned the

language and signs by which it speaks to us; but this

language is mathematics and its signs are mathematical

figures.

Hilbert, 1930



Mathematics as universal character

A hard-to-rebut claim
All rigorous content can be expressed using the language of
mathematics.

Example

Arithmetic: everything finite

Analysis and Topology: continuity

Logic: truth, proof, and knowledge
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A hard-to-rebut claim
That which cannot be expressed using the language of
mathematics is only that content which is itself not rigorous.
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Arithmetic: everything finite

Analysis and Topology: continuity

Logic: truth, proof, and knowledge
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Mathematics as universal character

This is a universal proposition, which cannot be proven by
examples. What makes us believe it is true?

Is it an empirical (a posteriori) truth?

Is it analytic?

Compare it with the claim: mathematical truth is necessary.



The request for a foundation
The first formulations of the calculus were not even math-

ematically rigorous. An inexact, semi-physical formula-

tion was the only one available for over a hundred and

fifty years after Newton! ... The development was as

confused and ambiguous as can be, and its relation to

empiricism was certainly not according to our present (or

Euclid’s) ideas of abstraction and rigour.

(Von Neumann, The Mathematician)



The request for a foundation
After deserting for a time the old Euclidean standards of

rigour, ... In arithmetic, ... it has been the tradition to

reason less strictly than in geometry, ... The discovery

of higher analysis only served to confirm this tendency;

for considerable, almost insuperable, difficulties stood in

the way of any rigorous treatment of these subjects. ...

in mathematics a mere moral conviction, supported by a

mass of successful applications, is not good enough.

(Frege, Die Grundlagen der Arithmetik)



The request for a foundation

The request came from not only philosophers, but also
(mainly) from mathematicians

Historical crises in mathematics, such as controversies
surrounding infinitesimals, the discovery of irrational
numbers, the introduction of complex numbers, and the
development of non-Euclidean geometry, reflect not only
gaps in logical rigor but also questions about the nature
of mathematical objects themselves.



Foundation of Mathematics

Frege’s definition of natural numbers

The number which belongs to the concept F is the
extension of the concept “being equinumerous to the
concept F”

(Frege, Die Grundlagen der Arithmetik)



Foundation of Mathematics

Frege’s definition of natural numbers

0 is the number which belongs to the concept “not
identical with itself”.
1 is the number which belongs to the concept “iden-
tical with 0”

(Frege, Die Grundlagen der Arithmetik)



Foundation of Mathematics

The integers are usually defined to be the differences between
two natural numbers.

unordered and ordered pair

For unordered pair (pair set), {a, b} = {b, a}

For ordered pair, (a1, b1) = (a2, b2) if and only if a1 = a2

and b1 = b2



Foundation of Mathematics

Let N be the set of all natural numbers. We define the
Cartesian product N × N = {(n,m) : n,m ∈ N}.

Then we define an equivalent relation on N × N:
(n1,m1) ∼ (n2,m2) if and only if n1 + m2 = n2 + m1

We define the equivalent class (represented by (n,m)),
namely [(n,m)]∼ = {(n′,m′) ∈ N × N : (n′,m′) ∼ (n, n)}.
These are the integers! For example, −1 is [(0, 1)].



Foundation of Mathematics

How to define the rationals in the same manner?



Foundation of Mathematics

Dedekind: The reals are sets of rationals

0

rA = {q ∈ Q | q < r}

A Dedekind cut is a set of rationals which is bounded to the
“right” and closed to the “left”.

√
2 is the set {q ∈ Q : q2 < 2

or q < 0}



Foundation of Mathematics
We have successfully defined many mathematical objects to be
sets or classes. But

Russell’s paradox: Let R = {x : x < x}. Do we have R ∈ R?

Russell’s simple type theory:
Each mathematical object is of some type. For example,

Type 0 consists of individuals, Type 1 consists of

properties of individuals, Type 2 consists of properties of

Type 1 objects, etc. Membership relation is between

objects of Type n and Type n + 1, so x ∈ x is not

legitimate.



Foundation of Mathematics

We have successfully defined many mathematical objects to be
sets or classes. But

Russell’s paradox: Let R = {x : x < x}. Do we have R ∈ R?

Axiomatic set theory:

Axioms of comprehension: given a formula φ(x), for

each set X, there is a set {x ∈ X : φ(x)}



Set Theory as Foundation

The language L of set theory: {∈}

The theory ZFC of set theory:

Axiom of extensionality and foundation

Axiom of pairing, union, power set, infinity, separation,

replacement, and choice



Set Theory as Foundation

The ZFC axioms for set theory

Extensionality, Foundation

Pairing, Union, Power set, Infinite

Separation (Comprehension), Replacement

Choice



Set Theory as Foundation

von Neumann ordinals:

0 = ∅, 1 = {0} = {∅}, 2 = {0, 1} = {∅, {∅}} ...

ω = {0, 1, 2, . . . }, ω + 1 = ω ∪ {ω},

ω + ω = ω ∪ {ω + 1, ω + 2, . . . } = ∪{ω + n : n ∈ ω}, ...



Set Theory as Foundation

The cumulative
hierarchy” of sets:

V0 = ∅

Vα+1 = P(Vα)

Vω =
∪

n<ω Vn
...

VOrd

N

ω Vω = Hω
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Set Theory as Foundation

The universe of sets:
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Vα+1 = P(Vα)
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n<ω Vn
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Foundation of Mathematics

Compared to our confidence in mathematics, our victory in the
search for the foundations of mathematics is even more
surprising.

All mathematics can be expressed in set theory.



Foundation of Mathematics

Compared to our confidence in mathematics, our victory in the
search for the foundations of mathematics is even more
surprising.

All mathematics can be expressed in the language of set
theory.



Foundation of Mathematics

All mathematics can be expressed in set theory.

It is a universal proposition, but stronger.

It is harder to say that it is an analytical truth,

or empirical



Foundation of Mathematics

Hilbert’s Program

Axiomatization for all classical mathematics

Prove it is complete

Prove it is consistent

Achieve these using only finitary mathematics



Foundation of Mathematics

Gödel’s Incompleteness Theorem
Any axiomatizable theory T , which is consistent and has
enough expressive power, must be

incomplete: there is a σ such that T ⊬ σ and T ⊬ ¬σ

incapable of proving its own consistency: T ⊬ Con(T )



Interpretability Power

Definition
Let T1 and T2 be theories in language L1 and L2 respectively.
We say T1 is interpretable in T2 , if there is an effective
function π translating each L1 sentence into a L2 sentence
such that for each L1 sentence φ,

T1 ⊢ φ ⇒ T2 ⊢ π(φ)



Interpretability Power

Example

Let φ be a sentence in the language LA = {0, S ,+, ·,≤}

for arithmetic. We have

PA ⊢ φ ⇒ ZFC ⊢ “(ω, S ω,+ω, ·ω,≤ω) ⊨ φ′′

With Ackermann coding: α(x) =
∑

y∈x 2α(y), the theory of
hereditarily finite sets can be translated into arithmetic.
For example, x ∈ y is translated to

⌊
x
2y

⌋
mod2 = 1



Interpretability Power

Large Cardinal

ω is a large cardinal above all finite ordinals, so that we
have
ZFC ⊨ Con(PA)

Inaccessible cardinal: not accessible from smaller ordinals
by the set-theoretical operations
If κ is inaccessible, then Vκ ⊨ ZFC. Thus, ZFC+ there
exists an inaccessible ⊨ Con(ZFC)



Interpretability Power

Large Cardinals

Mahlo cardinal

Weakly compact cardinal

Measurable cardinal

Strong cardinal

Supercompact cardinal
...

0 = 1



Other candidates for the foundation

Strict finitism (PRA)

Constructive mathematics

Intuitionistic (HA)

Martin‑Löf type theory

predicative mathematics (ATR)

Category theory

Roughly ordered by interpretability power



The concept of computability

Turing (1937)：Everything computable can be computed by a
Turing machine

We had not perceived the sharp concept of mechanical
procedures before Turing, who brought us to the right
perspective.

Gödel (Wang, A Logical Journey)
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The concept of computability
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The concept of computability

Turing (1937)：Everything computable can be computed by a
Turing machine

Turing’s argument is so compelling that we now define the
expressive power of an artificial language through the notion of
Turing completeness — the ability to simulate a Turing
machine.



The concept of computability
Turing (1937)：Everything computable can be computed by a
Turing machine

the “computable” numbers include all numbers which
would naturally be regarded as computable. All ar-
guments which can be given are bound to be, fun-
damentally, appeals to intuition, and for this reason
rather unsatisfactory mathematically.

(Turing, 1937)



The concept of computability
Turing (1937)：Everything computable can be computed by a
Turing machine

the “computable” numbers include all numbers which
would naturally be regarded as computable. All ar-
guments which can be given are bound to be, fun-
damentally, appeals to intuition, and for this reason
rather unsatisfactory mathematically.

(Turing, 1937)



The concept of computability

Turing (1937)：Everything computable can be computed by a
Turing machine

The three kinds of argument

A direct appeal to intuition.

A proof of the equivalence of two definitions

Giving examples of large classes of numbers which are
computable.



The success we enjoy

We achieve the following agreement

Mechanical procedures is characterized by Turing machine

Axiomatic set theory can serve as the foundation of
mathematics

Sets are the extension of concepts

Some other candidates of foundation of mathematics are

interpretable in set theory, and many can interpret quite

a lot of set theory

Many mathematical theories is interpretable in set theory



The success we enjoy

Axiomatic set theory serves as a scalable foundation of
mathematics. From strict finitism to large cardinal axioms, we
have a hierarchy of theories ordered by interpretability power
all the way towards increasingly completeness and
inconsistency.

We can choose the interpretability power as we need

The risk of inconsistency seems to be contained in the
hierarchy



The success we enjoy

The trust we enjoy

Although there is no way to effectively discover a proof,

verifying a proof is effective.

To verify proofs more efficiently, new mathematical

foundations (such as proof assistants Coq, Isabelle,

Lean) have been developed. Their reliability and

completeness ultimately reduce to set theory.

Philosophy of mathematics is no longer in vogue.



Two challenges

The “real” independent statements

Continuum hypothesis (CH)

Inner model: L ⊨ ZFC + 2ℵ0 = ℵ1

Forcing extension: L[G] ⊨ ZFC + 2ℵ0 = ℵ256

Frege’s Caesar Problem: Is Zero Julius Caesar？



Set-theoretic Multiverse View

The Multiverse view is proposed in opposition to the
Universe view.

Universe View: Set theory is about THE universe of all
sets

Multiverse View: There are many different universes of
sets, and different concepts of set underlying them.
Therefore, the multiversists hold different views on test
problems such as CH compared to universists.



Set-theoretic Multiverse View
This abundance of set-theoretic possibilities poses a seri-

ous difficulty for the universe view, for if one holds that

there is a single absolute background concept of set, then

one must explain or explain away as imaginary all of the

alternative universes that set theorists seem to have con-

structed. This seems a difficult task, for we have a robust

experience in those worlds, and they appear fully set the-

oretic to us.

(Hamkins, 2012)



Anti Set-theoretic foundationalism

Benacerraf’s identification problem
Must the numbers be the von Neumann ordinals? Why not
the Zermelo ordinals?

0 = ∅, 1 = {0} = {∅}, 2 = {1} = {{0}} ...



Anti Set-theoretic foundationalism

Structuralism

Mathematical objects are no more than positions in
structures.

Mathematical truths are truths in structures.
There is no absolute mathematical truth; neither
arithmetic truths nor set-theoretic truths are absolute.



Anti Set-theoretic foundationalism

The other purported foundational role for set the-
ory that seems to me spurious is what might be called
the Metaphysical Insight. The thought here is that
the set-theoretic reduction of a given mathematical
object to a given set actually reveals the true meta-
physical identity that object enjoyed all along.

(Maddy, 2017)



A unified foundation is still needed

Every universe of sets thinks its own arithmetic structure is
standard. But under the multiverse view (which we cannot
refute), every universe of sets is considered non-standard by a
larger and better universe of sets.

Theorem (Hamkins and Y. 2013)
Assume ZFC is consistent. There exist models M1 and M2 of
ZFC such that the defined arithmetic structures are
isomorphic, but their arithmetic truths are different.



Foundation as coding system

A background theory should serve as a coding system,
rather than a metaphysical base.

While arithmetic is a good example, its power of
interpretability is limited.

Set theory offers scalable interpretability power, but its
inherent structure remains unclear.



Transfinite Arithmetic

A natural next step is to generalize arithmetic to the
transfinite, a theory of the structure (ON,+, ·, 0, ω, ...)

It is hard to find an natural and arithmetical operation O

on the ordinals such that the interpretability power of the
theory of (ON,+, ·, 0, ω,O) is not strictly below that of
ZFC.



Transfinite Arithmetic

It is not impossible if we drop the requirements of being
naturals and arithmetical.
Since there is a definable global well-ordering <L on L or other
L-like inner models, ..., namely, we can define αEβ if and only
if the αth (with respect to <L) element is a member of the βth.
Then the theory of the structure (ON,+, ·, 0, ω, E) surely
interprets, for example, ZFC + V = L.



Transfinite Arithmetic

The opponent may say that it is just set theory in disguise

However, if a theory of transfinite arithmetic can serve as
a foundation, it must somehow interpret set theory.
Moreover, since the ordinals are well-ordered, the set
theory it interprets must possess a global well-ordering..



Transfinite Arithmetic

Given the extra restriction (bearing the global
well-ordering), and that its coding style might not as
natural as set theory, are there any notable benefits?

Provide an independent justification for the inner model

and W. Hugh Woodin’s Ultimate-L program.

Inspire some new research



The Inner Model Program

Gödel’s theorem indicates that there is no purely
mathematical proof of consistency of mathematics

The inner model program aims to find well-structured
inner models for large cardinal axioms. For instance,
L[U] ⊨ there exists a measurable cardinal, thereby
providing empirical evidence for the consistency of large
cardinals.



The Inner Model Program

Large cardinal axioms combined with statements asserting
that V = the corresponding inner model (e.g., V = L[U]),
can lead to theories that are effectively complete.

Defining inner models for stronger large cardinals tends to
be significantly more intricate



The Inner Model Program

Woodin’s theorem: An inner model for a supercompact
cardinal would also accommodate all known stronger
large cardinals. This leads to the Ultimate-L program.

An arithmetic-style foundation with global well-ordering,
transparent structure, and scalable interpretability power
is arguably equivalent to the theory of Ultimate-L+ large
cardinals.



Next

Type theory and Lean
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