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Abstract

In this paper, the author will introduce a pragmatistic view on the philosophy
of mathematics. The idea is to measure the positiveness of philosophical doctrines
by measuring their consequence on mathematical practice. To defend the idea, the
author will argue that the characters of mathematics make it a special field that the
principle of pragmatism can be applied naturally. Some cases will be studied in
the following section to give a vision of how philosophical standpoints impact on
mathematical research. To maximized the understanding, some basic knowledge
in classical logic and set theory is presumed.

Key Words: philosophy of mathematics pragmatism set theory

1 Introduction
Pragmatism is a philosophical movement firstly promoted by William James

(1842 - 1910) and Charles Sanders Peirce (1839 - 1914). The basic rule of prag-
matism, namely, identified the meaning of concept, statement or opinion with their
``practical consequences'', is ubiquitous in everyday-life reasoning. Accordingly
pragmatism is heavily attacked on its truth theory, ethics, ontology and epistemol-
ogy problems. The author will not try to defend pragmatism in general, rather, a
certain application of pragmatistic method will be exhibited, while the author hopes
the reader will agree that the application is natural, coherent and effective.

The introduce of pragmatism is to resolve dilemmas. The initiators of pragma-
tism believe that disputes in philosophy are caused by ambiguities of the concepts,
and can be settled by clarifying the meanings of the concepts practically. In this
article, the author wants to keep pragmatistic standpoint at a weak level. Thus prag-
matistic method, which known as the ``mediating philosophy'' should be restricted
to the cases when seriously irresoluble disputes or dilemmas rises.

*My research has been supported by grants from 2012 Major project of the Humanities and Social
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心灵与认知观的逻辑与数学哲学研究). The author was also supported by China Scholarship Council
during his visit to Harvard University (2010-2011) and by the Institute for Mathematical Sciences at
National University of Singapore during the logic summer school in 2009, 2010 and 2011. The author
would like to thank Zhuanghu Liu (Beijing), Zhaokuan Hao (Shanghai), Xianghui Shi (Beijing), Peter
Koellner (Boston) and Charles Parsons (Boston) for sharing their knowledge on set theory and philosophy
of mathematics.
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In philosophy of mathematics, pragmatistic method has already been intro-
duced to deal with cases of such kind.

Kurt Gödel has suggested a methodology to pick out the best statement (whose
truth can not be determined mathematically) from the candidates of axioms, yet
there is no intrinsic justification for such choice.

... even in case it has no intrinsic necessity at all, a probable deci-
sion about its truth is possible also in another way, namely, inductively
by studying its ``success''. Success here means fruitfulness in conse-
quences, in particular in ``verifiable'' consequences, i.e., consequences
demonstrable without the new axiom, whose proofs with the help of the
new axiom, however, are considerably simpler and easier to discover,
and make it possible to contract into one proof many different proofs. ...
There might exists axioms so abundant in their verifiable consequences,
shedding so much light upon a whole field, and yielding such powerful
methods for solving problems (and even solving them constructively,
as far as that is possible) that, no matter whether or not they are intrin-
sically necessary, they would have to be accepted at least in the same
sense as any well-established physical theory. [6, 264]

This methodology as is known as Gödel's external justification. It is no doubt
a pragmatistic process to determine mathematical truth by empirically studying
on its success and consequences. This suggestion has been heavily discussed and
criticized in the community of researchers of foundation of mathematics.

However, in this article, pragmatistic method will be applied to settle conflicts
among philosophical standpoints, e.g. set theory realism, constructivism, formal-
ism, and multiverse view, rather than the choice of new axioms for mathematics.

2 Mathematical Achievement
A core notion of pragmatism is ``consequence''. In this section, we will clar-

ify what are the consequences that we are really concerning about in the realm
of mathematics, and what properties of them which makes it more appropriate to
apply pragmatistic treatment.

2.1 Mathematics gives knowledge
Philosophers, as Hume, Kant and Frege, classified truths or judgements into an-

alytic / synthetic. Briefly, a truth is analytic if it is logically true; a truth is synthetic
if it is true for some reason other than logic. More detailed discussion, can be find
in [27]. Since people can possess different views of logic, the exact extension of
``analytic'' can be different. For example, from Kant's view, i.e. Aristotelian logic
is all, ``5+7 = 12'' is synthetic, while Russell must claim it is analytic because for
Russell, simple type theory is logic. I do not want to stick myself on the endless
debate of whether mathematical truth is analytic or synthetic.

Usually, a proposition is analytically true only because of its structure, e.g.
``0 = 0'', ``¬(p∧¬p)'', and ``{p, q} ⊢ p''. It is a temptation to think analytic truths
as above do not provide new knowledge.

Most mathematics could be formulated in the language of set theory. It is in the
sense that those mathematical notion are defined in the language of set theory, and
the mathematical theorems can be considered as theorems proved by the axioms of
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set theory. Although people may possess different views on set theory and even on
logic, it is clear that all results made by mathematicians are in the form

Λ ⊢L Σ ,

whereΛ is a fragment of some variation of set theory, ⊢L is the notion of provability
in a logic for mathematics1, andΣ is a simply definable set of formulas. All of them
can be regard as analytical truths or schemas of analytical truth. Does it mean
mathematicians do not produce knowledge at all?

My answer is yes, mathematics does give knowledge. The outcome that mathe-
maticians present to us are analytic truths, or in another words, facts of logic. But a
discovery of logic fact is, in some sense, a second-ordered fact or historical fact. I
am not saying that the knowledge of mathematics is just the history of mathematics.
The point is that if the mathematical truths are there, which is a view of platonism,
then the discovery of them is just like a discovery of a principles in physics, which
gives knowledge with no doubt; else if mathematics is a mental construction, it
provides the knowledge of the inventions. It is clear immediately to every one who
understand it that 5 + 7 = 12 follows from the axioms of addition. But no one
knew it before Gödel's discovery in 1931 that

(2.1) ZFC ⊢ Con(ZFC) → Con
(
ZFC + ¬Con(ZFC)

)
.

Now we know (2.1) is an analytic truth. But before the knowledge that Gödel
brought to humans, people were still seeking a proof of Con(ZFC) from ZFC,
which is now known to be impossible if ZFC is consistent.2

Hence mathematics does give knowledge. and the knowledge does have effects
on humans' behavior.

2.2 ``Absoluteness'' of mathematical achievement
Before continuing our journey, recall that we are restricting our discussion

within the realm of mathematics. That is we only concern about mathematical
facts and the discovery of such facts. I will argue in the following paragraphs that
the discovery of a mathematical proof is absolutely good for mathematics.

As we have seen, the mathematical achievements are the discoveries of new
proofs, which give us a clearer map of the universe of mathematical statements. I
would like to claim that such an achievement, when it has been done, can not be
falsified anymore, and it will play a more or less but permanently positive role in
the realm of mathematics.

A proof is a sequence of formula where each formula is either an assumption
or follows from previous formulas via certain logic rules. It can be checked effec-
tively3 whether a sequence is a valid proof or not. Once it passes the suspicion, the
sequence is there and will never disappear.

1Practically, in this article, we only concern two kind of mathematical logic, namely classical logic
and the intuititionism

2This is how the original Hilbert's Program went to its end. However, technically, it is still possible
to prove Con(ZFC) from ZFC or even PA, because we do not even know they are consistent or not.
Thus the end of Hilbert's Program is not solo a mathematical corollary, rather it is also a consequence of
people's philosophical believe that PA or even ZFC is consistent. Here we encounter a simple case of how
philosophical opinion can affect the research in mathematics practically.

3Here I refer to the notion in computability theory and neglect the physical limitation of humans'
memory and life.
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It is possible that the significants of a mathematical achievement be revalued
even dramatically from a more advanced view of foundation of mathematics. But
the value can never be drop down to zero or negative, though it maybe very close to
zero. For example, Playfair's axiom, i.e. ``given a line and a point not on it, there
is at most one parallel to the given line through the point'', is provable in Euclidean
geometry. But it is not a theorem in the absolute geometry, namely the geometry
based on axioms without Euclid's fifth postulate, say σ5. However, it is provable
in absolute geometry that ``Euclid's fifth postulate implies Playfair's axiom''. The
latter proof can be transformed from the former one effectively, namely we can just
replace each formula φ in the former proof by σ5 → φ.

To explore the phenomenon more specifically, we start with some definitions.

Definition 2.1. An axiomatic mathematical system is a pair (Λ, L) where Λ is a
computably enumerable set of axioms (sentences in a formal language compatible
with L), and L is a logic consisting valid formulas as logical axioms and rules for
inference.

A proof (or a deduction) respected to an axiomatic mathematical system (Λ, L)
is described as above where the assumption consists Λ and the logical axioms

Definition 2.2. A transform of proofs from (Λ0, L0) to (Λ1, L1) is a function π,
for each sequence of formula D, which is a deduction respect to (Λ0, L0), π(D) is
a deduction respect to (Λ1, L1).

Mathematicians may have different opinion on how strong the axioms of math-
ematics should be, and may even disagree on the ground logic. Nevertheless, they
respect each others' work because proofs in one system can usually be transformed
to a proof in the system they like. Let's consider the following cases.

Case one: two mathematicians agree on the ground logic, e.g. the classical first
order logic, and they are concerning about the same subject, so they are using the
same language, but they do not agree with each other on the axioms of the subject.

The the relationship between Euclid geometry and absolute geometry is one of
the instants of the case. A more fundamental case is that set theorists may have
different opinion on the legality of the axioms of set theory, e.g. the axiom of
choice.1 In these cases, we can transform a proof of a statement into a proof of a
conditional version of the statement.

Given set of axiomsΛ0 andΛ1 in the same language. LetD be a proof ofφ from
Λ0. Note that each proof is finite, and so there are only finite many assumptions
used in a proof. We can assume the finite set Σ ⊆ Λ0 contains all sentences used
in D, and let Σ̂ be the conjunction of all sentences in Σ, which is a well-formed
formula. Now we define π(D) such that each formulaψ inD is replaced by Σ̂ → ψ.
It is a manner of routine to check that π(D) is a proof of Σ̂ → φ even from ∅.

Case two: two mathematicians are interested in the same subject, but do not
agree on the ground logic. In this case, other than classical logic, we only con-
cern the intuitionistic logic because it is the only non-classical logic that has been
seriously concerned by the community of mathematicians as the ground logic.

Classical logic is the strengthen of intuitionistic logic by adding ``¬¬φ→ φ''.
It is clearly that every proof by intuitionistic logic is a proof by classical logic.
Therefore we consider the reverse direction.

1The axiom of choice (AC) is stated as ``for each family F of nonempty sets, there exists a function
f whose domain is F and for each X ∈ F , f(X) ∈ X ''. That is the function f ``choose'' one element in
X for each set X in F .
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Gödel [4] and Gentzen [2] showed independently that proofs by classical logic
can be transformed to be a proof by intuitionistic logic. The so-called double nega-
tion translation is inductively defined as follows:

(i) φN = ¬¬φ for non-negated atomic formula φ,

(ii) (φ ∧ ψ)N = φN ∧ ψN ,

(iii) (φ ∨ ψ)N = ¬(¬φN ∧ ¬ψN ),

(iv) (φ→ ψ)N = φN → ψN ,

(v)
(
∀xφ(x)

)N
= ∀xφ(x)N ,

(vi)
(
∃xφ(x)

)N
= ¬∀x¬φ(x)N .

And we have the theorem:

Theorem 2.3. Λ ⊢C φ if and only if ΛN ⊢I φ
N .

The ⊢C and ⊢I above indicate provability relation based on classical logic and
intuitionistic logic respectively, and ΛN is the set for all formulas translated from
formulas in Λ by double-negation as defined above. See [23] or [22] for details.

Case three: One mathematician works in the framework of set theory, while
the other only works in the world of nature numbers. For convenience, we assume
they both work under the classical logic.

The language for set theory have a binary relation symbol ∈ as its only parame-
ter to indicate the membership relation between sets, while the language of number
theory contains symbols <,S,+, ·, 0 for common indication.

As noted before, the structure N = (N, <, S,+, ·, 0) is defined in set theory,
and every theorem of a true (as proved in set theory) number theory can be trans-
lated into a theorem of a typical set theory. Again, we consider the non-trivial
direction: to transform a proof in set theory to a proof in number theory.

We further assume the set theorists works under ZFC, while the number theo-
rists works under PA or even Q, which is PA minus the axioms of exponentiation1

and the axioms of induction. The reason I chooseQ is that it is the minimal system
of axioms of arithmetic, which is still interesting enough. The following theorem
can give such an impression.

Theorem 2.4. Let R be a n-placed relation on N defined by φ, then R is com-
putable2 if and only if R is determined in Q, i.e. for natural numbers x1, . . . , xn,
if N � R(x1, . . . , xn), then Q ⊢ φ(x1, . . . , xn), and if N 2 R(x1, . . . , xn), then
Q ⊢ ¬φ(x1, . . . , xn).

ActuallyQ is the weakest natural axiomatization, which determines computable
relations.

By Gödel's coding, the statements concerning syntactic facts (of countable lan-
guage) can be effectively translated into statements of natural numbers. For exam-
ple, ``D is a proof of φ from Σ'', where Σ is a definable (in N) set of formulas, can
be translated as (2.2). Note that the set of well-formed formulas and logically valid
formulas, and the rules (functions) of deduction are all definable (and computable)

1However, the exponentiation operation can be represented in Q.
2By church's thesis, an n-placed relation of natural numbers is computable if and only if there exists

an algorithm such that for each n-nary sequence, it is decided in finite steps whether the sequence is in
the relation or not.
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(2.2)

D is a number coding a finite sequence ⟨e1, . . . , en⟩, e.g.
D = pe1+1

1 · pe2+1
2 · · · · · pen+1

n ; and each ei codes a well-
formed formula, i.e. a finite sequence of numbers, where
each number in the sequence corresponding with a sym-
bol in the language; furthermore each formula coded by
ei is either logically valid or in Σ, or deducted by certain
rules from the previous formulas.

in N. We will use #φ, #D to indicate the Gödel's number of a formula or a deduc-
tion respectively, and pΦq to indicate the translation of a syntactic statement (in
the language of set theory) Φ into the language of number theory. It can be proved
(from ZFC) that if Φ is true, then N � pΦq.

If Σ is a computable set of formulas, then the binary relation

ρΣ(x, y) = px is a proof of y from Σq

is computable as we can check it in finite steps. If a formula φ is provable from Σ,
then we have N � ∃xρΣ(x, #φ). With theorem 2.2, it is easy to see

Theorem 2.5. Suppose Σ is a computable set of formula in a countable language.
For each formula φ of the language,

Σ ⊢ φ⇒ Q ⊢ pΣ ⊢ φq.

The proof of Theorem 2.5 actually gives a effective method to transform every
proof from Σ into a proof of the fact in Q.

As far as I know, there is no set theorist works under intuitionistic logic. And
a number theorist working under the intuitionistic logic can understand the work
of a set theorist by first transforming the proof into a proof in number theory using
classical logic, and then further transforming it into a proof using intuitionistic
logic.

Therefore, as we have seen, once a discovery of mathematica proof is achieved,
it will illuminate the realm of mathematics, no matter which philosophical position
people may stand on. Although the light might be considerably faint in some area,
i.e. the translated result may be weak and lack of nature meanings, yet its value
will remain at least positive. It is in the above sense that I claim the achievements
are absolute.

Since the achievements of mathematics, i.e. the discoveries of mathematical
proofs are absolutely good, they can be treated as the dead ends of the chains of
practical consequences. Thus one major difficulty of pragmatism, say the vague-
ness of the notion ``consequence'', no long exists in the realm of mathematics.
Therefore, I claim that to measure the positiveness of doctrines of philosophy of
mathematics by their practical consequences is feasible.

3 Philosophical impacts on mathematical practice
As we argued above, it is appropriate to analyze the practice in mathematics

from a pragmatistic point of view. Yet, we still have to show that philosophy does
have impacts on mathematical practice. To argue for the existential statement, I am
supposed to give some specific evidences as follows.
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3.1 Philosophy gives motivations
Mathematicians' motivations come from all kinds of sources, for example the

requirements for applications to the real world, e.g. physics or economics, or purely
seeking for self-generalization and beauty. Although many working mathemati-
cians are not even aware of philosophical issues, philosophy does play an crucial
role in motivating the research of the fundamental problems of mathematics.

Long in the history, mathematics enjoyed the title of the most rigorous and ob-
jective intellectual activity of human beings. Immanuel Kant, in his representative
work, even regard mathematics as the model of his ideal metaphysics. However, the
foundation of mathematics was shaken by new techniques such as integral and new
discoveries such as Russell's paradox. The research on the foundation of mathemat-
ics began blooming from late nineteenth century motivated by the philosophical
requirement that mathematics should be rigorous and free from contradiction.

Under the slogan, several proposals have been put forward. Among them, logi-
cism, formalism, and intuitionism are the big three. Yet all of the three programs
have failed in some senses. However, the legacies are sumptuous. Frege, who
was the initiator of logicism, was also the founder of the classical predicate logic.
Russell's paradox buried Frege's project, but from its ruin rose the axiomatic set
theory, which is the most successful resolution for the foundation of mathematics.
Hilbert's program on finding a finitary foundation for mathematics was destroyed
by Gödel's incompleteness theorems. Although the theorem is a negative answer to
Hilbert's program, it lighted up a vast area of mathematics, and encouraged people
to explore the new world of unprovability. Inspired by Brouwer's distinguishing
interpretation of mathematical truth, the adherents of intuitionism has developed
a splendid garden of intuitionistic mathematics based on the former mentioned in-
tuitionistic logic. By studying the intuitionistic version of arithmetic and analysis,
some subtle differences between notions, which are provable to be equivalent in
classical mathematics, become visible.

However, I would like to leave the following space for more frontier programs.

3.1.1 Gödel's program
Gödel 's First Incompleteness Theorem was proved by Kurt Gödel before 1931,

which states that

Theorem 3.1 (Gödel's First Incompleteness Theorem). On a not too trivial sub-
ject of mathematics, e.g. N = (N, <,+, ·, 0), every computable set of axioms is
incomplete unless it is inconsistent.

By ``incomplete'', we mean there exists a statement concerning the subject,
while neither itself or its negation can be proved from the set of axioms. We also
say, the statement is independent from the axioms.

Two typical examples of independent sentences of ZFC are the consistency of
ZFC itself and Cantor's continuum hypothesis (CH)1. The former one is given by
Gödel's second incompleteness theorem, while the independence of CH is finally
proved by Kurt Gödel and Paul Cohen in 1963.

As a realist, Kurt Gödel would think: ``... a proof of the undecidability... would
by no means solve the problem.'' A mathematical statement ``must be either true
or false.'' ``... its undecidability from the axioms being assumed today can only

1The continuum hypothesis says that each uncountable set of reals has the same cardinality of the
whole continuum.
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mean that these axioms do not contain a complete description of that reality.''[6,
260] Hence Gödel proposed that new axioms should be discovered to determine
those still undecidable mathematical statement, e.g. CH. This is so called Gödel's
Program which affect deeply the research in set theory until now.

If we need some additional axioms to decide whether CH or not CH, why don't
just make CH or ¬CH an axiom? They are surely the weakest statement we can
find to settle themselves, and so they are the safest as hypothesists in some sense.
However, the solution may be accepted by a formalist, but not a realist. The realists
suggest that each mathematical statement has an objective truth value, hence it can
not be decided arbitrarily. Thus a justification is required for candidates of new
axioms.

However, a candidate of a new axiom can not be justified mathematically since
it is expected to be independent from the current axioms. Therefore we can only
justify a candidate via a philosophical argument. Gödel has identified two kinds
of philosophical argument, intrinsic and extrinsic. An intrinsic argument based on
unfolding ``the content of the concept of set''. [6, 264]. An extrinsic argument is
given by an induction of the candidate's ``fruitfulness in consequences, in particu-
lar, ... consequences demonstrable without the new axiom, whose proofs with the
help of new axiom... are considerably simpler and easier to discover...''.[6, 265].

The theatrical situation is that to propose a philosophical justification one must
provide enough mathematical facts as support. To demonstrate the observation, we
will take a short tour into the theory of large cardinals and inner models.

The axioms of large cardinals (or higher infinity) are considered to have strong
intrinsic and extrinsic argument. The axiom of infinite states that a property of the
set theory universe, namely infinite, can be reflected into a initial segment of the
universe, i.e. Vω. On the other hand, it is to say that the property of infinite is not
enough to illustrate the magnificence of the whole set theory universe. The large
cardinal axioms are the stronger versions of the axioms of infinity. They extend the
intuition of the first infinite by stating that the set theory universe have but not only
have the property of inaccessibility, compactness, measurebility, etc. Because the
large cardinal axioms are compatible with people's intuition that the operation ``set
of'' can always be iterated (see [6, 260]), they are considered by many set theorists
to be the canonical instinctively justified new axioms for set theory.

The development of the large cardinal theory revealed an interesting phenomenon:
all those naturally formalized large cardinal axioms forms a well-ordering under
the relation of consistency strength, and nearly all of the interesting independent
statement in set theory can be showed equiconsistent1 with some large cardinal
axioms. This gives us a systematically resolution of the consistency problem.
Namely, we can now confidently claim that ZFC is consistent, because Con(ZFC)
is provable from ZFC+ ``there exists an inaccessible cardinal''. And nearly all rea-
sonable extension of ZFC can be proved consistent by assuming ZFC + LCA or
ZFC + Con(ZFC + LCA),2where LCA is some large cardinal axioms. Therefore
the hierarchy of large cardinals plays a role as the benchmark of extensions of ZFC.

Even more, the large cardinal axioms also solved natural independent problems
in arithmetic or analysis directly. For example,

1A theory T0 is consistent relative to T1, or say T0 ≤ T1, if we can prove (from base theory such as
RCA0, ZF and ZFC) that Con(T1) → Con(T0). We say T0 and T1 are equiconsistent, or T0 ≡ T1, if
T0 ≤ T1 and T1 ≤ T0.

2In the former case, the consistency strength of ZFC + LCA is strictly greater then the extension,
while in the latter case, the consistency strength of ZFC+LCA is greater or equal to that of the extension
by the Gödel's second incompleteness theorem.
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Theorem 3.2 (Shelah-Woodin[17]). If there exists infinitely many Woodin cardi-
nals, then every projective set of reals is Lebesgue measurable.

Woodin cardinal is a large cardinal property, and projectiveness is a property
of sets of reals, which defines a certain level of complexity. I will return to the
example and provide more background in subsection 3.2.

Those resolutions are so elegant that lots of set theorists accept large cardinal
axioms as canonical extension of ZFC, except that they might be inconsistent and
they are not omniscience.

Those large cardinal axioms are lined up by consistency strength, which means
we can not hope to form a even relative consistency proof of a stronger large cardinal
axioms from a weaker one. Thus the higher we step on the hierarchy, the closer we
are to the inconsistency. And the danger is no joke.

Theorem 3.3 (Kunen[11]). Assuming ZFC, there is no Reinhardt cardinal, i.e.
there is no non-trivial elementary embedding j : V 7→ V .

The Reinhardt cardinal is suggested by William Nelson Reinhardt. It is the
critical point of a non-trivial elementary embedding from the whole universe to
itself. It is the strongest large cardinal have ever been defined. Unfortunately, it is
inconsistent with ZFC.

Even we accept all of large cardinal axioms that have been defined and not yet
been proved inconsistent, they still cannot solve all independent problems. There
exists some problems who can not be determined by any of the large cardinal ax-
ioms. CH is one of them. To explore even more about large cardinals and contin-
uum hypothesis, I shall introduce an important large cardinal property.

Definition 3.4. A cardinalκ is measurable if there exists a non-principalκ-complete
ultrafilter on U on P (κ).

Gödel has proved in 1938 that if all sets are constructible, i.e. V = L, then CH
is true. However,

Theorem 3.5 (Scott[15]). If there exists a measurable cardinal, then V ̸= L.

Because large cardinal axioms clearly receive more support based on the facts
mentioned previously, people tend to believe that V = L is fault.

In 1963, Paul Cohen invented a powerful tool, forcing, to build a model ex-
tending a given model of ZFC where the negation of CH holds. He was granted
the Fields medal for this contribution. The idea is to ``add'' > ℵ1 many generic
(new) reals into the new model (and preserve the cardinals). Similarly, one can
also ``add'' a mapping from ℵ1 onto R (yet preserve R), which would collapse the
cardinality of continuum to ℵ1, i.e. witness CH holds in that model. Therefore,
the truth of CH can be flipped throughout the forcing extensions. Moreover, those
forcings usually preserves large cardinal properties:

Theorem 3.6 (Lévy-Solovay[12]). Let κ be a measurable cardinal, U be a non-
principal κ-complete ultrafilter on P (κ), and assume P is a forcing notion of size
less than κ. Then the filter generated from Ǔ ,

U ′ =
{
ȦG

∣∣ (∃p ∈ P)p 
 [Ȧ ⊆ κ̌ ∧ (∃x ∈ Ǔ)(x ⊆ Ȧ)]
}
.

is a non-principal κ-complete ultrafilter in the forcing extension by P. Thus κ
remains to be a measurable cardinal in the forcing extension.
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Theorem 3.6 tells that the axioms of large cardinals as measurable will not settle
the problems which can be flipped via forcings with small sized forcing notions.
Thus if we want to settle statements like CH, or even more ambitiously, if we want to
reach to a ``effectively complete'' set theory (its theorem will not be easily changed
by forcing), we have to find other approaches to strengthen the set theory.

The inner model program has been suggested to give evidences of the consis-
tency of large cardinal axioms. Surely, we cannot prove the consistency of large
cardinal axioms. However if a large cardinal can live in a more transparent inner
model of the universe, and if it is inconsistent, we can find the witness easily in that
inner model. Luckily, recent research showed the inner model program may also
provide candidates of axioms extending ZFC + LCA, which may decide the truth
value of CH.

Inner models are those parameter definable subclasses of the universe, which
are transitive and satisfying ZFC. The class of constructive set L is a canonical
inner model, and it is provably the minimal one. V = L settles lots of independent
results. However, as we have mentioned, V = L is not compatible with large
cardinals. Thus people tend to believe V ̸= L. The inner model program is to find
canonical inner models which is compatible with large cardinals.

A cardinal κ can not be measurable in L, because the universe L is too thin to
contain the ultrafilter U who witnesses the measurability of κ. Thus the idea is to
put U into the constructible universe. And it works for measurable cardinal.

Theorem 3.7. Let κ be a measurable cardinal witnessed byU . Then Ū = L[U ]∩U
is a non-principal κ-complete ultrafilter in L[U ].

Thus κ is preserved as a measurable cardinal in L[U ]. However, in this case,
κ is the only measurable cardinal in L[U ]. It becomes much harder even to move
one step higher.

Definition 3.8. A cardinal κ is an λ-strong cardinal if there exists an elementary
embedding j : V 7→ M with critique point κ, i.e. κ is the first ordinal such that
j(κ) > κ, and Vλ ⊆M .

κ is strong if it is λ-strong for all λ.

It can be show that a measurable cardinal κ is (κ + 1)-strong, and if κ is a
(κ+ 2)-strong cardinal, then there are κ many measurable cardinals below it. The
property of strongness can be witnessed by extenders, systems of ultrafilters, as
measurable can be witnessed by an ultrafilter. For example, κ is λ-strong if and
only if there is a (κ, |Vλ|+)-extender E such that Vλ ⊆ Ult(V,E) and jE(κ) > λ.
Note that Ult(V,E) and jE are definable from E.

To find an inner model for λ-strong cardinal where λ > κ + 1, a natural first
attempt is to check L[E] where E witnesses the strongness of κ in V . However,
it can be proved that L[E] = L[U ] where U = E{κ}. Thus there can be no more
than one measurable cardinal in L[E], and no λ-strong cardinal in L[E].

Mitchell (1974) showed thatL[U ] can contain many measurable cardinals where
U is a sequence of ultrafilters with a coherent condition. This technique can be gen-
eralized to construct an inner model L[E ] for a strong cardinal where E is a proper
class and a coherent sequence of extenders. The technique developed by Mitchell
and Steel for the inner model program was also applied in other area, say to prove
the consistency of determinacy, which we will discuss in the next subsection.

Currently, the inner model program has climbed up to Woodin cardinal (the set
of strong cardinals in Vδ is unbounded if δ is a Woodin cardinal), and superstrong
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cardinal with a plausible assumption. In 2010, Woodin [26] observed that if we can
find an inner model for supercompact cardinal (way beyond strong, Woodin, and
superstrong), than it is an ultimate inner model for effectively arbitrary large cardi-
nals. And it is likely that CH would hold in the ultimate L-like model. The above
results constitute just a small core of the mathematical consequences of Gödel's
program. The techniques developed in the program have innumerable applications,
which are impossible to be listed here.

3.1.2 Friedman's program
In many informal discussions, Friedman expressed that he can not have a vi-

sualization of a strong theory, say ZFC plus some large cardinal axiom, unless it
has consequences in ``concrete'' mathematics.1 Thus he joked on himself, ``I am
always wearing a hat'', which means he will not accept arbitrarily strong systems,
but the systems that he can visualize.

Harvey Friedman has proposed a program to find simple (Π0
2 or even Π0

1) and
natural (not meta-mathematical) arithmetical statements that require strong systems
to settle. Strong systems can be visualized if it gives convincing insight on such a
concrete independent mathematical problem.

Friedman's ideas remind people of Hilbert's program, which intended to le-
galize the strong systems by providing them a finitary consistency proof. Hilbert's
program demands a finitistic or concrete proof for each theorem of the classic math-
ematics, which including abstract mathematics such as set theory; while Friedman's
program, on the contrary, involving statements of concrete mathematics yet requir-
ing a proofs from the abstract. However, they share the presupposition that finitary
or concrete mathematics such as a weak fragment of first order arithmetic is in-
tuitionistic, visualizable and safe.2 And they will accept the rests of mathematics
if they are proved to be able to inherit some of these properties. It is clear that
Friedman's position is much weaker than Hilbert's, which is arguably hopeless by
Gödel's Theorems. Hilbert wanted to justify all classic mathematics once for all,
while Friedman is only trying to climb as high as possible. I call this an open-
minded constructivism. Bill Tait summarized: ``the point of Friedman's program''
is ``to justify the introduction of cardinals by their low-down (combinatorial or
whatever) consequences.''[21]

Reverse Mathematics is proposed by Friedman (1975) [1], which is a section
of the general Friedman's program. The background of reverse mathematics is the
phenomenon that the subsystems of second-order arithmetic having fundamental
significance are linearly ordered in the consistency strength relation. This coincides
the phenomenon in the large cardinal theory. Stephen Simpson [18] provided a
whole picture of the benchmarks of the mathematical systems in the hierarchy of
consistency strength as in Figure 3.1.

The reverse mathematics program focus on the subsystems of the full second-
order arithmetic. Among them, RCA0, WKL0, ACA0, ATR0, and Π1

1-CA0 are
the big five, which are particularly interesting because each of them is arguably
corresponding to a certain level of constructivism. Thus another motivation of

1Friedman using concrete to denote finite structures, finitely generated structures, discrete strucures
(countably infinite), continuous and piecewise continuous functions between Polish (complete separable
metric) spaces, and Borel measurable functions between Polish spaces. In the contrast, abstract denotes
sets, large cardinals, etc.

2These weak systems of mathematics are safer from the perspective of mathematical constructivism,
which I shall talk more in the next section.
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

0 = 1 (Reinhardt cardinal)
I0

...
ω-huge

...
supercompact cardinal
superstrong cardinal
Woodin cardinal
strong cardinal
measurable cardinal

...
ZFC
ZC
simple type theory

medium



Z2 (second-order arithmetic)
...

Π1
2-CA0 (Π1

2 comprehension)
Π1

1-CA0 (Π1
1 comprehension)

ATR0 (arithmetical transfinite recursion)
ACA0 (arithmetical comprehension)

weak



WKL0 (weak König's lemma)
RCA0 (recursive comprehension)
PRA0 (primitive recursive arithmetic)
EFA (elementary function arithmetic)

...
Q

Figure 3.1: Benchmarks in the Consistency Strength Hierarchy
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reverse mathematics is to draw a picture of how much one can expect to preserve
under a certain philosophical doctrine.

Basically, reverse mathematics checks the strength of important mathematical
theorems. Given a proved theorem φ (or theorem scheme), adherents of the pro-
gram try to find a system T1 in the hierarchy so that T1 proves φ, and prove that T1
is the weakest such system by showing that φ is actually equivalent to T1 from the
perspective of a weak base system T0, i.e.

(3.1) T0 ∪ {φ} ⊢ T1

Therefore reverse mathematics does produce new theorems. Simpson in his survey
paper [18] listed the major achievements from the program of reverse mathematics.
These results together drew a real map of the whole world of mathematics (people
can have only seen the top-down way without reverse mathematics).

3.1.3 Multiverse view
In 2011 [7], Joel Hamkins proposed a ``provocative'' philosophical view of set

theory to deal with the independence phenomenon. It is the multiverse view. The
traditional realism on set theory is classified as the universe view in contrast to the
multiverse view. Universists think all sets exist, and there is a true comprehension
of the concept of set, while the multiverse view is claimed to be a second order
realism, i.e the universes of sets exist, and correspondingly, there are many set
concepts, and it is impossible to decide which one is the truth (although they allow
some preference among the other concepts). From the prospect of multiverse view,
problems as CH have already been settled in the sense that we are so familiar with
universes where CH is hold or not and we understand so thoroughly that how it
can be satisfied or falsified. And because of the situation, a universists' dream
solution, namely finding a self-evident or justifiable principle, which proves CH or
its negation, will never come. Therefore, the fundamental task for set theorists is
no longer searching for new axioms, but to understand all those different set theory
universes and the relationship among them. We will have a glimpse of what the
multiversists have achieved guided by the philosophical innovation.

The key point here is that the set theory universes can be considered as if they
exist. Therefore, as the axioms of set theory expressing the closure properties of
the set theory universe, we would expect a formal description of the richness of the
multiverse. Hamkins [7] found it is possible to have a first order formalization of
the multiverse axioms:

Definition 3.9 (Multiverse Axioms, Hamkins).

(i) Realizability Principle. For each model M of ZFC in the multiverse, if N is
an inner model ofM from the prospective ofM , thenN is in the multiverse.

(ii) Forcing Extension Principle. For any model M of ZFC in the multiverse
and any forcing notion P in M , the forcing extension M [G], where G is M -
generic for P, is in the multiverse.

(iii) Reflection Axiom. For any model M of ZFC in the multiverse, there exists
a ``taller'' model N of ZFC in the multiverse such that M can be embedded
into a initial segment of N .

(iv) Countability Principle. For each model M of ZFC in the multiverse, there
exists a modelN of ZFC in the multiverse, such that from the prospective of
N , M is countable.
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(v) Well-foundedness Mirage. For each modelM of ZFC in the multiverse, there
exists a modelN of ZFC in the multiverse, such that from the prospective of
N , M is ill-founded.

(vi) Reverse Embedding Axiom. For any model M1 of ZFC in the multiverse and
any elementary embedding j :M1 7→M2 in M1, there exists a model M0 in
the multiverse and an elementary embedding i : M0 7→ M1 in M0 such that
j = i(i).

Further more, Gitman and Hamkins have proved the above formalization is
coherent.

Theorem 3.10 (Gitman-Hamkins[3]). If ZFC is consistent, then the class of all
countable computably saturated models of ZFC satisfies all the multiverse axioms.

The trick in the proof is that each countable saturated model of ZFC has a non-
standard natural number (hence ill-founded), and contains an isomorphism copy
(observed from outside) of itself, who it thinks is countable and has a nonstandard
natural number. The proof is no doubt a valid proof from ZFC, which provided
a definable subclass of the universe having the desired closure properties. Thus
this is definitely an interesting result even from a universe view, yet the motivation
behind is clearly the multiverse view of set theory.

Another interesting achievement inspired by the multiverse view is the modal
logic of forcing. Modal logic is based on the language of classical logic with some
additional symbol, say ♢ or � for modality, e.g. possibility, knowledge, or tense.
A typical model for modal logic is a relation model (W,R), where W is the set of
``possible worlds'' and R is the accessibility relation on W . Thus ``φ is possible'',
i.e. ♢φ can be interpreted as: there is a possible world which is accessible from the
current world (have the relationR), and φ holds there. It is natural for multiversists
to treat the set theory multiverse with the forcing extension relation as a modal logic
model.

We can define the language of modal logic of forcing as the language of set the-
ory equipped with a single modality �, and the well-formed formula is inductively
defined as usual except that we do not allow the quantifiers to range over modality.

The interpretation of the modality in the language is defined as follow.

Definition 3.11. Given a set theory formula φ. �φ is true from the perspective of
the universeM , if and only if for each forcing notion P ofM , M [G] � φ for every
M -generic filter G over P (or we sayMP 
 φ). ♢φ is true from the perspective of
M , if there exists a forcing notion P of M such that MP 
 φ.

Hamkins and Löme have showed that the the modal logic axioms system S4.2
is valid for multiverse of ZFC models.

Theorem 3.12 (Hamkins-Löme[8]). For each set theory formula φ. The following
are hold from the perspective of a ZFC model.

K �(φ→ ψ) → (�φ→ �ψ)
Dual ♢φ↔ ¬�¬φ

T �φ→ φ

4 �φ→ ��φ
.2 ♢�φ→ �♢φ
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The proof is quite straight forward. K is valid because forcing respect impli-
cation. Dual holds because a statement φ is not forceable, i.e. there is no forcing
notion P such that MP 
 φ, if and only if ¬φ holds in every forcing extensions.
Note that we interpret ♢φ as ``there exists a forcing notion P, and for any generical
filter G over P, M [G] � φ'', so Dual is not completely trivial. T is valid because
there can be a forcing notion P containing a strongest condition p, then the generic
filter G =

{
q ∈ P

∣∣ q is compatible with p
}

is definable from (P, p), hence in the
ground model. We know that a generic extension M [G] is the smallest extension
of the ground model M containing G. Thus if G ∈ M , then M [G] = M , which
is said to be a trivial forcing extension. Formula 4 is given by the fact that any two
step iteration of forcing can be achieved by a single forcing, see [9, 267]. And .2 is
given by the product forcing.

Theorem 3.13 (The Product Forcing Theorem[19]). Let P and Q be two notions
of forcing inM . IfG1 ⊆ P is generic overM andG2 ⊆ Q is generic overM [G1],
then G1 is generic over M [G2], and M [G1][G2] =M [G2][G1].

Let P be a forcing notion of M such that for each M -generic filter G1 over P, we
have for all forcing notion Q of M [G1] and all M [G1]-generic filter G2 over P,
M [G1][G2] � φ. Then for any forcing notion Q ofM and anyM -generic filterG2

over Q, P is a forcing notion ofM [G2] (and also ofM ), and for allM [G2]-generic
filter G1 over P, M [G2][G1] =M [G1][G2], and thus satisfies φ.

Moreover, Hamkins and Löme have argued informally that S4.2 is the best one
can have among the usual axiom systems of modal logic. For example,

5 : ♢�φ→ φ

can be violated because there are set theory statement, e.g. ``ωL
1 is countable'',

which can be forced once forever yet false in the ground model. And

M : �♢φ→ ♢�φ

is not valid because statement as CH can be forced to be true or false from any
ground model. Statements like ``ωL

1 is countable'' are called buttons, which can be
pushed down and not reversible; while statements like CH are switches, which can
be turned on and off. These researches lead to an interesting subject exploring the
structure of the generic multiverse.

3.2 Philosophy makes conjectures
When we are working on mathematics, it is much better if there is a target ahead.

That is why doing exercises is always much easier than doing research, when we do
not even know the statement we are trying on is provable on or not. Nevertheless,
working mathematicians always set targets by themselves. They make conjectures.

Conjectures on mathematics come from various sources. In finite cases, math-
ematical statements may have physical witnesses, and people have strong intuitions
on those mathematical objects. Thus conjectures can be based on experiences and
intuitions. However, when we come to the realm of infinite, the intuition fades
away desperately. Infinite objects can behave crazily, which can be way beyond
our imagination. In these cases, only philosophy together with the verified knowl-
edge of mathematics can give a mathematician some inspiration. The rest of the
subsection is to exhibit a significant case in set theory, which demonstrates that
philosophy helps mathematicians make conjectures.
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The story concerns the proofs of the axioms of determinacy. Some axioms of
determinacy are expected to be the missing true statement in set theory, e.g. the
axiom of projective determinacy. And eventually they are justified by being proved
from large cardinal axioms. We will see how philosophy plays a role in discovering
the theorems as:

Theorem 3.14 (Martin-Steel[13]). Suppose there exist infinite many Woodin car-
dinals, then every projective set is determined.

The axiom of choice (AC) asserts that every set can be well ordered. It has been
attacked continuously throughout the history of set theory because of its lacking of
intuition and the consequences that apparently contradicts the common sense. One
typical example is the Banach-Tarski paradox: A solid ball in 3-dimensional space
can be decomposed into finitely many pieces, and by rotations and translations,
these pieces can be put together to be two identical copies of the original ball. How-
ever, the axiom of choice is so powerful in proving theorems, most mathematicians
choose to tolerate it.

The construct of Banach-Tarski paradox is a generalization of Giuseppe Vi-
tali's proof of the existence of non-measurable sets.1 Actually the pieces found
in Banach-Tarski paradox must be non-measurable. A natural idea is that people
should never encounter such ``paradox'' in actual mathematical practice. Some reg-
ularity properties is proposed, e.g. Lebesgue measurable, the property of Baire2,
and the perfect set property3. And they are supposed to be possessed by all ``sim-
ple'' sets.

In descriptive set theory, the complexity of sets of reals4 are represented by the
Borel hierarchy and the projective hierarchy. The family of all open set is defined
to be Σ0

1. A setA is Π0
α if the complement ofA is Σ0

α. For α > 1,A is Σ0
α if there

exists ⟨Ai : i < ω⟩ such that each Ai is Π0
αi

for some αi < α and A =
∪

i<ω Ai.
∆0

α is defined to be the intersection of Σ0
α and Π0

α. The Borel hierarchy is graphed
as Figure 3.2, where the arrows indicate the relation of inclusion. We say a set A

Σ0
1 Σ0

2 . . . Σ0
α . . .

↗ ↘ ↗ ↗ ↘
∆0

1 ∆0
2 . . . ∆0

α ∆0
α+1 . . .

↘ ↗ ↘ ↘ ↗
Π0

1 Π0
2 . . . Π0

α . . .

Figure 3.2: The Borel hierarchy

is Borel if it is in the Borel hierarchy, equivalently the family of Borel sets is the
smallest who contains all open sets and closed under complement and countable
union.

1We say a subset A of reals is Lebesgue measurable if for all ε > 0 there is a closed C ⊆ A and an
open U ⊇ A such that the outer measure µ∗(U \ C) < ε.

2A setA ⊆ R has the property of Baire if it differs from a open set by a meager set (a countable union
of nowhere dense sets).

3We say a set A ⊆ R has the perfect set property if A is either countable or contains a nonempty
perfect subset. In other words, it can not be an evidence of ¬CH.

4Descriptive set theorist always think of the Baire space N = ωω as the space of reals. Both Baire
space and the standard space of the real line are Polish space.
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Analytic sets are continuous images of Borel sets (actually enough to be contin-
uous image of N ). Suslin showed that there are analytic sets which are not Borel.

Projective hierarchy goes even beyond. The family of analytic sets is declared
to be Σ1

1. Sets in Π1
n are complements of Σ1

n sets. Σ1
n+1 sets are projections of

Π1
n sets. The structure of projective hierarchy has a similar picture of the Borel

hierarchy1 except that it has length ω.
It was proved in the early years of descriptive set theory (mostly in 1930) that

all Borel sets and even analytic sets are Lebesgue measurable, have the property of
Baire and the perfect set property. The proofs are all made in ZFC. It was natural to
ask whether the projective sets also possess the properties of regularity. However,
no progress was made until 1938, when Gödel developed the constructive universe
L, in which there exists a non-measurable Σ1

2 set.2 In other words, Gödel showed

(3.2) Con(ZFC) → Con(ZFC + ¬Σ1
2-Measurable)

Therefore, it is technically impossible to find a proof of the regularity of all pro-
jective sets within ZFC as long as ZFC is consistent. Here comes a familiar sit-
uation, the consistency of continuum hypothesis. People who think mathematics
is all about proving theorem in ZFC may have no interest in seeking for a ``proof''
of the regularity of projective any more.3 However, as dealing with the contin-
uum hypothesis, realists will continue to search for a ``proof'' or ``refutation'' of the
regularity beyond analytic.

Since projective sets are considered to be naturally constructed, in the sense
that they are definable sets of reals using reals numbers as parameter. Although
the regularity of projective sets can not be proved within ZFC, Set theory realists
tended to believe they are true, and kept trying to find some self-evident axioms to
prove them. Thus they conjectured

Conjecture 3.15. There will be a justifiable extension of ZFC, which proves the
regularity of projective sets.

In 1962, the axiom of determinacy (AD) was introduced by Hugo Steinhaus
and Jan Mycielski[20]. The concept of determinacy is based on the infinite games:
Given a set of reals A ⊆ N , two players, I and II play on natural numbers in turn

I: a0 a2 . . .
II: a1 a3 . . .

A play is an infinite sequence ⟨ai : i < ω⟩ enumerated by I and II. I wins the game
GA if the play is in A, otherwise II wins. A strategy is a function f : ω<ω 7→ ω
telling player which move to take at each stage. A play r is consistent with the
strategy f for player I if for each n < ω, r(2n + 1) = f(r↾2n), which means the
play is a possible result if I follows the strategy f . For player II, we interchange the
even and the odd. A strategy f is a winning strategy for I if all play r consistent
with it on the I's part are inA; similarly for player II. A game is determined if either
player has a winning strategy. The axiom of determinacy states that for every set
of reals A, the game GA is determined. Soon after AD being proposed, it was
found that nearly all problem in descriptive set theory can be settle by assuming

1Note that the projective hierarchy is essentially the same with relativized analytical hierarchy.
2In L, the set of reals is well ordered by a Σ1

2 binary relation, and a non-measurable Vitali set derived
from such well-ordering has the same complexity.

3In [16], Saharon Shelah took the value of the independence results to be ``The Rubble Removal'',
i.e. they leave the ``strong candidates for theorems of ZFC''.
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AD. Particularly, assuming AD, all sets of reals have the Baire property (Mazur-
Banach); every set of reals is Lebesgue measurable (Mycielski-Świerczkowski);
and every uncountable set of reals containing a perfect set, so CH holds (Morton
Davis).

The bad news is that AD had already be proved to be inconsistent with AC
(Gale-Stewart). Since set theorists prefer AC, AD cannot be a candidate of new
axioms. Nonetheless, the good news is that all of the proofs above are ``local'',
e.g. the proof of AD implies all sets are Lebesgue measurable can be transferred
to prove that if all Σ1

n sets are determined, then all Σ1
n+1 are Lebesgue measur-

able. Therefore, if we assume that all projective sets are determined (PD), then all
projective sets satisfied the properties of regularity, which is exactly what people
desired. However, the axioms of determinacy hardly received any intrinsic justifi-
cation from philosophy. Although, PD is pretty fruitful in its consequences, people
still expected it can be followed by some more plausible statement.

It is reported that in 1964, Solovay discovered

ZFC + PD ⊢ Con(ZFC + there exists a measurable cardinal).

This shows PD has some relationship with large cardinal axioms, and it is not prov-
able merely from the existence of a measurable cardinal. Nonetheless Solovay
made the following conjecture in the late 1960's (see [10, 378]).

Conjecture 3.16. ZFC together with some large cardinal axioms proves the pro-
jective determinacy, so the regularity properties of projective sets.

Again, the large cardinal axioms came as the most promising solution. They are
philosophically well-justified (see the Gödel's program above) and the most canon-
ical extensions of ZFC. This time, not as the case of the continuum hypothesis,
large cardinal do settle the problem. But the discovery of the fact is by no means
straightforward.

The first progress in this program came in 1969 when Donald A. Martin showed
that every analytic (Π1

1) set is determined assuming there exists a measurable cardi-
nal in the universe. This gives an evidence that we were on the right way. However,
there was no progress for the next nine years until in 1978, Martin made only one
move up by assuming a very strong large cardinal axioms. He proved Π1

2 determi-
nacy from the statement asserting the existence of an ω-huge cardinal. Finally, in
1984, Woodin introduced I0, and proved PD from it. I0 was the strongest (which
had not been proved inconsistent) large cardinal axioms at that time. This result
completed the program in the weakest sense. Since the assumption, I0, is just be-
low the edge of the known inconsistency, people could not help doubting on its
consistency, needless to say on its truth.

In 1988 [24], Woodin surprisingly declared that if there exists a supercom-
pact cardinal, then every projective sets are Lebesgue measurable. Recall that Σ1

n-
Determinacy implies Σ1

n+1-Lebesgue measurable. It was reasonable to expect that
supercompact cardinal would also gives the determinacy of projective sets. Actu-
ally, Woodin (with Shelah) successfully strengthen the result by relating the pro-
jective measurability with the existence of Woodin cardinals. This is Theorem 3.2.
Finally, theorem 3.14 is proved by Martin and Steel in 1988 [13].

Since the inner model program has successfully covered Woodin cardinals.
People had much more confidence on this weaker large cardinal axiom. And be-
cause of the intrinsic argument for the large cardinal axioms and the fruitfulness of
the consequences of large cardinal and determinacy axioms, it is accepted by many
set theorists that PD is indeed a missing truth of set theory.
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Let us make a short review of the whole story, and see how philosophy played
a role. Conjecture 3.15 set the goal for the whole program. The idea behind the
conjecture is that first, people did not want to lose AC, rather they believe they
can live safely with it; second, although PD cannot be proved within ZFC, realists
insisted it must have a truth value, and they believe the value is positive, and this
preference requires a justification. Note that the tolerance of AC is backed Gödel's
extrinsic argument, and the significance of the conjecture can only be recognized
by an adherent of Gödel's realism.

The pattern is even clearer on conjecture 3.16. It is nature for people who
follow Gödel's doctrine and take the large cardinal axioms as canonical extension
of ZFC to make such a conjecture. Actually, now we know that PD is provable from
many infinite combinatorial statements, e.g. Martin's Maximum. However, until
now, there is no known direct proof of these theorem. The proofs always involving
models of Woodin cardinals axioms. See [25, 575]. Thus if it is not the luck that
set theorists made the conjecture 3.16, a proof of PD may be still concealing itself
from us.

3.3 Philosophy sets barriers
It is definitely not the case that every philosophical idealogy does good to all

mathematical practice. Recall the case we have just considered. A typical formalist
concentrating on theorems of ZFC will regard (3.2) as a solution, and she may find
no interests in making a conjecture like 3.15 (see the discussion below (3.2)). As
for a constructivist, the large cardinals and the full set theory universe are fictional.
The attempt to justify PD by proving it from large cardinal axioms is ridiculous.
Thus conjecture 3.16 can never be proposed by a constructivist. In other words,
the philosophical standpoint became a barrier for formalists or constructivists to
discover the proofs.

In the following text, I will provide another demonstration of how philosophical
preconception blocks people's genius. It is about Russell's ramified type theory
and Gödel's constructible universe L. I shall demonstrate that the structure of L is
nothing but the generalization of ramified hierarchy to arbitrary ordinal numbers.

As we know, Russell's type theory serves as a solution of the foundation of
mathematics. There are two versions of type theory, namely the simple type the-
ory and the ramified type theory. It was pointed out by Ramsey and other scholars
that the simple type theory is sufficient to serve as a consistent foundation of math-
ematics, while the only reason for Russell to propose the much more complicated
ramified type theory is to eliminate the semantic paradoxes, e.g. ``the first indefin-
able ordinal''. Let us take a look at the structure of the simple types and the ramified
types.1

In type theory (no matter simple or ramified), the argument of a property (or
propositional function) can only range over a certain type. The individuals form
the first type, and all properties of things in the nth type constitute the (n + 1)th
type. The structure of simple type theory is pictured in Figure 3.3.

The ramified type theory further classifies properties of each types into orders.
The first-order (predicative) properties of type s are properties of things in type
s whose definition (function) containing only quantifiers ranging over type s and
parameters in type s. The second-order properties are also the properties of things
in type s, but the definition can involve a reference to the first-order properties. It

1For convenience, we only concern the unary case.
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Type 0: a1 a2 a3 . . .
Type 1: P1 P2 P3 . . .
Type 2: P1 P2 P3 . . .

...

Figure 3.3: hierarchy of simple types

is forbidden to refer to all properties (functions) of a type. Orders and types of
ramified type theory can be defined inductively as follow.

Definition 3.17. (i) Types: Type 0 is the universe of individuals. For each n,
type n+ 1 is the collection of all jth-order properties of things in type i for
all i, j such that i+ j = n;

(ii) Orders: φ is the (m + 1)th-order property of things in type n if its free
variables range over type n and the bound variables range over no higher
than type n+m. We say the property is predicative when m = 0.

The structure of ramified type theory looks like:

Type 0: individuals1

Type 1: 1st-order properties of Type 0

Type 2: 2nd-order properties of Type 0
1st-order properties of Type 1

Type 3:
3rd-order properties of Type 0
2nd-order properties of Type 1
1st-order properties of Type 2

... ...

Figure 3.4: hierarchy of ramified types

Ramified type theory is notorious for the axiom of reducibility, which says:
``Every propositional function is equivalent, for all its values, to some predicative
function.''[14, 167] This is to say if we concern only the extensions, all properties
of a certain type have already appeared in the first order. The axiom is proposed
to preserve enough induction principle so that the classical mathematics can be
represented in the ramified type theory.

Now let us turn to the constructible universe.

Definition 3.18. Let Lα(ω) be defined inductively.2

(i) L0(ω) = ω,
(ii) Lα+1(ω) = D(Lα(ω)),
(iii) For limit ordinal α, Lα(ω) =

∪
β<α Lβ(ω).

1Russell introduced an axiom of infinite asserting that there are infinite many individuals.
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The constructible universe L =
∪

α∈Ord Lα(ω).

Informally, D(Lα(ω)) is the family of all sets of the form
{
x ∈ Lα(ω)

∣∣
Lα(ω) � φ[x, a]

}
where φ is a set theory formula and a is a parameter in Lα(ω).

Therefore Lα+1(ω) contains all definable subsets of Lα(ω) using parameters in
Lα(ω).

It is not hard to see if we concern only the extensions of the properties and
allow the types to be downward compatible (which is pretty reasonable), then the
hierarchy of types coincides with that of constructible sets in the finite orders. The
only difference is that the hierarchy of ramified types is not defined for limit ordinal
orders. If we regard the constructible hierarchy as the natural extension, i.e. we
extend the ramified types to transfinite orders, an interesting consequence is that
we can show the axiom of reducibility in the strong sense is false, while in a weak
version is provable from ZFC.

Definition 3.19. We say A ∈ L can be constructed within β + 1 steps if and only
if A ∈ Lα+β+1(ω) where α is the least such that A ⊆ Lα(ω).

The strong version of reducibility in the context of constructible sets is stated
as

(3.3) Every constructible sets can be constructed within 1 step.

It is refutable in ZFC. But we can weaken the assertion by allow sets to be con-
structed before the step of the next cardinals rather than the next ordinals:

(3.4) For each X ∈ L, if X ⊆ Lα(ω) for some α, then X ∈ L(α+)L(ω).

This weaker formalization is provable in ZFC. It should be remarked that (3.4) is
also a key lemma for proving GCH from V = L.

Therefore, as Gödel admitted, ```constructible' sets are defined to be those sets
which can be obtained by Russell's ramified hierarchy of types, if extended to in-
clude transfinite orders.''[5] The generalization of the hierarchy of ramified types
to transfinite orders is straightforward. The only barrier for Russell to go one step
ahead can only be his Predicativism standpoint. In his theory, to refer to all prop-
erties of things in a certain type is not allowed, but it is necessary in the definition
for limit cases.

Predicativism gave Russell the inspiration of the ramified type theory. However,
it also prevent people to extend the construction so as to find more brilliant result
such as the relative consistency of AC, ¬PD, and GCH.

4 Conclusion
In the paper, I have proposed a new perspective on the doctrines of philosophy

of mathematics, namely a pragmatistic view. And I have argued that the foundation
of mathematics is a suitable field to adopt the methodology of pragmatism because
of the nature of mathematical practice. The key for applying such a methodology
is to analyze the practical consequences of each philosophical doctrines if it is held
by a working mathematician. Therefore, I have to at least show that philosophy

2We take the first step to be ω to fit with Russell's construction of ramified types, which starts with in-
finite many individuals. Since all hereditarily finite sets are definable without parameters,L1(ω) = Lω+1,
where the hierarchy of Lα's begins with L0 = ∅. Thus we have L =

∪
α∈Ord Lα(ω) =

∪
α∈Ord Lα.
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did impact on many researches in mathematics. My demonstration is based on
several case studies. All the cases come from the frontier research on the foundation
of mathematics, and the mathematicians we encountered are those who also have
definite philosophical standpoint.

This paper serves as a pathfinder for a more ambitious program. The ultimate
question is which philosophy of mathematics is better. I have argued in this paper
that this is a meaningful question and pointed out the fact that standpoints on phi-
losophy of mathematics can do good or bad on one's mathematical practice. And I
have established the main methodology for the program, namely pragmatistic anal-
ysis based on case study. To push forward, more cases should be discovered and
studied, and more delicate standards should be developed to measure the positive-
ness of a philosophical doctrine, say, if one is doing good somewhere while also
doing bad elsewhere.
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