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Interaction of logic, games, and automata

Modal -calculus 

Tree automata Infinite  games  
(eg., Parity games) 

Game semantics 

Winning strategy  

Equivalence over 
binary trees 

We will introduce the weak fragment of modal µ-calculus.
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Modal µ-calculus
Modal µ-calculus is an extension of proposition logic by adding

• modalities
At a state in a transition system (directed graph):

□P : P holds in all successors.
♦P : P hold in some successor.

• fixpoint operators (second order operators),
µ (least fixpoint), and ν (greatest fixpoint).

□𝑃

♢𝑄

𝑃
൓𝑄

𝑃
𝑄

𝑃
൓𝑄

Example
• µX.p ∨ ♦X expresses that there is a path where p eventually eventually.
• νY.µX.(p ∧ ♦Y ) ∨ ♦X expresses that p holds infinitely many times.
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A warm-up example
Example.� �
▶ Suppose Kiφ means “the agent i knows that φ holds”, i = 1, 2, · · ·n
▶ Let E be the “everyone knows”modality:

Eφ := K1φ ∧ · · · ∧Knφ

▶ Then common knowledge Cφ can be given as an infinite conjunction:

Cφ↔ φ ∧ Eφ ∧ EEφ ∧ EEEφ ∧ E4φ ∧ · · · ∧ Enϕ ∧ · · ·

With greatest fixed-point operator, common knowledge has an elegant finite
characterization:

Cφ := νX.φ ∧ EX� �
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Common knowledge Cφ := νX.φ ∧ EX

▶ νX denotes the greatest fixed-point of the equation X = φ ∧ E(X).

Layer 0: φ φ is true
Layer 1: Eφ Everyone knows φ
Layer 2: EEφ Everyone knows that everyone knows φ
Layer 3: EEEφ Everyone knows that everyone knows that everyone knows φ
... ... ...

Intuitively, X updates ”the things that everyone knows”:

X = {φ,Eφ,EEφ,EEEφ · · · }.

▶ The greatest fixed-point of X = φ ∧ E(X) captures largest possible set that
meets “things that everyone knows”.
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Basics of µ-calculus: syntax
The formulas of µ-calculus are generated by the following grammar:

φ := P | ¬P |X |φ1 ∧ φ2 |φ1 ∨ φ2 |□φ |♢φ |µX.φ | νX.φ,

where P denotes an atomic proposition. Let > := P ∨ ¬P and ⊥ := P ∧ ¬P .
The negation is allowed to use only if a negated formula can be transformed to a
regular formula by the following rules:

¬(¬P ) = P, ¬(¬X) = X,

¬(ψ ∨ φ) = ¬ψ ∧ ¬φ, ¬(ψ ∧ φ) = ¬ψ ∨ ¬φ,
¬□φ = ♦¬φ, ¬♦φ = □¬φ,

¬µX.φ(X) = νX.¬φ(¬X), ¬νX.φ(X) = µX.¬φ(¬X).

Notice that for a formula ηX.φ(X) (η = µ or ν), X appears only positively in φ(X),
namely within an even number of the scopes of negations.
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Semantics
A Kripke model, (a.k.a. transition system), is a triple M = (W,R, V ), where (W,R) is
a directed graph and V is a function from atomic propositions to the subsets of W . By
w ∈ V (P ), we mean that P holds in a state or world w ∈W .
Given a set A ⊆W , the augmented model M [X := A] is obtained by V (X) := A.
For a µ-formula φ, we define the valuation ‖φ‖M on a Kripke model M inductively:
▶ ‖P‖M := V (P ); ‖X‖M [X:=A] := A; ‖¬φ‖M :=W \ ‖φ‖M ;
▶ ‖φ ∧ ψ‖M := ‖φ‖M ∩ ‖ψ‖M ; ‖φ ∨ ψ‖M := ‖φ‖M ∪ ‖ψ‖M ;
▶ ‖□φ‖M := {w ∈W | ∀v.wRv → v ∈ ‖φ‖M};

‖♢φ‖M := {w ∈W | ∃v.wRv ∧ v ∈ ‖φ‖M};
▶ ‖µX.φ‖M is the least fixpoint of Γφ; and ‖νX.φ‖M is the greatest fixpoint of Γφ,

where Γφ : P(W ) → P(W ) maps A ⊆W to ‖φ(X)‖M [X:=A], abbrev. by ‖φ(A)‖M .
We also write Γφ(X) = ‖φ(X)‖M . As X occurs positively in φ(X), the operator Γφ

is monotone and its least and greatest fixed-points are well-defined.
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Semantics via approximations
We can also generate the least fixpoints by approximating from the below and the
greatest fixpoints from the above.
Recall that φ(X) defines an operator

ΓM
φ : P(W ) → P(W )

S′ 7→ [[φ]]M [X:=S′]

We can define inductively,
• X0 := ∅

• Xα+1 := φM (Xα)
• Xλ :=

⋃
α<λ φ

M (Xα), where λ ranges over limit ordinals.
There is an inductive sequence X0 ⊆ · · · ⊆ Xα ⊆ Xα+1 ⊆ · · · , which finally reaches a
fixpoint Xβ = Xβ+1 := X∞. We have

[[µX.φ]] := X∞
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Example
The formula µX.p∨♢X expresses that there exists a path which leads to states where p holds. This is
called liveness / reachability property. The approximation process is as follows:

µ0 = ∅

µ1 = [[p ∨ ♢X]]M [X:=µ0] = [[p ∨ ♢∅]] = [[p]] = V (p)

µ2 = [[p ∨ ♢X]]M [X:=µ1] = [[p]] ∪ [[♢p]] = µ1 ∪ {v : ∃w, (v, w) ∈ E ∧ w ∈ V (p)}

µ3 = [[p ∨ ♢X]]M [X:=µ2] = [[p]] ∪ [[♢p]] ∪ [[♢♢p]]

= µ2 ∪ {v : ∃w, u, (v, w) ∈ E ∧ (w, u) ∈ E ∧ u ∈ V (p)}
...

Intuitively, µ1 is the set of vertices where p holds, µ2 = µ1 ∪ [[♢p]] consists of vertices v such that
either p holds at v or there is a successor of v such that p holds and so on.

• This process produces an inductive sequence µ0 ⊆ µ1 ⊆ µ2 ⊆ µ3 ⊆ · · · ⊆ µn ⊆ . . . .

• Such a sequence reaches a fixpoint µω = µω+1 =
∪

n<ω µ
n, which means that there exists n

such that p holds in the n-th stage.
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νZ.µX.(p ∧ ♢Z) ∨ ♢X expresses that p holds infinitely many times
•ν0 =W µ0,0 = ∅

µ0,1 = [[(p ∧ ♢Z) ∨ ♢X]]M [X:=µ0,0][Z:=W ] = [[p ∧ ♢W ]] ∪ [[♢∅]] = [[p ∧ ♢W ]]

µ0,2 = [[(p ∧ ♢Z) ∨ ♢X]]M [X:=µ0,1][Z:=W ] = [[p ∧ ♢W ]] ∪ [[♢µ0,1]]

µ0,3 = [[p ∧ ♢W ]] ∪ [[♢µ0,2]]

...
•ν1 = µ0,∞ eventually p µ1,0 = ∅

µ1,1 = [[(p ∧ ♢Z) ∨ ♢X]]M [X:=µ1,0][Z:=ν1] = [[(p ∧ ♢ν1) ∨ ♢∅]] = [[p ∧ ♢ν1]]

µ1,2 = [[(p ∧ ♢ν1) ∨ ♢µ1,1]] = [[(p ∧ ♢ν1) ∨ (♢p ∧ ♢♢ν1)]]

µ1,3 = [[(p ∧ ♢ν1) ∨ ♢aµ
1,2]]

...
•ν1 = µ1,∞ eventually p followed by (eventually p)

...
•ν∞ infinitely many p1
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Semantics in terms of games

▶ Given a sentence of modal µ-calculus φ and a
transition system M = (W,R, V ), we define
the evaluation game E(M, s, φ) with players ∃
and ∀ moving a token along positions of the
form (ψ, s), where ψ is a subformula of φ and
s ∈W .

▶ Player ∃’s purpose is to show φ is satisfied at
s, while player ∀’s goal is opposite.

0 1 2

a

a

b

𝑎 Player ∀ / Refuter

Player ∀ / Refuter

0, 𝜇𝑦. 𝜈𝑧. □௔ ௕⊤ ∨ 𝑦 ∧ 𝑧

0, 𝜈𝑧. □௔ ௕⊤ ∨ 𝑦 ∧ 𝑧

1, ௕⊤ ∨ 𝑦 ∧ 𝑧

ሺ1, ௕⊤ ∨ 𝑦ሻ 1, 𝑧

ሺ1, 𝑦ሻሺ1, ௕⊤)

ሺ2, ⊤ሻ
𝑏

0, □௔ ௕⊤ ∨ 𝑦 ∧ 𝑧

1, □௔ ௕⊤ ∨ 𝑦 ∧ 𝑧

0, ௕⊤ ∨ 𝑦 ∧ 𝑧

ሺ0, ௕⊤ ∨ 𝑦ሻ 0, 𝑧

ሺ0, 𝑦ሻ ሺ0, ௕⊤)

Player ∀ / Refuter

Player ∃ / Verifier

Player ∀ / Refuter

Player ∃ / Verifier

Player ∃ / Verifier

Player ∃ wins

Player ∃ cannot move
So ∀ winsPlayer ∀ wins
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Rules of evaluation game for modal µ-calculus
Positions for player ∃ Admissible moves for player ∃

(ψ1 ∨ ψ2, s) {(ψ1, s), (ψ2, s)}
(♢ψ, s) {(ψ, t) | (s, t) ∈ R}
(⊥, s) ∅

(P, s) and s /∈ V (P ) ∅
(¬P, s) and s ∈ V (P ) ∅

(µX.ψX , s) {(ψX , s)}
(X, s) for some subformula µX.ψX {(ψX , s)}

Positions for player ∀ Admissible moves for player ∀
(ψ1 ∧ ψ2, s) {(ψ1, s), (ψ2, s)}
(□ψ, s) {(ψ, t) | (s, t) ∈ R}
(⊤, s) ∅

(P, s) and s ∈ V (P ) ∅
(¬P, s) and s /∈ V (P ) ∅

(νX.ψX , s) {(ψX , s)}
(X, s) for some subformula νX.ψX {(ψX , s)}
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In an evaluation game M = (W,R, V ) with an initial position (φ, sin), the two players can produce a
sequence of positions obeying the above rules as follows,

ρ = (φ0, s0)(φ1, s1)(φ2, s2) . . . with (φ0, s0) = (φ, sin)

which is called a play in the evaluation game M = (W,R, V ).

Table: Winning conditions

player ∃ wins player ∀ wins
if ρ is finite player ∀ has no admissible move player ∃ has no admissible move

if ρ is infinite the outermost subformula visited infinite the outermost subformula visited infinite
many times is of the form νx.φ many times is of the form µx.φ
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Example
Consider M as follows, where the
only atomic proposition is p, and
V (p) =W (i.e., p is always true).

E(M, 0, µy.νz.□a((♢b>∨ y)∧ z)).

0 1 2

a

a

b

𝑎 Player ∀ / Refuter

Player ∀ / Refuter

0, 𝜇𝑦. 𝜈𝑧. □௔ ௕⊤ ∨ 𝑦 ∧ 𝑧

0, 𝜈𝑧. □௔ ௕⊤ ∨ 𝑦 ∧ 𝑧

1, ௕⊤ ∨ 𝑦 ∧ 𝑧

ሺ1, ௕⊤ ∨ 𝑦ሻ 1, 𝑧

ሺ1, 𝑦ሻሺ1, ௕⊤)

ሺ2, ⊤ሻ
𝑏

0, □௔ ௕⊤ ∨ 𝑦 ∧ 𝑧

1, □௔ ௕⊤ ∨ 𝑦 ∧ 𝑧

0, ௕⊤ ∨ 𝑦 ∧ 𝑧

ሺ0, ௕⊤ ∨ 𝑦ሻ 0, 𝑧

ሺ0, 𝑦ሻ ሺ0, ௕⊤)

Player ∀ / Refuter

Player ∃ / Verifier

Player ∀ / Refuter

Player ∃ / Verifier

Player ∃ / Verifier

Player ∃ wins

Player ∃ cannot move
So ∀ winsPlayer ∀ wins
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Parity games

▶ A parity game G = (V∃, V∀, E,Ω) with index n is played on a colored directed
graph, where each node is colored by the priority function
Ω : V∃ ∪ V∀ → {0, . . . , n}.

▶ Parity condition: Player ∃ (∀) wins an infinite play if the largest priority occurring
infinitely often in the play is even (odd).

3 4 1

2 3 2

3 4 1

2 3 2 𝑾∃

𝑾∀
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Parity games
▶ A parity game G = (V∃, V∀, E,Ω) with index n is played on a colored directed

graph, where each node is colored by the priority function
Ω : V∃ ∪ V∀ → {0, . . . , n}.

▶ Parity condition: Player ∃ (∀) wins an infinite play (produced by their choices) if
the largest priority occurring infinitely often in the play is even (odd).

3 4 1

2 3 2

3 4 1

2 3 2 𝑾∃

𝑾∀

▶ Winning region: the set of vertices from which that player has a winning strategy.
▶ Parity games are positionally determined (i.e., from any vertex, either player has a

memoryless winning strategy).
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Evaluation game and parity game

Theorem
The following are equivalent.
• Player ∃ has a winning strategy in the evaluation game E(M, s, φ).
• M, s |= φ.
To show the above theorem, the following facts are usefull.
(1) If M, s |= φ then ∃ has a memoryless winning strategy in E(M, s, φ).
(2) If M, s 6|= φ then ∀ has a memoryless winning strategy in E(M, s, φ).

Theorem (Calude CS, Jain S, Khoussainov B, Li W, Stephan F., 2017)
The parity game can be solved in quasipolynomial time.
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Consider the following formulas in a Kripke model M at the root r:
▶ “always p holds”

νX.p ∧□X
▶ “eventually p holds”

µX.p ∨ ♦X
▶ “p holds infinitely many times”

νY.µX.(p ∧ ♦Y ) ∨ ♦X

Question
Does the expressive power become stronger by increasing the number of the fixpoints?
To measure the complexity of such formulas,
▶ alternation hierarchy, classifying by by the numbers of µ and ν operators that

appear alternatively.
▶ variable hierarchy, classifying the numbers of distinct bind variables.
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Alternation hierarchy

Definition
The alternation hierarchy of modal µ-calculus is defined as follows.
▶ Σµ

0 ,Π
µ
0 : the class of formulas with no fixpoint operators

▶ Σµ
n+1 : containing Σµ

n ∪Πµ
n and closed under the following operations

(i) if φ1, φ2 ∈ Σµ
n+1, then φ1 ∨ φ2, φ1 ∧ φ2, □Rφ1, ♦Rφ1 ∈ Σµ

n+1,
(ii) if φ ∈ Σµ

n+1, then µZ.φ ∈ Σµ
n+1, and

(iii) if φ(X), ψ ∈ Σµ
n+1 and ψ a closed formula (namely, no free variables), then

φ(X\ψ) ∈ Σµ
n+1.

▶ dually for Πµ
n+1

▶ ∆µ
n := Σµ

n
⋂

Πµ
n

Example. νY.♦Y ∧ µZ.p ∨ ♦Z is in ∆µ
2 .

µX.νY.♦Y ∧µZ.♦(X ∨Z) is in Σµ
3 , but not Πµ

3 , since there are no closed subformulas.
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Question
Does the alternation hierarchy for modal µ-calculus collapse?

No
(1) Bradfield’s proof using the strictness results arithmetic µ-calculus

(2) Lenzi’s Σµ
n and Πµ

n formula on n-ary trees (1998).

(3) Arnold’s automata-theoretic method to show the strictness over binary trees
(1999).

Subsequently, Walukiewicz pointed out the strict formulas in fact express the winning
positions of parity games.
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The alternation hierarchy of modal µ-calculus is strict

Witness of strictness:

φn = µνXn. · · · νX0.

(
∨

0≤i≤n

p ∧ pi ∧ ♢Xi) ∨ (
∨

0≤i≤n

¬p ∧ pi ∧□Xi)


where p denotes the position of player ∃, pi the color of i and η = ν if n is even and η = µ if n
is odd.
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Alternation hierarchy 
of modal µ-calculus

Index hierarchy of  
parity games 

Index hierarchy of  
alternating automata 
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Focus of this study

Weak alternation hierarchy

Index hierarchy of  
weak parity games 

Index hierarchy of weak
alternating automata 

1

Modal µ-calculus

2

Evaluation game

3

Alternation hierarchies

4

Weak alternation hierarchy



Definition (Weak alternation hierarchy of Lµ)
The weak alternation hierarchy of modal µ-calculus is defined as follows.
▶ ΣWµ

0 = Σµ
0 , ΠWµ

0 = Πµ
0 : the class of formulas with no fixpoint operators

▶ ΣWµ
n+1: is the least class of formulas containing ΣWµ

n ∪ΠWµ
n and closed under the

operations ∨,∧,□,♢ and the substitution: for a φ(X) ∈ Σµ
1 and a closed

ψ ∈ ΣWµ
n+1, φ(X\ψ) ∈ ΣWµ

n+1.
▶ ΠWµ

n+1: is the least class of formulas containing ΣWµ
n ∪ΠWµ

n and closed under the
operations ∨,∧,□,♢ and the substitution: for a φ(X) ∈ Πµ

1 and a closed
ψ ∈ ΣWµ

n+1, φ(X\ψ) ∈ ΠWµ
n+1.

For n > 1, ΣWµ
n / ΠWµ

n is not closed under µX / νX.
Example. νX.□νZ.((µY.♢Y ) ∧□X) ∨ Z is in ΠWµ

2 .

Theorem (Pacheco-L.-Tanaka)
The weak alternation hierarchy is strict.
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Definition (Weak alternation hierarchy of Lµ)
The weak alternation hierarchy of modal µ-calculus is defined as follows.
▶ ΣWµ

0 = Σµ
0 , ΠWµ

0 = Πµ
0 : the class of formulas with no fixpoint operators

▶ ΣWµ
n+1: is the least class of formulas containing ΣWµ

n ∪ΠWµ
n and closed under the

operations ∨,∧,□,♢ and the substitution: for a φ(X) ∈ Σµ
1 and a closed

ψ ∈ ΣWµ
n+1, φ(X\ψ) ∈ ΣWµ

n+1.
▶ ΠWµ

n+1: is the least class of formulas containing ΣWµ
n ∪ΠWµ

n and closed under the
operations ∨,∧,□,♢ and the substitution: for a φ(X) ∈ Πµ

1 and a closed
ψ ∈ ΣWµ

n+1, φ(X\ψ) ∈ ΠWµ
n+1.

For n > 1, ΣWµ
n / ΠWµ

n is not closed under µX / νX.
Example. νX.□νZ.((µY.♢Y ) ∧□X) ∨ Z is in ΠWµ

2 .
Theorem (Pacheco-L.-Tanaka)
The weak alternation hierarchy is strict.
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Strictness of weak alternation hierarchy witness by weak parity games
▶ A parity game G = (V∃, V∀, E,Ω) is said to be weak if the coloring function Ω has

the following additional property:
for all v, v′ ∈ V∃ ∪ V∀, if (v, v′) ∈ E, then Ω(v) ≥ Ω(v′).

▶ If p denotes a position of player ∃’s turn, and p′i a position with priority i, then

W0 = νX.(p ∧ p′0 ∧ ♢X) ∨ (¬p ∧ p′0 ∧□X),

Wn+1 = ηX.(p ∧ p′n+1 ∧ ♢X) ∨ (¬p ∧ p′n+1 ∧□X) ∨Wn for n ≥ 0.

where η is µ if n is even, otherwise ν. Notice that W2n is a ΠWµ
2n+1-formula, and

W2n+1 is a ΣWµ
2n+2-formula.

▶ Wn indeed describes the winning positions for ∃ in a weak parity game with colors
up to n.
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How far can the weak alteration hierarchy reach?
Observations on syntax tree
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@

The weak alternation hierarchy captures the alternation-free fragment (i.e., no nested
fixed-point operators).
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Theorem (Pacheco-L.-Tanaka)
The weak AH syntactically exhausts ∆µ

2 , i.e., every formula in ∆µ
2 belongs to some

level ΣWµ
n or ΠWµ

n of the weak hierarchy and vice versa.
Proof. To show weak AH ⊆ ∆µ

2 By induction on n:
▶ Base Case (n = 0): ΣWµ

0 and ΠWµ
0 contain only fixpoint-free formulas, which

are in Σµ
1 ∩Πµ

1 ⊆ ∆µ
2 .

▶ Inductive Step: Assume ΣWµ
n ,ΠWµ

n ⊆ ∆µ
2 . For ΣWµ

n+1:
▶ Formulas are built from ΣWµ

n ∪ΠWµ
n (already in ∆µ

2 by IH).
▶ Substitution of ψ ∈ ΣWµ

n+1 into φ(X) ∈ Σµ
1 preserves ∆µ

2 .
To show ∆µ

2 ⊆ weak AH Every ∆µ
2 formula ξ can be constructed via:

▶ Decomposing ξ into Σµ
1 or Πµ

1 subformulas.
▶ Using the weak hierarchy’s substitution closure to inductively build ξ in some

ΣWµ
n or ΠWµ

n .
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Theorem (Pacheco-L.-Tanaka)
On infinite binary trees, there exist ∆µ

2 -definable properties that cannot be expressed
by any finite level ΣWµ

n or ΠWµ
n of the weak AH, but require the transfinite extension

ΣWµ
ω .

Setup: Weak parity games and their formulas
Let {Wn}n∈N be a family of weak parity games, where:
▶ Each Wn has priorities {0, 1, . . . , n}.
▶ The winning condition: parity condition + weak

By the strictness of the weak AH:
▶ The winning region of Wn is definable by a ΣWµ

n+1 formula, but not by any ΣWµ
n or

ΠWµ
n formula.
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Translation from weak to non-weak parity games
For each weak parity game Wn, we construct a corresponding non-weak parity game
W ′

n with only two priorities {0, 1}, where
▶ priority 0 encodes even priorities in Wn, and 1 encodes odd priorities in Wn,
▶ the winning condition remains parity (smallest priority is 0).

The key is:
▶ The winning regions of W ′

n can be expressed as:

µX0.νX1.(p∧ p′0 ∧ ♢X0) ∨ (p∧ p′1 ∧ ♢X1) ∨ (¬p∧ p′0 ∧□X0) ∨ (¬p∧ p′1 ∧□X1),

▶ Since each node has at a unique color, that is V(p′0) ∩ V(p′1) = ∅, by Bekič
Principle, we have

νX1.µX0.(p∧ p′0 ∧ ♢X0) ∨ (p∧ p′1 ∧ ♢X1) ∨ (¬p∧ p′0 ∧□X0) ∨ (¬p∧ p′1 ∧□X1).

▶ Thus the winning regions of W ′
n can be captured by a ∆µ

2 formula.
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Constructing ∆µ
2 Property

• Define a ∆µ
2 property φ that describes the winning regions of all W ′

n:
▶ ψn holds at a node if there exists some n s.t. the node is in the winning

region of W ′
n.

▶ Since each W ′
n is ∆µ

2 -definable, and ∆µ
2 is closed under countable disjunction

(for properties on trees), φ as a disjunction of all such ψn is also ∆µ
2 .

• φ escapes all finite levels of the weak AH

• φ belongs to ΣWµ
ω

φ can be constructed as a limit:
▶ For each n, the winning region of Wn is ΣWµ

n+1-definable.
▶ The union

⋃
n∈NΣWµ

n gives ΣWµ
ω .
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Relation to the variable hierarchy
For any n, Lµ[n] denotes the set of modal µ formulas that have at most n distinct
bound variables, and likewise for Σµ

i [n], Π
µ
i [n] for all level i and the weak AH.

Example
The following formula φ1 is purely a one-variable formula (Πµ

2 [1]). For readability, it
may be rewritten as φ2, a one-variable formula in a broad sense.
▶ φ1 = νX.□(µX.♢X) ∨X.
▶ φ2 = νX.□(µY.♢Y ) ∨X.

And, the following formula φ3 is a weak modal µ-formula (in fact ΠWµ
2 ), but not

one-variable.
▶ φ3 = νX.□νZ.((µY.♢Y ) ∧□X) ∨ Z.
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Applying to variable hierarchy Lµ[n]

Theorem (Pacheco-L.-Tanaka)
The AH of Lµ[1] (the one-variable fragment of modal µ-calculus) is strict, which is in
fact witness by the weak parity games.

Let p denote a position of player ∃’s turn, and p′i a position with priority i.

W0 = νX.(p ∧ p′0 ∧ ♢X) ∨ (¬p ∧ p′0 ∧□X),

Wn+1 = ηX.(p ∧ p′n+1 ∧ ♢X) ∨ (¬p ∧ p′n+1 ∧□X) ∨Wn for n ≥ 0.

where η is µ if n is even, otherwise ν. Notice that W2n is a Πµ
2n+1[1]-formula, and

W2n+1 is a Σµ
2n+2[1]-formula.

1

Modal µ-calculus

2

Evaluation game

3

Alternation hierarchies

4

Weak alternation hierarchy



Recall that

Theorem (Berwanger, 2003)
The AH of Lµ[2] is strict and not contained in any finite level of the full logic.

Theorem (Berwanger, Grädel and Lenzi, 2007)
For any n, there exists formula ϕ ∈ Lµ[n] which is not equivalent to any Lµ[n− 1]
formula.
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One-variable AH in the modal µ-calculus

𝜇     

𝜇     

𝜇     

𝜇     
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Future work
▶ extending the notion of weak to study ∆µ

n (n > 2), the ambiguous class of Lµ.
▶ applications in studying the collapsing phenomenon when we restrict the Kripke

models to some special class.
Class of Alternation hierarchy References

transition systems of modal µ-calculus
Trp strict Brad96,Brad98a
Tn-tree strict Lenzi96
T2-tree strict Arnold99,Brad99a
TR strict AF09
TRS strict DAL12
Tfda collapse to AFMC Mateescu
Tt collapse to AFMC AF09,DAL10,DO09
Tt′ collapse to AFMC GKM14
Ttud collapse to ML AF09,DO09
TREGω collapse to AFMC Roope
TVPLω collapse to AFMC GKM14

AFMC: alternation free fragment of Lµ(no nested µ and ν); ML: modal logic.
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Trp : the class of recursive presentive transition systems
Tn-tree : the class of n-ary trees
T2-tree : the class of binary trees
TR : the class of reflexive transition sytsems
TRS : the class of reflexive and symmetric transition systems
Tfda : the class of finite directed acyclic transition sytsems
Tt : the class of transitive transition sytsems
Tt′ : Tt with feedback vertex sets of a bounded size
Ttud : the class of transitive and undirected graphs
TREGω : the class of ω-regular languages, and
TVPLω : the class of visibly pushdown ω-languages.
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Thank you for your attention!
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Example
The negation of the formula νX.p ∧□X expressing “always p holds” is

¬(νX.p ∧□X)

=µX.¬(p ∧□¬X)

=µX.¬p ∨ ♦X

which means “eventually ¬p holds”
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Note that µX.♦X is false. The approximation process is as follows:

µ0 = ∅

µ1 = [[♦X]]M [X:=µ0] = {v ∈ S : ∃w, (v, w) ∈ E ∧ w ∈ [[X]]M [X:=∅]}
= {v ∈ S : ∃w, (v, w) ∈ E ∧ w ∈ ∅} = ∅

The approximation process of νX.♦X is as follows:

ν0 = S

ν1 = [[♦X]]M [X:=ν0] = {v ∈ S : ∃w, (v, w) ∈ E ∧ w ∈ [[X]]M [X:=S]}
= {v ∈ S : ∃w, (v, w) ∈ E ∧ w ∈ S} = S
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▶ For the common syntax trees of formulas with distinct fixpoint variables, every
fixpoint variable has a unique binding definition, that is, any leaf of an occurrence
of a fixpoint variable Z links to its unique binding definition µZ.ψ or νZ.ψ.

▶ But when the formulas can be renamed by a single variable, we need brackets to
restrict the operator precedence. A leaf of an occurrence of the fixpoint variable
links to the nearest fixpoint formula in the form of µZ.(. . . Z . . .) or νZ.(. . . Z . . .)

Figure: The syntax tree of φ2
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Parity games
▶ We can think the evaluation game of a (weak) modal µ-formula as a (weak)

parity game.
▶ Given a pointed transition systems (S, s0) and a (weak) modal µ-formula φ, we

can define a (weak) parity game G on a tree, which is equivalent to the evaluation
game E of (S, s0) |= φ.

▶ The arena of G is defined to be a tree constructed as follows:
1. each node ρ is a partial play (i.e., a finite sequence of admissible moves) of the

evaluation game E ; the ownership of each node is inherited from the evaluation
game,

2. the relation of the arena is inherited from the admissible moves in the evaluation
game E .

The coloring function Ω of game G for a (weak）modal µ-formula φ is defined by
cases mainly on the last element of a partial play ρ in G.
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Example
Let K = (S, (Eℓ)ℓ∈{a,b}, V ) be a Kripke structure as follows, with V (p) = {q3} and a
interpretation function V.

q1

q2 q3

a a

b
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Example (Continued)
(1) We will first give the semantics of φ1 = νX.□a(♦bp ∨X).

ν0 = S

ν1 = [[□a(♦bp︸︷︷︸
{q2}

∨X)]]V[X\ν0] = □a({q2} ∪ S) = {q1, q2, q3}

= ν0︸︷︷︸
fixpoint
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Example (Continued)
(2) Next we give the semantics of φ2 = µX.□a(♦bp ∨X).

µ0 = ∅
µ1 = [[□a(♦bp︸︷︷︸

{q2}

∨X)]]V[X\µ0] = □a({q2} ∪ ∅) = {q1, q3}

µ2 = [[□a(♦bp ∨X)]]V[X\µ1] = □a({q2} ∪ {q1, q3}) = {q1, q2, q3}
µ3 = [[□a(♦bp ∨X)]]V[X\µ2] = □a({q2} ∪ {q1, q2, q3}) = {q1, q2, q3} = µ2
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Example (Continued)
(3) On the other hand, the semantics of φ2 = νZ.µX.□a

(
(♦bp ∧ Z) ∨X

)
with

respect to K can be computed as follows.

•ν0 = S = {q1, q2, q3}
µ0,0 = ∅

µ0,1 = [[□a

(
(♦bp ∧ Z) ∨X

)
]]V[X\µ0,0] = □a

(
({q2} ∧ {q1, q2, q3}) ∨ ∅

)
= {q1, q3}

µ0,2 = [[□a

(
(♦bp ∩ Z) ∪X

)
]]V[X\µ0,1] = □a

(
({q2} ∩ {q1, q2, q3}) ∪ {q1, q3}

)
= {q1, q2, q3}

µ0,3 = [[□a

(
(♦bp ∧ Z) ∨X

)
]]V[X\µ0,2] = {q1, q2, q3} = µ0,2

•ν1 = µ2 = {q1, q2, q3} = ν0
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Example (Continued)
• φ1, φ2 and φ3 are semantically equivalent over the Kripke structure K, in the

sense that φ1, φ2 and φ3 define the same set of vertices over K.
• The equivalence of φ1 and φ2 shows that the semantics of the least and greatest

operator makes no difference when the transition system contain no infinite paths.
• The equivalence of φ3 and φ2 shows that a syntactically complex formula may be

as expressive as some simple formula over a certain transition system.
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Another view of alternation free: syntax tree
An Lµ-formula is called alternation-free if no ν-variable occurs free in the scope of a
µ-operator, and vice versa.
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In term of syntax tree, φ is alternation free iff its syntax tree contains no cycle of a
µ-variable and a ν-variable. Figure (2a) has a cycle of both X and Y . Figure (2b) has
two maximal strongly connected component, one on X and the other on Y .1
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Another view of alternation free: syntax tree
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Source: Local parallel model checking for the alternation free µ-caclsulus, technical
report, 2002...
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Given n, Berwanger (2003) introduced the following formulas for all i = 1, . . . , n.
▶ for all odd i ≤ n,

φn
i (X) := µZ.

(Ωi ∧ ▷Z) ∨
( i−1∨

j=1

Ωj ∧X
)
∨
( n∨

j=i+1

Ωj ∧ φn
i+1(Z)

) ,

▶ for all even i ≤ n,

φn
i (Z) := νX.

(Ωi ∧ ▷X) ∨
( i−1∨

j=1

Ωj ∧ Z
)
∨
( n∨

j=i+1

Ωj ∧ φn
i+1(X)

) .

where
▷X := (V♢ ∧ ♦X) ∨ (V□ ∧□X).
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•

• 
• 

i n 

'Pi+1 (Z) = vX. (ni+l fl t>X) V ( V nj fl Z) V V nj fl 'Pi+2(X)
j=l j=i+2 
' -,I 

v' 

Z is a free varibale in <pi+l

. 1 
n 

cpj(X) = µZ. (D; fl t>Z) V Cv nj fl X) V ( V nj fl 'P;:t-1 (Z)) E ��\+d2] 
J-l 

j=i+l 

• 
• 

• 
Z is a bounded variable in <pi 

(n; fl t>Z) v ( V nj fl 'Pi+i (z)) 
j=i+l 

No free variable in <p1 

E ��µ[2] 
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Lµ[2] = Lµ?

Formulas in Lµ[2] can express properties in arbitrary level of alternation hierarchy of
Lµ. Then it is natural to ask whether Lµ[2] = Lµ or not.
▶ It is negatively answered by showing the strictness of variable hierarchy.

Theorem (Berwanger, Grädel and Lenzi, 2007)
For any n, there exists formula ϕ ∈ Lµ[n] which is not equivalent to any formula in
Lµ[n− 1].
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Question
How is the one-variable fragment of Lµ, namely Lµ[1]?
Lµ[1] consists of formulas each of which only contains one fixpoint variable.
We can define the simple alternation hierarchy of Lµ[1] by modifying the definition of
simple alternation hierarchy for Lµ, via level-by-level restricting the formulas with only
one fixpoint variable, for instance, ΣSµ

n [1] = ΣSµ
n

⋂
Lµ[1].

We first note that one-variable fragment of modal µ-calculus is contained in the whole
weak alternation hierarchy. By definition, it is obvious that the relation⋃

n<ω

ΣSµ
n [1]︸ ︷︷ ︸

Simple altern. hierar. of Lµ[1]

⊆ ∆Nµ
2
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We will show that Lµ[1] is enough to express the winning region of weak parity games.
A weak game can be given as a rooted structure G, v0 with G = (V, V♢, V□, E,Ω, n).
Player I wins with a play x if the priority sequence of x is nonincreasing.
Given n, we consider the following formulas for i = 1, . . . , n,φi := νX.

(
φi−1 ∨ (Ωi ∧ ▷X)

)
, if i is odd

φi := µX.
((
φi−1 ∨ νX.(Ωi ∧ ▷X)

)
∨ (Ωi ∧ ▷X)

)
, if i is even

(♣)

where
▷X := (V♢ ∧ ♦X) ∨ (V□ ∧□X).

The formula φn describes that player ♦ has a winning strategy in a weak parity game
with priority n.
Example
For n=2, φ1 = νX.(Ω1 ∧ ▷X),
φ2 = µX.

((
νX.(Ω1 ∧ ▷X) ∨ νX.(Ω2 ∧ ▷X)

)
∨ (Ω2 ∧ ▷X)

)
note that φ2 ∈ ΣSµ

2 [1].
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µX.p ∨ (q ∧ ♦X),

means that there is a path in which p eventually holds and q holds before p holds.
Similarly

φ2 = µX.(
(
νX.(Ω1 ∧ ▷X) ∨ νX.(Ω2 ∧ ▷X)

)
︸ ︷︷ ︸

Property ϱ

∨(Ω2 ∧ ▷X)),

means that there is a path where property ϱ eventually holds and Ω2 is true before ϱ
holds.
Theorem
The simple alternation hierarchy of Lµ[1] is strict over finitely branching transition
systems. Moreover, the simple alternation hierarchy of Lµ[1] exhausts the weak
alternation hierarchy.
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I: Simple alternation hierarchy
Counting simply syntactic alternation of µ and ν results in the following definition.
The superscript S means simple or syntactic.
Definition

• ΣSµ
0 ,ΠSµ

0 : the class of formulas with no fixpoint operators
• ΣSµ

n+1 : containing ΣSµ
n ∪ΠSµ

n and closed under the following operations
(i) if φ1, φ2 ∈ ΣSµ

n+1, then φ1 ∨ φ2, φ1 ∧ φ2, □φ1, ♦φ1 ∈ ΣSµ
n+1,

(ii) if φ ∈ ΣSµ
n+1, then µX.φ ∈ ΣSµ

n+1

• dually for ΠSµ
n+1

A formula is strict ΣSµ
n+1 if it is not ΣSµ

n ∪ΠSµ
n .

Example: µX.(p ∨ µY.(X ∨ ♦Y )) ∈ ΣSµ
1 .
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• Notice that simple alternation does not capture the complexity of feedbacks
between fixpoints.

• For instance, it does not distinguish the following two formulas:
▶ Φ1 = νY.µX.(p ∧ ♦Y ) ∧ ♦X
▶ Φ2 = νY.♦Y ∧ (µZ.p ∨ ♦Z)

• Both Φ1 and Φ2 are strict ΠSµ
2 .

• But the former is more complex: inner fixpoint depends on the outer one.
Observe that in Φ2, the subformula µZ.p ∨ ♦bZ is a closed formula (namely, no
free variable).
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II: Emerson-Lei alternation hierarchy

Definition
The Emerson-Lei alternation hierarchy of modal µ-calculus is defined as follows.
▶ ΣELµ

0 ,ΠELµ
0 : the class of formulas with no fixpoint operators

▶ ΣELµ
n+1 : containing ΣELµ

n ∪ΠELµ
n and closed under the following operations

(i) if φ1, φ2 ∈ ΣELµ
n+1 , then φ1 ∨ φ2, φ1 ∧ φ2, □Rφ1, ♦Rφ1 ∈ ΣELµ

n+1 ,
(ii) if φ ∈ ΣELµ

n+1 , then µZ.φ ∈ ΣELµ
n+1 , and

(iii) if φ(X), ψ ∈ ΣELµ
n+1 and ψ a closed formula (namely, no free variables), then

φ(X\ψ) ∈ ΣELµ
n+1 .

▶ dually for ΠELµ
n+1

Example. νY.♦Y ∧ µZ.p ∨ ♦Z is Deltaµ2
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III: Niwiński alternation hierarchy

Definition
▶ ΣNµ

0 ,ΠNµ
0 : the class of formulas with no fixpoint operators

▶ ΣNµ
n+1 : containing ΣNµ

n ∪ΠNµ
n and closed under the following operations

(i) if φ1, φ2 ∈ ΣNµ
n+1, then φ1 ∨ φ2, φ1 ∧ φ2, □φ1, ♦φ1 ∈ ΣNµ

n+1,
(ii) if φ ∈ ΣNµ

n+1, then µZ.φ ∈ ΣNµ
n+1, and

(iii) if φ(X), ψ ∈ ΣNµ
n+1 and no free variable of ψ is captured by φ, then φ(ψ) ∈ ΣNµ

n+1.
▶ dually for ΠNµ

n+1

The Niwiński alternation depth of a formula ϕ is the least n such that ϕ ∈ ΣNµ
n

⋂
ΠNµ

n .
Fact: ΣSµ

n ⊆ ΣELµ
n ⊆ ΣNµ

n for n ≥ 2,
ΣSµ
1 = ΣELµ

1 = ΣNµ
1 .
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Example

Φ1 = νY.µX.(p ∧ ♦Y ) ∧ ♦X

Φ2 = νY.♦Y ∧ µZ.p ∨ ♦Z

• Φ1 and Φ2 are in ΠNµ
2 .

• Φ2 is also in ΣNµ
2 . Thus Φ2 is in ∆Nµ

2 and ∆ELµ
2 .
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Example
Φ3 = µX.νY.♦Y ∧ µZ.♦(X ∨ Z)

1. Φ3 is in ΣSµ
3 , but not ΠSµ

3 .
2. Φ3 is in ΣELµ

3 , but not ΠELµ
3 , since there are no closed subformulas.

3. But for Niwiński alternation hierarchy, Φ3 is in ΣNµ
2 . Because

µZ.♦(X ∨ Z)︸ ︷︷ ︸
∈ΣNµ

1 ⊆ΣNµ
2

νY.♦Y ∧W︸ ︷︷ ︸
∈ΠNµ

1 ⊆ΣNµ
2

↘ ↙
νY.♦Y ∧ µZ.♦(X ∨ Z)︸ ︷︷ ︸

∈ΣNµ
2

↓
µX.νY.♦Y ∧ µZ.♦(X ∨ Z)︸ ︷︷ ︸

∈ΣNµ
2
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