Minimality of difference-differential equations

Wei Li

Academy of Mathematics and Systems Science Chinese Academy of Sciences

August 4, 2025

Joint work with Thomas Scanlon

As a rule of thumb, if a function satisfies a nontrivial difference equation, it is difficult for this function to satisfy a nontrivial differential equation.

For example, the fact that the Γ function satisfies the difference equation $\Gamma(t+1)=t\Gamma(t)$ is used in the proof that it is hypertranscendental, that is, satisfies no nontrivial algebraic differential equation over $\mathbb{C}(t)$.

Some functions break this rule.

```
• y := f(t) = t satisfies y' = 1 and y(t+1) = y(t) + 1.

• y := f(t) = \exp(t) satisfies y' = y and y(t+1) = \exp(t)
```

As a rule of thumb, if a function satisfies a nontrivial difference equation, it is difficult for this function to satisfy a nontrivial differential equation.

For example, the fact that the Γ function satisfies the difference equation $\Gamma(t+1)=t\Gamma(t)$ is used in the proof that it is hypertranscendental, that is, satisfies no nontrivial algebraic differential equation over $\mathbb{C}(t)$.

Some functions break this rule.

• y := f(t) = t satisfies y' = 1 and y(t+1) = y(t) + 1. • $y := f(t) = \exp(t)$ satisfies y' = y and y(t+1) = ey(t)

As a rule of thumb, if a function satisfies a nontrivial difference equation, it is difficult for this function to satisfy a nontrivial differential equation.

For example, the fact that the Γ function satisfies the difference equation $\Gamma(t+1)=t\Gamma(t)$ is used in the proof that it is hypertranscendental, that is, satisfies no nontrivial algebraic differential equation over $\mathbb{C}(t)$.

Some functions break this rule.

- y := f(t) = t satisfies y' = 1 and y(t+1) = y(t) + 1.
- $y := f(t) = \exp(t)$ satisfies y' = y and y(t+1) = ey(t).

As a rule of thumb, if a function satisfies a nontrivial difference equation, it is difficult for this function to satisfy a nontrivial differential equation.

For example, the fact that the Γ function satisfies the difference equation $\Gamma(t+1)=t\Gamma(t)$ is used in the proof that it is hypertranscendental, that is, satisfies no nontrivial algebraic differential equation over $\mathbb{C}(t)$.

Some functions break this rule.

- y := f(t) = t satisfies y' = 1 and y(t+1) = y(t) + 1.
- $y := f(t) = \exp(t)$ satisfies y' = y and y(t+1) = ey(t).

Hypertranscendence and linear difference equations

Adamczewski-Dreyfus-Hardouin prove (JAMS, 2021) in various precise senses that solutions to linear difference equations are automatically hypertranscendental, *i.e.*, satisfy no nontrivial algebraic differential equations.

For one precise sense, let

- $K = \mathbb{C}(x)$ be the field of rational functions in one variable over the complex numbers,
- F be the field of meromorphic functions, and
- F_0 be any subfield of F closed under the difference operator $\sigma: f(x) \mapsto f(x+1)$ with $F_0^{\sigma} = \{f \in F_0: \sigma(f) = f\} = \mathbb{C}$ for which $F_0 \cap \mathbb{C}(x, \{\exp(\lambda x): \lambda \in \mathbb{C}\}) = \mathbb{C}(x)$.

Then, if $f \in F_0$ satisfies a nontrivial linear difference equation with coefficients from K, either $f \in K$ or f is hypertranscendental.

Hypertranscendence and linear difference equations

Adamczewski-Dreyfus-Hardouin prove (JAMS, 2021) in various precise senses that solutions to linear difference equations are automatically hypertranscendental, *i.e.*, satisfy no nontrivial algebraic differential equations.

For one precise sense, let

- K = C(x) be the field of rational functions in one variable over the complex numbers,
- F be the field of meromorphic functions, and
- F_0 be any subfield of F closed under the difference operator $\sigma: f(x) \mapsto f(x+1)$ with $F_0^{\sigma} = \{f \in F_0: \sigma(f) = f\} = \mathbb{C}$ for which $F_0 \cap \mathbb{C}(x, \{\exp(\lambda x): \lambda \in \mathbb{C}\}) = \mathbb{C}(x)$.

Then, if $f \in F_0$ satisfies a nontrivial linear difference equation with coefficients from K, either $f \in K$ or f is hypertranscendental.

Dependence on the field of solutions

The exceptional difference-differential field generated by rational functions and exponentials is necessary. Can we change K, the difference-differential field over which (linear) difference equations are defined, and F, the difference-differential field in which solutions are taken to obtain a similar hypertranscendence result?

In general, no. Algebraically, linear difference equations are compatible with arbitrarily complicated algebraic differential equations.

Dependence on the field of solutions

The exceptional difference-differential field generated by rational functions and exponentials is necessary. Can we change K, the difference-differential field over which (linear) difference equations are defined, and F, the difference-differential field in which solutions are taken to obtain a similar hypertranscendence result?

In general, no. Algebraically, linear difference equations are compatible with arbitrarily complicated algebraic differential equations.

Nonlinear variants

For the case already considered of difference equations over $\mathbb{C}(x)$ with solutions in the field of meromorphic functions, it remains a challenge to determine to what extent being a transcendental solution to a nonlinear difference equation forces hypertranscendence.

We consider a complementary problem: if y is a solution of (nonlinear) algebraic differential equations, under what conditions can we obtain algebraicity / difference-transcendence dichotomy for y?

We answer this question in the case that the differential equations define a *strongly minimal set* relative to the theory of differentially closed fields.

Nonlinear variants

For the case already considered of difference equations over $\mathbb{C}(x)$ with solutions in the field of meromorphic functions, it remains a challenge to determine to what extent being a transcendental solution to a nonlinear difference equation forces hypertranscendence.

We consider a complementary problem: if y is a solution of (nonlinear) algebraic differential equations, under what conditions can we obtain algebraicity / difference-transcendence dichotomy for y?

Minimal difference-differential equations

Nonlinear variants

For the case already considered of difference equations over $\mathbb{C}(x)$ with solutions in the field of meromorphic functions, it remains a challenge to determine to what extent being a transcendental solution to a nonlinear difference equation forces hypertranscendence.

We consider a complementary problem: if y is a solution of (nonlinear) algebraic differential equations, under what conditions can we obtain algebraicity / difference-transcendence dichotomy for y?

We answer this question in the case that the differential equations define a *strongly minimal set* relative to the theory of differentially closed fields.

By a difference-differential-field (or σ - δ -field), we mean a field K of characteristic zero equipped with

- a field endomorphism $\sigma: K \to K$ (i.e. $\sigma(x+y) = \sigma(x) + \sigma(y)$ and $\sigma(xy) = \sigma(x)\sigma(y)$) and
- a derivation $\delta: K \to K$ (i.e. $\delta(x+y) = \delta(x) + \delta(y)$) and $\delta(xy) = x\delta(y) + \delta(x)y$

for which δ and σ commute. Denote by (K, σ, δ) .

Example:
$$(\mathbb{C}(x), \frac{d}{dx}, \sigma: f(x) \to f(x+1))$$

- Field of differential constants: $C_K := \{x \in K : \delta(x) = 0\};$
- σ -Fixed field: $K^{\sigma} := \{x \in K : \sigma(x) = x\}.$

If we require merely that K is a commutative ring, then we say that (K,σ,δ) is a σ - δ -ring.

By a difference-differential-field (or σ - δ -field), we mean a field K of characteristic zero equipped with

- a field endomorphism $\sigma: K \to K$ (i.e. $\sigma(x+y) = \sigma(x) + \sigma(y)$ and $\sigma(xy) = \sigma(x)\sigma(y)$) and
- a derivation $\delta: K \to K$ (i.e. $\delta(x+y) = \delta(x) + \delta(y)$) and $\delta(xy) = x\delta(y) + \delta(x)y$

for which δ and σ commute. Denote by (K, σ, δ) .

Example:
$$(\mathbb{C}(x), \frac{d}{dx}, \sigma: f(x) \to f(x+1))$$

- Field of differential constants: $C_K := \{x \in K : \delta(x) = 0\};$
- σ -Fixed field: $K^{\sigma} := \{x \in K : \sigma(x) = x\}.$

If we require merely that K is a commutative ring, then we say that (K, σ, δ) is a σ - δ -ring.

By a difference-differential-field (or σ - δ -field), we mean a field K of characteristic zero equipped with

- a field endomorphism $\sigma: K \to K$ (i.e. $\sigma(x+y) = \sigma(x) + \sigma(y)$ and $\sigma(xy) = \sigma(x)\sigma(y)$) and
- a derivation $\delta: K \to K$ (i.e. $\delta(x+y) = \delta(x) + \delta(y)$) and $\delta(xy) = x\delta(y) + \delta(x)y$

for which δ and σ commute. Denote by (K, σ, δ) .

Example:
$$(\mathbb{C}(x), \frac{d}{dx}, \sigma: f(x) \to f(x+1))$$

- Field of differential constants: $C_K := \{x \in K : \delta(x) = 0\};$
- σ -Fixed field: $K^{\sigma} := \{x \in K : \sigma(x) = x\}.$

If we require merely that K is a commutative ring, then we say that (K, σ, δ) is a σ - δ -ring.

By a difference-differential-field (or σ - δ -field), we mean a field K of characteristic zero equipped with

- a field endomorphism $\sigma: K \to K$ (i.e. $\sigma(x+y) = \sigma(x) + \sigma(y)$ and $\sigma(xy) = \sigma(x)\sigma(y)$) and
- a derivation $\delta: K \to K$ (i.e. $\delta(x+y) = \delta(x) + \delta(y)$) and $\delta(xy) = x\delta(y) + \delta(x)y$

for which δ and σ commute. Denote by (K, σ, δ) .

Example:
$$(\mathbb{C}(x), \frac{d}{dx}, \sigma: f(x) \to f(x+1))$$

- Field of differential constants: $C_K := \{x \in K : \delta(x) = 0\};$
- σ -Fixed field: $K^{\sigma} := \{x \in K : \sigma(x) = x\}.$

If we require merely that K is a commutative ring, then we say that (K, σ, δ) is a σ - δ -ring.

Difference-differential polynomial equations and varieties

Given a σ - δ -field K and a tuple $x=(x_1,\ldots,x_n)$ of variables, the σ - δ -ring $K\{x\}_{\sigma,\delta}$ of σ - δ -polynomials in x with coefficients from K is the free σ - δ -ring generated over K by x. Concretely,

$$K\{x\}_{\sigma,\delta} = K[\sigma^i \delta^j(x_\ell) : i,j \in \mathbb{N}; 1 \le \ell \le n].$$

• Let (L, σ, δ) be a σ - δ -field extending K and $a = (a_1, \ldots, a_n) \in L^n$. There exists a unique σ - δ -homomorphism over K,

$$\phi_a: K\{x\}_{\sigma,\delta} \longrightarrow L$$
 with $\phi_a(\sigma^i \delta^j(x_i)) = \sigma^i \delta^j(a_i)$ and $\phi_a|_K = id$.

For $f \in Ker(\phi_a)$, a is a solution of f and denote f(a) = 0.

• Given $\Sigma \subseteq K\{x\}_{\sigma,\delta}$, $X = \mathbb{V}(\Sigma)$ is the σ - δ -variety defined by Σ ; and for a σ - δ -field (L, σ, δ) extending K, write

$$X(L) := \{ a \in L^n : f(a) = 0 \text{ for all } f \in \Sigma \}.$$

Difference-differential polynomial equations and varieties

Given a σ - δ -field K and a tuple $x=(x_1,\ldots,x_n)$ of variables, the σ - δ -ring $K\{x\}_{\sigma,\delta}$ of σ - δ -polynomials in x with coefficients from K is the free σ - δ -ring generated over K by x. Concretely,

$$K\{x\}_{\sigma,\delta} = K[\sigma^i \delta^j(x_\ell) : i,j \in \mathbb{N}; 1 \le \ell \le n].$$

• Let (L, σ, δ) be a σ - δ -field extending K and $a = (a_1, \dots, a_n) \in L^n$. There exists a unique σ - δ -homomorphism over K,

$$\phi_a: K\{x\}_{\sigma,\delta} \longrightarrow L$$
 with $\phi_a(\sigma^i \delta^j(x_i)) = \sigma^i \delta^j(a_i)$ and $\phi_a|_K = id$.

For $f \in Ker(\phi_a)$, a is a solution of f and denote f(a) = 0.

• Given $\Sigma \subseteq K\{x\}_{\sigma,\delta}$, $X = \mathbb{V}(\Sigma)$ is the σ - δ -variety defined by Σ ; and for a σ - δ -field (L, σ, δ) extending K, write

$$X(L) := \{ a \in L^n : f(a) = 0 \text{ for all } f \in \Sigma \}.$$

The theory of DCF₀ and theory of DCFA₀

• The theory of differential fields (of char 0) admits a model companion, the theory DCF₀ of differential closed field of char 0.

Blum(1968): Axiomatic of differentially closed fields and elimination of quantifiers in the language $\mathscr{L}=\{+,-,\cdot,0,1,\delta\}$ of differential rings.

One gets the following bijection over a differential field (K, δ) :

$$\phi: S_n(K) \longrightarrow \{I \subset K\{y_1, \dots, y_n\} \text{ prime differential ideals}\}$$

• The theory of σ - δ -fields (of char 0) also admits a model companion, DCFA $_0$ of σ - δ closed field of char 0 (Hrushovski, Bustamante2005). DCFA $_0$ does not enjoy quantifier elimination but a weak quantifier simplification.

Minimality difference-differential varieties

Let K be a σ - δ -field and $X = \mathbb{V}(\Sigma)$ a σ - δ -variety defined over K. We say that X is minimal relative to DCFA $_0$ if

- there is some extension L_0 with $X(L_0)$ infinite, but
- for any tower of extensions $K \subseteq L \subseteq M$ and any solution $x \in X(M)$, either x is algebraic in the sense that $x \in X(L^{\text{alg}})$ or x satisfies no new equations in the sense that $\mathbb{I}_L(x) = \mathbb{I}_K(x) \otimes L$, where $\mathbb{I}_L(x) = \{f \in L\{y\}_{\sigma,\delta} : f(x) = 0\}.$

Minimal varieties and minimal types

There are various subtly distinct model theoretic notions of minimality for minimal varieties, minimal definable sets, minimal types.

- A complete type tp(v/K) is minimal (or U-rank 1) iff $v \notin K^{alg}$ but for every forking extension of tp(v/K) is algebraic, that is, has only finitely many realizations.
- Our definition of a σ - δ -variety being minimal is equivalent to asking that X defines an infinite definable set and every complete type extending X is minimal.

(Non)-examples of minimality

- If $f, g \in K[x]$ and the equations $\sigma(x) = f(x)$ and $\delta(x) = g(x)$ are consistent, then $X = \mathbb{V}(\sigma(x) f(x), \delta(x) g(x))$ is minimal.
- The σ - δ -variety $X = \mathbb{V}(\sigma(x) e\delta(x), \delta^2 x 2\delta x + x)$ defined over $K = \mathbb{C}$ is not minimal. If $L = \mathbb{C}(e^t)$ and $M = \mathbb{C}(t, e^t)$, then $a = te^t \in X(M) \setminus X(L^{\mathrm{alg}})$, but it also belongs to the proper σ - δ -variety defined by the additional equation $\delta x x = e^t$.

(Non)-examples of minimality

- If $f, g \in K[x]$ and the equations $\sigma(x) = f(x)$ and $\delta(x) = g(x)$ are consistent, then $X = \mathbb{V}(\sigma(x) f(x), \delta(x) g(x))$ is minimal.
- The σ - δ -variety $X = \mathbb{V}(\sigma(x) e\delta(x), \delta^2 x 2\delta x + x)$ defined over $K = \mathbb{C}$ is not minimal. If $L = \mathbb{C}(e^t)$ and $M = \mathbb{C}(t, e^t)$, then $a = te^t \in X(M) \setminus X(L^{\mathrm{alg}})$, but it also belongs to the proper σ - δ -variety defined by the additional equation $\delta x x = e^t$.

Minimality for differential equations

In the definition of minimality we could work just with σ -equations or just with δ -equations. For example, a δ -variety X over a δ -field K is minimal if

- there is some δ -field extension L with X(L) infinite, but
- for any tower of extensions of δ -fields $K \subseteq L \subseteq M$ and any solution $a \in X(M)$, either a is algebraic in the sense that $a \in X(L^{\text{alg}})$ or a satisfies no new equations in the sense that there is no proper δ -variety $Y \subsetneq X$ defined over L with $a \in Y(M)$.

A strongly minimal set is a set X definable over some base K so that for some extension L, X(L) is infinite, but for any extension M of K for every M-(q.f.)definable subset $Y \subseteq X$, either Y(M) or $X(M) \setminus Y(M)$ is finite.

Strongly minimal sets are always minimal.

Minimality for differential equations

In the definition of minimality we could work just with σ -equations or just with δ -equations. For example, a δ -variety X over a δ -field K is minimal if

- there is some δ -field extension L with X(L) infinite, but
- for any tower of extensions of δ -fields $K \subseteq L \subseteq M$ and any solution $a \in X(M)$, either a is algebraic in the sense that $a \in X(L^{\text{alg}})$ or a satisfies no new equations in the sense that there is no proper δ -variety $Y \subsetneq X$ defined over L with $a \in Y(M)$.

A strongly minimal set is a set X definable over some base K so that for some extension L, X(L) is infinite, but for any extension M of K for every M-(q.f.)definable subset $Y \subseteq X$, either Y(M) or $X(M) \setminus Y(M)$ is finite.

Strongly minimal sets are always minimal.

Examples of strongly minimal δ -varieties

- For any irreducible polynomial f(x, y) in two variables, the δ -variety $X = \mathbb{V}(f(x, \delta x))$ is strongly minimal.
- By work of Jaoui (ANT, 2022) for $K = \mathbb{C}$ and f(x,y) and g(x,y) sufficiently general polynomials in two variables, the δ -variety $X = \mathbb{V}(\delta x_1 f(x_1, x_2), \delta x_2 g(x_1, x_2))$ is strongly minimal.
- The Schwarzian differential equation satisfied by Klein's j-function,

$$x^{2}(x-1728)^{2}(2\delta^{3}x\delta x-3(\delta^{2}x)^{2})+(x^{2}-1968x+2654208)(\delta x)^{4}=0$$

defines a strongly minimal set.

Examples of strongly minimal δ -varieties

- For any irreducible polynomial f(x, y) in two variables, the δ -variety $X = \mathbb{V}(f(x, \delta x))$ is strongly minimal.
- By work of Jaoui (ANT, 2022) for $K = \mathbb{C}$ and f(x,y) and g(x,y) sufficiently general polynomials in two variables, the δ -variety $X = \mathbb{V}(\delta x_1 f(x_1, x_2), \delta x_2 g(x_1, x_2))$ is strongly minimal.
- The Schwarzian differential equation satisfied by Klein's j-function,

$$x^{2}(x-1728)^{2}(2\delta^{3}x\delta x-3(\delta^{2}x)^{2})+(x^{2}-1968x+2654208)(\delta x)^{4}=0$$

defines a strongly minimal set.

Examples of strongly minimal δ -varieties

- For any irreducible polynomial f(x, y) in two variables, the δ -variety $X = \mathbb{V}(f(x, \delta x))$ is strongly minimal.
- By work of Jaoui (ANT, 2022) for $K = \mathbb{C}$ and f(x, y) and g(x, y)sufficiently general polynomials in two variables, the δ -variety $X = \mathbb{V}(\delta x_1 - f(x_1, x_2), \delta x_2 - g(x_1, x_2))$ is strongly minimal.
- The Schwarzian differential equation satisfied by Klein's *j*-function,

$$x^{2}(x - 1728)^{2}(2\delta^{3}x\delta x - 3(\delta^{2}x)^{2}) + (x^{2} - 1968x + 2654208)(\delta x)^{4} = 0$$
 defines a strongly minimal set.

δ -varieties as a σ - δ -varieties

If X is a δ -variety, then we may consider the δ -equations defining X as σ - δ -equations so that X may also be regarded a σ - δ -variety.

If X is minimal as a δ -variety, does it remain minimal as a σ - δ -variety?

In general, no. For example, if $X = \mathbb{V}(\delta x)$, then for any σ - δ -field K, X(K) is just the field of δ -constants and every difference field may be realized in this form. Thus, there are many inequivalent difference equations consistent with X.

δ -varieties as a σ - δ -varieties

If X is a δ -variety, then we may consider the δ -equations defining X as σ - δ -equations so that X may also be regarded a σ - δ -variety.

If X is minimal as a δ -variety, does it remain minimal as a σ - δ -variety?

In general, no. For example, if $X = \mathbb{V}(\delta x)$, then for any σ - δ -field K, X(K) is just the field of δ -constants and every difference field may be realized in this form. Thus, there are many inequivalent difference equations consistent with X.

δ -varieties as a σ - δ -varieties

If X is a δ -variety, then we may consider the δ -equations defining X as σ - δ -equations so that X may also be regarded a σ - δ -variety.

If X is minimal as a δ -variety, does it remain minimal as a σ - δ -variety?

In general, no. For example, if $X = \mathbb{V}(\delta x)$, then for any σ - δ -field K, X(K) is just the field of δ -constants and every difference field may be realized in this form. Thus, there are many inequivalent difference equations consistent with X.

(Non)orthogonality

If X and Y are two strongly minimal sets defined over some K, then we say that X and Y are not almost-orthogonal over K, written $X \not\perp_K^a Y$, if there is some strongly minimal set $Z \subseteq X \times Y$ defined over K for which the projections to each of X and Y miss at most finitely many points.

We say that X and Y are nonorthogonal, written $X \not\perp Y$, if there is some extension L so that $X \not\perp_I^a Y$.

(Non)orthogonality

If X and Y are two strongly minimal sets defined over some K, then we say that X and Y are not almost-orthogonal over K, written $X \not\perp_K^a Y$, if there is some strongly minimal set $Z \subseteq X \times Y$ defined over K for which the projections to each of X and Y miss at most finitely many points.

We say that X and Y are nonorthogonal, written $X \not\perp Y$, if there is some extension L so that $X \not\perp_I^a Y$.

Triviality

A strongly minimal set X defined over K is geometrically trivial if for any tower of extensions $K \subseteq L \subseteq M$ and distinct v_1, \ldots, v_n from X(M), $L\langle v_1, \ldots, v_n \rangle^{alg} = \bigcup_{i=1}^n L\langle v_i \rangle^{alg}$. That is, if (v_1, \ldots, v_n) satisfies some new relations over L not implied by their individual membership in X, then there is some new binary relation.

Examples:

- The differential equation $y' = y^3 y^2$ defines a geometrically trivial strongly minimal set (Kolchin/Rosenlicht/Shelah, 1974)
- The Painleve equation $P_{II}(\alpha)$: $y'' = 2y^3 + ty + \alpha$ is geometrically trivial strongly minimal for $\alpha \notin 1/2 + \mathbb{Z}$ (Nagloo-Pillay, 2011).
- All generic differential equations are geometrically trivial strongly minimal sets (Develbiss-Freitag, 2021).

Trichotomy

Strongly minimal sets (and even just minimal types) satisfy the Zilber trichotomy relative to the theory of differentially closed fields of characteristic zero.

Theorem (Hrushovski-Sokolović, 1994)

Let X be a strongly minimal set in a differentially closed field \mathscr{U} . Then exactly one of the following holds:

- (1) (Field-like) X is non-orthogonal to constants $C_{\mathcal{U}}$;
- (2) (Group-like) X is non-orthogonal to a very special strongly minimal subgroup of an abelian variety which does not descend to $C_{\mathcal{U}}$;
- (3) (trivial) X is geometrically trivial.

Remark. If $\operatorname{ord}(X) := \max\{\operatorname{tr.deg} K\langle a\rangle/K : a \in X\} = 1$, then X satisfies either for (1) or (3); if $\operatorname{ord}(X) > 1$, then X satisfies either for (2) or (3).

General principle of geometrically trivial and strongly minimality differential equations

Theorem. Let X be a strongly minimal and geometrically trivial differential variety with respect to $\mathsf{DCF}_{0,K}$ where K is an algebraically closed $\sigma\text{-}\delta$ field. Then X is minimal as a $\sigma\text{-}\delta\text{-}$ -variety with respect to $\mathsf{DCFA}_{0,K}$. Precisely, for any tower of $\sigma\text{-}\delta$ -fields $K \subset L \subset M$ and any $a \in X(M)$, either $a \in X(L^{alg})$ or $\mathbb{I}_{\sigma,\delta}(a/L) = \mathbb{I}_{\sigma,\delta}(a/K) \otimes L$.

Totally disintegrated differential equations

Definition. Let X be a geometrically trivial and strongly minimal set defined over K relative to DCF₀. X is said to be totally disingrated if for any $y \in X$, we have

$$acl_X(K, y) = K\langle y \rangle^{alg} \cap X = \{y\}.$$

Theorem. Let X be a totally disingrated set defined by a δ -polynomial equation over an algebraic closed σ - δ -field K. If L is any σ - δ -field extension of K and $a \in X(L)$, then one of the following holds:

- (1) $a \in X(K)$;
- (2) there exists $n \in \mathbb{N}$, a differential bi-rational map $\phi: X \longrightarrow X^{\sigma^n}$ such that $\sigma^n(a) = \phi(a)$;
- (3) a is differencely transcendental, i.e., satisfies no nontrivial σ -equation over K.

Strictly minimal sets

Definition. A strongly minimal set X defined over K relative to DCF₀ is said to be strictly minimal over K if for any definable equivalence relation E on X, all but finitely many of the E-equivalence classes have size one.

• Test for strictly minimality of rational 1-forms on \mathbb{P}^1 via residues (Hrushovski-Itai, 2003)

Theorem. Let K be a σ - δ -field of characteristic 0 and $f(y) \in C_K[y]$ be a monic polynomial of degree $n \geq 3$. Assume $\mathbb{V}(y'-f(y))$ is strictly minimal relative to DCF_0 . If ξ is a solution of y'-f(y)=0, then ξ is either algebraic over K, or differencely transcendental over K, unless $f^{\sigma^m}(y)=c\cdot f(\frac{y-d}{c})+d'$ for some $m\geq 1$, $c,d\in K$ with $c^{n-1}=1$.

¹Here, $f^{\sigma^m}(y)$ is the polynomial in K[y] obtained from f(y) by acting σ^m to the coefficients of f.

Strictly minimal sets

Definition. A strongly minimal set X defined over K relative to DCF₀ is said to be strictly minimal over K if for any definable equivalence relation E on X, all but finitely many of the E-equivalence classes have size one.

• Test for strictly minimality of rational 1-forms on \mathbb{P}^1 via residues (Hrushovski-Itai, 2003)

Theorem. Let K be a σ - δ -field of characteristic 0 and $f(y) \in C_K[y]$ be a monic polynomial of degree $n \geq 3$. Assume $\mathbb{V}(y'-f(y))$ is strictly minimal relative to DCF_0 . If ξ is a solution of y'-f(y)=0, then ξ is either algebraic over K, or differencely transcendental over K, unless $f^{\sigma^m}(y)=c\cdot f(\frac{y-d}{c})+d'$ for some $m\geq 1$, $c,d\in K$ with $c^{n-1}=1$.

¹Here, $f^{\sigma^m}(y)$ is the polynomial in K[y] obtained from f(y) by acting σ^m to the coefficients of f.

Computational example: $y' = y^3 + a_2y^2 + a_1y + a_0$

Theorem. Let K be a σ - δ -field of characteristic 0 with $a \in C_K$. Let ξ be a transcendental solution of $y' = y^3 + a$. Then we have the following:

- (1) If $a \notin \{\sigma^n(a) : n \in \mathbb{Z}_{\geq 1}\}$, then ξ is differencely transcendental over K.
- (2) If $\sigma^n(a) = a$ for some $n \in \mathbb{Z}_{\geq 1}$, then either ξ is differencely transcendental over K or ξ satisfies $\sigma^n(y) y = 0$.

For general monic cubic polynomial $f(y) = y^3 + a_2y^2 + a_1y + a_0$ irreducible over $\mathbb{Q}(a_2, a_1, a_0)$ with $a_i \in C_K$, we have:

Theorem. If $f^{\sigma^n}(y) \neq \pm f(\pm y + b) + b'$ for any $n \in \mathbb{Z}_{\geq 1}$ and $b \in K$, then any solution ξ of the differential equation y' = f(y) is either algebraic or differencely transcendental over K.

Computational example: $y' = y^3 + a_2y^2 + a_1y + a_0$

Theorem. Let K be a σ - δ -field of characteristic 0 with $a \in C_K$. Let ξ be a transcendental solution of $y' = y^3 + a$. Then we have the following:

- (1) If $a \notin \{\sigma^n(a) : n \in \mathbb{Z}_{\geq 1}\}$, then ξ is differencely transcendental over K.
- (2) If $\sigma^n(a) = a$ for some $n \in \mathbb{Z}_{\geq 1}$, then either ξ is differencely transcendental over K or ξ satisfies $\sigma^n(y) y = 0$.

For general monic cubic polynomial $f(y) = y^3 + a_2y^2 + a_1y + a_0$ irreducible over $\mathbb{Q}(a_2, a_1, a_0)$ with $a_i \in C_K$, we have:

Theorem. If $f^{\sigma^n}(y) \neq \pm f(\pm y + b) + b'$ for any $n \in \mathbb{Z}_{\geq 1}$ and $b \in K$, then any solution ξ of the differential equation y' = f(y) is either algebraic or differencely transcendental over K.

Generalizations / questions

The general principle of geometrically trivial strongly minimal sets also holds relative to $\mathsf{DCF}_{0,m}$ and $\mathsf{DCFA}_{0,m}$, the theory of Δ -closed field of char 0 with m commuting derivations $\Delta = \{\delta_1, \ldots, \delta_m\}$ and the σ - Δ closed field of char 0.

Questions

- If X is minimal as a σ -variety, does it remain minimal as a σ - δ -variety?
- If X is minimal as a δ_1 -variety, does it remain minimal as a $\{\delta_1, \delta_2\}$ -variety?

Generalizations / questions

The general principle of geometrically trivial strongly minimal sets also holds relative to $\mathsf{DCF}_{0,m}$ and $\mathsf{DCFA}_{0,m}$, the theory of Δ -closed field of char 0 with m commuting derivations $\Delta = \{\delta_1, \ldots, \delta_m\}$ and the σ - Δ closed field of char 0.

Questions:

- If X is minimal as a σ -variety, does it remain minimal as a σ - δ -variety?
- If X is minimal as a δ_1 -variety, does it remain minimal as a $\{\delta_1,\delta_2\}$ -variety?

Thanks!