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Weighted Epistemic/Doxastic Models

* Weights denote probabilities or
degrees of knowledge/belief

— Enable quantitative analysis

+ Assignable to nodes or edges in the
model

— Sometimes can be integrated into
the valuation function
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Ways to Incorporate Weights into the Logics

Focus on edge weights

+ Explicitly used in the logical language

+ Implicitly incorporated via a capability function in the models
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Epistemic Logic with Explicit Weights

Dong, H. & Li, X. & Wang, Y.N. Weighted Modal Logic in Epistemic and Deontic Contexts. LORI 2021.

Epistemic language: ¢ :==p | ¢ | (p — ¢) | O (re[0,1])

M, s: a weighted model with a designated point

Satisfaction: M,s = p < pevs)
M,s = <= notM,s k=
MsEv—x <= ifM,sEv¢thenM,s}=x

M,s =0 < forallte W,ifE(s.t) > rthenM,t = ¢

* E(s,t): Strength of indiscernibility between states s and t
* E(s,t) > r: Agent cannot distinguish s from t with strength r or lower
+ Supports multi-agent extensions
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Epistemic Logic with Implicit Weights
Liang X. & Wang, Y.N. Epistemic Logics over Weighted Graphs. LNGAI 2022.

Epistemic language: ¢ :==p | ~¢ | (¢ — ¢) | Op

M, s: a weighted model with a designated point
C € [0, 1] (global)or C: W — [0, 1] (local)

Satisfaction: M,s |=p < pev(s)
M,s = <= notM,s =
M;s=1Y—>x < ifM,sE¢thenM,s|E x

M,s =0y < forallte W,ifE(s.t) > Cthen M,t E v

« E(s,t): Strength of indiscernibility between s and t
« E(s,t) > C: Agent cannot discern between s and t with strength C or lower
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Conditions over Weighted Structures

+ Can require a similarity metric on weights

— Congruence implies equality
— Symmetry
— Triangularity (optional)

+ Weighted adaptations of reflexivity, transitivity, and other relational properties

Liang & Wéang. Characterization of Similarity Metrics in Epistemic Logic. PRICAI 2024.
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Different Kinds of Weights

« Numeric weights: represent degree of uncertainty
+ Set-based weights: represent skill sets
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Different Kinds of Weights

« Numeric weights: represent degree of uncertainty
— Ordered linearly (e.g., real numbers in [0, 1])

+ Set-based weights: represent skill sets
— (p(8), ) forms a Boolean algebra'

At least a distributed lattice if not all subsets of § are included.
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Different Kinds of Weights

« Numeric weights: represent degree of uncertainty
— Ordered linearly (e.g., real numbers in [0, 1])
+ Set-based weights: represent skill sets
— (p(8), ) forms a Boolean algebra'
+ Generalized weights: structured as a lattice, a partial/pre-order, or totally
incomparable (potentially less practical)

+ Focus today: classical and fuzzy skill sets

At least a distributed lattice if not all subsets of § are included.
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Why Weighted Modal Logics?

Applications: Epistemic, doxastic, temporal, deontic, preferential, probabilistic, etc.

+ Expressing leveled uncertainty

+ Quantitative modeling: Captures weights as probabilities, costs, rewards, time...
— E.g., optimize systems by finding the least costly path in weighted transition systems

* Enhanced expressivity
— Supports diverse concepts and innovative ideas

Generalization: Extends classical modal logic for broader, practical applications.
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Previous Work

. Dong & Li & Wang. Weighted Modal Logic in Epistemic and Deontic Contexts. LORI 2021.

Liang & Wang. Epistemic Logics over Weighted Graphs. LNGAI 2022.
Liang & Wang. Epistemic Logic via Distance and Similairty. PRICAI 2022.
Liang & Wang. Epistemic Skills: Logical Dynamics of Knowing and Forgetting. GandALF 2024.

Liang & Wang. Field Knowledge as a Dual to Distributed Knowledge: A characterization by
weighted modal logic. LNGAI 2024,

Liang & Wang. Characterization of Similarity Metrics in Epistemic Logic. PRICAI 2024.

7. Liang & Wang. Epistemic Skills: Reasoning about Knowledge and Oblivion. under submission.

Liang & Wang. Weighted Epistemic Logic: Skill Assessment and Rough Set Applications. under
submission.

We focus on logics under various conditions, their axiomatizations and computation complexity
Implicit weights (2-5, 7), Explicit weights (1, 6)



P: atoms
A: agents
S: epistemic skills

A model is a tuple (W,E,C,V):
« W: worlds / states / nodes
« E: Wx W — p(S): edge function
« C: A — p(S): capability function
« V: W — p(P): valuation

\

M,s = Ojpiffforallt € W,
if E(s,t) O C(i) then M,t = v

1,2,3,4 1,2,3,4




Incorporating Group
Knowledge

CK, DK, EK and FK




Notions of Group Knowledge

+ Individual knowledge: Kq¢

* Mutual/Everyone's knowledge: Egp := A\, Kx

« Common knowledge: Cgp, make sure that = Cep <> Eg(@ A Cop)
+ Distributed knowledge: D¢, to be reinterpreted

+ Field knowledge: Fgp, new

Liang X. & Wang, Y.N. Field Knowledge as a Dual to Distributed Knowledge: A Characterization by
Weighted Modal Logic. LNGAI 2024.
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Semantics
Model M = (W, E, C,V)

M,s = Kqp <= forallt € W,if C(a) C E(s,t) then M, t = v
M,s = Egp <= foralla€ G M,s k= Ky

M,sk=Cgp <= forallne Nt M,s = ER

M,s|=Dgyp <= forallte W,if(J,cqCla) C E(s,t) then M, t |=
M,s = Fgp <= forallte W,if(,c;Cla) C E(s,t) then M, t |= ¢

+ Distributed knowledge: knowledge by combing the individual skills of a group
* Field knowledge: knowledge by their common skills
Compare with standard epistemic logic:
* M,s |= Egp <= forallt € W,if (s,t) € UycqRas then M, t |= ¢
* M,s = Dgtp <= forallt € W,if (s,t) € (),cqRa then M, t = ¢
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Expressivity

(a) when |Ag| =1 (b) when |Ag| > 2




Axiomatization

* Base system: KB + System C
— (C1) Cop = Ao Kalo A Coyp)
— (@) fromp — AjcgKa(o A )
System F infer ¢ — Cgp

— (Kp) Fe(p = 9¢) — (Fgp — Fetp)
— (F1) Fiayp & K

— (F2) Fgp — FypowithHC G * System D
— (BF) ¢ — Fg—Fg—p — (Kp) DG(SO — QZ)) — (DGSD - DGw)
— (NF) from g infer Fgp — (O Dy <> Kap

— (BD) ¢ — Dg=Dg—¢
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Completeness proofs

+ By translation of satisfiability
— KB

« Canonical model method
— KB

+ Path-based canonical models (unraveling/folding)
— KB¢D, KB&SF, KB&D®F
+ Finitary path-based canonical models
— KB®C, KB&CeD, KB®CP®F, KBOECHED®F
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Model Checking: Still in P

1,2,3,4

Ss
P1,P3,P4

1,2,3,4 1,2,3,4 Clc) =

S9 ): Kap3
s4 = —Fiapy D1

s5 = —Clq,c}P1




Computational complexity of SAT
Logics with CK: EXPTIME complete
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Computational complexity of SAT
Logics without CK: PSPACE complete

K2 (n>1)
PSPACE complete

KB;
PSPACE complete

Ko (n>1)
PSPACE complete

ELS

19740



Dynamics

Knowing and forgetting




Upskilling, Downskilling and Reskilling

¢ = plop|(p—=¢)|Kep|Cep| Doy | Ecp | Fop |
(+s)a | (=s)aw | (=s)a® | (Zp)aw | Baw | Baw | Oag

M,w = (4+5)at & W,E, C*T5 8w = C‘”S(a) C(a)uS and Vx € A\{a}. C*™5(x)=C(x)
M,w = (—s)a & W,E,C*5 B,w =4 € S(a)=C(a)\Sand Vx € A\{a}. C*5(x)=C(x)
M,w = (=5)a & W,E C*=S B,w = C*“5(a)=Sand Vx € A\{a}. C*“5(x)=C(x)
M,w = (=p)a & W,E C*=, 8,w =9 C*=’(a)=C(b) and Vx € A\{a}. C*="(x)=C(x)
M,w =Hzy < forallfinite nonempty S C S, M,w = (+5)q%

M,w E By & forall finite nonempty S C S, M, w = (—g)q¥

M,w = 0Og¢ < forall finite nonempty S C S, M, w |= (=s)a%

Liang X. & Wang, Y.N. Epistemic Skills: Logical Dynamics of Knowing and Forgetting. GandALF 2024.
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Slogans
Forgetting: decrease in skills, and increase in uncertainty

APAL:"Knowable as known after an announcement.”

Slogan 1. Knowable as known after upskilling.
Slogan 2. Forgettable as unknown after downskilling.

Debate: having no access is not forgetting.
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Computational Complexity
The Model Checking Problem

+ Logics without quantifiers: in P
+ Logics with quantifiers: PSPACE complete
— Hardness: reducing the Undirected Edge Geography (UEG) problem

+ Traditional DELs with quantifiers (e.g., APAL, GAL) are of similar complexities
— Yet less flexible and hard to model oblivion
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Computational Complexity
The Model Checking Problem

+ Logics without quantifiers: in P
+ Logics with quantifiers: PSPACE complete
— Hardness: reducing the Undirected Edge Geography (UEG) problem

+ Traditional DELs with quantifiers (e.g., APAL, GAL) are of similar complexities
— Yet less flexible and hard to model oblivion

Open problems for these dynamic logics:
+ Complexity of the SAT problems
+ Axiomatizations
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Applications in Rough Sets




Understanding the Logic in Pawlak Rough Sets

Animal Size Color Type Dangerous?
(U) (R1) (R2)  (Rs) (Po)
X1 small black  bear v
X9 medium  black  bear v
X3 large  brown  dog v
Xy small black cat X
X5 medium  black  horse X
X6 large black  horse v
X7 large  brown horse v

Q-upper approx. of p: Qp = {x € U| x|, Np # 0}
Q-lower approx. of p: - Qp ={x € U [x]n, < p}

A category p is Q-exact if Qp = Qp.



Understanding the Logic in Pawlak Rough Sets

Animal Size Color Type Dangerous? + Attributes: skills
(U) (R1) (R2)  (Rs) (Po) *+ Approximation space: frame
X1 small black: bear v + Category: atomic proposition
X2 medium  black  bear v gony: . prop
X3 large  brown  dog v * Qp: Up (with € = Q)
X4 small  black  cat X « Qp: Op (withC = Q)
X5 medium  black  horse X » Q-exactness: (p <+ Op
X6 large  black  horse v - Attribute selection: solvable
X7 large  brown horse v

by model checking

Q-upper approx. of p: Qp={xc U | [x}mo Np#0}

Q-lower approx. of p:  Qp = {x € U | Mﬂo C p} Our Logic allows iteration of

attributes
A category p is Q-exact if Qp = Qp.



When Weights Represented by Fuzzy Sets

Our logic allows fuzzy attribute sets
Table: Restaurant Dataset.

Restaurant Price Level Cuisine Ambiance Wait Time p;

Pasta Palace (x1) 2 (medium) 1 (Italian) 4 15 mins 0.85
Taco Hut (xg) 1 (low) 2 (Mexican) 3 10 mins 0.75
Sushi Spot (x3) 3 (high) 3 (Japanese) 2 25 mins 0.40
Burger Bonanza (x4) 1 (low) 4 (American) 5 5mins 0.95
Curry Corner (xs) 2 (medium) 5 (Indian) 3 20 mins 0.60

Table: Fuzzy approximation space KBy = (U, Ry, Ry, R3, Ry).
Ri|x1 xp X3 X2 X5 Ro|Xx1 X X3 Xa X5 Rg|Xx1 Xp X3 Xa X5 Ra| X1 X3 X3 X2 Xg
x1/1.00 0.14 0.14 0.14 1.00 x;|1.00 0.61 0.14 0.01 0.00 x;|1.00 0.14 0.02 0.14 0.14 x;|1.00 0.61 0.14 0.61 0.61
X9|0.14 1.00 0.00 1.00 0.14 x9|0.61 1.00 0.61 0.14 0.01 x9|0.14 1.00 0.14 0.02 1.00 x;|0.67 1.00 0.02 0.61 0.14
x3/0.14 0.00 1.00 0.00 0.14 x3|0.14 0.61 1.00 0.61 0.14 x3|0.02 0.14 1.00 0.00 0.14 x3|0.14 0.02 1.00 0.00 0.61
x4|0.14 1.00 0.00 1.00 0.14 x4/0.01 0.14 0.61 1.00 0.61 x4|0.14 0.02 0.00 1.00 0.02 x4|0.61 0.61 0.00 1.00 0.02
X5(1.00 0.14 0.14 0.14 1.00 x5/0.00 0.01 0.14 0.61 1.00 x5|0.14 1.00 0.14 0.02 1.00 xs5|0.61 0.13 0.61 0.02 1.00

26/40




Extended Logics

Definition 1 (Languages). The languages L and L are generated by follow-
ing grammar, where @ and 1 represent a formula in L and LT respectively:

(L)  pu=pl-wl(p—=¢) [ Bip| (Pis*7) | (Pis*Pju)
(L) Yu=e |8y

where p € P, i,j €A, s,t €S, r€[0,1], and x € {<,<,=,>,>}.

M,wEp = peV(w)

M,’U)I:—l”(ﬁ — Mawl#w

MwkEy—x <~ if M,w =1, then M,w = x

M,w = By < forallue W, if C(i) C E(w,u), then M,u = ¢
M,wEP,xr <<= C(i)(s)*r

M:w|:Pi,s*Pj,t — C(Z)(S)*C(j)(t)

M, w = [i,s]y <= for all (i, 8)-variant C' of C, (W,E,C",V),w =%
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Skill Assessment

SAP Given a frame (W, R), a valuation function V, a world w € W, and an
L*-formula ¢, find all the capability functions C : A — FS such that
(W,R,C,V),w = .

ISAP Given a frame (W, R), a valuation function V', a world w € W, an £7-
formula ¢, an agent ¢ € A, and a partial capability function C' [a\(4):
(A\ {i}) — FS for agents other than i, find all the C' [{;; such that
(W,R,C,V),w = ¢!

CVP Given a frame (W, R), a valuation function V, a world w € W, an L-
formula ¢, and a set X of capability functions, is it true that C € X iff
(W,R,C,V),w = ¢?

ICVP Given a frame (W, R), a valuation function V, a world w € W, an £L7-
formula ¢, an agent i € A, a partial capability function C' [4\f;3: (4 \
{#}) — F'S for agents other than i, and a set X of partial capability functions
restricted to the domain {4}, is it true that C' [;3€ Xiff (W, R, C, V), w = ¢?






Computational Complexity of the Model Checking Problem

+ Logics without quantifiers: in P
+ Logics with quantifiers: PSPACE complete
— Hardness: reducing the Undirected Edge Geography (UEG) problem
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Upper Bound

We only need to consider one new skill in addition to those that already appear

Algorithm Function Val((W, E, C, B), ¢):
. Initialize: temVal «— 0

—_

2: Initialize: Sy « (Uw,veW E(W’ V)) U (Ua appears in ¢ C(a))
3: Initialize: S, «— S U {s} > Here s € S is new for Sy
4: if ... then ...
5: else if ¢ = By then
6: forallt € W do
7: Initialize: n < true
8: forall S C S; do
9: - ifS#0andt¢ Val((W,E,C?°,),y) then n «— false
10: if n = true then tmpVal <« tmpVal U {t}
11: return tmpVal
> Returns {t € W | VS C Sy : t € Val(W, E, C3*S,B),¥)}

12: elseif ... then ...
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Example: UEG Game on (G, d;)

32/40



Model M; = (W, E,C, )
W= {dl,...,d4}

* E(dm,dx) = {Sa,.a, } whenever

« C(a1) = C(ag) = C(az) = C(as) = 0 (a; is the player who performs the i's move)
* V(dj) ={pj}for1 <j<4
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Formula ¢¢
For i's move in the UEG game:

Ui :=—Kq, L A (Kg,p1 V Ko;p2 V Ka,p3 V Ko,psa)

X1:=1
X2 := (Ka;p1 A Kayp1) V (Kayp2 A KayD2) V (Kay 3 A Kayp3) V (KayPa A Ka,pa)

A A A A

X3 = (Ka;p1 A Kayp1) V (Kayp2 A Kayp2) V (Kayp3 A Kayp3) V (Ka, Pa A Ko, Pa)
V(IA<(11p1 A Kaspl) \ (Ifa1p2 A Ka3p2) \% (Ifa1p3 A Kﬂsp3) \% (Ifa1p4 A Ka3p4)
V(Ka,p1 A Kazp1) V (Ka,p2 A Kaypa) V (Ka,P3 A Kayp3) V (Ka,pa A Ka;pa)

Xi = Vigjei ((Kyp1 A Kap1) V (Kgpa A Kapa) V (Kaps A Kaps) V (Kypa A Kapa))

¥G ‘= <Eal(z/)l A =x1 N\ Kq; Hg, (_‘wZ VX2V Ka2€>a3 (@Z}S A —x3 N Kqy Hg, (_"QZ}4 \ X4))))
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The following are equivalent

* Player 1 has a winning strategy in (G, d)
* Mg,d1 = ¢
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Player 1's Move for Step 1

7

ds ds

\.

* Player 1 chooses blue: will win
* Player 1 chooses red: can loose
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First Step in the Model Checking

Mg, d1 = @g, where g is:

%(M (w]. /\ _'Xl /\ Kal Eﬂaz (_‘sz \/ X2 VIA{GzQ}a;; (w3 /\ _'X3 /\ Ka3 Eﬂa;; (_‘w‘l V X4))))

After some upskilling for ay, true in d; are:
* 1 = —Kaq, L A (Kg;p1 V Kayp2 V Ko, p3 V Kq, pa)
cx1 =1L
* Ko, Ba, (02 V x2 V Koy P, (Y3 A —x3 A Koy Bay (—10a V xa)))
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Step 1: Model Checking

Mg, d1 = (+{sdq1d5 })ay (1/11 A =x1 A Kay Bay (m92 V x2 V Kq@% (%3 A =x3 A Kag Bay (—9a V X4)))>
Mg, dy |~= (+{Sdyds } oy (1/J1 A =X1 A Koy Bay (b2 V X2 V Koy D, (03 A —x3 A Kay Bay (—1ha V X4))))

38740



Step 2: Blue Case

Mg, ds = Ba, (-2 V X2 V Ky D (13 A x5 A Kay Flay (<302 V xa)))
* Mg, ds |= (+{Sa,a, Dy (<002 V X2 V Koy D, (03 A —x3 A Koy By (—tha V xa)))
* Me,ds = (+{Sa3, })ay (-2 V X2 V Koy D¢, (th3 A —xs A Koy By (—1ha V xa)))
* Mg, ds = (+{8a,0, ey (-02 V X2 V Kay D4, (03 A —x3 A Kay Bay (—ha V xa))) (or any other

combinations)
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Step 2: Red Case

Mg, dg = Ba, (—th2 V x2 V Ka2$a3 (3 A =X A Koy Bay (—90a V Xa)))
* Mg, da [~ (+{Sapas e (702 V Xo V Koy D (3 A x5 A Kay By (b2 V xa)))
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