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Weighted Epistemic/Doxastic Models
Placeholder

• Weights denote probabilities ordegrees of knowledge/belief
— Enable quantitative analysis

• Assignable to nodes or edges in themodel

— Sometimes can be integrated intothe valuation function
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Ways to Incorporate Weights into the Logics
Focus on edge weights

• Explicitly used in the logical language
• Implicitly incorporated via a capability function in the models
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Epistemic Logic with Explicit Weights
Dong, H. & Li, X. & Wáng, Y.N. Weighted Modal Logic in Epistemic and Deontic Contexts. LORI 2021.

Epistemic language: φ ::= p | ¬φ | (φ→ φ) | □rφ (r ∈ [0, 1])

M, s: a weighted model with a designated point

Satisfaction: M, s |= p ⇐⇒ p ∈ ν(s)
M, s |= ¬ψ ⇐⇒ not M, s |= ψ
M, s |= ψ → χ ⇐⇒ if M, s |= ψ then M, s |= χ
M, s |= □rψ ⇐⇒ for all t ∈ W, if E(s, t) ≥ r then M, t |= ψ

• E(s, t): Strength of indiscernibility between states s and t
• E(s, t) ≥ r: Agent cannot distinguish s from t with strength r or lower
• Supports multi-agent extensions
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Epistemic Logic with Implicit WeightsLiang X. & Wáng, Y.N. Epistemic Logics over Weighted Graphs. LNGAI 2022.

Epistemic language: φ ::= p | ¬φ | (φ→ φ) | □φ

M, s: a weighted model with a designated point
C ∈ [0, 1] (global) or C : W → [0, 1] (local)

Satisfaction: M, s |= p ⇐⇒ p ∈ ν(s)
M, s |= ¬ψ ⇐⇒ not M, s |= ψ
M, s |= ψ → χ ⇐⇒ if M, s |= ψ then M, s |= χ
M, s |= □ψ ⇐⇒ for all t ∈ W, if E(s, t) ≥ C then M, t |= ψ

• E(s, t): Strength of indiscernibility between s and t
• E(s, t) ≥ C: Agent cannot discern between s and t with strength C or lower
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Conditions over Weighted Structures
Placeholder

• Can require a similarity metric on weights
— Congruence implies equality— Symmetry— Triangularity (optional)

• Weighted adaptations of reflexivity, transitivity, and other relational properties
Liang & Wáng. Characterization of Similarity Metrics in Epistemic Logic. PRICAI 2024.
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Different Kinds of Weights
Placeholder

• Numeric weights: represent degree of uncertainty
• Set-based weights: represent skill sets

• Generalized weights: structured as a lattice, a partial/pre-order, or totally
incomparable (potentially less practical)

• Focus today: classical and fuzzy skill sets

7 / 40



Different Kinds of Weights
Placeholder

• Numeric weights: represent degree of uncertainty
— Ordered linearly (e.g., real numbers in [0, 1])

• Set-based weights: represent skill sets
— (℘(S),⊆) forms a Boolean algebra1

• Generalized weights: structured as a lattice, a partial/pre-order, or totally
incomparable (potentially less practical)

• Focus today: classical and fuzzy skill sets

1At least a distributed lattice if not all subsets of S are included.
7 / 40



Different Kinds of Weights
Placeholder

• Numeric weights: represent degree of uncertainty
— Ordered linearly (e.g., real numbers in [0, 1])

• Set-based weights: represent skill sets
— (℘(S),⊆) forms a Boolean algebra1

• Generalized weights: structured as a lattice, a partial/pre-order, or totally
incomparable (potentially less practical)

• Focus today: classical and fuzzy skill sets

1At least a distributed lattice if not all subsets of S are included.
7 / 40



Different Kinds of Weights
Placeholder

• Numeric weights: represent degree of uncertainty
— Ordered linearly (e.g., real numbers in [0, 1])

• Set-based weights: represent skill sets
— (℘(S),⊆) forms a Boolean algebra1

• Generalized weights: structured as a lattice, a partial/pre-order, or totally
incomparable (potentially less practical)

• Focus today: classical and fuzzy skill sets

1At least a distributed lattice if not all subsets of S are included.
7 / 40



Why Weighted Modal Logics?
Applications: Epistemic, doxastic, temporal, deontic, preferential, probabilistic, etc.

• Expressing leveled uncertainty
• Quantitative modeling: Captures weights as probabilities, costs, rewards, time...

— E.g., optimize systems by finding the least costly path in weighted transition systems
• Enhanced expressivity

— Supports diverse concepts and innovative ideas
Generalization: Extends classical modal logic for broader, practical applications.
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Previous Work
Placeholder

1. Dong & Li & Wáng. Weighted Modal Logic in Epistemic and Deontic Contexts. LORI 2021.
2. Liang & Wáng. Epistemic Logics over Weighted Graphs. LNGAI 2022.
3. Liang & Wáng. Epistemic Logic via Distance and Similairty. PRICAI 2022.
4. Liang & Wáng. Epistemic Skills: Logical Dynamics of Knowing and Forgetting. GandALF 2024.
5. Liang & Wáng. Field Knowledge as a Dual to Distributed Knowledge: A characterization byweighted modal logic. LNGAI 2024.
6. Liang & Wáng. Characterization of Similarity Metrics in Epistemic Logic. PRICAI 2024.
7. Liang & Wáng. Epistemic Skills: Reasoning about Knowledge and Oblivion. under submission.
8. Liang & Wáng. Weighted Epistemic Logic: Skill Assessment and Rough Set Applications. undersubmission.
• We focus on logics under various conditions, their axiomatizations and computation complexity
• Implicit weights (2-5, 7), Explicit weights (1, 6)



Multi-Agent Weighted Models over Classical Skill Sets
Placeholder

P: atoms
A: agents
S: epistemic skills
A model is a tuple (W,E, C,V):

• W: worlds / states / nodes
• E : W ×W → ℘(S): edge function
• C : A → ℘(S): capability function
• V : W → ℘(P): valuation

M, s |= □iφ iff for all t ∈ W,
if E(s, t) ⊇ C(i) then M, t |= ψ

C(a) = {1, 2, 3}
C(b) = {2, 3, 4}
C(c) = {4}
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Incorporating Group
Knowledge

CK, DK, EK and FK



Notions of Group Knowledge
Placeholder

• Individual knowledge: Kaφ

• Mutual/Everyone’s knowledge: EGφ :=
∧

x∈G Kxφ

• Common knowledge: CGφ, make sure that |= CGφ↔ EG(φ ∧ CGφ)

• Distributed knowledge: DGφ, to be reinterpreted
• Field knowledge: FGφ, new

Liang X. & Wáng, Y.N. Field Knowledge as a Dual to Distributed Knowledge: A Characterization by
Weighted Modal Logic. LNGAI 2024.
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Semantics
Model M = (W,E, C,V)

M, s |= Kaψ ⇐⇒ for all t ∈ W, if C(a) ⊆ E(s, t) then M, t |= ψ
M, s |= EGψ ⇐⇒ for all a ∈ G, M, s |= Kaψ
M, s |= CGψ ⇐⇒ for all n ∈ N+, M, s |= En

Gψ

M, s |= DGψ ⇐⇒ for all t ∈ W, if⋃a∈G C(a) ⊆ E(s, t) then M, t |= ψ
M, s |= FGψ ⇐⇒ for all t ∈ W, if⋂a∈G C(a) ⊆ E(s, t) then M, t |= ψ

• Distributed knowledge: knowledge by combing the individual skills of a group
• Field knowledge: knowledge by their common skills

Compare with standard epistemic logic:
• M, s |= EGψ ⇐⇒ for all t ∈ W, if (s, t) ∈

⋃
a∈G Ra, then M, t |= ψ

• M, s |= DGψ ⇐⇒ for all t ∈ W, if (s, t) ∈
⋂

a∈G Ra, then M, t |= ψ
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Expressivity
Placeholder
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Axiomatization
Placeholder

• Base system: KB

• System F
— (KF) FG(φ→ ψ) → (FGφ→ FGψ)— (F1) F{a}φ↔ Kaφ— (F2) FGφ→ FHφ with H ⊆ G— (BF) φ→ FG¬FG¬φ— (NF) from φ infer FGφ

• System C
— (C1) CGφ→

∧
a∈G Ka(φ ∧ CGφ)— (C2) from φ→
∧

a∈G Ka(φ ∧ ψ)infer φ→ CGψ

• System D
— (KD) DG(φ→ ψ) → (DGφ→ DGψ)— (D1) D{a}φ↔ Kaφ— (D2) DGφ→ DHφ with G ⊆ H— (BD) φ→ DG¬DG¬φ
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Completeness proofs
Placeholder

• By translation of satisfiability
— KB

• Canonical model method
— KB

• Path-based canonical models (unraveling/folding)
— KB ⊕ D, KB ⊕ F, KB ⊕ D ⊕ F

• Finitary path-based canonical models
— KB ⊕ C, KB ⊕ C ⊕ D, KB ⊕ C ⊕ F, KB ⊕ C ⊕ D ⊕ F
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Model Checking: Still in P
Placeholder
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C(a) = {1, 2, 3}
C(b) = {2, 3, 4}
C(c) = {4}

• s2 |= Kap3

• s4 |= ¬F{a,b}¬p1

• s5 |= ¬C{a,c}p1
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Computational complexity of SAT
Logics with CK: EXPTIME complete
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Computational complexity of SAT
Logics without CK: PSPACE complete
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Dynamics

Knowing and forgetting



Upskilling, Downskilling and Reskilling
Placeholder

φ ::= p | ¬φ | (φ→ φ) | Kaφ | CGφ | DGφ | EGφ | FGφ |
(+S)aφ | (−S)aφ | (=S)aφ | (≡b)aφ | ⊞aφ | ⊟aφ | □aφ

M,w |= (+S)aψ ⇔ W,E, Ca+S, β,w |= ψ Ca+S(a)=C(a)∪S and ∀x ∈ A\{a}. Ca+S(x)=C(x)

M,w |= (−S)aψ ⇔ W,E, Ca−S, β,w |= ψ Ca−S(a)=C(a)\S and ∀x ∈ A\{a}. Ca−S(x)=C(x)

M,w |= (=S)aψ ⇔ W,E, Ca=S, β,w |= ψ Ca=S(a)=S and ∀x ∈ A\{a}. Ca=S(x)=C(x)

M,w |= (≡b)aψ⇔ W,E, Ca≡b, β,w |= ψ Ca≡b(a)=C(b) and ∀x ∈ A\{a}. Ca≡b(x)=C(x)

M,w |= ⊞aψ ⇔ for all finite nonempty S ⊆ S, M,w |= (+S)aψ

M,w |= ⊟aψ ⇔ for all finite nonempty S ⊆ S, M,w |= (−S)aψ

M,w |= □aψ ⇔ for all finite nonempty S ⊆ S, M,w |= (=S)aψ

Liang X. & Wáng, Y.N. Epistemic Skills: Logical Dynamics of Knowing and Forgetting. GandALF 2024.
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Slogans
Forgetting: decrease in skills, and increase in uncertainty

APAL:“Knowable as known after an announcement.”

Slogan 1. Knowable as known after upskilling.
Slogan 2. Forgettable as unknown after downskilling.

Debate: having no access is not forgetting.
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Computational Complexity
The Model Checking Problem

• Logics without quantifiers: in P
• Logics with quantifiers: PSPACE complete

— Hardness: reducing the Undirected Edge Geography (UEG) problem
• Traditional DELs with quantifiers (e.g., APAL, GAL) are of similar complexities

— Yet less flexible and hard to model oblivion

Open problems for these dynamic logics:
• Complexity of the SAT problems
• Axiomatizations
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Applications in Rough Sets



Understanding the Logic in Pawlak Rough Sets
Placeholder

Animal Size Color Type Dangerous?
(U) (R1) (R2) (R3) (p0)

x1 small black bear ✓

x2 medium black bear ✓

x3 large brown dog ✓

x4 small black cat ✗

x5 medium black horse ✗

x6 large black horse ✓

x7 large brown horse ✓

Q-upper approx. of p: Qp = {x ∈ U | [x]⋂
Q
∩ p ̸= ∅}

Q-lower approx. of p: Qp = {x ∈ U | [x]⋂
Q
⊆ p}

A category p is Q-exact if Qp = Qp.
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Placeholder

Animal Size Color Type Dangerous?
(U) (R1) (R2) (R3) (p0)

x1 small black bear ✓

x2 medium black bear ✓

x3 large brown dog ✓

x4 small black cat ✗

x5 medium black horse ✗

x6 large black horse ✓

x7 large brown horse ✓

Q-upper approx. of p: Qp = {x ∈ U | [x]⋂
Q
∩ p ̸= ∅}

Q-lower approx. of p: Qp = {x ∈ U | [x]⋂
Q
⊆ p}

A category p is Q-exact if Qp = Qp.

• Attributes: skills
• Approximation space: frame
• Category: atomic proposition
• Qp : □p (with C = Q)
• Qp : ♢p (with C = Q)
• Q-exactness: □p ↔ ♢p

• Attribute selection: solvable
by model checking

Our Logic allows iteration of
attributes



When Weights Represented by Fuzzy Sets
Our logic allows fuzzy attribute sets

Table: Restaurant Dataset.
Restaurant Price Level Cuisine Ambiance Wait Time p1Pasta Palace (x1) 2 (medium) 1 (Italian) 4 15 mins 0.85
Taco Hut (x2) 1 (low) 2 (Mexican) 3 10 mins 0.75
Sushi Spot (x3) 3 (high) 3 (Japanese) 2 25 mins 0.40
Burger Bonanza (x4) 1 (low) 4 (American) 5 5 mins 0.95
Curry Corner (x5) 2 (medium) 5 (Indian) 3 20 mins 0.60

Table: Fuzzy approximation space KB2 = (U,R1,R2,R3,R4).
R1 x1 x2 x3 x4 x5

x1 1.00 0.14 0.14 0.14 1.00
x2 0.14 1.00 0.00 1.00 0.14
x3 0.14 0.00 1.00 0.00 0.14
x4 0.14 1.00 0.00 1.00 0.14
x5 1.00 0.14 0.14 0.14 1.00

R2 x1 x2 x3 x4 x5

x1 1.00 0.61 0.14 0.01 0.00
x2 0.61 1.00 0.61 0.14 0.01
x3 0.14 0.61 1.00 0.61 0.14
x4 0.01 0.14 0.61 1.00 0.61
x5 0.00 0.01 0.14 0.61 1.00

R3 x1 x2 x3 x4 x5

x1 1.00 0.14 0.02 0.14 0.14
x2 0.14 1.00 0.14 0.02 1.00
x3 0.02 0.14 1.00 0.00 0.14
x4 0.14 0.02 0.00 1.00 0.02
x5 0.14 1.00 0.14 0.02 1.00

R4 x1 x2 x3 x4 x5

x1 1.00 0.61 0.14 0.61 0.61
x2 0.61 1.00 0.02 0.61 0.14
x3 0.14 0.02 1.00 0.00 0.61
x4 0.61 0.61 0.00 1.00 0.02
x5 0.61 0.13 0.61 0.02 1.00
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Extended Logics
Placeholder
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Skill Assessment
Placeholder





Computational Complexity of the Model Checking Problem
Placeholder

• Logics without quantifiers: in P
• Logics with quantifiers: PSPACE complete

— Hardness: reducing the Undirected Edge Geography (UEG) problem
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Upper Bound
We only need to consider one new skill in addition to those that already appear
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Example: UEG Game on (G, d1)
Placeholder

G =
({

d1, d2, d3, d4
}
,
{
(d1, d3), (d1, d4), (d2, d4), (d3, d4)

})
d1 d2

d3 d4
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Model MG = (W,E, C, β)
W = {d1, . . . , d4}

d1
p1

sd1d4

d2
p2

sd2d4

d3
p3

sd1d3

sd3d4

d4
p4

C(a1) = ∅
C(a2) = ∅
C(a3) = ∅
C(a4) = ∅

• E(dm, dk) = {sdmdk} whenever dm dk

• C(a1) = C(a2) = C(a3) = C(a4) = ∅ (ai is the player who performs the i’s move)
• V(dj) = {pj} for 1 ≤ j ≤ 4
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Formula φG
For i’s move in the UEG game:

ψi := ¬Kai⊥ ∧
(

Kai p1 ∨ Kai p2 ∨ Kai p3 ∨ Kai p4
)

χ1 := ⊥
χ2 := (K̂a1 p1 ∧ Ka2 p1) ∨ (K̂a1 p2 ∧ Ka2 p2) ∨ (K̂a1 p3 ∧ Ka2 p3) ∨ (K̂a1 p4 ∧ Ka2 p4)

χ3 := (K̂a1 p1 ∧ Ka2 p1) ∨ (K̂a1 p2 ∧ Ka2 p2) ∨ (K̂a1 p3 ∧ Ka2 p3) ∨ (K̂a1 p4 ∧ Ka2 p4)

∨(K̂a1 p1 ∧ Ka3 p1) ∨ (K̂a1 p2 ∧ Ka3 p2) ∨ (K̂a1 p3 ∧ Ka3 p3) ∨ (K̂a1 p4 ∧ Ka3 p4)

∨(K̂a2 p1 ∧ Ka3 p1) ∨ (K̂a2 p2 ∧ Ka3 p2) ∨ (K̂a2 p3 ∧ Ka3 p3) ∨ (K̂a2 p4 ∧ Ka3 p4)

χi :=
∨

1≤j<i

(
(K̂aj p1 ∧ Kai p1) ∨ (K̂aj p2 ∧ Kai p2) ∨ (K̂aj p3 ∧ Kai p3) ∨ (K̂aj p4 ∧ Kai p4)

)
φG := ⊠a1

(ψ1 ∧ ¬χ1 ∧ Ka1 ⊞a2 (¬ψ2 ∨ χ2 ∨ K̂a2 ⊠a3
(ψ3 ∧ ¬χ3 ∧ Ka3 ⊞a4 (¬ψ4 ∨ χ4))))
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The following are equivalent
Placeholder

• Player 1 has a winning strategy in (G, d1)

• MG, d1 |= φG
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Player 1’s Move for Step 1
Placeholder

G =
({

d1, d2, d3, d4
}
,
{
(d1, d3), (d1, d4), (d2, d4), (d3, d4)

})
d1 d2

d3 d4

• Player 1 chooses blue: will win
• Player 1 chooses red: can loose
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First Step in the Model Checking
Placeholder

MG, d1 |= φG, where φG is:

⊠a1

(
ψ1 ∧¬χ1 ∧Ka1 ⊞a2

(
¬ψ2 ∨χ2 ∨ K̂a2 ⊠a3

(ψ3 ∧¬χ3 ∧Ka3 ⊞a4 (¬ψ4 ∨χ4))
))

After some upskilling for a1, true in d1 are:
• ψ1 = ¬Ka1⊥ ∧ (Ka1 p1 ∨ Ka1 p2 ∨ Ka1 p3 ∨ Ka1 p4)

• ¬χ1 = ¬⊥
• Ka1 ⊞a2 (¬ψ2 ∨ χ2 ∨ K̂a2 ⊠a3

(ψ3 ∧ ¬χ3 ∧ Ka3 ⊞a4 (¬ψ4 ∨ χ4)))
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Step 1: Model Checking
Placeholder

d1
p1

sd1d4

d2
p2

sd2d4

d3
p3

sd1d3

sd3d4

d4
p4

C(a1) = ∅
C(a2) = ∅
C(a3) = ∅
C(a4) = ∅

MG, d1 |= (+{sd1d3})a1

(
ψ1 ∧ ¬χ1 ∧ Ka1 ⊞a2

(
¬ψ2 ∨ χ2 ∨ K̂a2 ⊠a3

(ψ3 ∧ ¬χ3 ∧ Ka3 ⊞a4 (¬ψ4 ∨ χ4))
))

MG, d1 ̸|= (+{sd1d4})a1

(
ψ1 ∧ ¬χ1 ∧ Ka1 ⊞a2

(
¬ψ2 ∨ χ2 ∨ K̂a2 ⊠a3

(ψ3 ∧ ¬χ3 ∧ Ka3 ⊞a4 (¬ψ4 ∨ χ4))
))
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Step 2: Blue Case
Placeholder

d1
p1

sd1d4

d2
p2

sd2d4

d3
p3

sd1d3

sd3d4

d4
p4

C(a1) = {sd1d3}
C(a2) = ∅
C(a3) = ∅
C(a4) = ∅

MG, d3 |= ⊞a2

(
¬ψ2 ∨ χ2 ∨ K̂a2 ⊠a3

(ψ3 ∧ ¬χ3 ∧ Ka3 ⊞a4 (¬ψ4 ∨ χ4))
)

• MG, d3 |= (+{sd1d3})a2

(
¬ψ2 ∨ χ2 ∨ K̂a2 ⊠a3

(ψ3 ∧ ¬χ3 ∧ Ka3 ⊞a4 (¬ψ4 ∨ χ4))
)

• MG, d3 |= (+{sd3d4})a2

(
¬ψ2 ∨ χ2 ∨ K̂a2 ⊠a3

(ψ3 ∧ ¬χ3 ∧ Ka3 ⊞a4 (¬ψ4 ∨ χ4))
)

• MG, d3 |= (+{sd1d4})a2

(
¬ψ2 ∨ χ2 ∨ K̂a2 ⊠a3

(ψ3 ∧ ¬χ3 ∧ Ka3 ⊞a4 (¬ψ4 ∨ χ4))
) (or any other

combinations)
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Step 2: Red Case
Placeholder

d1
p1

sd1d4

d2
p2

sd2d4

d3
p3

sd1d3

sd3d4

d4
p4

C(a1) = {sd1d4}
C(a2) = ∅
C(a3) = ∅
C(a4) = ∅

MG, d4 ̸|= ⊞a2

(
¬ψ2 ∨ χ2 ∨ K̂a2 ⊠a3

(ψ3 ∧ ¬χ3 ∧ Ka3 ⊞a4 (¬ψ4 ∨ χ4))
)

• MG, d4 ̸|= (+{sd2d4})a2

(
¬ψ2 ∨ χ2 ∨ K̂a2 ⊠a3

(ψ3 ∧ ¬χ3 ∧ Ka3 ⊞a4 (¬ψ4 ∨ χ4))
)
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