Weighted Modal Logic and Its Applications

Yì N. Wáng Shandong University https://ncml.org.cn/ynw

Shanghai, 4 August 2025

Weighted Epistemic/Doxastic Models

- Weights denote probabilities or degrees of knowledge/belief
 - Enable quantitative analysis

Weighted Epistemic/Doxastic Models

- Weights denote probabilities or degrees of knowledge/belief
 - Enable quantitative analysis
- Assignable to nodes or edges in the model

Weighted Epistemic/Doxastic Models

- Weights denote probabilities or degrees of knowledge/belief
 - Enable quantitative analysis
- Assignable to nodes or edges in the model
 - Sometimes can be integrated into the valuation function

Ways to Incorporate Weights into the Logics Focus on edge weights

- Explicitly used in the logical language
- Implicitly incorporated via a capability function in the models

Epistemic Logic with Explicit Weights

Dong, H. & Li, X. & Wáng, Y.N. Weighted Modal Logic in Epistemic and Deontic Contexts. LORI 2021.

Epistemic language:
$$arphi ::= p \mid
eg arphi \mid (arphi
ightarrow arphi) \mid \square^r arphi$$
 ($r \in [0,1]$)

M, s: a weighted model with a designated point

- E(s,t): Strength of indiscernibility between states s and t
- $E(s,t) \ge r$: Agent cannot distinguish s from t with strength r or lower
- Supports multi-agent extensions

Epistemic Logic with Implicit Weights

Liang X. & Wáng, Y.N. Epistemic Logics over Weighted Graphs. LNGAI 2022.

Epistemic language: $\varphi ::= p \mid \neg \varphi \mid (\varphi \to \varphi) \mid \Box \varphi$

 M, s : a weighted model with a designated point

 $\mathcal{C} \in [0,1]$ (global) or $\mathcal{C}: W o [0,1]$ (local)

- E(s,t): Strength of indiscernibility between s and t
- $E(s,t) \ge C$: Agent cannot discern between s and t with strength C or lower

Conditions over Weighted Structures

- Can require a similarity metric on weights
 - Congruence implies equality
 - Symmetry
 - Triangularity (optional)
- Weighted adaptations of reflexivity, transitivity, and other relational properties

Liang & Wáng. Characterization of Similarity Metrics in Epistemic Logic. PRICAI 2024.

- Numeric weights: represent degree of uncertainty
- Set-based weights: represent skill sets

- Numeric weights: represent degree of uncertainty
 - Ordered linearly (e.g., real numbers in [0, 1])
- Set-based weights: represent skill sets
 - $(\wp(S), \subseteq)$ forms a Boolean algebra¹

¹At least a distributed lattice if not all subsets of *S* are included.

- Numeric weights: represent degree of uncertainty
 - Ordered linearly (e.g., real numbers in [0, 1])
- Set-based weights: represent skill sets
 - $(\wp(S), \subseteq)$ forms a Boolean algebra¹
- Generalized weights: structured as a lattice, a partial/pre-order, or totally incomparable (potentially less practical)

¹At least a distributed lattice if not all subsets of *S* are included.

- Numeric weights: represent degree of uncertainty
 - Ordered linearly (e.g., real numbers in [0, 1])
- Set-based weights: represent skill sets
 - $(\wp(S), \subseteq)$ forms a Boolean algebra¹
- Generalized weights: structured as a lattice, a partial/pre-order, or totally incomparable (potentially less practical)

Focus today: classical and fuzzy skill sets

¹At least a distributed lattice if not all subsets of *S* are included.

Why Weighted Modal Logics?

Applications: Epistemic, doxastic, temporal, deontic, preferential, probabilistic, etc.

- Expressing leveled uncertainty
- Quantitative modeling: Captures weights as probabilities, costs, rewards, time...
 - E.g., optimize systems by finding the least costly path in weighted transition systems
- Enhanced expressivity
 - Supports diverse concepts and innovative ideas

Generalization: Extends classical modal logic for broader, practical applications.

Previous Work

- Dong & Li & Wáng. Weighted Modal Logic in Epistemic and Deontic Contexts. LORI 2021.
- 2. Liang & Wáng. Epistemic Logics over Weighted Graphs. LNGAI 2022.
- 3. Liang & Wáng. Epistemic Logic via Distance and Similairty. PRICAI 2022.
- 4. Liang & Wáng. Epistemic Skills: Logical Dynamics of Knowing and Forgetting. GandALF 2024.
- 5. Liang & Wáng. Field Knowledge as a Dual to Distributed Knowledge: A characterization by weighted modal logic. LNGAI 2024.
- 6. Liang & Wáng. Characterization of Similarity Metrics in Epistemic Logic. PRICAI 2024.
- 7. Liang & Wáng. Epistemic Skills: Reasoning about Knowledge and Oblivion. under submission.
- 8. Liang & Wáng. Weighted Epistemic Logic: Skill Assessment and Rough Set Applications. under submission.
- We focus on logics under various conditions, their axiomatizations and computation complexity
- Implicit weights (2-5, 7), Explicit weights (1, 6)

Multi-Agent Weighted Models over Classical Skill Sets

P: atoms

A: agents

S: epistemic skills

A model is a tuple (W, E, C, V):

- W: worlds / states / nodes
- $E: W \times W \rightarrow \wp(S)$: edge function
- $C: A \to \wp(S)$: capability function
- $V:W\to \wp(P)$: valuation

 $M, s \models \Box_i \varphi$ iff for all $t \in W$, if $E(s, t) \supseteq C(i)$ then $M, t \models \psi$

Incorporating Group Knowledge

CK, DK, EK and FK

Notions of Group Knowledge

- Individual knowledge: $K_a \varphi$
- Mutual/Everyone's knowledge: $E_G \varphi := \bigwedge_{x \in G} K_x \varphi$
- Common knowledge: $C_G \varphi$, make sure that $\models C_G \varphi \leftrightarrow E_G (\varphi \land C_G \varphi)$
- Distributed knowledge: $D_G \varphi$, to be reinterpreted
- Field knowledge: $F_G\varphi$, new

Liang X. & Wáng, Y.N. Field Knowledge as a Dual to Distributed Knowledge: A Characterization by Weighted Modal Logic. LNGAI 2024.

Semantics

Model M = (W, E, C, V)

```
M, s \models K_a \psi \iff \text{ for all } t \in W \text{, if } C(a) \subseteq E(s,t) \text{ then } M, t \models \psi
M, s \models E_G \psi \iff \text{ for all } a \in G, M, s \models K_a \psi
M, s \models C_G \psi \iff \text{ for all } n \in \mathbb{N}^+, M, s \models E_G^n \psi
M, s \models D_G \psi \iff \text{ for all } t \in W \text{, if } \bigcup_{a \in G} C(a) \subseteq E(s,t) \text{ then } M, t \models \psi
M, s \models F_G \psi \iff \text{ for all } t \in W \text{, if } \bigcap_{a \in G} C(a) \subseteq E(s,t) \text{ then } M, t \models \psi
```

- Distributed knowledge: knowledge by combing the individual skills of a group
- Field knowledge: knowledge by their common skills

Compare with standard epistemic logic:

- $M,s\models E_G\psi\iff ext{for all }t\in W ext{, if }(s,t)\in \bigcup_{a\in G}R_a ext{, then }M,t\models \psi$
- $M,s\models D_G\psi\iff ext{for all }t\in W, ext{ if }(s,t)\in \bigcap_{a\in G}R_a, ext{ then }M,t\models \psi$

Expressivity

Axiomatization

- Base system: KB
- System F

- (K_F)
$$F_G(\varphi \to \psi) \to (F_G \varphi \to F_G \psi)$$

— (F1)
$$F_{\{a\}}\varphi \leftrightarrow K_a\varphi$$

— (F2)
$$F_G \varphi \to F_H \varphi$$
 with $H \subseteq G$

— (BF)
$$\varphi \to F_G \neg F_G \neg \varphi$$

— (NF) from
$$\varphi$$
 infer $F_G \varphi$

— (C1)
$$C_G \varphi \to \bigwedge_{a \in G} K_a(\varphi \wedge C_G \varphi)$$

- (C2) from
$$\varphi \to \bigwedge_{a \in G} K_a(\varphi \land \psi)$$
 infer $\varphi \to C_G \psi$

System D

— (K_D)
$$D_G(\varphi \to \psi) \to (D_G \varphi \to D_G \psi)$$

— (D1)
$$D_{\{a\}}\varphi \leftrightarrow K_a\varphi$$

— (D2)
$$D_{\mathsf{G}} \varphi o D_{\mathsf{H}} \varphi$$
 with ${\mathsf{G}} \subseteq {\mathsf{H}}$

— (BD)
$$\varphi \to D_G \neg D_G \neg \varphi$$

Completeness proofs

- By translation of satisfiability
 - **KB**
- Canonical model method
 - **КВ**
- Path-based canonical models (unraveling/folding)
 - **—** $KB \oplus D$, $KB \oplus F$, $KB \oplus D \oplus F$
- Finitary path-based canonical models
 - $\ KB \oplus C, \ KB \oplus C \oplus D, \ KB \oplus C \oplus F, \ KB \oplus C \oplus D \oplus F$

Model Checking: Still in P

$$egin{aligned} s_2 &\models \mathit{K}_a \mathit{p}_3 \ s_4 &\models \neg \mathit{F}_{\{a,b\}} \neg \mathit{p}_1 \ s_5 &\models \neg \mathit{C}_{\{a,c\}} \mathit{p}_1 \end{aligned}$$

Computational complexity of SAT

Logics with CK: EXPTIME complete

Computational complexity of SAT

Logics without CK: PSPACE complete

Dynamics

Knowing and forgetting

Upskilling, Downskilling and Reskilling

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \to \varphi) \mid K_a \varphi \mid C_G \varphi \mid D_G \varphi \mid E_G \varphi \mid F_G \varphi \mid \\ (+_S)_a \varphi \mid (-_S)_a \varphi \mid (=_S)_a \varphi \mid (\equiv_b)_a \varphi \mid \boxplus_a \varphi \mid \boxminus_a \varphi \mid \square_a \varphi$$

$$\begin{array}{l} \textit{M}, \textit{w} \models (+_{\textit{S}})_{\textit{a}} \psi \Leftrightarrow \textit{W}, \textit{E}, \textit{C}^{\textit{a}+\textit{S}}, \beta, \textit{w} \models \psi \quad \textit{C}^{\textit{a}+\textit{S}}(\textit{a}) = \textit{C}(\textit{a}) \cup \textit{S} \text{ and } \forall \textit{x} \in \textit{A} \setminus \{\textit{a}\}. \; \textit{C}^{\textit{a}+\textit{S}}(\textit{x}) = \textit{C}(\textit{x}) \\ \textit{M}, \textit{w} \models (-_{\textit{S}})_{\textit{a}} \psi \Leftrightarrow \textit{W}, \textit{E}, \textit{C}^{\textit{a}-\textit{S}}, \beta, \textit{w} \models \psi \quad \textit{C}^{\textit{a}-\textit{S}}(\textit{a}) = \textit{C}(\textit{a}) \setminus \textit{S} \text{ and } \forall \textit{x} \in \textit{A} \setminus \{\textit{a}\}. \; \textit{C}^{\textit{a}-\textit{S}}(\textit{x}) = \textit{C}(\textit{x}) \\ \textit{M}, \textit{w} \models (=_{\textit{S}})_{\textit{a}} \psi \Leftrightarrow \textit{W}, \textit{E}, \textit{C}^{\textit{a}=\textit{S}}, \beta, \textit{w} \models \psi \quad \textit{C}^{\textit{a}=\textit{S}}(\textit{a}) = \textit{S} \text{ and } \forall \textit{x} \in \textit{A} \setminus \{\textit{a}\}. \; \textit{C}^{\textit{a}=\textit{S}}(\textit{x}) = \textit{C}(\textit{x}) \\ \textit{M}, \textit{w} \models (\equiv_{\textit{b}})_{\textit{a}} \psi \Leftrightarrow \textit{W}, \textit{E}, \textit{C}^{\textit{a}=\textit{b}}, \beta, \textit{w} \models \psi \quad \textit{C}^{\textit{a}=\textit{b}}(\textit{a}) = \textit{C}(\textit{b}) \text{ and } \forall \textit{x} \in \textit{A} \setminus \{\textit{a}\}. \; \textit{C}^{\textit{a}=\textit{S}}(\textit{x}) = \textit{C}(\textit{x}) \\ \textit{M}, \textit{w} \models (\equiv_{\textit{b}})_{\textit{a}} \psi \Leftrightarrow \textit{W}, \textit{E}, \textit{C}^{\textit{a}=\textit{b}}, \beta, \textit{w} \models \psi \quad \textit{C}^{\textit{a}=\textit{b}}(\textit{a}) = \textit{C}(\textit{b}) \text{ and } \forall \textit{x} \in \textit{A} \setminus \{\textit{a}\}. \; \textit{C}^{\textit{a}=\textit{S}}(\textit{x}) = \textit{C}(\textit{x}) \\ \textit{M}, \textit{w} \models (\equiv_{\textit{b}})_{\textit{a}} \psi \Leftrightarrow \textit{W}, \textit{E}, \textit{C}^{\textit{a}=\textit{b}}, \beta, \textit{w} \models \psi \quad \textit{C}^{\textit{a}=\textit{b}}(\textit{a}) = \textit{C}(\textit{b}) \text{ and } \forall \textit{x} \in \textit{A} \setminus \{\textit{a}\}. \; \textit{C}^{\textit{a}=\textit{S}}(\textit{x}) = \textit{C}(\textit{x}) \\ \textit{M}, \textit{w} \models (\equiv_{\textit{b}})_{\textit{a}} \psi \Leftrightarrow \textit{W}, \textit{E}, \textit{C}^{\textit{a}=\textit{b}}, \beta, \textit{w} \models \psi \quad \textit{C}^{\textit{a}=\textit{b}}(\textit{a}) = \textit{C}(\textit{b}) \text{ and } \forall \textit{x} \in \textit{A} \setminus \{\textit{a}\}. \; \textit{C}^{\textit{a}=\textit{S}}(\textit{x}) = \textit{C}(\textit{x}) \\ \textit{M}, \textit{w} \models (\equiv_{\textit{b}})_{\textit{a}} \psi \Leftrightarrow \textit{M}, \textit{E}, \textit{C}^{\textit{a}=\textit{b}}, \beta, \textit{w} \models \psi \quad \textit{C}^{\textit{a}=\textit{b}}(\textit{a}) = \textit{C}(\textit{b}) \text{ and } \forall \textit{x} \in \textit{A} \setminus \{\textit{a}\}. \; \textit{C}^{\textit{a}=\textit{b}}(\textit{x}) = \textit{C}(\textit{x}) \\ \textit{M}, \textit{w} \models (\equiv_{\textit{b}})_{\textit{a}} \psi \Leftrightarrow \textit{M}, \textit{E}, \textit{C}^{\textit{a}=\textit{b}}, \beta, \textit{w} \models \psi \quad \textit{C}^{\textit{a}=\textit{b}}, \beta, \textit{w} \models (\vdash_{\textit{e}})_{\textit{a}} \psi \\ \textit{M}, \textit{w} \models (\vdash_{\textit{e}})_{\textit{a}} \psi \Leftrightarrow \textit{M}, \textit{E}, \textit{C}^{\textit{a}=\textit{b}}, \beta, \textit{w} \models (\vdash_{\textit{e}})_{\textit{a}} \psi \\ \textit{M}, \textit{w} \models (\vdash_{\textit{e}})_{\textit{a}} \psi \Leftrightarrow \textit{M}, \textit{E}, \textit{C}^{\textit{a}=\textit{b}}, \beta, \textit{w} \models (\vdash_{\textit{e}})_{\textit{a}} \psi \\ \textit{A}, \textit{A},$$

Liang X. & Wáng, Y.N. Epistemic Skills: Logical Dynamics of Knowing and Forgetting. GandALF 2024.

Slogans

Forgetting: decrease in skills, and increase in uncertainty

APAL: "Knowable as known after an announcement."

Slogan 1. Knowable as known after upskilling.

Slogan 2. Forgettable as unknown after downskilling.

Debate: having no access is not forgetting.

Computational Complexity The Model Checking Problem

- · Logics without quantifiers: in P
- Logics with quantifiers: PSPACE complete
 - Hardness: reducing the Undirected Edge Geography (UEG) problem
- Traditional DELs with quantifiers (e.g., APAL, GAL) are of similar complexities
 - Yet less flexible and hard to model oblivion

Computational Complexity The Model Checking Problem

- · Logics without quantifiers: in P
- Logics with quantifiers: PSPACE complete
 - Hardness: reducing the Undirected Edge Geography (UEG) problem
- Traditional DELs with quantifiers (e.g., APAL, GAL) are of similar complexities
 - Yet less flexible and hard to model oblivion

Open problems for these dynamic logics:

- Complexity of the SAT problems
- Axiomatizations

Understanding the Logic in Pawlak Rough Sets

Animal	Size	Color	Туре	Dangerous?					
(U)	(R_1)	(R_2)	(R_3)	(p_0)					
$\overline{x_1}$	small	black	bear	✓					
x_2	medium	black	bear	✓					
x_3	large	brown	dog	✓					
x_4	small	black	cat	×					
<i>x</i> ₅	medium	black	horse	×					
<i>x</i> ₆	large	black	horse	✓					
<i>x</i> ₇	large	brown	horse	✓					

Q-upper approx. of
$$p$$
: $\overline{\mathbf{Q}}p = \{x \in U \mid [x]_{\bigcap_{\mathbf{Q}}} \cap p \neq \emptyset\}$
Q-lower approx. of p : $\underline{\mathbf{Q}}p = \{x \in U \mid [x]_{\bigcap_{\mathbf{Q}}} \subseteq p\}$

A category p is \mathbf{Q} -exact if $\mathbf{Q}p = \overline{\mathbf{Q}}p$.

Understanding the Logic in Pawlak Rough Sets

Animal	Size	Color	Туре	Dangerous?
(U)	(R_1)	(R_2)	(R_3)	(p_0)
<i>x</i> ₁	small	black	bear	✓
x_2	medium	black	bear	✓
x_3	large	brown	dog	✓
<i>x</i> ₄	small	black	cat	×
<i>x</i> ₅	medium	black	horse	×
<i>x</i> ₆	large	black	horse	✓
<i>x</i> ₇	large	brown	horse	✓

Q-upper approx. of
$$p$$
: $\overline{\mathbf{Q}}p = \{x \in U \mid [x]_{\bigcap_{\mathbf{Q}}} \cap p \neq \emptyset\}$
Q-lower approx. of p : $\underline{\mathbf{Q}}p = \{x \in U \mid [x]_{\bigcap_{\mathbf{Q}}} \subseteq p\}$

A category p is \mathbf{Q} -exact if $\mathbf{Q}p = \overline{\mathbf{Q}}p$.

- Attributes: skills
- · Approximation space: frame
- Category: atomic proposition
- $\mathbf{Q}p: \Box p$ (with $C = \mathbf{Q}$)
- $\overline{\boldsymbol{Q}}p:\Diamond p$ (with $C=\boldsymbol{Q}$)
- **Q**-exactness: $\Box p \leftrightarrow \Diamond p$
- Attribute selection: solvable by model checking

Our Logic allows iteration of attributes

When Weights Represented by Fuzzy Sets

Our logic allows fuzzy attribute sets

Table: Restaurant Dataset.

Restaurant	Price Level	Cuisine	Ambiance	Wait Time	p_1
Pasta Palace (x_1)	2 (medium)	1 (Italian)	4	15 mins	0.85
Taco Hut (x_2)	1 (low)	2 (Mexican)	3	10 mins	0.75
Sushi Spot (x_3)	3 (high)	3 (Japanese)	2	25 mins	0.40
Burger Bonanza (x_4)	1 (low)	4 (American)	5	5 mins	0.95
Curry Corner (x_5)	2 (medium)	5 (Indian)	3	20 mins	0.60

Table: Fuzzy approximation space $\mathbf{KB}_2 = (U, R_1, R_2, R_3, R_4)$.

R_1	<i>x</i> ₁	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	R_2	<i>x</i> ₁	x_2	x_3	<i>x</i> ₄	<i>x</i> ₅	R_3	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	R_4	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅
x_1	1.00	0.14	0.14	0.14	1.00	<i>x</i> ₁	1.00	0.61	0.14	0.01	0.00	<i>x</i> ₁	1.00	0.14	0.02	0.14	0.14	<i>x</i> ₁	1.00	0.61	0.14	0.61	0.61
<i>x</i> ₂	0.14	1.00	0.00	1.00	0.14	x_2	0.61	1.00	0.61	0.14	0.01	x_2	0.14	1.00	0.14	0.02	1.00	x_2	0.61	1.00	0.02	0.61	0.14
x_3	0.14	0.00	1.00	0.00	0.14	x_3	0.14	0.61	1.00	0.61	0.14	x_3	0.02	0.14	1.00	0.00	0.14	x_3	0.14	0.02	1.00	0.00	0.61
<i>x</i> ₄	0.14	1.00	0.00	1.00	0.14	<i>x</i> ₄	0.01	0.14	0.61	1.00	0.61	<i>x</i> ₄	0.14	0.02	0.00	1.00	0.02	<i>x</i> ₄	0.61	0.61	0.00	1.00	0.02
<i>x</i> ₅	1.00	0.14	0.14	0.14	1.00	<i>x</i> ₅	0.00	0.01	0.14	0.61	1.00	<i>x</i> ₅	0.14	1.00	0.14	0.02	1.00	<i>x</i> ₅	0.61	0.13	0.61	0.02	1.00

Extended Logics

Definition 1 (Languages). The languages \mathcal{L} and \mathcal{L}^+ are generated by following grammar, where φ and ψ represent a formula in \mathcal{L} and \mathcal{L}^+ respectively:

$$(\mathcal{L}) \quad \varphi ::= p \mid \neg \varphi \mid (\varphi \to \varphi) \mid B_i \varphi \mid (P_{i,s} * r) \mid (P_{i,s} * P_{j,t})$$

$$(\mathcal{L}^+) \quad \psi ::= \varphi \mid [i, s] \psi$$

where $p \in P$, $i, j \in A$, $s, t \in S$, $r \in [0, 1]$, and $* \in \{\le, <, =, >, \ge\}$.

$$\begin{array}{lll} M,w\models p &\iff p\in V(w)\\ M,w\models \neg\psi &\iff M,w\not\models\psi\\ M,w\models \psi\to\chi &\iff if\ M,w\models\psi,\ then\ M,w\models\chi\\ M,w\models B_i\psi &\iff for\ all\ u\in W,\ if\ C(i)\subseteq E(w,u),\ then\ M,u\models\psi\\ M,w\models P_{i,s}*r &\iff C(i)(s)*r\\ M,w\models P_{i,s}*P_{j,t} &\iff C(i)(s)*C(j)(t)\\ M,w\models [i,s]\psi &\iff for\ all\ (i,s)-variant\ C'\ of\ C,\ (W,E,C',V),w\models\psi \end{array}$$

Skill Assessment

- **SAP** Given a frame (W, R), a valuation function V, a world $w \in W$, and an \mathcal{L}^+ -formula φ , find all the capability functions $C: A \to FS$ such that $(W, R, C, V), w \models \varphi$.
- **ISAP** Given a frame (W, R), a valuation function V, a world $w \in W$, an \mathcal{L}^+ formula φ , an agent $i \in A$, and a partial capability function $C \upharpoonright_{A \setminus \{i\}}$: $(A \setminus \{i\}) \to FS$ for agents other than i, find all the $C \upharpoonright_{\{i\}}$ such that $(W, R, C, V), w \models \varphi$.
- **CVP** Given a frame (W, R), a valuation function V, a world $w \in W$, an \mathcal{L}^+ formula φ , and a set Σ of capability functions, is it true that $C \in \Sigma$ iff $(W, R, C, V), w \models \varphi$?
- **ICVP** Given a frame (W, R), a valuation function V, a world $w \in W$, an \mathcal{L}^+ formula φ , an agent $i \in A$, a partial capability function $C \upharpoonright_{A \setminus \{i\}} : (A \setminus \{i\}) \to FS$ for agents other than i, and a set Σ of partial capability functions
 restricted to the domain $\{i\}$, is it true that $C \upharpoonright_{\{i\}} \in \Sigma$ iff (W, R, C, V), $w \models \varphi$?

Computational Complexity of the Model Checking Problem

- · Logics without quantifiers: in P
- Logics with quantifiers: PSPACE complete
 - Hardness: reducing the Undirected Edge Geography (UEG) problem

Upper Bound

We only need to consider one new skill in addition to those that already appear

```
Algorithm Function Val((W, E, C, \beta), \varphi):
  1: Initialize: temVal \leftarrow \emptyset
 2: Initialize: S_1 \leftarrow (\bigcup_{w \ v \in W} E(w, v)) \cup (\bigcup_{a \text{ appears in } \varphi} C(a))
 3: Initialize: S_2 \leftarrow S_1 \cup \{s\}
                                                                                                            \triangleright Here s \in S is new for S_1
 4: if ... then ...
 5: else if \varphi = \boxplus_{a} \psi then
           for all t \in W do
 6.
                 Initialize: n \leftarrow \text{true}
                for all S \subseteq S_2 do
                if S \neq \emptyset and t \notin Val((W, E, C^{a+S}, \beta), \psi) then n \leftarrow false
               if n = true then tmpVal \leftarrow tmpVal \cup \{t\}
10:
           return tmpVal
11:
                                                            \triangleright Returns \{t \in W \mid \forall S \subseteq S_1 : t \in Val((W, E, C^{a+S}, \beta), \psi)\}
12: else if ... then ...
```

Example: UEG Game on (G, d_1)

Model
$$M_G = (W, E, C, \beta)$$

 $W = \{d_1, \dots, d_4\}$

- $E(d_m,d_k)=\{s_{d_md_k}\}$ whenever $\overbrace{d_m}$ $\overbrace{d_k}$
- $\mathcal{C}(a_1)=\mathcal{C}(a_2)=\mathcal{C}(a_3)=\mathcal{C}(a_4)=\emptyset$ (a_i is the player who performs the i's move)
- $V(d_j) = \{p_j\}$ for $1 \leq j \leq 4$

Formula φ_G

For i's move in the UEG game:

$$\begin{split} \psi_{i} &:= \neg K_{a_{i}} \bot \land \left(K_{a_{i}} p_{1} \lor K_{a_{i}} p_{2} \lor K_{a_{i}} p_{3} \lor K_{a_{i}} p_{4} \right) \\ \chi_{1} &:= \bot \\ \chi_{2} &:= \left(\hat{K}_{a_{1}} p_{1} \land K_{a_{2}} p_{1} \right) \lor \left(\hat{K}_{a_{1}} p_{2} \land K_{a_{2}} p_{2} \right) \lor \left(\hat{K}_{a_{1}} p_{3} \land K_{a_{2}} p_{3} \right) \lor \left(\hat{K}_{a_{1}} p_{4} \land K_{a_{2}} p_{4} \right) \\ \chi_{3} &:= \left(\hat{K}_{a_{1}} p_{1} \land K_{a_{2}} p_{1} \right) \lor \left(\hat{K}_{a_{1}} p_{2} \land K_{a_{2}} p_{2} \right) \lor \left(\hat{K}_{a_{1}} p_{3} \land K_{a_{2}} p_{3} \right) \lor \left(\hat{K}_{a_{1}} p_{4} \land K_{a_{2}} p_{4} \right) \\ & \lor \left(\hat{K}_{a_{1}} p_{1} \land K_{a_{3}} p_{1} \right) \lor \left(\hat{K}_{a_{1}} p_{2} \land K_{a_{3}} p_{2} \right) \lor \left(\hat{K}_{a_{1}} p_{3} \land K_{a_{3}} p_{3} \right) \lor \left(\hat{K}_{a_{1}} p_{4} \land K_{a_{3}} p_{4} \right) \\ & \lor \left(\hat{K}_{a_{2}} p_{1} \land K_{a_{3}} p_{1} \right) \lor \left(\hat{K}_{a_{2}} p_{2} \land K_{a_{3}} p_{2} \right) \lor \left(\hat{K}_{a_{2}} p_{3} \land K_{a_{3}} p_{3} \right) \lor \left(\hat{K}_{a_{2}} p_{4} \land K_{a_{3}} p_{4} \right) \\ \chi_{i} &:= \bigvee_{1 \le j < i} \left(\left(\hat{K}_{a_{j}} p_{1} \land K_{a_{i}} p_{1} \right) \lor \left(\hat{K}_{a_{j}} p_{2} \land K_{a_{i}} p_{2} \right) \lor \left(\hat{K}_{a_{j}} p_{3} \land K_{a_{i}} p_{3} \right) \lor \left(\hat{K}_{a_{j}} p_{4} \land K_{a_{i}} p_{4} \right) \right) \\ \varphi_{G} &:= \bigoplus_{a_{1}} \left(\psi_{1} \land \neg \chi_{1} \land K_{a_{1}} \boxminus_{a_{2}} \left(\neg \psi_{2} \lor \chi_{2} \lor \hat{K}_{a_{2}} \bigoplus_{a_{3}} \left(\psi_{3} \land \neg \chi_{3} \land K_{a_{3}} \boxminus_{a_{4}} \left(\neg \psi_{4} \lor \chi_{4} \right) \right) \right)) \end{split}$$

The following are equivalent

- Player 1 has a winning strategy in (G, d_1)
- $M_G, d_1 \models \varphi_G$

Player 1's Move for Step 1

- Player 1 chooses blue: will win
- Player 1 chooses red: can loose

First Step in the Model Checking

$$M_G$$
, $d_1 \models \varphi_G$, where φ_G is

$$M_G, d_1 \models \varphi_G$$
, where φ_G is:
$$\bigoplus_{a_1} \left(\psi_1 \wedge \neg \chi_1 \wedge K_{a_1} \boxplus_{a_2} \left(\neg \psi_2 \vee \chi_2 \vee \hat{K}_{a_2} \bigoplus_{a_3} (\psi_3 \wedge \neg \chi_3 \wedge K_{a_3} \boxplus_{a_4} (\neg \psi_4 \vee \chi_4)) \right) \right)$$

After some upskilling for a_1 , true in d_1 are:

•
$$\psi_1 = \neg K_{a_1} \bot \land (K_{a_1}p_1 \lor K_{a_1}p_2 \lor K_{a_1}p_3 \lor K_{a_1}p_4)$$

•
$$\neg \chi_1 = \neg \bot$$

•
$$K_{a_1} \boxplus_{a_2} (\neg \psi_2 \lor \chi_2 \lor \hat{K}_{a_2} \bigoplus_{a_3} (\psi_3 \land \neg \chi_3 \land K_{a_3} \boxplus_{a_4} (\neg \psi_4 \lor \chi_4)))$$

Step 1: Model Checking

$$M_{G}, d_{1} \models (+\{s_{d_{1}d_{3}}\})_{a_{1}} \Big(\psi_{1} \wedge \neg \chi_{1} \wedge K_{a_{1}} \boxplus_{a_{2}} \big(\neg \psi_{2} \vee \chi_{2} \vee \hat{K}_{a_{2}} \bigoplus_{a_{3}} (\psi_{3} \wedge \neg \chi_{3} \wedge K_{a_{3}} \boxplus_{a_{4}} (\neg \psi_{4} \vee \chi_{4})) \big) \Big)$$

$$M_{G}, d_{1} \not\models (+\{s_{d_{1}d_{4}}\})_{a_{1}} \Big(\psi_{1} \wedge \neg \chi_{1} \wedge K_{a_{1}} \boxplus_{a_{2}} \big(\neg \psi_{2} \vee \chi_{2} \vee \hat{K}_{a_{2}} \bigoplus_{a_{3}} (\psi_{3} \wedge \neg \chi_{3} \wedge K_{a_{3}} \boxplus_{a_{4}} (\neg \psi_{4} \vee \chi_{4})) \big) \Big)$$

Step 2: Blue Case

$$M_{G}, d_{3} \models \boxplus_{a_{2}} \left(\neg \psi_{2} \vee \chi_{2} \vee \hat{K}_{a_{2}} \bigoplus_{a_{3}} (\psi_{3} \wedge \neg \chi_{3} \wedge K_{a_{3}} \boxplus_{a_{4}} (\neg \psi_{4} \vee \chi_{4})) \right)$$

- $M_G, d_3 \models (+\{s_{d_1d_3}\})_{a_2} (\neg \psi_2 \vee \chi_2 \vee \hat{K}_{a_2} \bigoplus_{a_3} (\psi_3 \wedge \neg \chi_3 \wedge K_{a_3} \boxplus_{a_4} (\neg \psi_4 \vee \chi_4)))$
- $M_G, d_3 \models (+\{s_{d_3d_4}\})_{a_2} (\neg \psi_2 \lor \chi_2 \lor \hat{K}_{a_2} \bigoplus_{a_3} (\psi_3 \land \neg \chi_3 \land K_{a_3} \boxplus_{a_4} (\neg \psi_4 \lor \chi_4)))$
- M_G , $d_3 \models (+\{s_{d_1d_4}\})_{a_2} (\neg \psi_2 \lor \chi_2 \lor \hat{K}_{a_2} \bigoplus_{a_3} (\psi_3 \land \neg \chi_3 \land K_{a_3} \boxplus_{a_4} (\neg \psi_4 \lor \chi_4)))$ (or any other combinations)

Step 2: Red Case

$$\begin{aligned} M_{G}, d_{4} &\not\models \boxplus_{a_{2}} \left(\neg \psi_{2} \vee \chi_{2} \vee \hat{K}_{a_{2}} \oplus_{a_{3}} (\psi_{3} \wedge \neg \chi_{3} \wedge K_{a_{3}} \boxplus_{a_{4}} (\neg \psi_{4} \vee \chi_{4})) \right) \\ & \bullet \ M_{G}, d_{4} \not\models \left(+ \{s_{d_{2}d_{4}}\}\right)_{a_{2}} \left(\neg \psi_{2} \vee \chi_{2} \vee \hat{K}_{a_{2}} \oplus_{a_{3}} (\psi_{3} \wedge \neg \chi_{3} \wedge K_{a_{3}} \boxplus_{a_{4}} (\neg \psi_{4} \vee \chi_{4})) \right) \end{aligned}$$