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(Injective) Fraïssé classes

A class K of finite structures in a fixed (countable) signature is
called a Fraïssé class if it satisfies the following properties:

(HP) Hereditary property.
(JEP) Joint embedding property.
(AP) Amalgamation property.
It is countable, up to isomorphism.
It contains arbitrarily large finite structures.
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Joint embedding property

Figure: JEP
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Figure: AP
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(Injective) Fraïssé limits

Theorem (Fraïssé, 1954)
For every Fraïssé class K, there is a countably infinite structure
K, unique up to isomorphism, such that
(a) K is locally finite.
(b) K is ultrahomogeneous, i.e., every isomorphism between

finite substructures of K extends to an automorphism of K.
(c) Age(K) = K, where Age(K) is the class of all finite

structures embeddable in K.

Remark
K is called the Fraïssé limit of K.
A countably infinite structure satisfying (a) and (b) is called
a Fraïssé structure.
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Examples

The class of finite linear orderings is a Fraïssé class, and
its Fraïssé limit is (Q, <).
The class of finite graphs is a Fraïssé class, and its Fraïssé
limit is the random graph, also called the Rado graph R.
The class of finite metric spaces with rational distances is
a Fraïssé class, and its Fraïssé limit is the rational Urysohn
space U0.
The class of finite groups is a Fraïssé class, and its Fraïssé
limit is Philip Hall’s universal locally finite group H.
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The class of finite groups is a Fraïssé class

Let FG be the class of finite groups. Then, FG has the following
properties:

(HP) Easy.
(JEP) Let A,B ∈ FG. Take C = A× B ∈ FG.
(AP) This is proved in Section 3 of Neumann, B. H.,
Permutational products of groups, J. Aust. Math. Soc. Ser.
A, 1 (1959), 299–310.
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Definition

A Polish group is a topological group that is also a Polish space,
i.e., it is homeomorphic to a separable complete metric space.
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S∞ is a Polish group under pointwise convergence
topology.
Aut(K ) 6 S∞ is a closed subgroup, where K is a countable
structure.
Every closed subgroup G 6 S∞ is of the form G = Aut(K),
where K is a Fraïssé structure, i.e., K is locally finite and
ultrahomogeneous.
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Questions

1 When does Aut(K) have a dense conjugacy class?
2 When does Aut(K) have a comeager (equivalent to dense

Gδ) conjugacy class?
Truss call every element with comeager conjugacy class a
generic element.

3 When does Aut(K) have ample generics?
A Polish group G has ample generics if there is a
comeager orbit in its diagonal conjugacy action on Gn for
every n.

Remark
These questions are related to the JEP and AP.
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Definition of Kp

Let K be a Fraïssé class. Define Kp as the class of

{〈A, ψ : B → C〉|A,B,C ∈ K,B ⊆ A,C ⊆ A, ψ is an isomorphism}

We call
f : 〈A, ψ : B → C〉 → 〈D, ϕ : E → F 〉

is an embedding in Kp if f : A→ D is an embedding such
that f (B) ⊆ E , f (C) ⊆ F , and f ◦ ψ ⊆ ϕ ◦ f .
Once we have embeddings, we may define JEP and AP.
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Theorem (Kechris and Rosendal)
Let K be a Fraïssé class with Fraïssé limit K. Then TFAE:

1 there is a dense conjugacy class in Aut(K).
2 Kp satisfies the JEP.
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Weaker APs

A class C satisfies the CAP if it has a subclass L which is
cofinal under embeddability and L satisfies the AP.
A class C satisfies the WAP if ∀A ∈ C ∃B ∈ C and e : A→ B
such that ∀f : B → B1 and ∀g : B → B2, where B1,B2 ∈ C,
∃C ∈ C, r : B1 → C, s : B2 → C with r ◦ f ◦ e = s ◦ g ◦ e.

Remark (Truss)
Obviously, CAP⇒WAP.
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Theorem (Kechris and Rosendal)
Let K be a Fraïssé class with Fraïssé limit K. Then TFAE:

1 there is a comeager conjugacy class in Aut(K).
2 K has a generic automorphism.
3 Kp satisfies the JEP and WAP.

Remark
Thus, if Kp satisfies the JEP and CAP, then K has a generic
automorphism.
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Theorem (Kechris and Rosendal)
Let K be a Fraïssé class with Fraïssé limit K. Then TFAE:

1 there is a comeager diagonal conjugacy class in Aut(K)n

for every n.
2 Aut(K) has ample generics.
3 Kn

p satisfies the JEP and WAP for every n.

Remark
Thus, K has ample generic automorphisms if Kn

p has JEP and
CAP for every n.
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Fact
(Hodges-Hodkinson-Lascar-Shelah, 1993)
Aut(R) has ample generics.
(Solecki, 2005) Iso(U0) has ample generics.
(S., 2019) Aut(H) has ample generics.
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Consequences of ample generics

Theorem (Kechris and Rosendal)
Suppose that G is a Polish group with ample generics. Then

1 G has the small index property, i.e., every subgroup of
index less than 2ℵ0 is open.

2 every homomorphism π from G to a Polish group H is
automatically continuous.

3 G has a unique Polish group topology.
4 G is not the union of a countable chain of non-open

subgroups.
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Topological L-structures

Fix a language L consisting of relations {Ri}i∈I and functions
{fj}j∈J . A topological L-structure is a zero-dimensional,
compact, second countable space A satisfying:

closed sets RA
i ⊆ Ami for each i

continuous functions f A
j : Anj → A for each j
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Epimorphisms

Let A and B be two topological L-structures. An epimorphism
φ : A→ B is a surjective continuous function satisfying:

f B
j (φ(x1), · · · , φ(xnj )) = φ(f A

j (x1, · · · , xnj )) for each j
for each i ,

(y1, · · · , ymi ) ∈ RB
i

m

∃x1, · · · , xmi ∈ A(φ(xk ) = yk (1 ≤ k ≤ mi) and (x1, · · · , xmi ) ∈ RA
i )
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Projective Fraïssé classes

The class ∆ of finite topological L-structures is called a
projective Fraïssé class if it satisfies the following properties:

(Joint Projection Property (JPP)) for A,B ∈ ∆, there is
C ∈ ∆ and epimorphisms from C onto A and onto B.
(Projective AP) for A,B,C ∈ ∆ and epimorphism
φ1 : B → A and φ2 : C → A, there is D ∈ ∆ and
epimorphisms ψ1 : D → B and ψ2 : D → C such that
φ1 ◦ ψ1 = φ2 ◦ ψ2.
It is countable, up to isomorphism.
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Joint Projection property

Figure: JPP
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Projective Amalgamation property

Figure: Projective AP
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Projective Fraïssé limits

Theorem (Irwin-Solecki, 2006)
For every projective Fraïssé class ∆, there is a topological
L-structure D, unique up to isomorphism, such that
(L1) (projective universality) for D ∈ ∆ there is an epimorphism

from D to D
(L2) for finite discrete topological space A and continuous

function f : D→ A there is D ∈ ∆, an epimorphism
φ : D→ D, and a function f ′ : D → A such that f = f ′ ◦ φ

(L3) (projective ultrahomogeniety) for D ∈ ∆ and epimorphisms
φ1 : D→ D and φ2 : D→ D there is an isomorphism
ψ : D→ D such that φ2 = φ1 ◦ ψ

Remark
D is called the projective Fraïssé limit of ∆.
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Examples

The class of finite points is a projective Fraïssé class, and
its projective Fraïssé limit is the Cantor set.
The class of finite reflexive linear graphs is a projective
Fraïssé class, and its projective Fraïssé limit is (P,RP)
whose quotient P/RP is the pseudoarc.
The pseudoarc is the unique hereditarily indecomposable
chainable continuum, where a continuum is a compact
connected metric space.
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Theorem (Hu-S.)
The class of finite groups is a projective Fraïssé class, and its
projective Fraïssé limit F is the free profinite group on a
countably infinite set converging to 1.

Proof: The JPP is A× B and the projective AP is B ×A C.
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Profinite groups

A profinite group is the inverse limit of an inverse system of
discrete finite groups.
A profinite group is a topological group that is
zero-dimensional, compact and second countable if the
system is countable.
Let G be a group. Then its normal subgroups with finite
indices induce an inverse system. Its inverse limit is the
profinite completion of G, denoted by Ĝ.
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Definition

Let G be a profinite group. We call G the free profinite group on
a countably infinite set converging to 1, if there is a countable
B = {bn | n ∈ N} ⊆ G satisfying:

bn is converging to 1G.
for every profinite H and every f : B → H with f (bn)
converging to 1H , there is a unique continuous extension
φ : G→ H.

Remark
The free profinite group on a countably infinite set converging to
1 is unique up to isomorphism, which is the projective Fraïssé
limit F.
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Let Fω denote the free group on a countably infinite set.

Fact
(Perin-Sklinos, 2012) Nonabelian free groups are strongly
ω-homogeneous, and thus Fω is strongly ω-homogeneous.
Fω is projectively universal among countable groups, that
is, for every countable group G, there is a surjective
homomorphism ϕ : Fω → G.
(Ding, 2012) There is a topology on Fω such that its
completion is projectively universal Polish group, that is,
every Polish group is isomorphic to a quotient of it.
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Projectively homogeneity

Theorem (Hu-S.)
Fω is projectively homogeneous among finite groups, that is, for
all finite groups G, and all surjective homomorphisms
ϕ : Fω → G and ψ : Fω → G, there is an automorphism θ of Fω
such that ψ = ϕ ◦ θ.

Remark
Fω is a countable projectively universal and projectively
homogeneous group.
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Profinite completion

The profinite completion of Fω is not second countable,
and thus

F̂ω � F

Instead of profinite topology, we may revise it to get a
“restricted” profinite topology.
Fix a generating set {e1,e2, · · · ,en, · · · } for Fω. Let
S = {N E Fω | N is of finite index and contains all but finite
en’s}.
Let F̄ω denote the inverse limit of Fω of an inverse system
S,

F̄ω := lim←−
N∈S

Fω/N.
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Proposition

F̄ω ∼= F
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Profinite rigidity

Let H be a countable projectively universal and projectively
homogeneous group.
Let H̃ denote the intersection of all finite-indexed normal
subgroups of H, that is,

H̃ =
⋂
{K | K E H, [H : K ] <∞}.

Then H/H̃ is residually finite.
Free groups are residually finite.

The restricted profinite completion H/H̃ ∼= F.
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Profinite rigidity

Question
Let G be a countable, residually finite, projectively universal and
projectively homogeneous group. Then the restricted profinite
completion

G ∼= Fω ∼= F.

Is G ∼= Fω?
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Profinite rigidity open question

A finitely generated residually finite group G is profinitely rigid in
the absolute sense if whenever a finitely generated residually
finite group H satisfying Ĝ ∼= Ĥ, then G ∼= H.

Question (Remeslennikov 1979)
Is every nonabelian free group profinitely rigid in the absolute
sense?
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Profinite rigidity

The profinite rigidity fails in the case of abelian groups.

Theorem

Let F ab
ω denote the free abelian group on a countably infinite set

and let Fab denote the free profinite abelian group on a
countably infinite set converging to 1. Then there is a countable
projectively universal and projectively homogeneous abelian
group G whose restricted profinite completion is isomorphic to
Fab, but G � F ab

ω .
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Definition of Kp

Let K be a projective Fraïssé class and let K be its
projective Fraïssé limit. Let s be a binary relation symbol.
Define Kp as the class of

{(A, sA) | A ∈ K and ∃f ∈ Aut(K),∃φ : K→ A

such that φ : (K, f )→ (A, sA) is an epimorphism}

Naturally, we define epimorphisms in Kp.
Once we have epimorphisms, we may define JPP and
Projective AP.
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Theorem (Kwiatkowska)
Let K be a Projective Fraïssé class with Fraïssé limit K. Then
TFAE:

1 there is a dense conjugacy class in Aut(K).
2 Kp satisfies the JPP.

37



(Injective) Fraïssé’s construction
Topological properties of conjugacy classes

Projective Fraïssé construction
Profinite systems

The construction
Examples
Profinite groups
Topological properties of conjugacy classes

Weaker APs

A class C satisfies the CAP if it has a subclass L which is
coinitial AP.
A class C satisfies the WAP if ∀A ∈ C ∃B ∈ C and φ : B � A
such that ∀φ1 : C1 � B and ∀φ2 : C2 � B, where
C1,C2 ∈ C, ∃D ∈ C, φ3 : D � C1, φ4 : D � C2 with
φ ◦ φ1 ◦ φ3 = φ ◦ φ2 ◦ φ4.

38



(Injective) Fraïssé’s construction
Topological properties of conjugacy classes

Projective Fraïssé construction
Profinite systems

The construction
Examples
Profinite groups
Topological properties of conjugacy classes

Weaker APs

A class C satisfies the CAP if it has a subclass L which is
coinitial AP.
A class C satisfies the WAP if ∀A ∈ C ∃B ∈ C and φ : B � A
such that ∀φ1 : C1 � B and ∀φ2 : C2 � B, where
C1,C2 ∈ C, ∃D ∈ C, φ3 : D � C1, φ4 : D � C2 with
φ ◦ φ1 ◦ φ3 = φ ◦ φ2 ◦ φ4.

38



(Injective) Fraïssé’s construction
Topological properties of conjugacy classes

Projective Fraïssé construction
Profinite systems

The construction
Examples
Profinite groups
Topological properties of conjugacy classes

Weaker APs

A class C satisfies the CAP if it has a subclass L which is
coinitial AP.
A class C satisfies the WAP if ∀A ∈ C ∃B ∈ C and φ : B � A
such that ∀φ1 : C1 � B and ∀φ2 : C2 � B, where
C1,C2 ∈ C, ∃D ∈ C, φ3 : D � C1, φ4 : D � C2 with
φ ◦ φ1 ◦ φ3 = φ ◦ φ2 ◦ φ4.

38



(Injective) Fraïssé’s construction
Topological properties of conjugacy classes

Projective Fraïssé construction
Profinite systems

The construction
Examples
Profinite groups
Topological properties of conjugacy classes

Weaker APs

A class C satisfies the CAP if it has a subclass L which is
coinitial AP.
A class C satisfies the WAP if ∀A ∈ C ∃B ∈ C and φ : B � A
such that ∀φ1 : C1 � B and ∀φ2 : C2 � B, where
C1,C2 ∈ C, ∃D ∈ C, φ3 : D � C1, φ4 : D � C2 with
φ ◦ φ1 ◦ φ3 = φ ◦ φ2 ◦ φ4.

38



(Injective) Fraïssé’s construction
Topological properties of conjugacy classes

Projective Fraïssé construction
Profinite systems

The construction
Examples
Profinite groups
Topological properties of conjugacy classes

Theorem (Kwiatkowska)
Let K be a projective Fraïssé class with projective Fraïssé limit
K. Then TFAE:

1 there is a comeager conjugacy class in Aut(K).
2 K has a generic automorphism.
3 Kp satisfies the JPP and WAP.

Remark
Thus, if Kp satisfies the JEP and CAP, then K has a generic
automorphism.
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Theorem (Kwiatkowska)
Let K be a projective Fraïssé class with projective Fraïssé limit
K. Then TFAE:

1 there is a comeager diagonal conjugacy class in Aut(K)n

for every n.
2 Aut(K) has ample generics.
3 Kp

n satisfies the JEP and WAP for every n.
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Fact

(Kwiatkowska, 2012) Homeo(2N) has ample generics.
(Kwiatkowska, 2014) Aut(P) has ample generics.
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Theorem (Hu-S.)

Aut(F) has ample generics.
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Profinite systems

Let G be a profinite group. We associate a profinite system
S(G) consisting of all finite quotients of G together with all the
epimorphisms, which is an inverse system whose inverse limit
is G.

G = lim
←−

G/N,

where N EG is of finite index.

Chatzidakis considered such profinite system as an L-structure
for suitable L.
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L-structures

Let L be the language {≤,C,P,1}. The structure on S(G) is
defined as follows:

The universe is {gN | N EG is of finite index, and g ∈ G}
gN ≤ hM iff N ⊆ M
1 = gG
P(g1N1,g2N2,g3N3) iff N1 = N2 = N3 and g1g2N1 = g3N3

C(gN,hM) iff N ⊆ M and gM = hM

Basically, P is the group multiplication on the finite quotients
G/N, C is the group epimorphisms πMN , and 1 is the trivial
quotient of G.
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Many-sorted structures

The class of profinite systems S(G) is not an elementary class.
Further, Chatzidakis considered profinite systems as ω-sorted
structures, where she view L as a many-sorted language
indexed by the positive integers. She defines that gN is of sort
n iff |G/N| ≤ n. As many-sorted structures, the class of
profinite systems is an elementary class.
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Duality

Let S(G) and S(H) are two profinite systems where G and H
are profinite groups. Then every embedding

ϕ : S(G)→ S(H)

induces an epimorphism

ϕ̂ : H → G.

Also, every epimorphism

ψ : H → G

induces an embedding

ψ̌ : S(G)→ S(H).
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Proposition
The class of finite profinite systems is a Fraïssé class, and its
Fraïssé limit is S(F).
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Theorem (Cherlin-van den Dries-Macintyre, Chatzidakis)

The theory of S(F) is ω-categorical, ω-stable, and S(F) is a
saturated model.
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Theorem (Hodges, Hodkinson, Lascar, and Shelah)

If M is a countable ω-stable ω-categorical structure, then
Aut(M) has the small index property. Also, Aut(M) is not the
union of a countable chain of proper subgroups.

Corollary

Aut(F) has the small index property.

Remark
Not every ω-stable ω-categorical structure has ample generic
automorphisms.
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Future plan

Cherlin-van den Dries-Macintyre introduced the notion of
cologic. What can cologic help us to study projective
Fraïssé limits? Especially, the pseudoarc?
Give an explicit description of a generic automorphism of
F.
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Thanks!!

Thanks for your attention!
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