Projective Fraïssé limits and profinite groups

Shichang Song

Beijing Jiaotong University

7 August 2025 @ Shanghai joint work with Sulin Hu

.

(Injective) Fraïssé classes

A class $\mathcal K$ of finite structures in a fixed (countable) signature is called a Fraïssé class if it satisfies the following properties:

- (HP) Hereditary property.
- (JEP) Joint embedding property.
- (AP) Amalgamation property.
- It is countable, up to isomorphism.
- It contains arbitrarily large finite structures.

Joint embedding property

Figure: JEP

Amalgamation property

Figure: AP

(Injective) Fraïssé limits

Theorem (Fraïssé, 1954)

For every Fraïssé class K, there is a countably infinite structure \mathbb{K} , unique up to isomorphism, such that

- (a) K is locally finite.
- (b) \mathbb{K} is ultrahomogeneous, i.e., every isomorphism between finite substructures of \mathbb{K} extends to an automorphism of \mathbb{K} .
- (c) $Age(\mathbb{K}) = \mathcal{K}$, where $Age(\mathbb{K})$ is the class of all finite structures embeddable in \mathbb{K} .

Remark

- \mathbb{K} is called the Fraïssé limit of \mathcal{K} .
- A countably infinite structure satisfying (a) and (b) is called a Fraïssé structure.

- The class of finite linear orderings is a Fraïssé class, and its Fraïssé limit is (Q, <).
- The class of finite graphs is a Fraïssé class, and its Fraïssé limit is the random graph, also called the Rado graph \mathcal{R} .
- The class of finite metric spaces with rational distances is a Fraïssé class, and its Fraïssé limit is the rational Urysohr space U₀.
- The class of finite groups is a Fraïssé class, and its Fraïssé limit is Philip Hall's universal locally finite group ℍ.

- The class of finite linear orderings is a Fraïssé class, and its Fraïssé limit is (Q, <).
- The class of finite graphs is a Fraïssé class, and its Fraïssé limit is the random graph, also called the Rado graph \mathcal{R} .
- The class of finite metric spaces with rational distances is a Fraïssé class, and its Fraïssé limit is the rational Urysohr space U₀.
- The class of finite groups is a Fraïssé class, and its Fraïssé limit is Philip Hall's universal locally finite group ℍ.

- The class of finite linear orderings is a Fraïssé class, and its Fraïssé limit is (Q, <).
- The class of finite graphs is a Fraïssé class, and its Fraïssé limit is the random graph, also called the Rado graph \mathcal{R} .
- The class of finite metric spaces with rational distances is a Fraïssé class, and its Fraïssé limit is the rational Urysohn space \mathbb{U}_0 .
- The class of finite groups is a Fraïssé class, and its Fraïssé limit is Philip Hall's universal locally finite group ℍ.

- The class of finite linear orderings is a Fraïssé class, and its Fraïssé limit is (Q, <).
- The class of finite graphs is a Fraïssé class, and its Fraïssé limit is the random graph, also called the Rado graph \mathcal{R} .
- The class of finite metric spaces with rational distances is a Fraïssé class, and its Fraïssé limit is the rational Urysohn space \mathbb{U}_0 .
- The class of finite groups is a Fraïssé class, and its Fraïssé limit is Philip Hall's universal locally finite group ℍ.

- (HP) Easy.
- (JEP) Let $A, B \in \mathcal{FG}$. Take $C = A \times B \in \mathcal{FG}$.
- (AP) This is proved in Section 3 of Neumann, B. H., Permutational products of groups, J. Aust. Math. Soc. Ser. A, 1 (1959), 299–310.

- (HP) Easy.
- (JEP) Let $A, B \in \mathcal{FG}$. Take $C = A \times B \in \mathcal{FG}$.
- (AP) This is proved in Section 3 of Neumann, B. H., Permutational products of groups, J. Aust. Math. Soc. Ser. A, 1 (1959), 299–310.

- (HP) Easy.
- (JEP) Let $A, B \in \mathcal{FG}$. Take $C = A \times B \in \mathcal{FG}$.
- (AP) This is proved in Section 3 of Neumann, B. H., Permutational products of groups, J. Aust. Math. Soc. Ser. A, 1 (1959), 299–310.

- (HP) Easy.
- (JEP) Let $A, B \in \mathcal{FG}$. Take $C = A \times B \in \mathcal{FG}$.
- (AP) This is proved in Section 3 of Neumann, B. H., Permutational products of groups, J. Aust. Math. Soc. Ser. A, 1 (1959), 299–310.

(Injective) Fraïssé's construction
Topological properties of conjugacy classes
Projective Fraïssé construction
Profinite systems

Background
Dense conjugacy classes
Comeager conjugacy classes / generic elements
Ample generics

Definition

A Polish group is a topological group that is also a Polish space, *i.e.*, it is homeomorphic to a separable complete metric space.

- S_{∞} is a Polish group under pointwise convergence topology.
- $\operatorname{Aut}(K) \leqslant S_{\infty}$ is a closed subgroup, where K is a countable structure.
- Every closed subgroup $G \leqslant S_{\infty}$ is of the form $G = \operatorname{Aut}(\mathbb{K})$, where \mathbb{K} is a Fraïssé structure, *i.e.*, \mathbb{K} is locally finite and ultrahomogeneous.

- lacktriangle When does $\operatorname{Aut}(\mathbb{K})$ have a dense conjugacy class?
- When does $\operatorname{Aut}(\mathbb{K})$ have a comeager (equivalent to dense G_{δ}) conjugacy class? Truss call every element with comeager conjugacy class a generic element.
- When does $Aut(\mathbb{K})$ have ample generics? A Polish group G has ample generics if there is a comeager orbit in its diagonal conjugacy action on G^n for every n.

Remark

- lacktriangle When does $\operatorname{Aut}(\mathbb{K})$ have a dense conjugacy class?
- **②** When does $\operatorname{Aut}(\mathbb{K})$ have a comeager (equivalent to dense G_{δ}) conjugacy class?
 - Truss call every element with comeager conjugacy class a generic element.
- When does Aut(K) have ample generics? A Polish group G has ample generics if there is a comeager orbit in its diagonal conjugacy action on Gⁿ for every n.

Remark

- lacktriangle When does $\operatorname{Aut}(\mathbb{K})$ have a dense conjugacy class?
- When does $\operatorname{Aut}(\mathbb{K})$ have a comeager (equivalent to dense G_{δ}) conjugacy class? Truss call every element with comeager conjugacy class a generic element.
- When does Aut(K) have ample generics? A Polish group G has ample generics if there is a comeager orbit in its diagonal conjugacy action on Gⁿ for every n.

Remark

- lacktriangle When does $\operatorname{Aut}(\mathbb{K})$ have a dense conjugacy class?
- ② When does $\operatorname{Aut}(\mathbb{K})$ have a comeager (equivalent to dense G_{δ}) conjugacy class? Truss call every element with comeager conjugacy class a generic element.
- When does Aut(K) have ample generics? A Polish group G has ample generics if there is a comeager orbit in its diagonal conjugacy action on Gⁿ for every n.

Remark

- lacktriangle When does $\operatorname{Aut}(\mathbb{K})$ have a dense conjugacy class?
- When does $\operatorname{Aut}(\mathbb{K})$ have a comeager (equivalent to dense G_{δ}) conjugacy class? Truss call every element with comeager conjugacy class a generic element.
- When does $\operatorname{Aut}(\mathbb{K})$ have ample generics? A Polish group G has ample generics if there is a comeager orbit in its diagonal conjugacy action on G^n for every n.

Remark

- lacktriangle When does $\operatorname{Aut}(\mathbb{K})$ have a dense conjugacy class?
- When does $\operatorname{Aut}(\mathbb{K})$ have a comeager (equivalent to dense G_{δ}) conjugacy class? Truss call every element with comeager conjugacy class a generic element.
- When does Aut(K) have ample generics? A Polish group G has ample generics if there is a comeager orbit in its diagonal conjugacy action on Gⁿ for every n.

Remark

Definition of \mathcal{K}_p

 \bullet Let ${\mathcal K}$ be a Fraïssé class. Define ${\mathcal K}_p$ as the class of

$$\{\langle \textit{A}, \psi \colon \textit{B} \rightarrow \textit{C} \rangle | \textit{A}, \textit{B}, \textit{C} \in \mathcal{K}, \textit{B} \subseteq \textit{A}, \textit{C} \subseteq \textit{A}, \psi \text{ is an isomorphism} \}$$

We call

$$f: \langle A, \psi \colon B \to C \rangle \to \langle D, \varphi \colon E \to F \rangle$$

is an embedding in \mathcal{K}_p if $f: A \to D$ is an embedding such that $f(B) \subseteq E$, $f(C) \subseteq F$, and $f \circ \psi \subseteq \varphi \circ f$.

Once we have embeddings, we may define JEP and AP.

Definition of \mathcal{K}_p

 \bullet Let ${\mathcal K}$ be a Fraïssé class. Define ${\mathcal K}_p$ as the class of

$$\{\langle \textit{A}, \psi \colon \textit{B} \rightarrow \textit{C} \rangle | \textit{A}, \textit{B}, \textit{C} \in \mathcal{K}, \textit{B} \subseteq \textit{A}, \textit{C} \subseteq \textit{A}, \psi \text{ is an isomorphism} \}$$

We call

$$f: \langle A, \psi \colon B \to C \rangle \to \langle D, \varphi \colon E \to F \rangle$$

is an embedding in \mathcal{K}_p if $f: A \to D$ is an embedding such that $f(B) \subseteq E$, $f(C) \subseteq F$, and $f \circ \psi \subseteq \varphi \circ f$.

Once we have embeddings, we may define JEP and AP.

Definition of \mathcal{K}_p

• Let $\mathcal K$ be a Fraïssé class. Define $\mathcal K_p$ as the class of

$$\{\langle \textit{A}, \psi \colon \textit{B} \rightarrow \textit{C} \rangle | \textit{A}, \textit{B}, \textit{C} \in \mathcal{K}, \textit{B} \subseteq \textit{A}, \textit{C} \subseteq \textit{A}, \psi \text{ is an isomorphism} \}$$

We call

$$f: \langle A, \psi : B \to C \rangle \to \langle D, \varphi : E \to F \rangle$$

is an embedding in \mathcal{K}_p if $f : A \to D$ is an embedding such that $f(B) \subseteq E$, $f(C) \subseteq F$, and $f \circ \psi \subseteq \varphi \circ f$.

Once we have embeddings, we may define JEP and AP.

Background Dense conjugacy classes Comeager conjugacy classes / generic elements Ample generics

Theorem (Kechris and Rosendal)

Let K be a Fraïssé class with Fraïssé limit K. Then TFAE:

- there is a dense conjugacy class in $Aut(\mathbb{K})$.

Background Dense conjugacy classes Comeager conjugacy classes / generic elements Ample generics

Theorem (Kechris and Rosendal)

Let K be a Fraïssé class with Fraïssé limit K. Then TFAE:

- there is a dense conjugacy class in $Aut(\mathbb{K})$.

- A class $\mathcal C$ satisfies the CAP if it has a subclass $\mathcal L$ which is cofinal under embeddability and $\mathcal L$ satisfies the AP.
- A class C satisfies the WAP if $\forall A \in C \exists B \in C$ and $e: A \to B$ such that $\forall f: B \to B_1$ and $\forall g: B \to B_2$, where $B_1, B_2 \in C$, $\exists C \in C, r: B_1 \to C, s: B_2 \to C$ with $r \circ f \circ e = s \circ g \circ e$.

Remark (Truss

- A class $\mathcal C$ satisfies the CAP if it has a subclass $\mathcal L$ which is cofinal under embeddability and $\mathcal L$ satisfies the AP.
- A class C satisfies the WAP if $\forall A \in C \exists B \in C$ and $e: A \to B$ such that $\forall f: B \to B_1$ and $\forall g: B \to B_2$, where $B_1, B_2 \in C$, $\exists C \in C, r: B_1 \to C, s: B_2 \to C$ with $r \circ f \circ e = s \circ g \circ e$.

Remark (Truss

- A class $\mathcal C$ satisfies the CAP if it has a subclass $\mathcal L$ which is cofinal under embeddability and $\mathcal L$ satisfies the AP.
- A class C satisfies the WAP if $\forall A \in C \exists B \in C$ and $e: A \to B$ such that $\forall f: B \to B_1$ and $\forall g: B \to B_2$, where $B_1, B_2 \in C$, $\exists C \in C, r: B_1 \to C, s: B_2 \to C$ with $r \circ f \circ e = s \circ g \circ e$.

Remark (Truss

- A class $\mathcal C$ satisfies the CAP if it has a subclass $\mathcal L$ which is cofinal under embeddability and $\mathcal L$ satisfies the AP.
- A class C satisfies the WAP if $\forall A \in C \exists B \in C$ and $e: A \to B$ such that $\forall f: B \to B_1$ and $\forall g: B \to B_2$, where $B_1, B_2 \in C$, $\exists C \in C, r: B_1 \to C, s: B_2 \to C$ with $r \circ f \circ e = s \circ g \circ e$.

Remark (Truss

- A class $\mathcal C$ satisfies the CAP if it has a subclass $\mathcal L$ which is cofinal under embeddability and $\mathcal L$ satisfies the AP.
- A class $\mathcal C$ satisfies the WAP if $\forall A \in \mathcal C \exists B \in \mathcal C$ and $e: A \to B$ such that $\forall f: B \to B_1$ and $\forall g: B \to B_2$, where $B_1, B_2 \in \mathcal C$, $\exists C \in \mathcal C, r: B_1 \to C, s: B_2 \to C$ with $r \circ f \circ e = s \circ g \circ e$.

Remark (Truss)

Obviously, CAP \Rightarrow WAP.

Let K be a Fraïssé class with Fraïssé limit K. Then TFAE:

- \bullet there is a comeager conjugacy class in $Aut(\mathbb{K})$.
- **3** \mathcal{K}_p satisfies the JEP and WAP.

Remark

Thus, if \mathcal{K}_p satisfies the JEP and CAP, then \mathbb{K} has a generic automorphism.

Let K be a Fraïssé class with Fraïssé limit K. Then TFAE:

- \bullet there is a comeager conjugacy class in $Aut(\mathbb{K})$.
- **3** \mathcal{K}_p satisfies the JEP and WAP.

Remark

Thus, if \mathcal{K}_p satisfies the JEP and CAP, then \mathbb{K} has a generic automorphism.

Let K be a Fraïssé class with Fraïssé limit K. Then TFAE:

- there is a comeager diagonal conjugacy class in $\operatorname{Aut}(\mathbb{K})^n$ for every n.
- 2 Aut(\mathbb{K}) has ample generics.
- **3** \mathcal{K}_p^n satisfies the JEP and WAP for every n.

Remark

Thus, \mathbb{K} has ample generic automorphisms if \mathcal{K}_p^n has JEP and CAP for every n.

Let K be a Fraïssé class with Fraïssé limit K. Then TFAE:

- there is a comeager diagonal conjugacy class in $\operatorname{Aut}(\mathbb{K})^n$ for every n.
- 2 Aut(\mathbb{K}) has ample generics.
- **3** \mathcal{K}_p^n satisfies the JEP and WAP for every n.

Remark

Thus, \mathbb{K} has ample generic automorphisms if \mathcal{K}_p^n has JEP and CAP for every n.

Fact

- (Hodges-Hodkinson-Lascar-Shelah, 1993) $\operatorname{Aut}(\mathcal{R})$ has ample generics.
- (Solecki, 2005) Iso(U₀) has ample generics.
- (S., 2019) Aut(H) has ample generics.

Fact

- (Hodges-Hodkinson-Lascar-Shelah, 1993)
 Aut(R) has ample generics.
- (Solecki, 2005) Iso(U₀) has ample generics.
- (S., 2019) Aut(ℍ) has ample generics.

Fact

- (Hodges-Hodkinson-Lascar-Shelah, 1993)
 Aut(R) has ample generics.
- (Solecki, 2005) Iso(U₀) has ample generics.
- (S., 2019) Aut(ℍ) has ample generics.

Consequences of ample generics

Theorem (Kechris and Rosendal)

Suppose that G is a Polish group with ample generics. Then

- G has the small index property, i.e., every subgroup of index less than 2^{\aleph_0} is open.
- every homomorphism π from G to a Polish group H is automatically continuous.
- G has a unique Polish group topology.
- G is not the union of a countable chain of non-open subgroups.

Topological L-structures

Fix a language L consisting of relations $\{R_i\}_{i\in I}$ and functions $\{f_j\}_{j\in J}$. A *topological L-structure* is a zero-dimensional, compact, second countable space A satisfying:

- closed sets $R_i^A \subseteq A^{m_i}$ for each i
- continuous functions $f_j^A : A^{n_j} \to A$ for each j

Epimorphisms

Let *A* and *B* be two topological *L*-structures. An *epimorphism* $\phi: A \to B$ is a surjective continuous function satisfying:

•
$$f_i^B(\phi(x_1), \cdots, \phi(x_{n_j})) = \phi(f_i^A(x_1, \cdots, x_{n_j}))$$
 for each j

• for each i,

$$(y_1,\cdots,y_{m_i})\in R_i^B$$

$$\exists x_1, \cdots, x_{m_i} \in A(\phi(x_k) = y_k (1 \le k \le m_i) \text{ and } (x_1, \cdots, x_{m_i}) \in R_i^A)$$

Projective Fraïssé classes

The class Δ of finite topological *L*-structures is called a projective Fraïssé class if it satisfies the following properties:

- (Joint Projection Property (JPP)) for $A, B \in \Delta$, there is $C \in \Delta$ and epimorphisms from C onto A and onto B.
- (Projective AP) for $A, B, C \in \Delta$ and epimorphism $\phi_1 : B \to A$ and $\phi_2 : C \to A$, there is $D \in \Delta$ and epimorphisms $\psi_1 : D \to B$ and $\psi_2 : D \to C$ such that $\phi_1 \circ \psi_1 = \phi_2 \circ \psi_2$.
- It is countable, up to isomorphism.

The construction
Examples
Profinite groups
Topological properties of conjugacy classe:

Joint Projection property

Figure: JPP

Projective Amalgamation property

Figure: Projective AP

Projective Fraïssé limits

Theorem (Irwin-Solecki, 2006)

For every projective Fraïssé class Δ , there is a topological L-structure \mathbb{D} , unique up to isomorphism, such that

- (L1) (projective universality) for $D \in \Delta$ there is an epimorphism from $\mathbb D$ to D
- (L2) for finite discrete topological space A and continuous function $f: \mathbb{D} \to A$ there is $D \in \Delta$, an epimorphism $\phi: \mathbb{D} \to D$, and a function $f': D \to A$ such that $f = f' \circ \phi$
- (L3) (projective ultrahomogeniety) for $D \in \Delta$ and epimorphisms $\phi_1 : \mathbb{D} \to D$ and $\phi_2 : \mathbb{D} \to D$ there is an isomorphism $\psi : \mathbb{D} \to \mathbb{D}$ such that $\phi_2 = \phi_1 \circ \psi$

Remark

 \mathbb{D} is called the projective Fraïssé limit of Δ .

Examples

- The class of finite points is a projective Fraïssé class, and its projective Fraïssé limit is the Cantor set.
- The class of finite reflexive linear graphs is a projective Fraïssé class, and its projective Fraïssé limit is $(\mathbb{P}, R^{\mathbb{P}})$ whose quotient $\mathbb{P}/R^{\mathbb{P}}$ is the pseudoarc.
- The pseudoarc is the unique hereditarily indecomposable chainable continuum, where a continuum is a compact connected metric space.

Examples

- The class of finite points is a projective Fraïssé class, and its projective Fraïssé limit is the Cantor set.
- The class of finite reflexive linear graphs is a projective Fraïssé class, and its projective Fraïssé limit is $(\mathbb{P}, R^{\mathbb{P}})$ whose quotient $\mathbb{P}/R^{\mathbb{P}}$ is the pseudoarc.
- The pseudoarc is the unique hereditarily indecomposable chainable continuum, where a continuum is a compact connected metric space.

Examples

- The class of finite points is a projective Fraïssé class, and its projective Fraïssé limit is the Cantor set.
- The class of finite reflexive linear graphs is a projective Fraïssé class, and its projective Fraïssé limit is $(\mathbb{P}, R^{\mathbb{P}})$ whose quotient $\mathbb{P}/R^{\mathbb{P}}$ is the pseudoarc.
- The pseudoarc is the unique hereditarily indecomposable chainable continuum, where a continuum is a compact connected metric space.

The construction

Examples

Profinite groups

Topological properties of conjugacy classes

Theorem (Hu-S.)

The class of finite groups is a projective Fraïssé class, and its projective Fraïssé limit \mathbb{F} is the free profinite group on a countably infinite set converging to 1.

Proof: The JPP is $A \times B$ and the projective AP is $B \times_A C$.

The construction

Examples

Profinite groups

Topological properties of conjugacy classes

Theorem (Hu-S.)

The class of finite groups is a projective Fraïssé class, and its projective Fraïssé limit \mathbb{F} is the free profinite group on a countably infinite set converging to 1.

Proof: The JPP is $A \times B$ and the projective AP is $B \times_A C$.

Profinite groups

- A profinite group is the inverse limit of an inverse system of discrete finite groups.
- A profinite group is a topological group that is zero-dimensional, compact and second countable if the system is countable.
- Let G be a group. Then its normal subgroups with finite indices induce an inverse system. Its inverse limit is the profinite completion of G, denoted by G.

Definition

Let G be a profinite group. We call G the *free profinite group on a countably infinite set converging to 1*, if there is a countable $B = \{b_n \mid n \in \mathbb{N}\} \subseteq G$ satisfying:

- b_n is converging to 1_G .
- for every profinite H and every f: B → H with f(b_n)
 converging to 1_H, there is a unique continuous extension
 φ: G → H.

Remark

The free profinite group on a countably infinite set converging to 1 is unique up to isomorphism, which is the projective Fraïssé limit \mathbb{F} .

Let F_{ω} denote the free group on a countably infinite set.

Fact

- (Perin-Sklinos, 2012) Nonabelian free groups are strongly ω -homogeneous, and thus F_{ω} is strongly ω -homogeneous.
- F_{ω} is projectively universal among countable groups, that is, for every countable group G, there is a surjective homomorphism $\varphi \colon F_{\omega} \to G$.
- (Ding, 2012) There is a topology on F_{ω} such that its completion is projectively universal Polish group, that is, every Polish group is isomorphic to a quotient of it.

Projectively homogeneity

Theorem (Hu-S.)

 F_{ω} is projectively homogeneous among finite groups, that is, for all finite groups G, and all surjective homomorphisms $\varphi\colon F_{\omega}\to G$ and $\psi\colon F_{\omega}\to G$, there is an automorphism θ of F_{ω} such that $\psi=\varphi\circ\theta$.

Remark

 F_{ω} is a countable projectively universal and projectively homogeneous group.

Projectively homogeneity

Theorem (Hu-S.)

 F_{ω} is projectively homogeneous among finite groups, that is, for all finite groups G, and all surjective homomorphisms $\varphi\colon F_{\omega}\to G$ and $\psi\colon F_{\omega}\to G$, there is an automorphism θ of F_{ω} such that $\psi=\varphi\circ\theta$.

Remark

 F_{ω} is a countable projectively universal and projectively homogeneous group.

$$\hat{\mathcal{F}_{\omega}} \ncong \mathbb{F}$$

- Instead of profinite topology, we may revise it to get a "restricted" profinite topology.
- Fix a generating set $\{e_1, e_2, \cdots, e_n, \cdots\}$ for F_{ω} . Let $S = \{N \leq F_{\omega} \mid N \text{ is of finite index and contains all but finite } e_n\text{'s}\}.$
- Let \bar{F}_{ω} denote the inverse limit of F_{ω} of an inverse system S.

$$ar{\mathcal{F}_{\omega}} := arprojlim_{ar{\mathcal{N}} \in \mathcal{S}} \mathcal{F}_{\omega}/N$$

$$\hat{\mathcal{F}_{\omega}} \ncong \mathbb{F}$$

- Instead of profinite topology, we may revise it to get a "restricted" profinite topology.
- Fix a generating set $\{e_1, e_2, \dots, e_n, \dots\}$ for F_{ω} . Let $S = \{N \leq F_{\omega} \mid N \text{ is of finite index and contains all but finite } e_n\text{'s}\}.$
- Let \bar{F}_{ω} denote the inverse limit of F_{ω} of an inverse system S,

$$ar{\mathcal{F}_{\omega}} := arprojlim_{ar{\mathcal{N}} \in \mathcal{S}} \mathcal{F}_{\omega}/N$$

$$\hat{F_{\omega}} \ncong \mathbb{F}$$

- Instead of profinite topology, we may revise it to get a "restricted" profinite topology.
- Fix a generating set $\{e_1, e_2, \cdots, e_n, \cdots\}$ for F_{ω} . Let $S = \{N \leq F_{\omega} \mid N \text{ is of finite index and contains all but finite } e_n\text{'s}\}.$
- Let \bar{F}_{ω} denote the inverse limit of F_{ω} of an inverse system S.

$$\bar{F}_{\omega} := \varprojlim_{N \in S} F_{\omega}/N.$$

$$\hat{F_{\omega}} \ncong \mathbb{F}$$

- Instead of profinite topology, we may revise it to get a "restricted" profinite topology.
- Fix a generating set $\{e_1, e_2, \cdots, e_n, \cdots\}$ for F_{ω} . Let $S = \{N \leq F_{\omega} \mid N \text{ is of finite index and contains all but finite } e_n\text{'s}\}.$
- Let \bar{F}_{ω} denote the inverse limit of F_{ω} of an inverse system S.

$$ar{\mathcal{F}}_{\omega} := arprojlim_{oldsymbol{N} \in \mathcal{S}} \mathcal{F}_{\omega}/\mathcal{N}.$$

(Injective) Fraïssé's construction Topological properties of conjugacy classes **Projective Fraïssé construction**

The construction
Examples
Profinite groups
Topological properties of conjugacy classe

Proposition

$$ar{\mathcal{F}_{\!\omega}}\cong\mathbb{F}$$

- Let H be a countable projectively universal and projectively homogeneous group.
- Let H denote the intersection of all finite-indexed normal subgroups of H, that is,

$$\widetilde{H} = \bigcap \{K \mid K \leq H, [H : K] < \infty\}.$$

- Then H/\widetilde{H} is residually finite.
- Free groups are residually finite.
- The restricted profinite completion $H/\widetilde{H} \cong \mathbb{F}$.

- Let H be a countable projectively universal and projectively homogeneous group.
- Let \widetilde{H} denote the intersection of all finite-indexed normal subgroups of H, that is,

$$\widetilde{H} = \bigcap \{K \mid K \leq H, [H : K] < \infty\}.$$

- Then H/\widetilde{H} is residually finite.
- Free groups are residually finite.
- The restricted profinite completion $H/\widetilde{H} \cong \mathbb{F}$.

- Let H be a countable projectively universal and projectively homogeneous group.
- Let \widetilde{H} denote the intersection of all finite-indexed normal subgroups of H, that is,

$$\widetilde{H} = \bigcap \{K \mid K \leq H, [H : K] < \infty\}.$$

- Then H/\widetilde{H} is residually finite.
- Free groups are residually finite.
- The restricted profinite completion $H/\widetilde{H} \cong \mathbb{F}$.

- Let H be a countable projectively universal and projectively homogeneous group.
- Let \widetilde{H} denote the intersection of all finite-indexed normal subgroups of H, that is,

$$\widetilde{H} = \bigcap \{K \mid K \leq H, [H : K] < \infty\}.$$

- Then H/\widetilde{H} is residually finite.
- Free groups are residually finite.
- The restricted profinite completion $H/\widetilde{H} \cong \mathbb{F}$.

- Let H be a countable projectively universal and projectively homogeneous group.
- Let \widetilde{H} denote the intersection of all finite-indexed normal subgroups of H, that is,

$$\widetilde{H} = \bigcap \{K \mid K \leq H, [H : K] < \infty\}.$$

- Then H/\widetilde{H} is residually finite.
- Free groups are residually finite.
- The restricted profinite completion $H/\widetilde{H} \cong \mathbb{F}$.

Question

Let G be a countable, residually finite, projectively universal and projectively homogeneous group. Then the restricted profinite completion

$$\overline{G}\cong \overline{F_{\omega}}\cong \mathbb{F}.$$

Is
$$G \cong F_{\omega}$$
?

The construction
Examples
Profinite groups
Topological properties of conjugacy classe

Profinite rigidity open question

A finitely generated residually finite group G is profinitely rigid in the absolute sense if whenever a finitely generated residually finite group H satisfying $\hat{G} \cong \hat{H}$, then $G \cong H$.

Question (Remeslennikov 1979)

Is every nonabelian free group profinitely rigid in the absolute sense?

The construction
Examples
Profinite groups
Topological properties of conjugacy classe

Profinite rigidity open question

A finitely generated residually finite group G is profinitely rigid in the absolute sense if whenever a finitely generated residually finite group H satisfying $\hat{G} \cong \hat{H}$, then $G \cong H$.

Question (Remeslennikov 1979)

Is every nonabelian free group profinitely rigid in the absolute sense?

The profinite rigidity fails in the case of abelian groups.

Theorem

Let F_{ω}^{ab} denote the free abelian group on a countably infinite set and let \mathbb{F}^{ab} denote the free profinite abelian group on a countably infinite set converging to 1. Then there is a countable projectively universal and projectively homogeneous abelian group G whose restricted profinite completion is isomorphic to \mathbb{F}^{ab} , but $G \ncong F_{\omega}^{ab}$.

Definition of \mathcal{K}^p

• Let \mathcal{K} be a projective Fraïssé class and let \mathbb{K} be its projective Fraïssé limit. Let s be a binary relation symbol. Define \mathcal{K}^p as the class of

$$\{(A, s^A) \mid A \in \mathcal{K} \text{ and } \exists f \in \operatorname{Aut}(\mathbb{K}), \exists \phi \colon \mathbb{K} \to A$$

such that $\phi \colon (\mathbb{K}, f) \to (A, s^A)$ is an epimorphism}

- Naturally, we define epimorphisms in $\mathcal{K}_{\mathcal{D}}$.
- Once we have epimorphisms, we may define JPP and Projective AP.

Definition of \mathcal{K}^p

• Let \mathcal{K} be a projective Fraïssé class and let \mathbb{K} be its projective Fraïssé limit. Let s be a binary relation symbol. Define \mathcal{K}^p as the class of

$$\{(A, s^A) \mid A \in \mathcal{K} \text{ and } \exists f \in \operatorname{Aut}(\mathbb{K}), \exists \phi \colon \mathbb{K} \to A$$

such that $\phi \colon (\mathbb{K}, f) \to (A, s^A)$ is an epimorphism}

- Naturally, we define epimorphisms in \mathcal{K}_p .
- Once we have epimorphisms, we may define JPP and Projective AP.

Definition of \mathcal{K}^p

• Let \mathcal{K} be a projective Fraïssé class and let \mathbb{K} be its projective Fraïssé limit. Let s be a binary relation symbol. Define \mathcal{K}^p as the class of

$$\{(A, s^A) \mid A \in \mathcal{K} \text{ and } \exists f \in \operatorname{Aut}(\mathbb{K}), \exists \phi \colon \mathbb{K} \to A$$

such that $\phi \colon (\mathbb{K}, f) \to (A, s^A)$ is an epimorphism $\}$

- Naturally, we define epimorphisms in \mathcal{K}_p .
- Once we have epimorphisms, we may define JPP and Projective AP.

Theorem (Kwiatkowska)

Let K be a Projective Fraïssé class with Fraïssé limit K. Then TFAE:

- there is a dense conjugacy class in $Aut(\mathbb{K})$.
- \[
 \mathcal{K}^p\] satisfies the JPP.
 \[
 \]

- A class $\mathcal C$ satisfies the CAP if it has a subclass $\mathcal L$ which is coinitial AP.
- A class $\mathcal C$ satisfies the WAP if $\forall A \in \mathcal C \exists B \in \mathcal C$ and $\phi \colon B \twoheadrightarrow A$ such that $\forall \phi_1 \colon C_1 \twoheadrightarrow B$ and $\forall \phi_2 \colon C_2 \twoheadrightarrow B$, where $C_1, C_2 \in \mathcal C, \exists D \in \mathcal C, \phi_3 \colon D \twoheadrightarrow C_1, \phi_4 \colon D \twoheadrightarrow C_2$ with $\phi \circ \phi_1 \circ \phi_3 = \phi \circ \phi_2 \circ \phi_4$.

- A class $\mathcal C$ satisfies the CAP if it has a subclass $\mathcal L$ which is coinitial AP.
- A class \mathcal{C} satisfies the WAP if $\forall A \in \mathcal{C} \exists B \in \mathcal{C}$ and $\phi \colon B \twoheadrightarrow A$ such that $\forall \phi_1 \colon C_1 \twoheadrightarrow B$ and $\forall \phi_2 \colon C_2 \twoheadrightarrow B$, where $C_1, C_2 \in \mathcal{C}, \exists D \in \mathcal{C}, \phi_3 \colon D \twoheadrightarrow C_1, \phi_4 \colon D \twoheadrightarrow C_2$ with $\phi \circ \phi_1 \circ \phi_3 = \phi \circ \phi_2 \circ \phi_4$.

- A class $\mathcal C$ satisfies the CAP if it has a subclass $\mathcal L$ which is coinitial AP.
- A class \mathcal{C} satisfies the WAP if $\forall A \in \mathcal{C} \exists B \in \mathcal{C}$ and $\phi \colon B \twoheadrightarrow A$ such that $\forall \phi_1 \colon C_1 \twoheadrightarrow B$ and $\forall \phi_2 \colon C_2 \twoheadrightarrow B$, where $C_1, C_2 \in \mathcal{C}, \exists D \in \mathcal{C}, \phi_3 \colon D \twoheadrightarrow C_1, \phi_4 \colon D \twoheadrightarrow C_2$ with $\phi \circ \phi_1 \circ \phi_3 = \phi \circ \phi_2 \circ \phi_4$.

- A class $\mathcal C$ satisfies the CAP if it has a subclass $\mathcal L$ which is coinitial AP.
- A class $\mathcal C$ satisfies the WAP if $\forall A \in \mathcal C \ \exists B \in \mathcal C$ and $\phi \colon B \twoheadrightarrow A$ such that $\forall \phi_1 \colon C_1 \twoheadrightarrow B$ and $\forall \phi_2 \colon C_2 \twoheadrightarrow B$, where $C_1, C_2 \in \mathcal C, \ \exists D \in \mathcal C, \phi_3 \colon D \twoheadrightarrow C_1, \phi_4 \colon D \twoheadrightarrow C_2$ with $\phi \circ \phi_1 \circ \phi_3 = \phi \circ \phi_2 \circ \phi_4$.

Theorem (Kwiatkowska)

Let K be a projective Fraïssé class with projective Fraïssé limit K. Then TFAE:

- \bullet there is a comeager conjugacy class in $Aut(\mathbb{K})$.
- \[
 \mathcal{K}^p\] satisfies the JPP and WAP.
 \[
 \]

Remark

Thus, if K^p satisfies the JEP and CAP, then \mathbb{K} has a generic automorphism.

Theorem (Kwiatkowska)

Let K be a projective Fraïssé class with projective Fraïssé limit K. Then TFAE:

- \bullet there is a comeager conjugacy class in $Aut(\mathbb{K})$.
- \[
 \mathcal{K}^p\] satisfies the JPP and WAP.
 \[
 \]

Remark

Thus, if K^p satisfies the JEP and CAP, then \mathbb{K} has a generic automorphism.

Theorem (Kwiatkowska)

Let K be a projective Fraïssé class with projective Fraïssé limit K. Then TFAE:

- there is a comeager diagonal conjugacy class in $\operatorname{Aut}(\mathbb{K})^n$ for every n.
- ② Aut(K) has ample generics.
- **3** \mathcal{K}_n^p satisfies the JEP and WAP for every n.

Fact

- (Kwiatkowska, 2012) Homeo($2^{\mathbb{N}}$) has ample generics.
- (Kwiatkowska, 2014) Aut(P) has ample generics.

Fact

- (Kwiatkowska, 2012) Homeo($2^{\mathbb{N}}$) has ample generics.
- (Kwiatkowska, 2014) $Aut(\mathbb{P})$ has ample generics.

Fact

- (Kwiatkowska, 2012) Homeo($2^{\mathbb{N}}$) has ample generics.
- (Kwiatkowska, 2014) $Aut(\mathbb{P})$ has ample generics.

(Injective) Fraïssé's construction
Topological properties of conjugacy classes
Projective Fraïssé construction
Profinite existems

The construction
Examples
Profinite groups
Topological properties of conjugacy classes

Theorem (Hu-S.)

 $\operatorname{Aut}(\mathbb{F})$ has ample generics.

Profinite systems

Let G be a profinite group. We associate a *profinite system* S(G) consisting of all finite quotients of G together with all the epimorphisms, which is an inverse system whose inverse limit is G.

$$G = \varprojlim G/N$$
,

where $N \subseteq G$ is of finite index.

Chatzidakis considered such profinite system as an *L*-structure for suitable *L*.

Profinite systems

Let G be a profinite group. We associate a *profinite system* S(G) consisting of all finite quotients of G together with all the epimorphisms, which is an inverse system whose inverse limit is G.

$$G = \varprojlim G/N$$
,

where $N \subseteq G$ is of finite index.

Chatzidakis considered such profinite system as an *L*-structure for suitable *L*.

L-structures

Let *L* be the language $\{\leq, C, P, 1\}$. The structure on S(G) is defined as follows:

- The universe is $\{gN \mid N \leq G \text{ is of finite index, and } g \in G\}$
- $gN \leq hM$ iff $N \subseteq M$
- 1 = gG
- $P(g_1N_1, g_2N_2, g_3N_3)$ iff $N_1 = N_2 = N_3$ and $g_1g_2N_1 = g_3N_3$
- C(gN, hM) iff $N \subseteq M$ and gM = hM

Basically, P is the group multiplication on the finite quotients G/N, C is the group epimorphisms π_{MN} , and 1 is the trivial quotient of G.

Many-sorted structures

The class of profinite systems S(G) is not an elementary class. Further, Chatzidakis considered profinite systems as ω -sorted structures, where she view L as a many-sorted language indexed by the positive integers. She defines that gN is of sort n iff $|G/N| \le n$. As many-sorted structures, the class of profinite systems is an elementary class.

Duality

Let S(G) and S(H) are two profinite systems where G and H are profinite groups. Then every embedding

$$\varphi \colon \mathcal{S}(G) \to \mathcal{S}(H)$$

induces an epimorphism

$$\hat{\varphi} \colon H \to G$$
.

Also, every epimorphism

$$\psi \colon H \to G$$

induces an embedding

$$\check{\psi} \colon \mathcal{S}(G) \to \mathcal{S}(H).$$

(Injective) Fraïssé's construction Topological properties of conjugacy classes Projective Fraïssé construction Profinite systems

Proposition

The class of finite profinite systems is a Fraïssé class, and its Fraïssé limit is $S(\mathbb{F})$.

(Injective) Fraïssé's construction Topological properties of conjugacy classes Projective Fraïssé construction Profinite systems

Theorem (Cherlin-van den Dries-Macintyre, Chatzidakis)

The theory of $S(\mathbb{F})$ is ω -categorical, ω -stable, and $S(\mathbb{F})$ is a saturated model.

Theorem (Hodges, Hodkinson, Lascar, and Shelah)

If M is a countable ω -stable ω -categorical structure, then $\operatorname{Aut}(M)$ has the small index property. Also, $\operatorname{Aut}(M)$ is not the union of a countable chain of proper subgroups.

Corollary

 $Aut(\mathbb{F})$ has the small index property.

Remark

Not every ω -stable ω -categorical structure has ample generic automorphisms.

Theorem (Hodges, Hodkinson, Lascar, and Shelah)

If M is a countable ω -stable ω -categorical structure, then $\operatorname{Aut}(M)$ has the small index property. Also, $\operatorname{Aut}(M)$ is not the union of a countable chain of proper subgroups.

Corollary

 $Aut(\mathbb{F})$ has the small index property.

Remark

Not every ω -stable ω -categorical structure has ample generic automorphisms.

(Injective) Fraïssé's construction Topological properties of conjugacy classes Projective Fraïssé construction **Profinite systems**

Theorem (Hodges, Hodkinson, Lascar, and Shelah)

If M is a countable ω -stable ω -categorical structure, then $\operatorname{Aut}(M)$ has the small index property. Also, $\operatorname{Aut}(M)$ is not the union of a countable chain of proper subgroups.

Corollary

 $Aut(\mathbb{F})$ has the small index property.

Remark

Not every ω -stable ω -categorical structure has ample generic automorphisms.

Future plan

- Cherlin-van den Dries-Macintyre introduced the notion of cologic. What can cologic help us to study projective Fraïssé limits? Especially, the pseudoarc?
- Give an explicit description of a generic automorphism of

Future plan

- Cherlin-van den Dries-Macintyre introduced the notion of cologic. What can cologic help us to study projective Fraïssé limits? Especially, the pseudoarc?
- Give an explicit description of a generic automorphism of \mathbb{F} .

(Injective) Fraïssé's construction Topological properties of conjugacy classes Projective Fraïssé construction **Profinite systems**

Thanks!!

Thanks for your attention!