第四讲: 高阶递归论

喻良

南京大学数学学院

July 25, 2025

Kleene's 𝒪 (I)

Let $\langle,\rangle:\omega\times\omega\to\omega$ be a recursive bijection. Define an arithmetical set $P\subseteq 2^\omega$ such that $x\in P$ if and only if x satisfies the following conditions:

- (i) $\langle 1,2\rangle \in x$;
- (ii) $(\forall m)(\forall n)(\langle m, n \rangle \in x \rightarrow \langle n, 2^n \rangle \in x)$;
- (iii) $(\forall e)((\forall n)\Phi_e(n)\downarrow \wedge (\forall n)\langle \Phi_e(n), \Phi_e(n+1)\rangle \in x) \rightarrow (\forall n)(\langle \Phi_e(n), 3\cdot 5^e\rangle \in x));$
- (iv) $(\forall n)(\forall m)(\forall k)(\langle n, m \rangle \in x \land \langle m, k \rangle \in x \rightarrow \langle n, k \rangle \in x)$.

Kleene's 𝒪 (II)

Definition

$$<_o = \bigcap_{x \in P} x.$$

 $\mathscr{O} = \{ n \mid (\exists m)(n <_o m) \}.$

Proposition

For each $n \in \mathcal{O}$, $<_o$ is a well ordering over $\{m \mid m <_o n\}$.

$$\omega_{ exttt{1}}^{ ext{CK}}$$

For each $n \in \mathcal{O}$, we use |n| to denote the order typer of $(\{m \mid m <_o n\}, <_o)$.

Definition

 $\omega_1^{\text{CK}} = \text{the least ordinal } \alpha \text{ greater than } |\textbf{n}| \text{ for every } \textbf{n} \in \mathscr{O}.$

Operators on $\mathcal{O}(I)$

Let g be a a recursive function such that

$$\Phi_{g(e,m,n)}(k) = \Phi_e(m,\Phi_n(k))$$

for all e, k, m, n.

By the s-m-n Theorem, there is a recursive function h such that

$$\Phi_{h(e)}(m,n) = \begin{cases} m & n = 1, \\ 2^{\Phi_{e}(m,k)} & n = 2^k, \\ 3 \cdot 5^{g(e,m,k)} & n = 3 \cdot 5^k, \\ 7 & \text{Otherwise.} \end{cases}$$

By the Recursion Theorem, there is a c such that $\Phi_{h(c)} = \Phi_c$. Define

$$m +_o n = \Phi_c(m, n)$$
.

喻良 (南京大学数学学院)

第四讲:高阶递归论

July 25, 2025

5 / 35

Operators on $\mathcal{O}(I)$

$$m +_{o} n = \begin{cases} m & n = 1, \\ 2^{m +_{o} k} & n = 2^{k}, \\ 3 \cdot 5^{g(c, m, k)} & n = 3 \cdot 5^{k}, \\ 7 & \text{Otherwise.} \end{cases}$$

Proposition

The function $+_o$ satisfies the following properties: For all m, n,

- (i) $m, n \in \mathscr{O} \Leftrightarrow m +_o n \in \mathscr{O}$.
- (ii) $m, n \in \mathscr{O} \implies |m +_o n| = |m| + |n|$.
- (iii) $m, n \in \mathcal{O}$ and $n \neq 1 \implies m <_o m +_o n$.
- (iv) $m \in \mathscr{O}$ and $k <_o n \Leftrightarrow m +_o k <_o m +_o n$.
- (v) $m \in \mathscr{O} \land n = k \in \mathscr{O} \Leftrightarrow m +_o n = m +_o k \in \mathscr{O}$.

喻良 (南京大学数学学院)

Uniformity of $\mathcal{O}(I)$

Theorem

There are two recursive functions f and g such that for all $n \in \mathscr{O}$,

- (i) $W_{f(n)} = \{m \mid m <_o n\},\$
- (ii) $W_{g(n)} = \{\langle i, j \rangle \mid i <_o j <_o n\}.$

Proof.

By the Recursion Theorem, there is a recursive function f so that

$$W_{\mathit{f}(n)} = \left\{ \begin{array}{ccc} \emptyset & & n = 1, \\ \{k\} \cup W_{\mathit{f}(k)} & & n = 2^k, \\ \bigcup \{W_{\mathit{f}(\Phi_k(m))} \mid m \in \omega\} & & n = 3 \cdot 5^k, \\ W_0 & & \text{Otherwise.} \end{array} \right.$$

Uniformity of *𝒪* (II)

Proof.

By the Recursion Theorem, there is a g so that

$$W_{g(n)} = \begin{cases} \emptyset & n = 1, \\ \{\langle i, k \rangle | i <_o k\} \cup W_{g(k)} & n = 2^k, \\ \bigcup \{W_{g(\Phi_k(m))} \mid m \in \omega\} & n = 3 \cdot 5^k, \\ W_0 & \text{Otherwise.} \end{cases}$$

喻良 (南京大学数学学院)

Σ_1^0 -boundedness

Proposition

There is a recursive function g such that for all e:

- (i) $g(e) \in \mathscr{O} \Leftrightarrow W_e \subseteq \mathscr{O}$.
- (ii) $g(e) \in \mathscr{O} \Leftrightarrow |n| < |g(e)|$ for every $n \in W_e$.

Proof.

Let r be a recursive function enumerating all r.e. sets. Let g(e) be the sum of $\Phi_{r(e)}$. \Box

WF_0 and WO_0

Fix an effective enumeration $\{R_e\}_{e\in\omega}$ of r.e. binary relations over its domain which is a subset of ω .

Definition

Let $WF_0 = \{e \mid R_e \text{ is a well-founded partial order over its domain}\}$ and $WO_0 = \{e \mid R_e \text{ is a well-ordering over its domain}\}$.

Proposition

Both WF₀ and WO₀ are Π_1^1

Proof.

 $e\in WF_0$ if and only if R_e is partial order and there is no $f\in\omega^\omega$ so that $\forall nR_e(f(n+1),f(n))$. Similarly for WO_0 .

Π_1^1 -completeness (I)

Theorem

- A is Π^1_1 if and only if there is a recursive function f so that $\forall ee \in A \leftrightarrow f(e) \in WF_0$;
- A is Π^1_1 if and only if there is a recursive function f so that $\forall ee \in A \leftrightarrow f(e) \in WO_0$.

Proof.

The direction from right to left is clear.

We prove that if A is Π^1_1 , then there is a recursive function f so that $e \in A \implies f(e) \in WO_0$ and $e \notin A \implies f(e) \notin WF_0$. There is a recursive relation R so that $\forall ee \notin A \leftrightarrow \exists f \forall n R(e, f \upharpoonright n)$. We define Kleene-Brouwer order over $\omega^{<\omega}$ by letting $\sigma <_{KB} \tau$ if and only if either $\tau \prec \sigma$ or σ is in the left of τ .

Π_1^1 -completeness (II)

Proof.

For any e, let $T_e = \{ \sigma \in \omega^{<\omega} \mid \forall n \leq |\sigma| R(e, \sigma \upharpoonright n) \}$. Then there is a recursive function f so that $(T_e, <_{KB}) = R_{f(e)}$ is a linear order. It is clear that $e \in A \implies f(e) \in WO_0$ and $e \notin A \implies f(e) \notin WF_0$.

So neither WF_0 nor WO_0 is Σ_1^1 .

Note that T_e can be viewed as a tree and so $e \notin A$ if and only if there is an infinite path through T_e .

Π_1^1 -completeness of \mathcal{O}

Theorem

There is a recursive function f so that $\forall ee \in WF_0 \leftrightarrow f(e) \in \mathscr{O}$.

Proof.

There is a recursive function h such that $R_{h(e,k)}(m,n) \Leftrightarrow R_e(m,n) \wedge R_e(m,k) \wedge R_e(n,k)$. By the recursion theorem, there is a recursive function p so that

$$W_{p(e)} = \left\{ egin{array}{ll} \emptyset & R_e = \emptyset \ \{g(p(h(e,k))) \mid k \in \omega\} & ext{Otherwise} \end{array}
ight.$$

, where g is a recursive function as before. Let f(e)=g(p(e)). If $e\in WF_0$, then by induction, $f(e)\in \mathscr{O}$. If $f(e)\in \mathscr{O}$, then for any k, $g(p(h(e,k)))\in \mathscr{O}$ which recovers the well-founded relation R_e .

$\omega_{ exttt{1}}^{ ext{CK}}$ again

Corollary

 ω_1^{CK} is the least non-recursive ordinal.

Proof.

By the proof, every recursive ordinal is less than ω_1^{CK} . If $n \in \mathcal{O}$, then $(\{m \mid m <_o n\}, <_o)$ is partial recursive relation. Define $(k,s) \prec (m,t)$ if either k is in the domain of $\{m \mid m <_o n\}$ at stage s but m is not at stage t; or else neither k is in the domain of $\{m \mid m <_o n\}$ at stage s nor t is not at stage t and t are t and t are t and t and t and t and t and t are t and t and t and t and t are t and t and t and t and t are t and t and t are t and t and t and t are t are t and t are t are t are t are t and t are t are

Σ_1^1 -boundedness

Theorem

- If $A \subseteq \mathcal{O}$ is Σ_1^1 , then there is some $n \in \mathcal{O}$ so that $\forall m \in A|m| < |n|$.
- If R is a Σ_1^1 well order over ω , then the order type of R is less that ω_1^{CK} .

Proof.

- (1) Otherwise, $e \in WO_0$ if and only if there is $n \in A$ and an order preserving function f from the domain R_e to $\{m \mid m <_o n\}$. Then WO_0 would be Σ^1_1 .
- (2) Otherwise, $e \in WO_0$ if and only if there is n and an order embedding function f from the domain R_e to R. Then WO_0 would be Σ_1^1 .

H-sets

Definition

• The sequence $\{H_n\}_{n\in\mathscr{O}}$ is defined by transfinite induction over \mathscr{O} as follows.

$$H_1=\emptyset,$$
 $H_{2^n}=(H_n)',$ the Turing jump of H_n $H_{3\cdot 5^e}=\{\langle m,n
angle|m\in H_{\Phi_e(n)}\}.$

- A member of $\{H_n\}_{n\in\mathcal{O}}$ is called an *H*-set.
- A real y is hyperarithmetic if $y \leq_T H_n$ for some $n \in \mathcal{O}$.

40 + 40 + 45 + 45 + 5 40 A

Uniformity

Theorem

There is a recursive function f so that $m <_o n$ implies $H_m = \Phi_{f(m,n)}^{H_n}$.

Proof.

Note that $x = \Phi_{e_0}^{x'}$ for some fixed e_0 . Then by effective transfinite induction.

Π_2^0 -singletons

Theorem

Every H-set is a Π_2^0 -singleton.

Proof.

By effective transfinite induction, we may define a Π_2^0 relation $H \subset \omega \times 2^\omega$ so that for any $n \in \mathcal{O}$, H_n is the unique real x so that H(n,x).

Kleene's theorem

Theorem

 $\Delta_1^1 = HYP$.

Proof.

If $x \in HYP$, then there is Π^0_2 -singleton y so that $x \leq_T y$. So x is Δ^1_1 . If x is Δ^1_1 , then there is a recursive function f so that $\forall nn \in x \leftrightarrow f(n) \in \mathscr{O}$. Then there is some $m \in \mathscr{O}$ so that $\forall n|f(n)| < |m|$. It is sufficient to prove that $\mathscr{O}_m = \{i \in \mathscr{O} \mid |i| < |m|\}$ is hyperarithmetic. This can be done by an effective transfinite induction.

Relativization

All the definitions and theorems can be relativized. Note that HYP^{\times} is defined via \mathcal{O}^{\times} not \mathcal{O} .

Definition

x is hyperarithmetic reducible to y, or $x \leq_h y$, if there is some $n \in \mathcal{O}^y$, $x = \Phi_e^{H_n^y}$.

 $x \leq_h y$ is a partial order and Π_1^1 -relation.

\hat{H} -sets

Hyperarithmetic reduction is not a uniform reduction since it is possible that $\omega_1^{\rm x}>\omega_1^{\rm CK}.$

Definition

For $n \in \mathcal{O}$, we define \hat{H}_n^x as H^x -sets..

Theorem

If $\omega_1^{\rm X}=\omega_1^{\rm CK}$, then every real hyperarithmetic in x is Turing below some $\hat{H}^{\rm X}$ -set.

Some Π_1^1 -sets.

Proposition

Proof.

- (1). By the definition.
- (2). $x \ge_h \mathscr{O}$ if and only if there is some $n \in \mathscr{O}^{\times}$ and some e so that $\Phi_e^{H_n^{\times}} \in \{\mathscr{O}\}.$

Spector's unique theorem

Theorem

There is a recursive function f so that |n|<|m| implies $H_n=\Phi_{f(n,m)}^{H_m}$

Proof.

By an effective transfinite induction.

Corollary

|n| = |m| implies $H_n \equiv_T H_m$.

A wild Π_1^0 -set.

Proposition

There is a nonempty Π^0_1 set $P \subset \omega^\omega$ containing no hyperarithmetic member.

Proof.

Clearly the set $A = \{x \mid x \notin HYP\} \subset 2^{\omega} \text{ is } \Sigma^1_1$. So there is a nonempty Π^0_1 set $P \subset 2^{\omega} \times \omega$ so that $A = \{x \mid \exists y(x,y) \in P\}$. Then P contains no hyperarithmetic real.

Dichotomy of Π_1^1 -set

Theorem

If $A \subset \omega$ is Π^1_1 , then either A is hyperarithmetic or $\mathscr{O} \leq_h A$.

Proof.

Since A is Π^1_1 , there is a recursive function f so that $n \in A \leftrightarrow f(n) \in \mathcal{O}$. Let B be the range of f over A. If B is bounded, then $A \in HYP$. Otherwise, $n \in \mathcal{O}$ if and only if there is some $m \in B$ so that |n| < |m|. So \mathcal{O} is hyperarithmetic in A.

By the proof above, we have that $x \ge_h \mathscr{O}$ if and only if $\omega_1^x > \omega_1^{\text{CK}}$.

Above ω_1^{CK}

Theorem

 $x \ge_h \mathscr{O}$ if and only if $\omega_1^x > \omega_1^{CK}$.

Proof.

The direction from left to right is clear.

Suppose $\omega_1^{\mathsf{x}} > \omega_1^{\mathsf{CK}}$. Then fix an x-well ordering \prec over ω . Then $n \in \mathscr{O}$ if and only if there is some f which is isomorphism from $<_o n$ to an initial segment of \prec . So \mathscr{O} is Σ_1^1 in x.

Gandy's basis

Theorem (Gandy)

If $A \subseteq \omega^{\omega}$ is Σ_1^1 , then A contains a real x so that $x \leq_h \mathscr{O}$ and $\omega_1^x = \omega_1^{CK}$.

Proof.

Let $B = \{x \oplus y \mid x \in A \land y \nleq_h x\}$. Then B is a nonempty Σ_1^1 set and so contains a real $x \oplus y \leq_h \mathscr{O}$. Then $x \in A$ and $\leq_h \mathscr{O}$. Since $y \nleq_h x$, we have that $x <_h \mathscr{O}$. Then $\omega_1^x = \omega_1^{\text{CK}}$.

Countable Σ_1^1 -set

Theorem

If $A \subset \omega^{\omega}$ is a nonempty countable Σ_1^1 -set, then every real in A is hyperarithmetic.

Proof.

Otherwise, A must have a perfect subset.

Incomparable h-degrees

Theorem (Spector)

There are two \leq_h incomparable degrees.

Proof.

By the previous results, the set $\{x \not\in HYP \mid \omega_1^{\mathsf{X}} = \omega_1^{\mathsf{CK}}\}$ is an uncountable Σ_1^1 set. So it has a member $x \not\leq_h \mathscr{O}$ and so \leq_h -incomparable with \mathscr{O} .

Gandy topology

Definition

Gandy topology is a topology with all the Σ^1_1 -sets as basic open sets.

Theorem

If $\{U_n\}$ is a sequence dense open sets in Gandy topology, then $\bigcap_n U_n \neq \emptyset$.

Proof.

By Tree representation of Σ_1^1 -sets.

Kreisel's basis theorem

Theorem (Kreisel)

If x is nonhyparithmetic and A is a nonempty Σ_1^1 set, then there is some $g \in A$ so that $g \not\geq_h x$.

Proof.

By the property of Gandy-topology.

A Π_1^1 -path through \mathcal{O}

Theorem (Spector)

There is a Π_1^1 -path through \mathscr{O} .

Proof.

Let \mathscr{O}^* be the intersection of all hyperarithmetic sets with the property defining \mathscr{O} . Then \mathscr{O}^* is a Σ^1_1 -set. Let $n \in \mathscr{O}^* \setminus \mathscr{O}$, then $\{m \in \mathscr{O}^* \mid m <_{o^*} n\}$ is a path through \mathscr{O} .

Some open questions

Question

- For any countable set of hyperarithmetic degrees, must there exist an minimal upper bound ?
- For any real x and $\Delta_1^1(x)$ set A of reals which contains a member $y>_h x$, is it true that for any real z, there is some $z_0\in A$ so that $z_0\geq_h z$?

Exercise

- Every Δ_2^0 -real is a Π_2^0 -singleton.
- ② Every Π_2^0 -singleton in 2^ω is Turing equivalent to a Π_1^0 -singleton in ω^ω .
- **3** A real x is Δ_1^1 if and only if it is a Σ_1^1 -singleton.
- **1** If A is a nonempty Σ_1^1 -set, then it contains member x with $\mathscr{O}^x \leq_{\mathcal{T}} \mathscr{O}$.

Further readings

Recursion Theory: Computational Aspects of Definability, Chong and Yu, 2015.

Higher recursion theory, Gerald Sacks, 1990.