第三讲: 算法随机性导论

喻良

南京大学数学学院

July 23, 2025

1 / 34

Kraft-Chaitin Theorem (I)

A set $A\subseteq 2^{<\omega}$ is prefix-free if any two different strings in A are incompatible.

Lemma

If A is prefix-free, then $\sum_{\sigma \in A} 2^{-|\sigma|} \leq 1$.

Proof.

We may assume that A is finite. Then there is some n so that $A \subseteq 2^{\leq n}$. Let $B = \{\tau \in 2^n \mid \exists \sigma \in A(\sigma \preceq \tau)\}$. Then since A is prefix-free, we have

$$\sum_{\sigma \in A} 2^{-|\sigma|} \le \sum_{\sigma \in B} 2^{-|\sigma|} \le \sum_{\tau \in 2^n} 2^{-|\tau|} \le 1.$$

Kraft-Chaitin Theorem (II)

Theorem

For any infinite r.e. set $A \subset \omega$, $\sum_{n \in A} 2^{-n} \le 1$ if and only if there is a a recursive prefix-free sequence $\{\sigma_i\}_{i \in \omega}$ so that $A = \{|\sigma_i| \mid i \in \omega\}$.

Proof.

By the lemma, the direction from right to left is immediate. For the direction from right to left. Assigning finite strings to $\cal A$ economically....

Kolmogorov complexity (I)

• Fix a Turing machine M, for each finite string $\sigma \in 2^{<\omega}$, define $C_M(\sigma) = \min\{|\tau| : M(\tau) = \sigma\}$.

Kolmogorov complexity (I)

- Fix a Turing machine M, for each finite string $\sigma \in 2^{<\omega}$, define $C_M(\sigma) = \min\{|\tau| : M(\tau) = \sigma\}$.
- ② Fix a prefix free Turing machine M, for each finite string $\sigma \in 2^{<\omega}$, define $K_M(\sigma) = \min\{|\tau| : M(\tau) = \sigma\}$.

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

Kolmogorov complexity (II)

Theorem

- There is a Turing machine U so that for any machine M, there is some c_M so that $\forall n C_U(n) \leq C_M(n) + c_M$.
- There is a prefix-free Turing machine U so that for any prefix-free machine M, there is some c_M so that $\forall n K_U(n) \leq K_M(n) + c_M$.

Proof.

Both machines are built by a standard coding.

Basic properties of Kolmogorov complexity (I)

Theorem

- $\exists c \forall \sigma K(\sigma) \leq |\sigma| + 2\log|\sigma| + c$
- $\exists c \forall \sigma K(\sigma) \leq |\sigma| + K(|\sigma|) + c.$
- $\exists c \forall \sigma \forall \tau \mathit{K}(\sigma^{\smallfrown}\tau) \leq \mathit{K}(\sigma) + \mathit{K}(\tau) + c.$

Proof.

- (1) is clear.
- (2). Let $(|\sigma| + \log |\sigma|, \sigma) \in V$. Then $\sum_{m \in Dom(V)} 2^{-m} \le \sum_{\sigma} 2^{-|\sigma| \log |\sigma|} = \sum_{n} \sum_{|\sigma| = n} 2^{-n 2\log n} \le \sum_{n} 2^{-2\log n} \le \sum_{n} \frac{1}{n^2}$. By

KC-theorem, V can be viewed as a prefix-machine. Then

 $K_{\mathcal{V}}(\sigma) \leq |\sigma| + 2\log|\sigma| + d$ for a constant d.

Basic properties of Kolmogorov complexity (II)

Proof.

(3). Let U be a universal prefix-free machine. Let $(|\sigma|+|\tau|,\sigma)\in V$ if $U(\tau)=|\sigma|$. Then

$$\sum_{m \in \mathit{Dom}(V)} 2^{-m} \leq \sum_{\sigma} 2^{-|\sigma|} \big(\sum_{U(\tau) = |\sigma|} 2^{-|\tau|} \big) = \sum_{n} 2^{-n} \big(\sum_{|\sigma| = n} \sum_{U(\tau) = n} 2^{-|\tau|} \big)$$

$$\leq \sum_{n} 2^{-n} 2^{n} \sum_{U(\tau)=n} 2^{-|\tau|} \leq 1.$$

(4) Let $(\nu_0^\smallfrown \nu_1, \sigma^\smallfrown \tau) \in M$ if (ν_0, σ) and $(\nu_1, \tau) \in U$. M is prefix-free since $\sum_{\nu_0 \in Dom(U)} \sum_{\nu_1 \in Dom(U)} 2^{-|\nu_0|-|\nu_1|} \le \sum_{\nu_0 \in Dom(U)} 2^{-|\nu_0|} \le 1$.

◆□▶◆□▶◆臺▶◆臺▶ 臺 釣۹(

Counting theorem for C

Theorem

- $\exists c \forall n \forall d | \{ \sigma \mid |\sigma| = n \land C(\sigma) \le C(n) + d \} | \le d^2 \cdot 2^{c+d}.$

Proof.

- (1) is clear.
- (2). Suppose not. For any c and m, by (1), there are at most $\frac{2^{m+d+1}}{d^2 \cdot 2^{c+d}} = 2^{m-2\log d c + 1}$ many n's so that
- $|\{\sigma \mid |\sigma| = n \land C(\sigma) \le C(n) + d\}| > d^2 \cdot 2^{c+d}$ with C(n) = m. We use recursion theorem to define a machine M so that $e_M < c$ and
- $M(0^{|d|}1\rho) = n$ where $|\rho| \le m c 2 \log d$.

Coding lemma

Theorem

If M is a prefix-free machine, then $\exists c \forall n 2^{-K(n)+c} \ge \sum_{M(\sigma)=n} 2^{-|\sigma|}$.

Proof.

Put $(I,n) \in V$ if $I = \left[-\log \sum_{M(\sigma)=n} 2^{-|\sigma|} \right] + 1$. By KC-theorem, there is some constant c so that $\forall n K(n) \leq c + K_V(n)$.

Counting theorem for K

Theorem

$$\exists c \forall n \forall d | \{\sigma \mid |\sigma| = n \land K(\sigma) \le n + K(n) - d\} | \le 2^{n - d + c}.$$

Proof.

Let U be a universal prefix-free machine. Then by the coding lemma, there is some c so that for every n,

$$2^{-K(n)+c} \ge \sum_{|\sigma|=n \land K_U(\sigma) \le n+K_U(n)-d} 2^{-n-K(n)+d} \ge |\{\sigma \mid |\sigma| = n \land K(\sigma) \le n+K(n)-d\}| \cdot 2^{-n-K(n)+d}.$$

Martin-Löf test

Definition (Martin-Löf)

- (i) A Σ_1^0 Martin-Löf test is a computable collection $\{V_n : n \in \mathbb{N}\}$ of c.e. sets such that $\mu(V_n) \leq 2^{-n}$.
- (ii) A real y is said to pass the Σ^0_1 Martin-Löf test if $y \notin \bigcap_{n \in \omega} V_n$.
- (iii) A real y is said to be Martin-Löf-random if it passes all Σ^0_1 Martin-Löf tests.

Universal Martin-Löf test

Theorem

There is a Martin-Löf test covering all the Martin-Löf tests.

Proof.

For any e, let $\sigma \in U_e$ if there is some i > e so that there is some stage s for which $M_i(\sigma)$ converges at stage s and

$$\sum_{\{\tau \mid M(\tau) \downarrow \text{at stage s}\}} 2^{-|\tau|} \leq 2^{-i}.$$

Then $\{U_e\}_{e \in \omega}$ is as required.

Corollary

There is a nonempty Π_1^0 set which only contains Martin-Löf random reals.

Betting strategy

Definition

- A martingale is a function $f: 2^{<\omega} \mapsto \mathbb{R}^+$ such that for all $\sigma \in 2^{<\omega}$, $f(\sigma) = \frac{f(\sigma^{\circ}0) + f(\sigma^{\circ}1)}{2}$.
- ② A martingale f is said to succeed on a real y if $\limsup_n f(y \upharpoonright n) = \infty$.

f is super-martingale if $f(\sigma) \geq \frac{f(\sigma^{\circ}0) + f(\sigma^{\circ}1)}{2}$.

Counting theorem for supermartingales

Note that if f is a supermartingale, then $\lambda(\sigma) = 2^{-|\sigma|} f(\sigma)$ defines a semi-measure over 2^{ω} .

Theorem

If f is a supermartingale with $f(\emptyset) < a$, then $\mu(\{x \mid \exists n f(x \upharpoonright n) > a\}) \leq \frac{f(\emptyset)}{a}$.

Proof.

It is sufficient to prove that for any finite prefix-free set A with $\forall \sigma \in \mathit{Af}(\sigma) > a$, $\sum_{\sigma \in A} 2^{-|\sigma|} \leq \frac{f(\emptyset)}{a}$.

Note that $\sum_{\sigma \in A} 2^{-|\sigma|} \le \sum_{\sigma \in A} 2^{-|\sigma|} \frac{f(\sigma)}{a} \le \frac{f(\emptyset)}{a}$.

Left-r.e. supermartingales

Definition

A supermartingale f is left-r.e. if the set $\{(\sigma,q) \mid q \in \mathbb{Q} \land q < f(\sigma)\}$ is r.e.

Schnorr's theorem (I)

Theorem (Schnorr)

For any real x,

- x doesn't belong to any effective Matin-Löf test;
- $\exists c \forall n K(x \upharpoonright n) \geq n c;$
- No left-r.e. supermartingale can win on x.

Proof.

- (1) implies (2): By the counting theorem for the Kolmogorov complexity, the sequence $V_d = \{x \mid \exists n K(x \upharpoonright n) < n-d\}$ is a Martin-Löf test with $\mu(V_d) < \sum_n 2^{-K(n)-d+c} < 2^{-d+c}$.
- (2) implies (1): Suppose that x is covered by a Martin-Löf test $\{V_n\}_{n\in\omega}$. So $\sum_n\sum_{\sigma\in V_{2n}}2^{-|\sigma|+n}\leq \sum_n2^{-n}\leq 1$. We may assume that V_n is a prefix-free set for every n. Then by KC-theorem.

Schnorr's theorem (II)

Proof.

- (1) implies (3): By the counting theorem for supermartingales.
- (3) implies (2): Note that $f(\sigma) = 2^{|\sigma|} \sum_{\tau \succeq \sigma} 2^{-K(\tau)}$ is a left-r.e. supermartingale.

Why not *C*?

Theorem

For any real x, $\overline{\lim}_n n - C(x \upharpoonright n) = +\infty$.

Proof.

Given any m, let $n = m + x \upharpoonright m$. Then

$$C(x \upharpoonright n) \le C(x \upharpoonright [m, n]) \le n - m + c$$
 for some constant c.

So
$$n - C(x \upharpoonright n) \ge m - c$$
.

Left-r.e. reals

Definition

A real x is left-r.e. if there is a recursive non-decreasing sequence of rationals $\{q_s\}_{s\in\omega}$ so that $\lim_s q_s = x$.

Since there is a non-empty Π^0_1 -set only containing Martin-Löf random reals, there is a left-r.e. random real.

Chaitin's Ω

Let U be a universal prefix-free Turing machine, define

$$\Omega_U = \sum_{U(\sigma)\downarrow} 2^{-|\sigma|}.$$

Theorem (Chaitin)

 Ω_U is a random real.

Proof.

At any stage s, if a new τ so that $U(\tau) = \Omega_s \upharpoonright n$ at stage s, we let $M(\tau)$ be any finite string not in range of U before the stage s+1. If Ω_U is not random, then there is some τ so that $|\tau| < n - e_M - 1$ and so $M(\tau)$ would output a finite string σ with $K_U(\sigma) \ge n$ but $K_M(\sigma) < n - e_M - 1$.

The Turing degree of Ω .

Theorem

 $\Omega \equiv_{\mathcal{T}} \emptyset'$.

Proof.

First note that for any r.e. A, $K(A \upharpoonright n) \leq 4 \log n + c$ for some constant c.

Then the module function of Ω must dominate the module function of \emptyset' .

Ample excess lemma

Theorem (Miller, Yu)

x is 1-random iff $\sum_{n} 2^{n-K(x \mid n)} < \infty$.

Proof.

$$\begin{array}{l} \sum_{|\sigma|=m} \sum_{n \leq m} 2^{n-K(\sigma \upharpoonright n)} = \sum_{n \leq m} 2^{m-n} \sum_{|\tau|=n} 2^{n-K(\tau)} = \\ \sum_{|\tau| \leq m} 2^{m-K(\tau)} < 2^m. \text{ So for any } c, \ \mu(\{x \mid \sum_n 2^{n-K(x \upharpoonright n)} > c\}) < c^{-1}. \\ \text{So } V_c = \{x \mid \sum_n 2^{n-K(x \upharpoonright n)} > c\} \text{ is a Martin-L\"of test.} \end{array}$$

Random reals in Π_1^0 -set.

Theorem (Kucera)

Suppose P is a Π_1^0 set having positive measure, then for every random real r, there is some random real $x \equiv_T r$ with $x \in P$.

Proof.

Suppose that $\mu(P)>p$ for some rational $p\in(0,1]$. Then $U_0=2^\omega\setminus P$ can be viewed as a prefix-free r.e. set. For any n, let $U_{n+1}=\{\sigma^\smallfrown\tau\mid\sigma\in U_n\wedge\tau\in U_0\}$. Then $\mu(U_{n+1})\leq\sum_{\sigma\in U_n}2^{-|\sigma|}\mu(U_0)\leq(1-p)^{n+1}$. So $\{U_n\}_{n+1}$ is a Martin-Löf test. If r is random, then there is some n so that $r\not\in U_n$. Then there must be some m so that $r\upharpoonright m\in U_{n-1}$ but $r\upharpoonright(m,\infty)\in P$.

C-triviality

Theorem (Chaitin)

If $\exists c \forall n C(x \upharpoonright n) \leq C(n) + c$, then x is recursive.

Proof.

Since $\exists c_0 \forall n C(n) \leq \log n + c_0$ and for every k, there is some $n \in [2^k, 2^{k+1})$ so that $C(x \upharpoonright n) \geq k = \log n$, we have that $\{x \mid \forall n C(x \upharpoonright n) \leq C(n) + c\} \subseteq A = \{x \mid \forall k \forall s \exists n \in [2^k, 2^{k+1}) (\log n \leq C(n)[s] \leq C(x \upharpoonright n)[s] \leq \log n + c + c_0)\}$. By the counting theorem for C, A has only finitely many infinite paths. Moreover, A has a recursive subtree T with same infinite paths.

K-triviality

Definition

x is K-trivial if $\exists c \forall n K(x \upharpoonright n) \leq K(n) + c$.

Theorem (Chaitin)

If x is K-trivial, then $x \leq_T \emptyset'$.

Proof.

By the counting theorem for K.

K-triviality

Definition

x is K-trivial if $\exists c \forall n K(x \upharpoonright n) \leq K(n) + c$.

Theorem (Chaitin)

If x is K-trivial, then $x \leq_T \emptyset'$.

Proof.

By the counting theorem for K.

A non-recursive K-trivial r.e. real

Theorem (Downey, Hirschfeldt, Nies)

There is a non-recursive r.e. K-trivial real.

Proof.

We build a simple set x which is K-trivial by KC-theorem. We build a prefix-fix machine M.

At any stage s, find the least e so that some n>2e enters W_e but $W_e\cap x=\emptyset$ and $\sum_{m\geq n}2^{-K_s(m)}<2^{-e-4}$, enumerate n into x and $(K_s(m),x_{s+1}\upharpoonright m)$ for every $m\geq n$ into M.

Geometric measure theory (1)

Given a non-empty $U \subseteq \mathbb{R}$, the *diameter* of U is

$$diam(U) = |U| = \sup\{|x - y| : x, y \in U\}.$$

Given any set $E \subseteq \mathbb{R}$ and $d \ge 0$, let

$$\mathcal{H}^d(E) = \lim_{\delta \to 0} \inf \{ \sum_{i < \omega} |U_i|^d : \{U_i\} \text{ is an open cover of } E \wedge \forall i \ |U_i| < \delta \},$$

$$\mathcal{P}_0^d(\mathit{E}) = \lim_{\delta o 0} \sup\{\sum_{i < \omega} |B_i|^d:$$

 $\{B_i\}$ is a collection of disjoint balls of radii at most δ with centres in $E\}$ and

$$\mathcal{P}^d(E) = \inf\{\sum_{i < \omega} \mathcal{P}^d_0(E_i) \mid E \subseteq \bigcup_{i < \omega} E_i\}.$$

◆ロト ◆個 ト ◆ 恵 ト ・ 恵 ・ 夕 ♀ ○

Geometric measure theory (2)

Definition

Given any set E,

• the Hausdorff dimension of E, or $Dim_H(E)$, is

$$\inf\{d\mid \mathcal{H}^d(E)=0\};$$

• the Packing dimension of E, or $Dim_P(E)$, is

$$\inf\{d\mid \mathcal{P}^d(E)=0\}.$$

On geometric measure theory

Theorem

 $\mathcal{H}^d(A)=0$ if and only if there is some real x and some constant c so that for any $z\in A$, there are infinitely many n's so that $K^x(z\upharpoonright n)\leq dn+c$.

Proof.

From right to left, by the counting theorem of Kolmogorov complexity. From left to right, for any i, let $\{\sigma_j^i\}_{j\in\omega}$ be a prefix-free cover of A so that

- $\forall j |\sigma_i^i| > 2^i$;
- $\sum_{i} 2^{-d|\sigma_{j}^{i}|} < 2^{-i}$.

Let x code all such sequences. Then for any σ_j^i , $K^x(\sigma_j^i) \leq d|\sigma_j^i| + c$ for a fixed constant.

Lutz-Lutz theorem

Theorem (Lutz-Lutz)

Some open problems

Question

- For any real x, does there exist a random real r and a constant $c \in \omega$ so that $\exists m \forall n \geq m K(r \upharpoonright m) \geq K(x \upharpoonright m) c$?
- ② Is there a degree invariant Borel function f so that for any real x, f(x) is random relative to x?

Exercise

- Prove that $\forall d \exists \sigma \exists \tau C(\sigma^{\smallfrown} \tau) > C(\sigma) + C(\tau) d$.
- 2 Prove that both C and K have Turing degree \emptyset' .
- **3** Every random real computes a *DNR*-function.
- If $\exists c \forall n C^{\times}(n) \geq C(n) c$, then x is recursive.
- **1** There is a non-recursive r.e. real x so that $\exists c \forall n K^x(n) \geq K(n) c$.

Further readings

An introduction to Kolmogorov complexity, Li and Vitany, 2018.

Computability and randomness, Nies, 2012.

Algorithmic randomness and complexity, Downey and Hirschfeldt, 2010.