Background # Strengthening the Knaster property induces the forcing axiom ### Yinhe Peng Academy of Mathematics and Systems Science Chinese Academy of Sciences 2025 Fudan Conference on Mathematical Logic, August 8 2025 ### Outline Background 2 \mathcal{K}_3 implies MA_{ω_1} 3 The overall picture # Partially ordered sets A poset (partially ordered set) \mathcal{P} is ccc if every uncountable subset of \mathcal{P} contains 2 elements with a common lower bound. ## Partially ordered sets A poset (partially ordered set) \mathcal{P} is ccc if every uncountable subset of \mathcal{P} contains 2 elements with a common lower bound. Cohen forcing: $Fn(\omega, 2)$ is the collection of finite partial maps from ω to 2, ordered by extension as functions. The product of κ many Cohen posets with finite support: $Fn(\kappa \times \omega, 2)$ or $Fn(\kappa, 2)$. # Partially ordered sets A poset (partially ordered set) \mathcal{P} is ccc if every uncountable subset of \mathcal{P} contains 2 elements with a common lower bound. Cohen forcing: $Fn(\omega, 2)$ is the collection of finite partial maps from ω to 2, ordered by extension as functions. The product of κ many Cohen posets with finite support: $Fn(\kappa \times \omega, 2)$ or $Fn(\kappa, 2)$. - ccc forcing preserves cardinals. - $Fn(\kappa, 2)$ is ccc. (Cohen) $$L^{Fn(\kappa,2)} \models 2^{\omega} = \kappa$$ for $\kappa \geq \omega_1$. ## Productivity In general, ccc is not productive: If S is a Suslin tree, then S is ccc and S^2 is not ccc. A poset (partially ordered set) \mathcal{P} has property K_n (K for Knaster), for $n \geq 2$, if every uncountable subset of \mathcal{P} has an uncountable subset that is n-linked. A subset is *n*-linked if every *n*-element subset has a common lower bound. Property K_n is stronger than ccc and is productive. $Fn(\kappa, 2)$ has property K_n . ## Stronger forcing properties \mathcal{P} has precaliber ω_1 if every uncountable subset of \mathcal{P} has an uncountable centered subset. A subset X of \mathcal{P} is centered if every finite subset of X has a common lower bound. \mathcal{P} is σ -*n*-linked if \mathcal{P} is a countable union of *n*-linked subsets. \mathcal{P} is σ -centered if \mathcal{P} is a countable union of centered subsets. ## Stronger forcing properties \mathcal{P} has precaliber ω_1 if every uncountable subset of \mathcal{P} has an uncountable centered subset. A subset X of \mathcal{P} is centered if every finite subset of X has a common lower bound. \mathcal{P} is σ -n-linked if \mathcal{P} is a countable union of n-linked subsets. \mathcal{P} is σ -centered if \mathcal{P} is a countable union of centered subsets. - Property K_n (precaliber ω_1) is closed under finite support product. - σ -n-linked (σ -centered) is closed under finite support product of length $\leq 2^{\omega}$. $Fn(\kappa, 2)$ has precaliber ω_1 , and is σ -centered if $\kappa \leq 2^{\omega}$. ## Forcing properties Figure: Forcing properties Arrows denote implications. No other implication is ZFC provable except for properties connected by (combinations of) arrows. # Consequences of MA_{ω_1} Assume MA_{ω_1} . The following statements hold. (M1) The union of ω_1 meager (null) sets is meager (null). # Consequences of MA_{ω_1} Assume MA_{ω_1} . The following statements hold. - (M1) The union of ω_1 meager (null) sets is meager (null). - (M2) (Juhasz) If X is an infinite ccc compact Hausdorff space, then X cannot be covered by ω_1 nowhere dense sets. # Consequences of MA_{ω_1} Assume MA_{ω_1} . The following statements hold. - (M1) The union of ω_1 meager (null) sets is meager (null). - (M2) (Juhasz) If X is an infinite ccc compact Hausdorff space, then X cannot be covered by ω_1 nowhere dense sets. - (M3) (Kunen) Every $X \subseteq \omega_2^2$ equals $\bigcap_{n < \omega} \bigcup_{m > n} C_m \times D_m$ for some $C_n, D_n \subseteq \omega_2$. # Consequences of MA_{ω_1} Assume MA_{ω_1} . The following statements hold. - (M1) The union of ω_1 meager (null) sets is meager (null). - (M2) (Juhasz) If X is an infinite ccc compact Hausdorff space, then X cannot be covered by ω_1 nowhere dense sets. - (M3) (Kunen) Every $X \subseteq \omega_2^2$ equals $\bigcap_{n < \omega} \bigcup_{m > n} C_m \times D_m$ for some $C_n, D_n \subseteq \omega_2$. - (M4) (Rowbottom) ccc is productive. # Consequences of MA_{ω_1} Assume MA_{ω_1} . The following statements hold. - (M1) The union of ω_1 meager (null) sets is meager (null). - (M2) (Juhasz) If X is an infinite ccc compact Hausdorff space, then X cannot be covered by ω_1 nowhere dense sets. - (M3) (Kunen) Every $X\subseteq \omega_2^2$ equals $\bigcap_{n<\omega}\bigcup_{m>n}C_m\times D_m$ for some $C_n,D_n\subseteq \omega_2$. - (M4) (Rowbottom) ccc is productive. - (M5) Every ccc poset has precaliber ω_1 and is σ -centered if the poset has size $\leq \omega_1$. A space is ccc if it has no uncountable pairwise disjoint open subsets. $$(M2) \leftrightarrow (M5) \leftrightarrow MA_{\omega_1}$$. ### Forcing axioms ${\mathcal P}$ has property ${\rm FA}_{\omega_1}$ (or say ${\rm FA}_{\omega_1}({\mathcal P})$) if • For every collection \mathscr{D} of ω_1 many dense subsets of \mathcal{P} , there is a directed subset of \mathcal{P} meeting every member of \mathscr{D} . For a property Φ stronger than ccc, $\mathrm{MA}_{\omega_1}(\Phi)$ is the assertion that if $\mathcal P$ has property Φ , then $\mathcal P$ has property FA_{ω_1} . MA_{ω_1} is MA_{ω_1} (ccc). ## For posets of size $\leq \omega_1$ Figure: Forcing properties ## How different are these properties #### Theorem 1 (Todorcevic-Velickovic) If every ccc poset has precaliber ω_1 , then MA_{ω_1} holds. ### How different are these properties #### Theorem 1 (Todorcevic-Velickovic) If every ccc poset has precaliber ω_1 , then MA_{ω_1} holds. #### Definition 1 $P(\Phi \to \Psi)$ denotes the property that every poset with property Φ has property Ψ . ### How different are these properties #### Theorem 1 (Todorcevic-Velickovic) If every ccc poset has precaliber ω_1 , then MA_{ω_1} holds. #### Definition 1 $P(\Phi \to \Psi)$ denotes the property that every poset with property Φ has property Ψ . $P(\Phi \to FA_{\omega_1})$ is the same as $MA_{\omega_1}(\Phi)$. (Todorcevic-Velickovic) P(ccc \rightarrow precaliber ω_1) is equivalent to P(ccc \rightarrow FA $_{\omega_1}$). ## Natural questions #### Question 1 Does $P(ccc \to K_n)$ (denoted by \mathcal{K}_n in the literature) imply MA_{ω_1} for some n > 2? ### Natural questions #### Question 1 Does $P(ccc \rightarrow K_n)$ (denoted by \mathcal{K}_n in the literature) imply MA_{ω_1} for some n > 2? #### Question 2 For $n \ge 2$, are $P(K_n \to K_m)$ all different for different m > n? ### Consequences of \mathcal{K}_3 : - (Todorcevic) $\mathfrak{b} > \omega_1$. - (Todorcevic) Every Aronszajn tree is special. - **1** (Todorcevic-Velickovic) Every ccc poset of size ω_1 is σ -linked. - **4** (Todorcevic-Velickovic) $2^{\omega} = 2^{\omega_1}$. - **5** (Moore) $add(\mathcal{N}) > \omega_1$. Properties (1) and (2) above are consequences of the weaker property \mathcal{K}_2 . However, even some weak consequences of MA_{ω_1} , e.g., every ladder system can be uniformized, seems to require a possibly stronger property \mathcal{K}_4 . # $P(ccc \rightarrow K_3)$ $P(ccc \rightarrow K_3)$ ($P(ccc \rightarrow precaliber \omega_1)$) is equivalent to • For a coloring $c : [\omega_1]^3 \to 2$ $(c : [\omega_1]^{<\omega} \to 2)$, if an uncountable 0-homogeneous subset of c can be forced by a ccc poset, then it already exists. ### First attempt An iteration method, of minimizing the damage to a strong coloring, is introduced to distinguish MA and MA(powerfully ccc). ### Theorem 2 (2025) MA(powerfully ccc) does not imply MA. It is likely that the method can be generalized to distinguish MA_{ω_1} and \mathcal{K}_3 . ### First attempt An iteration method, of minimizing the damage to a strong coloring, is introduced to distinguish MA and MA(powerfully ccc). ### Theorem 2 (2025) MA(powerfully ccc) does not imply MA. It is likely that the method can be generalized to distinguish MA_{ω_1} and \mathcal{K}_3 . Fix a strong ccc coloring $\pi: [\omega_1]^{<\omega} \to 2$. Iteratively force while preserve that π has no uncountable 0-homogeneous subset. ## Difficulty The procedure encounters difficulty: - ① There may be a ccc coloring $c: [\omega_1]^3 \to 2$ such that - $\mathcal{H}_0^c \subseteq \mathcal{H}_0^{\pi}$ where \mathcal{H}_0^c (\mathcal{H}_0^{π}) is the poset consisting of finite 0-homogeneous subsets of c (π) ordered by reverse inclusion. ### Difficulty The procedure encounters difficulty: - ① There may be a ccc coloring $c: [\omega_1]^3 \to 2$ such that - $\mathcal{H}_0^c \subseteq \mathcal{H}_0^{\pi}$ where \mathcal{H}_0^c (\mathcal{H}_0^π) is the poset consisting of finite 0-homogeneous subsets of c (π) ordered by reverse inclusion. An uncountable 0-homogeneous subset of c would induce an uncountable 0-homogeneous subset of π . So we cannot add an uncountable 0-homogeneous subset of c. Only option: Destroy ccc of \mathcal{H}_0^c . ### **Difficulties** But the difficulty becomes major if the coloring c has the following stronger property. **1** \mathcal{H}_0^c is σ -linked. The overall picture ### Positive side \mathcal{K}_3 together with $\mathrm{MA}_{\omega_1}(\sigma\text{-centered})$ implies the existence of a coloring c with properties (I) and (II). • \mathcal{K}_3 +MA $_{\omega_1}(\sigma$ -centered) implies MA $_{\omega_1}$. ## For posets of size $\leq \omega_1$ Figure: Forcing properties Bell's Theorem: $MA_{\kappa}(\sigma\text{-centered})$ is equivalent to $\mathfrak{p} > \kappa$. Rothberger's Theorem: $\mathfrak{p}>\omega_1$ iff $\mathfrak{t}>\omega_1$; or Malliaris-Shelah's Theorem: $\mathfrak{p} = \mathfrak{t}$. #### Theorem 3 $\mathscr{K}_3 + \mathfrak{t} > \omega_1$ implies MA_{ω_1} . Fix a tower $\mathcal{T} = \{t_{\alpha} : \alpha < \omega_1\}$, i.e., every $t_{\alpha} \subseteq \omega$ and $t_{\beta} \setminus t_{\alpha}$ is finite whenever $\alpha < \beta$. Say $t \subseteq \omega$ fills the tower \mathcal{T} if $t \setminus t_{\alpha}$ is finite for all α . $\mathfrak{t}>\omega_1$ is the assertion that every tower of size ω_1 is filled. One way to fill the tower \mathcal{T} is to find $\Gamma \in [\omega_1]^{\omega_1}$ such that $\bigcap_{\alpha \in \Gamma} t_\alpha$ is infinite. Then $t = \bigcap_{\alpha \in \Gamma} t_\alpha$ will fill the tower \mathcal{T} . Want: $\bigcap_{\alpha \in \Gamma} t_{\alpha}$ is infinite. Attempt: Partition ω into infinitely many intervals and expect that $\bigcap_{\alpha \in \Gamma} t_{\alpha}$ intersects every interval. (Todorcevic) \mathcal{K}_3 implies $\mathfrak{b} > \omega_1$. So find $I \in [\omega]^{\omega}$ (going to a sub-tower) such that of for every $\alpha < \omega_1$ and every $n < \omega$, $t_\alpha \cap I_n \neq \emptyset$ where $I_n = [I(n), I(n+1))$. ### Difficulty The next difficulty: the forcing that adds $\Gamma \in [\omega_1]^{\omega_1}$ satisfying $$ig(igcap_{lpha\in\Gamma}t_lphaig)\cap I_n eq\emptyset$$ for all n is not even ccc. ### Difficulty The next difficulty: the forcing that adds $\Gamma \in [\omega_1]^{\omega_1}$ satisfying $$(\bigcap_{\alpha\in\Gamma}t_{\alpha})\cap I_{n}\neq\emptyset$$ for all n is not even ccc. Solution: ccc colorings on $[\omega_1]^3$: $c: [\omega_1]^3 \to 2$ by $c(\alpha, \beta, \gamma) = 0$ iff $$e(\alpha,\beta) = e(\alpha,\gamma) \to t_{\alpha} \cap t_{\beta} \cap I_{e(\alpha,\beta)} \neq \emptyset$$ where e is a arbitrary coherent finite-to-one function. ## Make the poset ccc The coloring c is ccc and an uncountable 3-linked (or 0-homogeneous) subset induces ccc of the following poset: $$\mathcal{P} = \{ F \in [\Sigma]^{<\omega} : (\bigcap_{\alpha \in F} t_{\alpha}) \cap I_n \neq \emptyset \text{ for all } n \in A \}$$ ordered by reverse inclusion is ccc. # Difficulty \mathcal{P} forces $\Gamma' \in [\Sigma]^{\omega_1}$ such that $$(\bigcap_{\alpha\in\Gamma'}t_\alpha)\cap I_n\neq\emptyset$$ for all $n\in A$. Goal: $(\bigcap_{\alpha \in \Gamma'} t_{\alpha}) \cap I_n \neq \emptyset$. Need: $(\bigcap_{\alpha \in F} t_{\alpha}) \cap I_n \neq \emptyset$ for all $F \in [\Gamma']^{|I_n|}$. $$\mathcal{K}_3$$: $(\bigcap_{\alpha \in F} t_{\alpha}) \cap I_n \neq \emptyset$ for all $F \in [\Gamma']^3$. Note that $|I_n| \to \infty$ as $n \to \infty$. So strengthening \mathcal{K}_3 to \mathcal{K}_n for some fixed n does not resolve the problem. Now the difficulty is to find, by ccc coloring on triples, $\Gamma \in [\Sigma]^{\omega_1}$ such that for $n \in A$, • $$\bigcap_{\alpha \in \Gamma} (t_{\alpha} \cap I_n) \neq \emptyset$$. #### attempt Natural idea: Find a coloring on $[\omega_1]^3$ such that a pair of ordinals $\{\alpha,\beta\}$ would guess an interval - $I_{n_{\alpha\beta}}$ and - ullet a natural number $m_{lphaeta}\in I_{n_{lphaeta}}$ while for the third ordinal γ , $m_{\alpha\beta} \in t_{\gamma}$. #### attempt Natural idea: Find a coloring on $[\omega_1]^3$ such that a pair of ordinals $\{\alpha,\beta\}$ would guess an interval - $I_{n_{\alpha\beta}}$ and - ullet a natural number $m_{lphaeta}\in I_{n_{lphaeta}}$ while for the third ordinal γ , $m_{\alpha\beta} \in t_{\gamma}$. However, all such attempts failed. It is still open if there is a ccc coloring to fulfill above purpose. ### Correct structure $$\begin{split} \langle \mathcal{I}_n^1 &= \{t_\alpha \cap I_n : \alpha \in \Gamma\} : n \in A \rangle \text{ for } \Gamma \subseteq \Sigma. \\ \pi &: [\omega_1]^3 \to 2 \text{ by for } \alpha < \beta < \gamma, \ \pi(\alpha, \beta, \gamma) = 0 \text{ iff} \\ e(\alpha, \beta) &= e(\alpha, \gamma) \to (t_\beta \cap I_{e(\alpha, \beta)} \subseteq t_\gamma \lor t_\gamma \cap I_{e(\alpha, \beta)} \subseteq t_\beta). \end{split}$$ π is ccc and an uncountable 0-homogeneous subset induces $\Gamma \in [\Sigma]^{\omega_1}$ and $B \in [A]^\omega$ such that of or every $n \in B$, $(\mathcal{I}_n^{\Gamma}, \subseteq)$ is linearly order and hence has non-empty intersection. # Solution ## Theorem 4 \mathcal{K}_3 implies MA_{ω_1} . # For posets of size $\leq \omega_1$ # K_3 and precailber ω_1 The following are equivalent. - $P(ccc \rightarrow K_3)$. - P(ccc \rightarrow precaliber ω_1). - For a coloring $c: [\omega_1]^3 \to 2$, if some ccc poset adds an uncountable 0-homogeneous subset of c, then c already has an uncountable 0-homogeneous subset. - For a coloring $\pi: [\omega_1]^{<\omega} \to 2$, if some ccc poset adds an uncountable 0-homogeneous subset of π , then π already has an uncountable 0-homogeneous subset. It seems to indicate that a ccc coloring on finite sets may be coded by a ccc coloring on triples. It seems to indicate that a ccc coloring on finite sets may be coded by a ccc coloring on triples. Then we look into the general case and find out that on the contrary, to code an (n+1)-ary ccc coloring by an n-ary ccc coloring is so difficulty that the attempt will not succeed unless we reach the corresponding forcing axiom. It seems to indicate that a ccc coloring on finite sets may be coded by a ccc coloring on triples. Then we look into the general case and find out that on the contrary, to code an (n+1)-ary ccc coloring by an n-ary ccc coloring is so difficulty that the attempt will not succeed unless we reach the corresponding forcing axiom. More precisely, we have the following result. #### Theorem 5 Assume $n \ge 2$. $P(K_n \to K_{n+1})$ is equivalent to $MA_{\omega_1}(K_n)$ (or $P(K_n \to FA_{\omega_1})$). # Strategy to prove $P(K_n \to K_{n+1})$ implies $MA_{\omega_1}(K_n)$ - **2** $P(K_n \to K_{n+1})$ implies $P_{\omega_1}(K_n \to \sigma\text{-linked})$. - $\begin{array}{ll} \qquad & \mathrm{P}(\mathrm{K}_n \to \mathrm{K}_{n+1}) \text{ implies} \\ & \mathrm{P}_{\omega_1}((\mathrm{K}_n \wedge \sigma\text{-}i\text{-}\mathrm{linked}) \to \sigma\text{-}(i+1)\text{-}\mathrm{linked}) \text{ for } 2 \leq i < n. \end{array}$ - $P(\sigma$ -*n*-linked→K_{*n*+1}) implies P(σ -*n*-linked→ precaliber ω₁). - P(σ -n-linked \rightarrow precaliber ω_1) implies $P_{\omega_1}(\sigma$ -n-linked \rightarrow σ -centered). - Φ P(σ-n-linked→K_{n+1}) implies 𝔞 > ω₁. ## σ -*n*-linked $$(\bigstar 3)$$ - $(\bigstar 5)$ show #### Theorem 6 Assume $n \geq 2$. $P(\sigma-n-linked \to K_{n+1})$ is equivalent to $MA_{\omega_1}(\sigma-n-linked)$. ## K_n to σ -*n*-linked ## Theorem 7 For $n \geq 2$, $P_{\omega_1}(K_n \to \sigma\text{-n-linked})$ does not imply $MA_{\omega_1}(K_n)$. #### Theorem 8 $P_{\omega_1}(\text{precaliber }\omega_1 \to \sigma\text{-centered}) \text{ implies } MA_{\omega_1}(\text{precaliber }\omega_1).$ A dashed arrow from Φ to Ψ denotes that $P(\Phi \to \Psi)$ is as strong as $MA_{\omega_1}(\Phi)$. Figure: Forcing properties' strength By the results summarized above, the diagram is complete. # The remaining properties Figure: Weak forcing properties ## Open problems The following 3 statements are equivalent. - P(ccc→powerfully ccc). - P(ccc→productively ccc). - C^2 , i.e., the product of any two ccc posets is ccc. Also, P(ccc \rightarrow K) is the well-known property \mathcal{K}_2 . #### Question 3 Does C^2 or \mathcal{K}_2 imply MA_{ω_1} ? Or $\mathfrak{t} > \omega_1$? # Thank you!