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A poset (partially ordered set) P is ccc if every uncountable subset
of P contains 2 elements with a common lower bound.

Cohen forcing: Fn(w,2) is the collection of finite partial maps from
w to 2, ordered by extension as functions.

The product of x many Cohen posets with finite support:
Fn(k x w,2) or Fn(k,?2).

@ ccc forcing preserves cardinals.

e Fn(k,2)is ccc.

(Cohen) LFn(%:2) 1= 2w —  for Kk > wy.
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Productivity

In general, ccc is not productive: If S is a Suslin tree, then S is ccc
and S? is not ccc.

A poset (partially ordered set) P has property K, (K for Knaster),
for n > 2, if every uncountable subset of P has an uncountable
subset that is n-linked.

A subset is n-linked if every n-element subset has a common lower
bound.

Property K, is stronger than ccc and is productive.

Fn(k,2) has property K,.
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Stronger forcing properties

‘P has precaliber wy if every uncountable subset of P has an
uncountable centered subset. A subset X of P is centered if every
finite subset of X has a common lower bound.

‘P is o-n-linked if P is a countable union of n-linked subsets.

P is o-centered if P is a countable union of centered subsets.
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‘P has precaliber wy if every uncountable subset of P has an
uncountable centered subset. A subset X of P is centered if every
finite subset of X has a common lower bound.

‘P is o-n-linked if P is a countable union of n-linked subsets.

P is o-centered if P is a countable union of centered subsets.

@ Property K, (precaliber wy) is closed under finite support
product.

@ o-n-linked (o-centered) is closed under finite support product
of length < 2v.

Fn(k,?2) has precaliber wy, and is o-centered if K < 2%.
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Forcing properties

o-centered —— precaliber w;

o-(n+ 1)-linked Knt1

l l

o-n-linked K,
o-linked / K

Ccc

Figure: Forcing properties

Arrows denote implications. No other implication is ZFC provable

except for properties connected by (combinations of) arrows. 6/37
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Assume MA,,,. The following statements hold.

(M1) The union of w; meager (null) sets is meager (null).
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Consequences of MA,,

Assume MA,,,. The following statements hold.

(M1) The union of w; meager (null) sets is meager (null).

(M2) (Juhasz) If X is an infinite ccc compact Hausdorff space, then
X cannot be covered by w; nowhere dense sets.

(M3) (Kunen) Every X C w3 equals (,., U
Ch, Dn C wo.

(M4) (Rowbottom) ccc is productive.

msn Cm X Dm for some

(M5) Every ccc poset has precaliber w; and is o-centered if the
poset has size < wy.

A space is ccc if it has no uncountable pairwise disjoint open
subsets.
(M2) <+ (M5) <> MA,, .
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Forcing axioms

P has property FA,,, (or say FA,,, (P)) if

@ For every collection Z of w; many dense subsets of P, there is
a directed subset of P meeting every member of .

For a property ® stronger than ccc, MA,, (®) is the assertion that
if P has property ®, then P has property FA,, .

MA,, is MA,, (ccc).
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For posets of size < wy

PN

o-centered ——— precaliber w

o-(n+ 1)-linked Knt1

l l

U—n-linked Kn
o-linked / K

CccC

Figure: Forcing properties
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How different are these properties

Theorem 1 (Todorcevic-Velickovic)

If every ccc poset has precaliber wy, then MA,,; holds.
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How different are these properties

Theorem 1 (Todorcevic-Velickovic)

If every ccc poset has precaliber w1, then MA,,, holds.

Definition 1

P(® — W) denotes the property that every poset with property ®
has property V.

P(® — FA,,) is the same as MA,,, (®).

(Todorcevic-Velickovic) P(ccc—precaliber wy) is equivalent to
P(ccc—FA,,).
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Does P(ccc—Kp,) (denoted by 7, in the literature) imply MA,,,
for some n > 27
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Background
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Natural questions

Does P(ccc—Kp,) (denoted by 7, in the literature) imply MA,,,
for some n > 27

For n > 2, are P(K, —K,) all different for different m > n?
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A3 implies MA
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Consequences of #3:

Todorcevic) b > w;.

Todorcevic) Every Aronszajn tree is special.

Todorcevic-Velickovic) 2« = 241,

o (

@ (

© (Todorcevic-Velickovic) Every ccc poset of size wy is o-linked.

Q (
© (Moore) add(A) > w;.

Properties (1) and (2) above are consequences of the weaker
property .#>. However, even some weak consequences of MA,,,,
e.g., every ladder system can be uniformized, seems to require a
possibly stronger property .%4.
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P(ccc—Ksz) (P(ccc—rprecaliber wy)) is equivalent to

@ For a coloring ¢ : [w1]® = 2 (c: [wi] — 2), if an
uncountable 0-homogeneous subset of ¢ can be forced by a
ccc poset, then it already exists.

13/37



A3 implies MA,
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First attempt

An iteration method, of minimizing the damage to a strong
coloring, is introduced to distinguish MA and MA(powerfully ccc).

Theorem 2 (2025)
MA (powerfully ccc) does not imply MA.

It is likely that the method can be generalized to distinguish MA,,
and J73.
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O0.0000000000’OOO

First attempt

An iteration method, of minimizing the damage to a strong
coloring, is introduced to distinguish MA and MA(powerfully ccc).

Theorem 2 (2025)
MA (powerfully ccc) does not imply MA.

It is likely that the method can be generalized to distinguish MA,,
and J73.

Fix a strong ccc coloring 7 : [w1]<¥ — 2. Iteratively force
while preserve that

7 has no uncountable 0-homogeneous subset.
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Difficulty

The procedure encounters difficulty:

@ There may be a ccc coloring ¢ : [w1]?® — 2 such that
o HS CHT
where H§ (Hg) is the poset consisting of finite
0-homogeneous subsets of ¢ (7) ordered by reverse inclusion.
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A3 implies MA,
OO0.000000000’OOO

Difficulty

The procedure encounters difficulty:

@ There may be a ccc coloring ¢ : [w1]?® — 2 such that
o HS CHT
where H§ (Hg) is the poset consisting of finite
0-homogeneous subsets of ¢ (7) ordered by reverse inclusion.

An uncountable 0-homogeneous subset of ¢ would induce an
uncountable 0-homogeneous subset of 7. So we cannot add an
uncountable 0-homogeneous subset of c.

Only option: Destroy ccc of H§.
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Difficulties

But the difficulty becomes major if the coloring ¢ has the following
stronger property.

Q@ HS is o-linked.
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A3 implies MA,
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Positive side

3 together with MA,,, (o-centered) implies the existence of a
coloring ¢ with properties (1) and (II).

o J3+MA,, (0-centered) implies MA,, .
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For posets of size < wy
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MA,, (o-centered)

Bell's Theorem: MA, (o-centered) is equivalent to p > k.

Rothberger's Theorem: p > wy iff t > wy; or Malliaris-Shelah's
Theorem: p =t.

J34t > wy implies MA,, .
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Fix a tower 7 = {to : @ < w1}, i.e., every t, Cw and tg\ t, is
finite whenever a < .

Say t C w fills the tower T if t\ t, is finite for all a.
t > ws is the assertion that every tower of size w; is filled.

One way to fill the tower 7 is to find ' € [w1]** such that (), cr ta
is infinite. Then t = (" ¢ to Wil fill the tower T
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Want: () cr ta is infinite.

Attempt: Partition w into infinitely many intervals and expect that
Naer ta intersects every interval.

(Todorcevic) #3 implies b > wy.

So find | € [w]* (going to a sub-tower) such that

@ for every a < wy and every n < w, t, N I, # () where
I = [1(n), 1(n + 1))
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A3 implies MA,
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Difficulty

The next difficulty: the forcing that adds ' € [w1]*? satisfying

((1) ta) N o # 0 for all n

ael

is not even ccc.
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A3 implies MA,
OOOOOOOOO0.00’OOO

Difficulty

The next difficulty: the forcing that adds ' € [w1]*? satisfying

((1) ta) N o # 0 for all n

acl
is not even ccc.

Solution: ccc colorings on [w1]3: ¢ : [w1]® = 2 by c(a, B,7) = 0 iff

e(a, B) = e(a,7) = ta Ntg N,z # 0

where e is a arbitrary coherent finite-to-one function.
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Make the poset ccc

The coloring ¢ is ccc and an uncountable 3-linked (or
0-homogeneous) subset induces ccc of the following poset:

© Thereare X € [w1]*“* and A € [w]® such that

P:{FE[Z]<“:(ﬂ ta) N1y # 0 for all n € A}

acF

ordered by reverse inclusion is ccc.
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A3 implies MA,
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Difficulty

P forces [" € [X]“* such that

([ ta) o #0 forall n € A.
acl”’

Goal: (Naerr ta) N 1n # 0.

Need: (Nucr ta) N ln # 0 for all F e 7],

50 (Naer ta) N In # 0 for all F e [[]3.

Note that |/,| — oo as n — co. So strengthening 73 to ¢, for
some fixed n does not resolve the problem.

Now the difficulty is to find, by ccc coloring on triples, ' € [X]“1
such that for n € A,

® Nuer(taNly) # 0.
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A3 implies MA,
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attempt

Natural idea: Find a coloring on [w1]® such that a pair of ordinals
{a, B} would guess an interval

e /, . and

na/g

@ a natural number mys € I,

while for the third ordinal v, mys € t,.
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attempt

Natural idea: Find a coloring on [w1]® such that a pair of ordinals
{a, B} would guess an interval

e /, . and

na/g

@ a natural number mys € I,

while for the third ordinal v, mys € t,.

However, all such attempts failed. It is still open if there is a ccc
coloring to fulfill above purpose.
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A3 implies MA,
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Correct structure

(Il ={taNl,:acT}:nc A forT C ¥
7 [wi1]® = 2 by for a < 3 < v, 7(a, B,7) = 0 iff

e(a,B) = e(a,’y) — (tg N /e(a,ﬁ) Ct,Vt,N /e(a,ﬁ) - tg).

7 is ccc and an uncountable 0-homogeneous subset induces
I € [£]“* and B € [A]“ such that

Q forevery n€ B, (I, C) is linearly order and hence has
non-empty intersection.
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Solution

Theorem 4

3 implies MA,, .
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K3 and precailber wq

The following are equivalent.

@ P(ccc—K3).
@ P(ccc—precaliber wy).

e For a coloring ¢ : [w1]® — 2, if some ccc poset adds an
uncountable 0-homogeneous subset of ¢, then ¢ already has an
uncountable 0-homogeneous subset.

e For a coloring 7 : [w1]=* — 2, if some ccc poset adds an
uncountable 0-homogeneous subset of 7, then 7 already has
an uncountable 0-homogeneous subset.
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It seems to indicate that a ccc coloring on finite sets may be coded
by a ccc coloring on triples.
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The overall picture
0080000000

It seems to indicate that a ccc coloring on finite sets may be coded
by a ccc coloring on triples.

Then we look into the general case and find out that on the
contrary, to code an (n + 1)-ary ccc coloring by an n-ary ccc
coloring is so difficulty that the attempt will not succeed unless we
reach the corresponding forcing axiom.

More precisely, we have the following result.

Assume n > 2. P(K, —-Kn4+1) is equivalent to MA,,, (K,) (or
P(K, —»FA,,))
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Strategy to prove P(K, —K, 1) implies MA, (K,)

@
&

@

P(K, =Kp,11) implies P, (K, — o-linked).

P(K, =Kp+1) implies

P, ((Kp A o-i-linked)— o-(i 4 1)-linked) for 2 < i < n.
P(o-n-linked—K,41) implies P(o-n-linked— precaliber wy).
P(o-n-linked— precaliber wy) implies

P, (o-n-linked— o-centered).

P(o-n-linked—K,41) implies t > w;.
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[o]e]e]e] lelelelele}

o-n-linked

(% 3)-(H5) show

Theorem 6

Assume n > 2. P(o-n-linked—K, 1) is equivalent to
MA,,, (o-n-linked).
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K, to o-n-linked

For n > 2, P, (K, — o-n-linked) does not imply MA,,, (Kp).

v

P, (precaliber w; — o-centered) implies MA,, (precaliber wy).
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A dashed arrow from ® to W denotes that P(® — W) is as strong
as MA,, ().

<« == — = =

o-centered —— precaliber w;

o-(n+ 1)-linked

n+1

[T
a—n—linked Kn
o-linked - K

Figure: Forcing properties’ strength

By the results summarized above, the diagram is complete.
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The remaining properties

o-linked > K

~ —

productively ccc

l

powerfully ccc

l

Ccc

Figure: Weak forcing properties
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Open problems

The following 3 statements are equivalent.

@ P(ccc—powerfully ccc).
@ P(ccc—productively ccc).

e C?, i.e., the product of any two ccc posets is ccc.

Also, P(ccc—K) is the well-known property .75.

Does C2 or .#, imply MA,,? Or t > w;?
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Thank youl!
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