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Partially ordered sets

A poset (partially ordered set) P is ccc if every uncountable subset
of P contains 2 elements with a common lower bound.

Cohen forcing: Fn(ω, 2) is the collection of finite partial maps from
ω to 2, ordered by extension as functions.

The product of κ many Cohen posets with finite support:
Fn(κ× ω, 2) or Fn(κ, 2).

ccc forcing preserves cardinals.
Fn(κ, 2) is ccc.

(Cohen) LFn(κ,2) |= 2ω = κ for κ ≥ ω1.
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Productivity

In general, ccc is not productive: If S is a Suslin tree, then S is ccc
and S2 is not ccc.

A poset (partially ordered set) P has property Kn (K for Knaster),
for n ≥ 2, if every uncountable subset of P has an uncountable
subset that is n-linked.

A subset is n-linked if every n-element subset has a common lower
bound.

Property Kn is stronger than ccc and is productive.

Fn(κ, 2) has property Kn.
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Stronger forcing properties

P has precaliber ω1 if every uncountable subset of P has an
uncountable centered subset. A subset X of P is centered if every
finite subset of X has a common lower bound.

P is σ-n-linked if P is a countable union of n-linked subsets.

P is σ-centered if P is a countable union of centered subsets.

Property Kn (precaliber ω1) is closed under finite support
product.
σ-n-linked (σ-centered) is closed under finite support product
of length ≤ 2ω.

Fn(κ, 2) has precaliber ω1, and is σ-centered if κ ≤ 2ω.
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Forcing properties

σ-centered precaliber ω1...
...

σ-(n + 1)-linked Kn+1

σ-n-linked Kn...
...

σ-linked K

ccc

Figure: Forcing properties

Arrows denote implications. No other implication is ZFC provable
except for properties connected by (combinations of) arrows. 6 / 37
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Consequences of MAω1

Assume MAω1 . The following statements hold.

(M1) The union of ω1 meager (null) sets is meager (null).

(M2) (Juhasz) If X is an infinite ccc compact Hausdorff space, then
X cannot be covered by ω1 nowhere dense sets.

(M3) (Kunen) Every X ⊆ ω2
2 equals

⋂
n<ω

⋃
m>n Cm × Dm for some

Cn,Dn ⊆ ω2.
(M4) (Rowbottom) ccc is productive.
(M5) Every ccc poset has precaliber ω1 and is σ-centered if the

poset has size ≤ ω1.

A space is ccc if it has no uncountable pairwise disjoint open
subsets.

(M2) ↔ (M5) ↔ MAω1 .
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Forcing axioms

P has property FAω1 (or say FAω1(P)) if

For every collection D of ω1 many dense subsets of P, there is
a directed subset of P meeting every member of D .

For a property Φ stronger than ccc, MAω1(Φ) is the assertion that
if P has property Φ, then P has property FAω1 .

MAω1 is MAω1(ccc).
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For posets of size ≤ ω1

σ-centered

FAω1

precaliber ω1...
...

σ-(n + 1)-linked Kn+1

σ-n-linked Kn...
...

σ-linked K

ccc

Figure: Forcing properties
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How different are these properties

Theorem 1 (Todorcevic-Velickovic)

If every ccc poset has precaliber ω1, then MAω1 holds.

Definition 1
P(Φ → Ψ) denotes the property that every poset with property Φ
has property Ψ.

P(Φ → FAω1) is the same as MAω1(Φ).

(Todorcevic-Velickovic) P(ccc→precaliber ω1) is equivalent to
P(ccc→FAω1).
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Natural questions

Question 1
Does P(ccc→Kn) (denoted by Kn in the literature) imply MAω1

for some n ≥ 2?

Question 2
For n ≥ 2, are P(Kn →Km) all different for different m > n?
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K3

Consequences of K3:

1 (Todorcevic) b > ω1.
2 (Todorcevic) Every Aronszajn tree is special.
3 (Todorcevic-Velickovic) Every ccc poset of size ω1 is σ-linked.
4 (Todorcevic-Velickovic) 2ω = 2ω1 .
5 (Moore) add(N ) > ω1.

Properties (1) and (2) above are consequences of the weaker
property K2. However, even some weak consequences of MAω1 ,
e.g., every ladder system can be uniformized, seems to require a
possibly stronger property K4.
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P(ccc→K3)

P(ccc→K3) (P(ccc→precaliber ω1)) is equivalent to

For a coloring c : [ω1]
3 → 2 (c : [ω1]

<ω → 2), if an
uncountable 0-homogeneous subset of c can be forced by a
ccc poset, then it already exists.

13 / 37
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First attempt

An iteration method, of minimizing the damage to a strong
coloring, is introduced to distinguish MA and MA(powerfully ccc).

Theorem 2 (2025)

MA(powerfully ccc) does not imply MA.

It is likely that the method can be generalized to distinguish MAω1

and K3.

Fix a strong ccc coloring π : [ω1]
<ω → 2. Iteratively force

K3

while preserve that

π has no uncountable 0-homogeneous subset.

14 / 37



Background K3 implies MAω1 The overall picture

First attempt

An iteration method, of minimizing the damage to a strong
coloring, is introduced to distinguish MA and MA(powerfully ccc).

Theorem 2 (2025)

MA(powerfully ccc) does not imply MA.

It is likely that the method can be generalized to distinguish MAω1

and K3.

Fix a strong ccc coloring π : [ω1]
<ω → 2. Iteratively force

K3

while preserve that

π has no uncountable 0-homogeneous subset.

14 / 37



Background K3 implies MAω1 The overall picture

Difficulty

The procedure encounters difficulty:

(I) There may be a ccc coloring c : [ω1]
3 → 2 such that

Hc
0 ⊆ Hπ

0

where Hc
0 (Hπ

0 ) is the poset consisting of finite
0-homogeneous subsets of c (π) ordered by reverse inclusion.

An uncountable 0-homogeneous subset of c would induce an
uncountable 0-homogeneous subset of π. So we cannot add an
uncountable 0-homogeneous subset of c .

Only option: Destroy ccc of Hc
0.
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Difficulties

But the difficulty becomes major if the coloring c has the following
stronger property.

(II) Hc
0 is σ-linked.

16 / 37
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Positive side

K3 together with MAω1(σ-centered) implies the existence of a
coloring c with properties (I) and (II).

K3+MAω1(σ-centered) implies MAω1 .
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For posets of size ≤ ω1

σ-centered

FAω1

precaliber ω1...
...

σ-(n + 1)-linked Kn+1

σ-n-linked Kn...
...

σ-linked K

ccc

Figure: Forcing properties
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MAω1(σ-centered)

Bell’s Theorem: MAκ(σ-centered) is equivalent to p > κ.

Rothberger’s Theorem: p > ω1 iff t > ω1; or Malliaris-Shelah’s
Theorem: p = t.

Theorem 3
K3+t > ω1 implies MAω1 .

19 / 37



Background K3 implies MAω1 The overall picture

t > ω1

Fix a tower T = {tα : α < ω1}, i.e., every tα ⊆ ω and tβ \ tα is
finite whenever α < β.

Say t ⊆ ω fills the tower T if t \ tα is finite for all α.

t > ω1 is the assertion that every tower of size ω1 is filled.

One way to fill the tower T is to find Γ ∈ [ω1]
ω1 such that

⋂
α∈Γ tα

is infinite. Then t =
⋂

α∈Γ tα will fill the tower T .

20 / 37
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t > ω1

Want:
⋂

α∈Γ tα is infinite.

Attempt: Partition ω into infinitely many intervals and expect that⋂
α∈Γ tα intersects every interval.

(Todorcevic) K3 implies b > ω1.

So find I ∈ [ω]ω (going to a sub-tower) such that

(III) for every α < ω1 and every n < ω, tα ∩ In ̸= ∅ where
In = [I (n), I (n + 1)).
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Difficulty

The next difficulty: the forcing that adds Γ ∈ [ω1]
ω1 satisfying

(
⋂
α∈Γ

tα) ∩ In ̸= ∅ for all n

is not even ccc.

Solution: ccc colorings on [ω1]
3: c : [ω1]

3 → 2 by c(α, β, γ) = 0 iff

e(α, β) = e(α, γ) → tα ∩ tβ ∩ Ie(α,β) ̸= ∅

where e is a arbitrary coherent finite-to-one function.
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Make the poset ccc

The coloring c is ccc and an uncountable 3-linked (or
0-homogeneous) subset induces ccc of the following poset:

(IV) There are Σ ∈ [ω1]
ω1 and A ∈ [ω]ω such that

P = {F ∈ [Σ]<ω : (
⋂
α∈F

tα) ∩ In ̸= ∅ for all n ∈ A}

ordered by reverse inclusion is ccc.
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Difficulty

P forces Γ′ ∈ [Σ]ω1 such that

(
⋂
α∈Γ′

tα) ∩ In ̸= ∅ for all n ∈ A.

Goal: (
⋂

α∈Γ′ tα) ∩ In ̸= ∅.

Need: (
⋂

α∈F tα) ∩ In ̸= ∅ for all F ∈ [Γ′]|In|.

K3: (
⋂

α∈F tα) ∩ In ̸= ∅ for all F ∈ [Γ′]3.

Note that |In| → ∞ as n → ∞. So strengthening K3 to Kn for
some fixed n does not resolve the problem.

Now the difficulty is to find, by ccc coloring on triples, Γ ∈ [Σ]ω1

such that for n ∈ A,⋂
α∈Γ(tα ∩ In) ̸= ∅.
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attempt

Natural idea: Find a coloring on [ω1]
3 such that a pair of ordinals

{α, β} would guess an interval

Inαβ
and

a natural number mαβ ∈ Inαβ

while for the third ordinal γ, mαβ ∈ tγ .

However, all such attempts failed. It is still open if there is a ccc
coloring to fulfill above purpose.
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Correct structure

⟨IΓ
n = {tα ∩ In : α ∈ Γ} : n ∈ A⟩ for Γ ⊆ Σ.

π : [ω1]
3 → 2 by for α < β < γ, π(α, β, γ) = 0 iff

e(α, β) = e(α, γ) → (tβ ∩ Ie(α,β) ⊆ tγ ∨ tγ ∩ Ie(α,β) ⊆ tβ).

π is ccc and an uncountable 0-homogeneous subset induces
Γ ∈ [Σ]ω1 and B ∈ [A]ω such that

(V) for every n ∈ B , (IΓ
n ,⊆) is linearly order and hence has

non-empty intersection.
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Solution

Theorem 4
K3 implies MAω1 .
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K3 and precailber ω1

The following are equivalent.

P(ccc→K3).
P(ccc→precaliber ω1).
For a coloring c : [ω1]

3 → 2, if some ccc poset adds an
uncountable 0-homogeneous subset of c , then c already has an
uncountable 0-homogeneous subset.
For a coloring π : [ω1]

<ω → 2, if some ccc poset adds an
uncountable 0-homogeneous subset of π, then π already has
an uncountable 0-homogeneous subset.
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It seems to indicate that a ccc coloring on finite sets may be coded
by a ccc coloring on triples.

Then we look into the general case and find out that on the
contrary, to code an (n + 1)-ary ccc coloring by an n-ary ccc
coloring is so difficulty that the attempt will not succeed unless we
reach the corresponding forcing axiom.

More precisely, we have the following result.

Theorem 5

Assume n ≥ 2. P(Kn →Kn+1) is equivalent to MAω1(Kn) (or
P(Kn →FAω1)).
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Strategy to prove P(Kn →Kn+1) implies MAω1(Kn)

(⋆1) P(Kn →Kn+1) implies Pω1(Kn → σ-linked).
(⋆2) P(Kn →Kn+1) implies

Pω1((Kn ∧ σ-i-linked)→ σ-(i + 1)-linked) for 2 ≤ i < n.
(⋆3) P(σ-n-linked→Kn+1) implies P(σ-n-linked→ precaliber ω1).
(⋆4) P(σ-n-linked→ precaliber ω1) implies

Pω1(σ-n-linked→ σ-centered).
(⋆5) P(σ-n-linked→Kn+1) implies t > ω1.
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σ-n-linked

(⋆3)-(⋆5) show

Theorem 6
Assume n ≥ 2. P(σ-n-linked→Kn+1) is equivalent to
MAω1(σ-n-linked).
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Kn to σ-n-linked

Theorem 7

For n ≥ 2, Pω1(Kn → σ-n-linked) does not imply MAω1(Kn).

Theorem 8

Pω1(precaliber ω1 → σ-centered) implies MAω1(precaliber ω1).
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A dashed arrow from Φ to Ψ denotes that P(Φ → Ψ) is as strong
as MAω1(Φ).

σ-centered precaliber ω1...
...

σ-(n + 1)-linked Kn+1

σ-n-linked Kn...
...

σ-linked K

Figure: Forcing properties’ strength

By the results summarized above, the diagram is complete.
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The remaining properties

σ-linked K

productively ccc

powerfully ccc

ccc

Figure: Weak forcing properties
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Open problems

The following 3 statements are equivalent.

P(ccc→powerfully ccc).
P(ccc→productively ccc).
C2, i.e., the product of any two ccc posets is ccc.

Also, P(ccc→K) is the well-known property K2.

Question 3

Does C2 or K2 imply MAω1? Or t > ω1?
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Thank you!
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