Background

Strengthening the Knaster property induces the forcing axiom

Yinhe Peng

Academy of Mathematics and Systems Science Chinese Academy of Sciences

2025 Fudan Conference on Mathematical Logic, August 8 2025

Outline

Background

2 \mathcal{K}_3 implies MA_{ω_1}

3 The overall picture

Partially ordered sets

A poset (partially ordered set) \mathcal{P} is ccc if every uncountable subset of \mathcal{P} contains 2 elements with a common lower bound.

Partially ordered sets

A poset (partially ordered set) \mathcal{P} is ccc if every uncountable subset of \mathcal{P} contains 2 elements with a common lower bound.

Cohen forcing: $Fn(\omega, 2)$ is the collection of finite partial maps from ω to 2, ordered by extension as functions.

The product of κ many Cohen posets with finite support: $Fn(\kappa \times \omega, 2)$ or $Fn(\kappa, 2)$.

Partially ordered sets

A poset (partially ordered set) \mathcal{P} is ccc if every uncountable subset of \mathcal{P} contains 2 elements with a common lower bound.

Cohen forcing: $Fn(\omega, 2)$ is the collection of finite partial maps from ω to 2, ordered by extension as functions.

The product of κ many Cohen posets with finite support: $Fn(\kappa \times \omega, 2)$ or $Fn(\kappa, 2)$.

- ccc forcing preserves cardinals.
- $Fn(\kappa, 2)$ is ccc.

(Cohen)
$$L^{Fn(\kappa,2)} \models 2^{\omega} = \kappa$$
 for $\kappa \geq \omega_1$.

Productivity

In general, ccc is not productive: If S is a Suslin tree, then S is ccc and S^2 is not ccc.

A poset (partially ordered set) \mathcal{P} has property K_n (K for Knaster), for $n \geq 2$, if every uncountable subset of \mathcal{P} has an uncountable subset that is n-linked.

A subset is *n*-linked if every *n*-element subset has a common lower bound.

Property K_n is stronger than ccc and is productive.

 $Fn(\kappa, 2)$ has property K_n .

Stronger forcing properties

 \mathcal{P} has precaliber ω_1 if every uncountable subset of \mathcal{P} has an uncountable centered subset. A subset X of \mathcal{P} is centered if every finite subset of X has a common lower bound.

 \mathcal{P} is σ -*n*-linked if \mathcal{P} is a countable union of *n*-linked subsets.

 \mathcal{P} is σ -centered if \mathcal{P} is a countable union of centered subsets.

Stronger forcing properties

 \mathcal{P} has precaliber ω_1 if every uncountable subset of \mathcal{P} has an uncountable centered subset. A subset X of \mathcal{P} is centered if every finite subset of X has a common lower bound.

 \mathcal{P} is σ -n-linked if \mathcal{P} is a countable union of n-linked subsets.

 \mathcal{P} is σ -centered if \mathcal{P} is a countable union of centered subsets.

- Property K_n (precaliber ω_1) is closed under finite support product.
- σ -n-linked (σ -centered) is closed under finite support product of length $\leq 2^{\omega}$.

 $Fn(\kappa, 2)$ has precaliber ω_1 , and is σ -centered if $\kappa \leq 2^{\omega}$.

Forcing properties

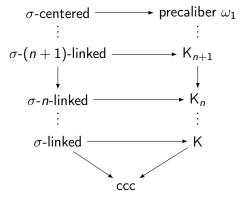


Figure: Forcing properties

Arrows denote implications. No other implication is ZFC provable except for properties connected by (combinations of) arrows.

Consequences of MA_{ω_1}

Assume MA_{ω_1} . The following statements hold.

(M1) The union of ω_1 meager (null) sets is meager (null).

Consequences of MA_{ω_1}

Assume MA_{ω_1} . The following statements hold.

- (M1) The union of ω_1 meager (null) sets is meager (null).
- (M2) (Juhasz) If X is an infinite ccc compact Hausdorff space, then X cannot be covered by ω_1 nowhere dense sets.

Consequences of MA_{ω_1}

Assume MA_{ω_1} . The following statements hold.

- (M1) The union of ω_1 meager (null) sets is meager (null).
- (M2) (Juhasz) If X is an infinite ccc compact Hausdorff space, then X cannot be covered by ω_1 nowhere dense sets.
- (M3) (Kunen) Every $X \subseteq \omega_2^2$ equals $\bigcap_{n < \omega} \bigcup_{m > n} C_m \times D_m$ for some $C_n, D_n \subseteq \omega_2$.

Consequences of MA_{ω_1}

Assume MA_{ω_1} . The following statements hold.

- (M1) The union of ω_1 meager (null) sets is meager (null).
- (M2) (Juhasz) If X is an infinite ccc compact Hausdorff space, then X cannot be covered by ω_1 nowhere dense sets.
- (M3) (Kunen) Every $X \subseteq \omega_2^2$ equals $\bigcap_{n < \omega} \bigcup_{m > n} C_m \times D_m$ for some $C_n, D_n \subseteq \omega_2$.
- (M4) (Rowbottom) ccc is productive.

Consequences of MA_{ω_1}

Assume MA_{ω_1} . The following statements hold.

- (M1) The union of ω_1 meager (null) sets is meager (null).
- (M2) (Juhasz) If X is an infinite ccc compact Hausdorff space, then X cannot be covered by ω_1 nowhere dense sets.
- (M3) (Kunen) Every $X\subseteq \omega_2^2$ equals $\bigcap_{n<\omega}\bigcup_{m>n}C_m\times D_m$ for some $C_n,D_n\subseteq \omega_2$.
- (M4) (Rowbottom) ccc is productive.
- (M5) Every ccc poset has precaliber ω_1 and is σ -centered if the poset has size $\leq \omega_1$.

A space is ccc if it has no uncountable pairwise disjoint open subsets.

$$(M2) \leftrightarrow (M5) \leftrightarrow MA_{\omega_1}$$
.

Forcing axioms

 ${\mathcal P}$ has property ${\rm FA}_{\omega_1}$ (or say ${\rm FA}_{\omega_1}({\mathcal P})$) if

• For every collection \mathscr{D} of ω_1 many dense subsets of \mathcal{P} , there is a directed subset of \mathcal{P} meeting every member of \mathscr{D} .

For a property Φ stronger than ccc, $\mathrm{MA}_{\omega_1}(\Phi)$ is the assertion that if $\mathcal P$ has property Φ , then $\mathcal P$ has property FA_{ω_1} .

 MA_{ω_1} is MA_{ω_1} (ccc).

For posets of size $\leq \omega_1$

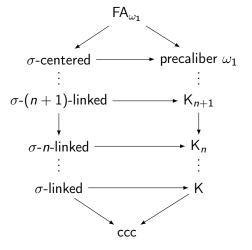


Figure: Forcing properties

How different are these properties

Theorem 1 (Todorcevic-Velickovic)

If every ccc poset has precaliber ω_1 , then MA_{ω_1} holds.

How different are these properties

Theorem 1 (Todorcevic-Velickovic)

If every ccc poset has precaliber ω_1 , then MA_{ω_1} holds.

Definition 1

 $P(\Phi \to \Psi)$ denotes the property that every poset with property Φ has property Ψ .

How different are these properties

Theorem 1 (Todorcevic-Velickovic)

If every ccc poset has precaliber ω_1 , then MA_{ω_1} holds.

Definition 1

 $P(\Phi \to \Psi)$ denotes the property that every poset with property Φ has property Ψ .

 $P(\Phi \to FA_{\omega_1})$ is the same as $MA_{\omega_1}(\Phi)$.

(Todorcevic-Velickovic) P(ccc \rightarrow precaliber ω_1) is equivalent to P(ccc \rightarrow FA $_{\omega_1}$).

Natural questions

Question 1

Does $P(ccc \to K_n)$ (denoted by \mathcal{K}_n in the literature) imply MA_{ω_1} for some n > 2?

Natural questions

Question 1

Does $P(ccc \rightarrow K_n)$ (denoted by \mathcal{K}_n in the literature) imply MA_{ω_1} for some n > 2?

Question 2

For $n \ge 2$, are $P(K_n \to K_m)$ all different for different m > n?

Consequences of \mathcal{K}_3 :

- (Todorcevic) $\mathfrak{b} > \omega_1$.
- (Todorcevic) Every Aronszajn tree is special.
- **1** (Todorcevic-Velickovic) Every ccc poset of size ω_1 is σ -linked.
- **4** (Todorcevic-Velickovic) $2^{\omega} = 2^{\omega_1}$.
- **5** (Moore) $add(\mathcal{N}) > \omega_1$.

Properties (1) and (2) above are consequences of the weaker property \mathcal{K}_2 . However, even some weak consequences of MA_{ω_1} , e.g., every ladder system can be uniformized, seems to require a possibly stronger property \mathcal{K}_4 .

$P(ccc \rightarrow K_3)$

 $P(ccc \rightarrow K_3)$ ($P(ccc \rightarrow precaliber \omega_1)$) is equivalent to

• For a coloring $c : [\omega_1]^3 \to 2$ $(c : [\omega_1]^{<\omega} \to 2)$, if an uncountable 0-homogeneous subset of c can be forced by a ccc poset, then it already exists.

First attempt

An iteration method, of minimizing the damage to a strong coloring, is introduced to distinguish MA and MA(powerfully ccc).

Theorem 2 (2025)

MA(powerfully ccc) does not imply MA.

It is likely that the method can be generalized to distinguish MA_{ω_1} and \mathcal{K}_3 .

First attempt

An iteration method, of minimizing the damage to a strong coloring, is introduced to distinguish MA and MA(powerfully ccc).

Theorem 2 (2025)

MA(powerfully ccc) does not imply MA.

It is likely that the method can be generalized to distinguish MA_{ω_1} and \mathcal{K}_3 .

Fix a strong ccc coloring $\pi: [\omega_1]^{<\omega} \to 2$. Iteratively force

while preserve that

 π has no uncountable 0-homogeneous subset.

Difficulty

The procedure encounters difficulty:

- ① There may be a ccc coloring $c: [\omega_1]^3 \to 2$ such that
 - $\mathcal{H}_0^c \subseteq \mathcal{H}_0^{\pi}$

where \mathcal{H}_0^c (\mathcal{H}_0^{π}) is the poset consisting of finite 0-homogeneous subsets of c (π) ordered by reverse inclusion.

Difficulty

The procedure encounters difficulty:

- ① There may be a ccc coloring $c: [\omega_1]^3 \to 2$ such that
 - $\mathcal{H}_0^c \subseteq \mathcal{H}_0^{\pi}$

where \mathcal{H}_0^c (\mathcal{H}_0^π) is the poset consisting of finite 0-homogeneous subsets of c (π) ordered by reverse inclusion.

An uncountable 0-homogeneous subset of c would induce an uncountable 0-homogeneous subset of π . So we cannot add an uncountable 0-homogeneous subset of c.

Only option: Destroy ccc of \mathcal{H}_0^c .

Difficulties

But the difficulty becomes major if the coloring c has the following stronger property.

1 \mathcal{H}_0^c is σ -linked.

The overall picture

Positive side

 \mathcal{K}_3 together with $\mathrm{MA}_{\omega_1}(\sigma\text{-centered})$ implies the existence of a coloring c with properties (I) and (II).

• \mathcal{K}_3 +MA $_{\omega_1}(\sigma$ -centered) implies MA $_{\omega_1}$.

For posets of size $\leq \omega_1$

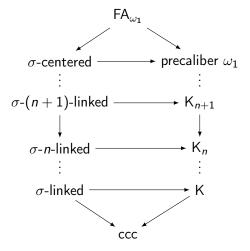


Figure: Forcing properties

Bell's Theorem: $MA_{\kappa}(\sigma\text{-centered})$ is equivalent to $\mathfrak{p} > \kappa$.

Rothberger's Theorem: $\mathfrak{p}>\omega_1$ iff $\mathfrak{t}>\omega_1$; or Malliaris-Shelah's

Theorem: $\mathfrak{p} = \mathfrak{t}$.

Theorem 3

 $\mathscr{K}_3 + \mathfrak{t} > \omega_1$ implies MA_{ω_1} .

Fix a tower $\mathcal{T} = \{t_{\alpha} : \alpha < \omega_1\}$, i.e., every $t_{\alpha} \subseteq \omega$ and $t_{\beta} \setminus t_{\alpha}$ is finite whenever $\alpha < \beta$.

Say $t \subseteq \omega$ fills the tower \mathcal{T} if $t \setminus t_{\alpha}$ is finite for all α .

 $\mathfrak{t}>\omega_1$ is the assertion that every tower of size ω_1 is filled.

One way to fill the tower \mathcal{T} is to find $\Gamma \in [\omega_1]^{\omega_1}$ such that $\bigcap_{\alpha \in \Gamma} t_\alpha$ is infinite. Then $t = \bigcap_{\alpha \in \Gamma} t_\alpha$ will fill the tower \mathcal{T} .

Want: $\bigcap_{\alpha \in \Gamma} t_{\alpha}$ is infinite.

Attempt: Partition ω into infinitely many intervals and expect that $\bigcap_{\alpha \in \Gamma} t_{\alpha}$ intersects every interval.

(Todorcevic) \mathcal{K}_3 implies $\mathfrak{b} > \omega_1$.

So find $I \in [\omega]^{\omega}$ (going to a sub-tower) such that

of for every $\alpha < \omega_1$ and every $n < \omega$, $t_\alpha \cap I_n \neq \emptyset$ where $I_n = [I(n), I(n+1))$.

Difficulty

The next difficulty: the forcing that adds $\Gamma \in [\omega_1]^{\omega_1}$ satisfying

$$ig(igcap_{lpha\in\Gamma}t_lphaig)\cap I_n
eq\emptyset$$
 for all n

is not even ccc.

Difficulty

The next difficulty: the forcing that adds $\Gamma \in [\omega_1]^{\omega_1}$ satisfying

$$(\bigcap_{\alpha\in\Gamma}t_{\alpha})\cap I_{n}\neq\emptyset$$
 for all n

is not even ccc.

Solution: ccc colorings on $[\omega_1]^3$: $c: [\omega_1]^3 \to 2$ by $c(\alpha, \beta, \gamma) = 0$ iff

$$e(\alpha,\beta) = e(\alpha,\gamma) \to t_{\alpha} \cap t_{\beta} \cap I_{e(\alpha,\beta)} \neq \emptyset$$

where e is a arbitrary coherent finite-to-one function.

Make the poset ccc

The coloring c is ccc and an uncountable 3-linked (or 0-homogeneous) subset induces ccc of the following poset:

$$\mathcal{P} = \{ F \in [\Sigma]^{<\omega} : (\bigcap_{\alpha \in F} t_{\alpha}) \cap I_n \neq \emptyset \text{ for all } n \in A \}$$

ordered by reverse inclusion is ccc.

Difficulty

 \mathcal{P} forces $\Gamma' \in [\Sigma]^{\omega_1}$ such that

$$(\bigcap_{\alpha\in\Gamma'}t_\alpha)\cap I_n\neq\emptyset$$
 for all $n\in A$.

Goal: $(\bigcap_{\alpha \in \Gamma'} t_{\alpha}) \cap I_n \neq \emptyset$.

Need: $(\bigcap_{\alpha \in F} t_{\alpha}) \cap I_n \neq \emptyset$ for all $F \in [\Gamma']^{|I_n|}$.

$$\mathcal{K}_3$$
: $(\bigcap_{\alpha \in F} t_{\alpha}) \cap I_n \neq \emptyset$ for all $F \in [\Gamma']^3$.

Note that $|I_n| \to \infty$ as $n \to \infty$. So strengthening \mathcal{K}_3 to \mathcal{K}_n for some fixed n does not resolve the problem.

Now the difficulty is to find, by ccc coloring on triples, $\Gamma \in [\Sigma]^{\omega_1}$ such that for $n \in A$,

•
$$\bigcap_{\alpha \in \Gamma} (t_{\alpha} \cap I_n) \neq \emptyset$$
.

attempt

Natural idea: Find a coloring on $[\omega_1]^3$ such that a pair of ordinals $\{\alpha,\beta\}$ would guess an interval

- $I_{n_{\alpha\beta}}$ and
- ullet a natural number $m_{lphaeta}\in I_{n_{lphaeta}}$

while for the third ordinal γ , $m_{\alpha\beta} \in t_{\gamma}$.

attempt

Natural idea: Find a coloring on $[\omega_1]^3$ such that a pair of ordinals $\{\alpha,\beta\}$ would guess an interval

- $I_{n_{\alpha\beta}}$ and
- ullet a natural number $m_{lphaeta}\in I_{n_{lphaeta}}$

while for the third ordinal γ , $m_{\alpha\beta} \in t_{\gamma}$.

However, all such attempts failed. It is still open if there is a ccc coloring to fulfill above purpose.

Correct structure

$$\begin{split} \langle \mathcal{I}_n^1 &= \{t_\alpha \cap I_n : \alpha \in \Gamma\} : n \in A \rangle \text{ for } \Gamma \subseteq \Sigma. \\ \pi &: [\omega_1]^3 \to 2 \text{ by for } \alpha < \beta < \gamma, \ \pi(\alpha, \beta, \gamma) = 0 \text{ iff} \\ e(\alpha, \beta) &= e(\alpha, \gamma) \to (t_\beta \cap I_{e(\alpha, \beta)} \subseteq t_\gamma \lor t_\gamma \cap I_{e(\alpha, \beta)} \subseteq t_\beta). \end{split}$$

 π is ccc and an uncountable 0-homogeneous subset induces $\Gamma \in [\Sigma]^{\omega_1}$ and $B \in [A]^\omega$ such that

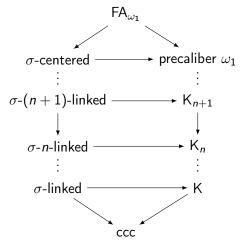
of or every $n \in B$, $(\mathcal{I}_n^{\Gamma}, \subseteq)$ is linearly order and hence has non-empty intersection.

Solution

Theorem 4

 \mathcal{K}_3 implies MA_{ω_1} .

For posets of size $\leq \omega_1$



K_3 and precailber ω_1

The following are equivalent.

- $P(ccc \rightarrow K_3)$.
- P(ccc \rightarrow precaliber ω_1).
- For a coloring $c: [\omega_1]^3 \to 2$, if some ccc poset adds an uncountable 0-homogeneous subset of c, then c already has an uncountable 0-homogeneous subset.
- For a coloring $\pi: [\omega_1]^{<\omega} \to 2$, if some ccc poset adds an uncountable 0-homogeneous subset of π , then π already has an uncountable 0-homogeneous subset.

It seems to indicate that a ccc coloring on finite sets may be coded by a ccc coloring on triples. It seems to indicate that a ccc coloring on finite sets may be coded by a ccc coloring on triples.

Then we look into the general case and find out that on the contrary, to code an (n+1)-ary ccc coloring by an n-ary ccc coloring is so difficulty that the attempt will not succeed unless we reach the corresponding forcing axiom.

It seems to indicate that a ccc coloring on finite sets may be coded by a ccc coloring on triples.

Then we look into the general case and find out that on the contrary, to code an (n+1)-ary ccc coloring by an n-ary ccc coloring is so difficulty that the attempt will not succeed unless we reach the corresponding forcing axiom.

More precisely, we have the following result.

Theorem 5

Assume $n \ge 2$. $P(K_n \to K_{n+1})$ is equivalent to $MA_{\omega_1}(K_n)$ (or $P(K_n \to FA_{\omega_1})$).

Strategy to prove $P(K_n \to K_{n+1})$ implies $MA_{\omega_1}(K_n)$

- **2** $P(K_n \to K_{n+1})$ implies $P_{\omega_1}(K_n \to \sigma\text{-linked})$.
- $\begin{array}{ll} \qquad & \mathrm{P}(\mathrm{K}_n \to \mathrm{K}_{n+1}) \text{ implies} \\ & \mathrm{P}_{\omega_1}((\mathrm{K}_n \wedge \sigma\text{-}i\text{-}\mathrm{linked}) \to \sigma\text{-}(i+1)\text{-}\mathrm{linked}) \text{ for } 2 \leq i < n. \end{array}$
- $P(\sigma$ -*n*-linked→K_{*n*+1}) implies P(σ -*n*-linked→ precaliber ω₁).
- P(σ -n-linked \rightarrow precaliber ω_1) implies $P_{\omega_1}(\sigma$ -n-linked \rightarrow σ -centered).
- Φ P(σ-n-linked→K_{n+1}) implies 𝔞 > ω₁.

σ -*n*-linked

$$(\bigstar 3)$$
- $(\bigstar 5)$ show

Theorem 6

Assume $n \geq 2$. $P(\sigma-n-linked \to K_{n+1})$ is equivalent to $MA_{\omega_1}(\sigma-n-linked)$.

K_n to σ -*n*-linked

Theorem 7

For $n \geq 2$, $P_{\omega_1}(K_n \to \sigma\text{-n-linked})$ does not imply $MA_{\omega_1}(K_n)$.

Theorem 8

 $P_{\omega_1}(\text{precaliber }\omega_1 \to \sigma\text{-centered}) \text{ implies } MA_{\omega_1}(\text{precaliber }\omega_1).$

A dashed arrow from Φ to Ψ denotes that $P(\Phi \to \Psi)$ is as strong as $MA_{\omega_1}(\Phi)$.

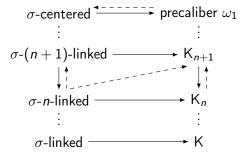


Figure: Forcing properties' strength

By the results summarized above, the diagram is complete.

The remaining properties

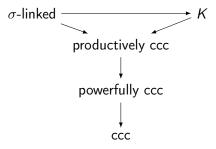


Figure: Weak forcing properties

Open problems

The following 3 statements are equivalent.

- P(ccc→powerfully ccc).
- P(ccc→productively ccc).
- C^2 , i.e., the product of any two ccc posets is ccc.

Also, P(ccc \rightarrow K) is the well-known property \mathcal{K}_2 .

Question 3

Does C^2 or \mathcal{K}_2 imply MA_{ω_1} ? Or $\mathfrak{t} > \omega_1$?

Thank you!