Several topics on *-local weak o-minimality

Masato Fujita (JCGA)

Section 1

Introduction

Intermediate Tameness

Basic definitions

Notation

 $\mathcal{M} = (M, <, \ldots)$ is an expansion of dense linear order without endpoints.

Definition

- \mathcal{M} is definable complete if every nonempty definable subset of M has a supremum and infimum in $M \cup \{\pm \infty\}$.
- M is o-minimal if every univariate definable set is a union of a finite set and finitely many open intervals.
- M is weakly o-minimal if every univariate definable set is a union of finitely many convex sets.
- $\mathcal M$ is a *locally o-minimal structure* if, for every definable subset X of M and for every point $a\in M$, there exists an open interval I such that $a\in I$ and $X\cap I$ is a union of a finite set and finitely many open intervals.

Relations between these concepts and preservation under elementary equivalence

- O-minimality ⇒ weak o-minimality ⇒ local o-minimality
- O-minimality = weak o-minimality + definable completeness

Is it preserved under elementary equivalence?

definable completeness	yes
o-minimality	yes
weak o-minimality	no
local o-minimality	yes

Facts on local o-minimality

Suppose that $\mathcal M$ is definably complete and locally o-minimal.

- Local monotonicity: Let $f:I\to M$ be a univariate definable function. There exists a discrete closed definable set D such that $f|_{I\setminus D}$ is continuous and locally monotone.
- Tame behavior of dimension function:
 - $\operatorname{dim}(X_1 \cup X_2) = \max\{\operatorname{dim} X_1, \operatorname{dim} X_2\}.$
 - ▶ (Addition property) If $f: X \to Y$ is surjective and has equidimensional fibers, $\dim X = \dim Y + \dim f^{-1}(y)$ for $y \in Y$.
 - (Continuity property) every definable function $f: X \to M$ is continuous except the definable subset of smaller dimension.

On the other hand, in a non-definably complete locally o-minimal structure,

- There exists a definable function which is discontinuous everywhere.
- Addition property fails.

Facts on weak o-minimality

Suppose that \mathcal{M} is weakly o-minimal.

- Monotonicity theorem without continuity property holds.
- $\dim(X_1 \cup X_2) = \max\{\dim X_1, \dim X_2\}.$
- (Wencel) Addition property is equivalent to univariate *-continuity property (which is defined later).

In weakly o-minimal structures, dimension function does not necessarily behave tamely, but it is known when dimension function behaves tamely.

Motivation

- Definably complete local o-minimality possesses tame topological properties:
 - Local monotonicity theorem
 - ▶ Tame behavior of dimension function
 - and so on...
- Weak o-minimality possesses a little bit wilder but somewhat tame topological properties.
- Does a good subclass of local o-minimality without definable completeness wider than weak o-minimality possess topological properties as tame as weak o-minimality?

My answer: *-local weak o-minimality

Results to be introduced in this talk

- An equivalent condition for addition formula of dimension to hold in *-locally weakly o-minimal structures;
- Nonvaluational expansion of divisible Abelian group of finite burden (combinatorical concept) defining no 'wild' set is *-locally weakly o-minimal (topological concept);
- Another characterization of *-local weak o-minimality by bounded 1-types (optional).

Definition (definable Dedekind completion) (1)

Definition

A $\operatorname{\it gap}$ is a pair (A,B) of nonempty subsets of M such that

- \bullet $M = A \cup B$;
- a < b for all $a \in A$ and $b \in B$;
- ullet A does not have a largest element and B does not have a smallest element.

We say that the gap is definable if A (equivalently, B) is definable.

Set $\overline{M}=M\cup\{\text{definable gaps in }M\}$. We can naturally extend the order < in M to an order in \overline{M} , which is denoted by the same symbol <. The linearly ordered set $(\overline{M},<)$ is called the *definable Dedekind completion* of (M,<).

Definition (definable Dedekind completion) (2)

Notation

For an open interval $I=(b_1,b_2)$, where $b_1,b_2\in M\cup\{\pm\infty\}$, we set

$$\overline{I} = \{ x \in \overline{M} \mid b_1 < x < b_2 \}.$$

Throughout, we use the overlined notations to represent Dedekind completions and their subsets defined above.

Definition

For definable $\emptyset \neq X \subseteq M$, define $\sup X \in \overline{M} \cup \{+\infty\}$ as follows:

- $\sup X = +\infty$ when, for any $a \in M$, there exists $x \in X$ with x > a.
- Assume that $\exists z \in M$ s.t. x < z for every $x \in X$. Set $B = \{y \in M \mid \forall x \in X \ y > x\}$ and $A = M \setminus B$.
 - ▶ If B has a smallest element m, we set $\sup X = m$.
 - If A has a largest element m', we set $\sup X = m'$.
 - Finally, if (A, B) is a definable gap, we set $\sup X = (A, B) \in \overline{M}$.

Definition (definable function)

Definition

Let X be a definable subset of M^n . A *definable function* $F:X\to \overline{M}$ is defined as follows:

Let $\pi:M^{n+1}\to M^n$ be the coordinate projection forgetting the last coordinate.

There exists a definable subset Y of M^{n+1} such that $\pi(Y) = X$ and $F(x) = \sup Y_x$ for $x \in X$, where $Y_x := \{y \in M \mid (x,y) \in Y\}$.

A definable function $F:X\to \overline{M}\cup\{\pm\infty\}$ is a pair of a decomposition $X=X_{\overline{M}}\cup X_{+\infty}\cup X_{-\infty}$ into definable sets and a definable function $f:X_{\overline{M}}\to \overline{M}$.

Definition (*-local weak o-minimality)

Definition

 $\mathcal M$ is a *locally o-minimal structure* if, for every definable subset X of M and for every point $a\in M$, there exists an open interval I such that $a\in I$ and $X\cap I$ is a union of a finite set and finitely many open intervals.

 $\mathcal M$ is an *almost weakly o-minimal structure* if every bounded definable subset of M is a union of finitely many convex sets.

 ${\mathcal M}$ is a *-locally weakly o-minimal structure if, for every definable subset X of M and for every point $a\in \overline{M}$, there exists an open interval I such that $a\in \overline{I}$ and $X\cap I$ is a union of finitely many convex sets.

Fact

- almost weak o-minimality ⇒ *-local weak o-minimality ⇒ local o-minimality.
- *-local weak o-minimality is preserved under elementary equivalence.

Section 2

Addition formula of dimension function

Dimension and addition formula

Definition

Let X be a nonempty definable subset of M^n . Recall that M^0 is a singleton with the trivial topology.

$$\dim X = \max\{d \mid \exists \pi : M^n \to M^d : \text{coord. proj. s.t. } \inf(\pi(X)) \neq \emptyset\}.$$

We set $\dim(X) = -\infty$ if $X = \emptyset$.

Definition (Addition property)

dim possesses the addition property if the following holds: Let $\varphi:X\to Y$ be a definable surjective map whose fibers are equi-dimensional; that is, the dimensions of the fibers $\varphi^{-1}(y)$ are constant. We have

$$\dim X = \dim Y + \dim \varphi^{-1}(y)$$

for all $y \in Y$

Wencel's equivalent condition

Definition

 ${\mathcal M}$ enjoys the ${\it univariate}$ *-continuity property if, for every definable function $f:I\to \overline M$ from a nonempty open interval I, there exists a nonempty open subinterval J of I such that the restriction of f to J is continuous.

Theorem (Wencel, 2010)

Suppose \mathcal{M} is weakly o-minimal.

 \dim possesses the addition property if and only if $\mathcal M$ enjoys univariate *-continuity property.

Dimensionally wild set

A definable set X of M^2 is called *dimensionally wild* if the following conditions are satisfied:

- (i) X has an empty interior;
- (ii) $\pi(X)$ has a nonempty interior, where π denotes the projection onto the first coordinate;
- (iii) $X_x := \{y \in M \mid (x,y) \in X\}$ has a nonempty interior for every $x \in \pi(X)$.

A dimensionally wild set violates the addition property.

Structure theorem of locally o-minimal structures

Theorem (Structure theorem of locally o-minimal structures)

Consider a locally o-minimal structure $\mathcal{M} = (M, <, \ldots)$. At least one of the following two assertions holds:

- (1) \mathcal{M} does not possess the univariate *-continuity property and has a dimensionally wide definable set.
- (2) Let $f: I \to \overline{M}$ be an arbitrary definable function defined on an arbitrary open interval I. The interval I is decomposed into four definable sets X_+, X_-, X_c, X_d satisfying the following conditions:
 - (i) X_d is discrete and closed.
 - (ii) X_c is open and the restriction of f to X_c is locally constant;
 - (iii) X_{-} is open and the restriction of f to X_{-} is locally strictly decreasing;
 - (iv) X_+ is open and the restriction of f to X_+ is locally strictly increasing.

We do not know whether this theorem is a dichotomy. i.e. We do not know whether there exists a structure satisfying (1) and (2) simultaneously.

*-locally weakly o-minimal case

Theorem (F, 2024)

Suppose \mathcal{M} is *-locally weakly o-minimal. \dim possesses the addition property if and only if \mathcal{M} enjoys univariate *-continuity property.

Strategy of proof

If part: We can prove the addition property in the same manner as definably complete locally o-minimal case using strong local monotonicity theorem in this case.

Only if part: Suppose that univariate *-continuity property is violated. We use structure theorem of locally o-minimal structures. We consider two separate cases where conditions (1) and (2) hold, respectively. If (2) holds, we can find a definable monotone function which is discontinuous everywhere. We can construct a dimensionally wild set from it.

If ${\mathcal M}$ possesses univariate *-continuity property, ...

Theorem (F, 2024)

Suppose \mathcal{M} is a *-locally weakly locally o-minimal structure possessing univariate *-continuity property. The following assertions hold:

- (1) Let X and Y be definable subsets of M^n . We have $\dim(X \cup Y) = \max\{\dim(X), \dim(Y)\}.$
- (2) Let $f: X \to M^n$ be a definable map. We have $\dim(f(X)) \le \dim X$.
- (3) Let $f: X \to M^n$ be a definable map. The notation $\mathcal{D}(f)$ denotes the set of points at which the map f is discontinuous. The inequality $\dim(\mathcal{D}(f)) < \dim X$ holds true.
- (4) Let X be a definable set. The notation ∂X denotes the frontier of X defined by $\partial X = \operatorname{cl}(X) \setminus X$. We have $\dim(\partial X) < \dim X$.

If $\mathcal M$ possesses univariate *-continuity property, ... (Cont'd)

Theorem (F, 2024)

Suppose \mathcal{M} is a *-locally weakly locally o-minimal structure possessing univariate *-continuity property. The following assertions hold:

- (5) A definable set X is of dimension d if and only if the nonnegative integer d is the maximum of nonnegative integers e such that there exist an open box B in M^e and a definable injective continuous map $\varphi: B \to X$ homeomorphic onto its image.
- (6) Let X be a definable subset of M^n . There exists a point $x \in X$ such that we have $\dim(X \cap B) = \dim(X)$ for any open box B containing the point x.

Proof is long, but we can prove it in the same manner as definably complete locally o-minimal case.

Section 3

Expansions of OAGs of finite burden

Definition (burden)

We fix a complete first-order theory T. Let $p(\overline{x})$ be a partial type and κ be a cardinal.

An inp-pattern of depth κ in $p(\overline{x})$ is a sequence $(\phi_{\alpha}(\overline{x}; \overline{y}) \mid \alpha < \kappa)$ of formulas, a sequence $(k_{\alpha} \mid \alpha < \kappa)$ of positive integers and a sequence $(\overline{b}_i^{\alpha} \mid \alpha < \kappa, i < \omega)$ of tuples from some model $\mathcal M$ of T such that:

- $\{\phi_{\alpha}(\overline{x}; \overline{b}_{i}^{\alpha}) \mid i < \omega\}$ is k_{α} -inconsistent for every $\alpha < \kappa$;
- $\{\phi_{\alpha}(\overline{x}; \overline{b}_{\eta(\alpha)}^{\alpha}) \mid \alpha < \kappa\}$ is consistent with $p(\overline{x})$ for all map $\eta : \kappa \to \omega$.

The partial type $p(\overline{x})$ has $burden < \kappa$ if there is no inp-pattern of depth κ in $p(\overline{x})$. If the least κ such that the burden of $p(\overline{x})$ is less than κ is a successor cardinal with $\kappa = \lambda^+$, then we say that $the\ burden\ of\ p(\overline{x})$ is λ . If the burden of the partial type x=x in a single free variable x exists and is equal to κ , we say that $the\ burden\ of\ T$ is κ .

Fact

If T is NIP, the dp-rank of any partial type in T is equal to its burden.

Conceptual figure of burden

- $\{\phi_{\alpha}(\overline{x}; \overline{b}_{i}^{\alpha}) \mid i < \omega\}$ is k_{α} -inconsistent for every $\alpha < \kappa$;
- $\{\phi_{\alpha}(\overline{x}; \overline{b}_{\eta(\alpha)}^{\alpha}) \mid \alpha < \kappa\}$ is consistent with $p(\overline{x})$ for all map $\eta : \kappa \to \omega$.

Definition (open core)

Definition

The *open core* of $\mathcal M$ is a reduct of $\mathcal M$ generated by definable open sets.

Proposition (F, 2021)

A definably complete expansion $\mathcal M$ of an ordered group has a locally o-minimal open core if and only if every definable closed subset of M with empty interior is discrete.

Motivational Fact

Proposition (Dolich & Goodrick, 2017)

In a definably complete expansion \mathcal{M} of an ordered group such that $\mathrm{Th}(\mathcal{M})$ is strong, if $X\subset M$ is definable and nowhere dense, then X is discrete.

+

Proposition [F,2021]

Every definably complete expansion \mathcal{M} of an ordered group such that $\mathrm{Th}(\mathcal{M})$ is strong defining no nonempty subset X of M which is dense and codense in a definable open subset U of M with $X\subseteq U$ is a locally o-minimal.

The theory T is strong if, for any finite tuple of variables \overline{x} , every inp-pattern in the partial type $\overline{x} = \overline{x}$ has finite depth.

Main theorem

From now on, we assume that \mathcal{M} is an sufficiently saturated expansion of an ordered divisible Abelian group.

Definition

 \mathcal{M} is nonvaluational (n.v. for short) if, for every nonempty definable subsets A,B of M with A < B and $A \cup B = M$, $\inf\{b-a \mid a \in A, b \in B\} = 0$.

Theorem (F, 2025)

Consider a nonvaluational $\mathcal{M}=(M,<,+,\ldots)$ of finite burden defining no nonempty subset X of M which is dense and codense in a definable open subset U of M with $X\subseteq U$. Then, \mathcal{M} is *-locally weakly o-minimal.

Roughly speaking, blue part = (structure = open core)

Discrete case (1)

Lemma (Dolich & Goodrick, 2017)

Suppose that there is an infinite family of infinite definable discrete sets D_i and $\varepsilon_i > 0$ for $i \in \mathbb{N}$ s.t.:

- lacksquare $D_i\subseteq (0,arepsilon_i/3)$ and
- $\textbf{2} \quad \textit{If } x \in D_i, \textit{ then } (x \varepsilon_i, x + \varepsilon_i) \cap D_i \subseteq \{x\}.$

Then $Th(\mathcal{M})$ is not strong.

Discrete case (2)

Lemma (F, 2025)

Let $\alpha \in \overline{M}$ be an n.v. element. Let D_i be infinite definable discrete sets and $\varepsilon_i > 0$ for $i \in \mathbb{N}$ satisfying the following conditions:

- (1) $D_{i+1} \subseteq (\alpha, \alpha + \varepsilon_i/3)$;
- (2) If $x \in D_i$, then $(x \varepsilon_i, x + \varepsilon_i) \cap D_i = \{x\}$;

Then $Th(\mathcal{M})$ is not strong.

 α is a definable gap (A,B). We construct infinite definable discrete sets E_i and $t_i \in M$ such that $E_i \subseteq (0, \varepsilon_i/3)$ and $t_i + E_i \subseteq D_i$.

Technical definition (convex component)

Definition

Let $X \subseteq M$ be a set.

A *convex component* of X is a maximal convex subset of X. Every convex component C of X is definable if X is definable. In fact,

$$C = \{c\} \cup \{x \in X \mid x > c \land \forall y \ (c < y < x \to y \in X)\}\$$
$$\cup \{x \in X \mid x < c \land \forall y \ (x < y < c \to y \in X)\},\$$

where c is an arbitrary point in C.

Open case (1)

Lemma

Suppose \mathcal{M} is n.v. Let $N \geq 2$ be a natural number. Let $\{X_n\}_{n=1}^N$ be a family of definable subsets of M having infinitely many maximal convex subsets. Let $\{\varepsilon_n\}_{n=1}^N$ be a decreasing family of positive elements in M. Suppose the following condition is satisfied:

- (1) $X_{n+1} \subseteq (0, \varepsilon_n/3)$,
- (2) If $x \in X_n$, then $(x 2\varepsilon_n, x + 2\varepsilon_n) \cap X_n \subseteq D(X_n, x)$.

Then $Th(\mathcal{M})$ is of burden $\geq N-1$.

 $D(X_n, x)$ is the convex component of X_n containing the point x.

Open case (2)

 $D(X_n,x)$ is the convex component of X_n containing the point x. $l(X_n,x)$ is the length of $D(X_n,x)$

- First reduce to the case in which $l(X_n,x)$ is very small $< \varepsilon_N/(2N)$.
- ② Let $Y_1 := X_1$ and $Y_n := \{y + d \mid y \in Y_{n-1}, d \in X_n\}$ for n > 1.
 - (a) For n > 1, $d \in X_n$ and $y \in Y_{n-1}$,

$$D(Y_n, y + d) = D(Y_{n-1}, y) + D(X_n, d);$$

- (b) $l(Y_n, x) < n\varepsilon_N/N$ and
- (c) $(x \varepsilon_n, x + \varepsilon_n) \cap Y_n \subseteq D(Y_n, x)$ for n > 0 and $x \in Y_n$.

Open case (3)

Lemma

Suppose \mathcal{M} is n.v. Let $N\geq 2$ be a natural number and $\alpha\in\overline{M}$. Let $\{X_n\}_{n=1}^N$ be a family of definable subsets of M having infinitely many maximal convex subsets. Let $\{\varepsilon_n\}_{n=1}^N$ be a decreasing family of positive elements in M. Suppose the following condition is satisfied:

- (1) $X_{n+1} \subseteq (\alpha, \alpha + \varepsilon_n/3)$,
- (2) If $x \in X_n$, then $(x 2\varepsilon_n, x + 2\varepsilon_n) \cap X_n \subseteq D(X_n, x)$.

Then $\operatorname{Th}(\mathcal{M})$ is of burden $\geq N-1$.

No accumulations and No Cantor-like sets

Corollary

Suppose $\operatorname{Th}(\mathcal{M})$ is strong. Let D be an infinite discrete definable subset of M. Then, for every n.v. $a \in \overline{M}$, there exists an open interval I such that $a \in \overline{I}$ and $D \cap I$ is a finite set.

Corollary

Suppose $\mathcal M$ is n.v. and $\operatorname{Th}(\mathcal M)$ is of finite burden. Let U be a definable open subset of M having infinitely many maximal convex subsets. Then, for every $a\in \overline{M}$, there exists an open interval I with $a\in \overline{I}$ such that $U\cap I$ is a union of finitely many open convex set.

In addition, $\mathcal M$ does not define a nowhere dense subset of M having no isolated points (Cantor-like set).

Main theorem, revisited

Theorem (F, 2025)

Consider a nonvaluational $\mathcal{M}=(M,<,+,\ldots)$ of finite burden defining no nonempty subset X of M which is dense and codense in a definable open subset U of M with $X\subseteq U$. Then, \mathcal{R} is *-locally weakly o-minimal.

Every unary definable set Y with empty interior is partitioned as $Y = Y_1 \cup Y_2 \cup Y_3$ satisfying the following conditions:

- ullet Y_1 , Y_2 and Y_3 are definable;
- Y_1 is either empty or has a definable open subset V of M such that $Y_1 \subseteq V$ and Y_1 is dense and codense in V;
- ullet Y_2 is either empty or a nowhere dense subset of M having no isolated points (Cantor-like set);
- ullet Y_3 is either empty or discrete.

This partition and corollaries imply the theorem.

Section 4

Characterization by bounded 1-types

Kulpeshov's characterization of weak o-minimality

Definition

A complete 1-type $p(x) \in S_1^{\mathcal{M}}(M)$ is *convex* if the set of realizations of p(x) is a convex set in any elementary extension of \mathcal{M} .

Fact (Kulpeshov, 1998)

 \mathcal{M} is weakly o-minimal if and only if every complete type $p(x) \in S_1^{\mathcal{M}}(M)$ is convex.

Definition (bounded types)

Definition

A partial 1-type p(x) in $\mathcal M$ is bounded if 'a < x < b' $\in p(x)$ for some $a,b \in M$.

Suppose a complete 1- type $p(x) \in S_1^{\mathcal{M}}(M)$ is bounded. Put $B := \{b \in M \mid `x > b` \in p(x)\}$ and $C := \{c \in M \mid `x < c` \in p(x)\}$. We have three possibilities:

- (1) (Non-gap case) p(x) is one of the following three forms:
 - (a) $\mathcal{M} \models p(m)$ for some $m \in M$;
 - (b) Either B has a largest element m or C has a smallest element m;
- (2) (definable gap case) (B, C) is a definable gap.
- (3) (Non-definable gap case) (B, C) is a non-definable gap.

If condition (n) is satisfied for $1 \le n \le 3$, we say that p(x) is of class n.

Characterization of *-local weak o-minimality by bounded types

Theorem (F, 2025)

- (a) \mathcal{M} is locally o-minimal if and only if every bounded complete 1-type over M of class 1 is convex.
- (b) \mathcal{M} is *-locally weakly o-minimal if and only if every bounded complete 1-type over M of class 1 and 2 is convex.
- (c) \mathcal{M} is almost weakly o-minimal if and only if every bounded complete 1-type over M is convex.

Thank you!