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Basic definitions

Notation

M = (M,<, . . .) is an expansion of dense linear order without endpoints.

Definition

M is definable complete if every nonempty definable subset of M has
a supremum and infimum in M ∪ {±∞}.
M is o-minimal if every univariate definable set is a union of a finite
set and finitely many open intervals.

M is weakly o-minimal if every univariate definable set is a union of
finitely many convex sets.

M is a locally o-minimal structure if, for every definable subset X of
M and for every point a ∈ M , there exists an open interval I such
that a ∈ I and X ∩ I is a union of a finite set and finitely many open
intervals.
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Relations between these concepts and preservation under
elementary equivalence

O-minimality ⇒ weak o-minimality ⇒ local o-minimality

O-minimality = weak o-minimality + definable completeness

Is it preserved under elementary equivalence?

definable completeness yes

o-minimality yes

weak o-minimality no

local o-minimality yes
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Facts on local o-minimality

Suppose that M is definably complete and locally o-minimal.

Local monotonicity: Let f : I → M be a univariate definable
function. There exists a discrete closed definable set D such that
f |I\D is continuous and locally monotone.

Tame behavior of dimension function:
▶ dim(X1 ∪X2) = max{dimX1, dimX2}.
▶ (Addition property) If f : X → Y is surjective and has

equidimensional fibers, dimX = dimY + dim f−1(y) for y ∈ Y .
▶ (Continuity property) every definable function f : X → M is

continuous except the definable subset of smaller dimension.

On the other hand, in a non-definably complete locally o-minimal
structure,

There exists a definable function which is discontinuous everywhere.

Addition property fails.
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Facts on weak o-minimality

Suppose that M is weakly o-minimal.

Monotonicity theorem without continuity property holds.

dim(X1 ∪X2) = max{dimX1, dimX2}.
(Wencel) Addition property is equivalent to univariate ∗-continuity
property (which is defined later).

In weakly o-minimal structures, dimension function does not necessarily
behave tamely, but it is known when dimension function behaves tamely.
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Motivation

Definably complete local o-minimality possesses tame topological
properties:

▶ Local monotonicity theorem
▶ Tame behavior of dimension function
▶ and so on...

Weak o-minimality possesses a little bit wilder but somewhat tame
topological properties.

Does a good subclass of local o-minimality without definable
completeness wider than weak o-minimality possess topological
properties as tame as weak o-minimality?

My answer: *-local weak o-minimality
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Results to be introduced in this talk

1 An equivalent condition for addition formula of dimension to hold in
∗-locally weakly o-minimal structures;

2 Nonvaluational expansion of divisible Abelian group of finite burden
(combinatorical concept) defining no ‘wild’ set is ∗-locally weakly
o-minimal (topological concept);

3 Another characterization of ∗-local weak o-minimality by bounded
1-types (optional).
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Definition (definable Dedekind completion) (1)

Definition

A gap is a pair (A,B) of nonempty subsets of M such that

M = A ∪B;

a < b for all a ∈ A and b ∈ B;

A does not have a largest element and B does not have a smallest
element.

We say that the gap is definable if A (equivalently, B) is definable.

Set M = M ∪ {definable gaps in M}. We can naturally extend the order
< in M to an order in M , which is denoted by the same symbol <. The
linearly ordered set (M,<) is called the definable Dedekind completion of
(M,<).
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Definition (definable Dedekind completion) (2)

Notation

For an open interval I = (b1, b2), where b1, b2 ∈ M ∪ {±∞}, we set

I = {x ∈ M | b1 < x < b2}.

Throughout, we use the overlined notations to represent Dedekind
completions and their subsets defined above.

Definition

For definable ∅ ̸= X ⊆ M , define supX ∈ M ∪ {+∞} as follows:

supX = +∞ when, for any a ∈ M , there exists x ∈ X with x > a.

Assume that ∃z ∈ M s.t. x < z for every x ∈ X. Set
B = {y ∈ M | ∀x ∈ X y > x} and A = M \B.

▶ If B has a smallest element m, we set supX = m.
▶ If A has a largest element m′, we set supX = m′.
▶ Finally, if (A,B) is a definable gap, we set supX = (A,B) ∈ M .
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Definition (definable function)

Definition

Let X be a definable subset of Mn. A definable function F : X → M is
defined as follows:
Let π : Mn+1 → Mn be the coordinate projection forgetting the last
coordinate.
There exists a definable subset Y of Mn+1 such that π(Y ) = X and
F (x) = supYx for x ∈ X, where Yx := {y ∈ M | (x, y) ∈ Y }.

A definable function F : X → M ∪ {±∞} is a pair of a decomposition
X = XM ∪X+∞ ∪X−∞ into definable sets and a definable function
f : XM → M .
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Definition (∗-local weak o-minimality)

Definition
M is a locally o-minimal structure if, for every definable subset X of M and for every

point a ∈ M , there exists an open interval I such that a ∈ I and X ∩ I is a union of a

finite set and finitely many open intervals.

M is an almost weakly o-minimal structure if every bounded definable
subset of M is a union of finitely many convex sets.

M is a ∗-locally weakly o-minimal structure if, for every definable subset
X of M and for every point a ∈ M , there exists an open interval I such
that a ∈ I and X ∩ I is a union of finitely many convex sets.

Fact

almost weak o-minimality ⇒ ∗-local weak o-minimality ⇒ local
o-minimality.

*-local weak o-minimality is preserved under elementary equivalence.

M. Fujita Aug. 2025 @Fudan Univ., Shanghai 13 / 40



Section 2

Addition formula of dimension function
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Dimension and addition formula

Definition

Let X be a nonempty definable subset of Mn. Recall that M0 is a
singleton with the trivial topology.

dimX = max{d | ∃π : Mn → Md:coord. proj. s.t. int(π(X)) ̸= ∅}.

We set dim(X) = −∞ if X = ∅.

Definition (Addition property)

dim possesses the addition property if the following holds:
Let φ : X → Y be a definable surjective map whose fibers are
equi-dimensional; that is, the dimensions of the fibers φ−1(y) are
constant. We have

dimX = dimY + dimφ−1(y)

for all y ∈ Y .
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Wencel’s equivalent condition

Definition

M enjoys the univariate ∗-continuity property if, for every definable
function f : I → M from a nonempty open interval I, there exists a
nonempty open subinterval J of I such that the restriction of f to J is
continuous.

Theorem (Wencel, 2010)

Suppose M is weakly o-minimal.
dim possesses the addition property if and only if M enjoys univariate
∗-continuity property.
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Dimensionally wild set

A definable set X of M2 is called dimensionally wild if the following
conditions are satisfied:

(i) X has an empty interior;

(ii) π(X) has a nonempty interior, where π denotes the projection onto
the first coordinate;

(iii) Xx := {y ∈ M | (x, y) ∈ X} has a nonempty interior for every
x ∈ π(X).

A dimensionally wild set violates the addition property.
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Structure theorem of locally o-minimal structures

Theorem (Structure theorem of locally o-minimal structures)

Consider a locally o-minimal structure M = (M,<, . . .). At least one of
the following two assertions holds:

(1) M does not possess the univariate ∗-continuity property and has a
dimensionally wide definable set.

(2) Let f : I → M be an arbitrary definable function defined on an
arbitrary open interval I. The interval I is decomposed into four
definable sets X+, X−, Xc, Xd satisfying the following conditions:

(i) Xd is discrete and closed.
(ii) Xc is open and the restriction of f to Xc is locally constant;
(iii) X− is open and the restriction of f to X− is locally strictly decreasing;
(iv) X+ is open and the restriction of f to X+ is locally strictly increasing.

We do not know whether this theorem is a dichotomy. i.e. We do not know
whether there exists a structure satisfying (1) and (2) simultaneously.
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∗-locally weakly o-minimal case

Theorem (F, 2024)

Suppose M is ∗-locally weakly o-minimal.
dim possesses the addition property if and only if M enjoys univariate
∗-continuity property.

Strategy of proof
If part: We can prove the addition property in the same manner as
definably complete locally o-minimal case using strong local monotonicity
theorem in this case.
Only if part: Suppose that univariate ∗-continuity property is violated.
We use structure theorem of locally o-minimal structures. We consider two
separate cases where conditions (1) and (2) hold, respectively. If (2) holds,
we can find a definable monotone function which is discontinuous
everywhere. We can construct a dimensionally wild set from it.
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If M possesses univariate ∗-continuity property, ...

Theorem (F, 2024)

Suppose M is a ∗-locally weakly locally o-minimal structure possessing
univariate ∗-continuity property. The following assertions hold:

(1) Let X and Y be definable subsets of Mn. We have
dim(X ∪ Y ) = max{dim(X), dim(Y )}.

(2) Let f : X → Mn be a definable map. We have dim(f(X)) ≤ dimX.

(3) Let f : X → Mn be a definable map. The notation D(f) denotes the
set of points at which the map f is discontinuous. The inequality
dim(D(f)) < dimX holds true.

(4) Let X be a definable set. The notation ∂X denotes the frontier of X
defined by ∂X = cl(X) \X. We have dim(∂X) < dimX.
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If M possesses univariate ∗-continuity property, ...
(Cont’d)

Theorem (F, 2024)

Suppose M is a ∗-locally weakly locally o-minimal structure possessing
univariate ∗-continuity property. The following assertions hold:

(5) A definable set X is of dimension d if and only if the nonnegative
integer d is the maximum of nonnegative integers e such that there
exist an open box B in M e and a definable injective continuous map
φ : B → X homeomorphic onto its image.

(6) Let X be a definable subset of Mn. There exists a point x ∈ X such
that we have dim(X ∩B) = dim(X) for any open box B containing
the point x.

Proof is long, but we can prove it in the same manner as definably
complete locally o-minimal case.
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Section 3

Expansions of OAGs of finite burden
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Definition (burden)

We fix a complete first-order theory T . Let p(x) be a partial type and κ be
a cardinal.

An inp-pattern of depth κ in p(x) is a sequence (ϕα(x; y) | α < κ) of
formulas, a sequence (kα | α < κ) of positive integers and a sequence
(b

α
i | α < κ, i < ω) of tuples from some model M of T such that:

{ϕα(x; b
α
i ) | i < ω} is kα-inconsistent for every α < κ;

{ϕα(x; b
α
η(α)) | α < κ} is consistent with p(x) for all map η : κ → ω.

The partial type p(x) has burden < κ if there is no inp-pattern of depth κ
in p(x). If the least κ such that the burden of p(x) is less than κ is a
successor cardinal with κ = λ+, then we say that the burden of p(x) is λ.
If the burden of the partial type x = x in a single free variable x exists and
is equal to κ, we say that the burden of T is κ.

Fact

If T is NIP, the dp-rank of any partial type in T is equal to its burden.
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Conceptual figure of burden

{ϕα(x; b
α
i ) | i < ω} is kα-inconsistent for every α < κ;

{ϕα(x; b
α
η(α)) | α < κ} is consistent with p(x) for all map η : κ → ω.
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Definition (open core)

Definition

The open core of M is a reduct of M generated by definable open sets.

Proposition (F, 2021)

A definably complete expansion M of an ordered group has a locally
o-minimal open core if and only if every definable closed subset of M with
empty interior is discrete.
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Motivational Fact

Proposition (Dolich & Goodrick, 2017)

In a definably complete expansion M of an ordered group such that
Th(M) is strong, if X ⊂ M is definable and nowhere dense, then X is
discrete.

+

Proposition [F,2021]

⇓
Every definably complete expansion M of an ordered group such that
Th(M) is strong defining no nonempty subset X of M which is dense and
codense in a definable open subset U of M with X ⊆ U is a locally
o-minimal.
The theory T is strong if, for any finite tuple of variables x, every inp-pattern in the partial type

x = x has finite depth.
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Main theorem

From now on, we assume that M is an sufficiently saturated expansion of
an ordered divisible Abelian group.

Definition

M is nonvaluational (n.v. for short) if, for every nonempty definable
subsets A,B of M with A < B and A ∪B = M ,
inf{b− a | a ∈ A, b ∈ B} = 0.

Theorem (F, 2025)

Consider a nonvaluational M = (M,<,+, . . .) of finite burden defining no
nonempty subset X of M which is dense and codense in a definable open
subset U of M with X ⊆ U . Then, M is ∗-locally weakly o-minimal.

Roughly speaking, blue part ≒ (structure = open core)
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Discrete case (1)

Lemma (Dolich & Goodrick, 2017)

Suppose that there is an infinite family of infinite definable discrete sets
Di and εi > 0 for i ∈ N s.t.:

1 Di ⊆ (0, εi/3) and

2 If x ∈ Di, then (x− εi, x+ εi) ∩Di ⊆ {x}.
Then Th(M) is not strong.
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Discrete case (2)

Lemma (F, 2025)

Let α ∈ M be an n.v. element. Let Di be infinite definable discrete sets
and εi > 0 for i ∈ N satisfying the following conditions:

(1) Di+1 ⊆ (α, α+ εi/3);

(2) If x ∈ Di, then (x− εi, x+ εi) ∩Di = {x};
Then Th(M) is not strong.

α is a definable gap (A,B). We construct infinite definable discrete sets
Ei and ti ∈ M such that Ei ⊆ (0, εi/3) and ti + Ei ⊆ Di.
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Technical definition (convex component)

Definition

Let X ⊆ M be a set.
A convex component of X is a maximal convex subset of X. Every convex
component C of X is definable if X is definable. In fact,

C = {c} ∪ {x ∈ X | x > c ∧ ∀y (c < y < x → y ∈ X)}
∪ {x ∈ X | x < c ∧ ∀y (x < y < c → y ∈ X)},

where c is an arbitrary point in C.
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Open case (1)

Lemma

Suppose M is n.v. Let N ≥ 2 be a natural number. Let {Xn}Nn=1 be a
family of definable subsets of M having infinitely many maximal convex
subsets. Let {εn}Nn=1 be a decreasing family of positive elements in M .
Suppose the following condition is satisfied:

(1) Xn+1 ⊆ (0, εn/3),

(2) If x ∈ Xn, then (x− 2εn, x+ 2εn) ∩Xn ⊆ D(Xn, x).

Then Th(M) is of burden ≥ N − 1.

D(Xn, x) is the convex component of Xn containing the point x.
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Open case (2)

D(Xn, x) is the convex component of Xn containing the point x.
l(Xn, x) is the length of D(Xn, x)

1 First reduce to the case in which l(Xn, x) is very small < εN/(2N).
2 Let Y1 := X1 and Yn := {y + d | y ∈ Yn−1, d ∈ Xn} for n > 1.

(a) For n > 1, d ∈ Xn and y ∈ Yn−1,

D(Yn, y + d) = D(Yn−1, y) +D(Xn, d);

(b) l(Yn, x) < nεN/N and
(c) (x− εn, x+ εn) ∩ Yn ⊆ D(Yn, x) for n > 0 and x ∈ Yn.
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Open case (3)

Lemma

Suppose M is n.v. Let N ≥ 2 be a natural number and α ∈ M . Let
{Xn}Nn=1 be a family of definable subsets of M having infinitely many
maximal convex subsets. Let {εn}Nn=1 be a decreasing family of positive
elements in M . Suppose the following condition is satisfied:

(1) Xn+1 ⊆ (α, α+ εn/3),

(2) If x ∈ Xn, then (x− 2εn, x+ 2εn) ∩Xn ⊆ D(Xn, x).

Then Th(M) is of burden ≥ N − 1.
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No accumulations and No Cantor-like sets

Corollary

Suppose Th(M) is strong. Let D be an infinite discrete definable subset
of M . Then, for every n.v. a ∈ M , there exists an open interval I such
that a ∈ I and D ∩ I is a finite set.

Corollary

Suppose M is n.v. and Th(M) is of finite burden. Let U be a definable
open subset of M having infinitely many maximal convex subsets. Then,
for every a ∈ M , there exists an open interval I with a ∈ I such that
U ∩ I is a union of finitely many open convex set.

In addition, M does not define a nowhere dense subset of M having no
isolated points (Cantor-like set).
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Main theorem, revisited

Theorem (F, 2025)

Consider a nonvaluational M = (M,<,+, . . .) of finite burden defining no
nonempty subset X of M which is dense and codense in a definable open
subset U of M with X ⊆ U . Then, R is ∗-locally weakly o-minimal.

Every unary definable set Y with empty interior is partitioned as
Y = Y1 ∪ Y2 ∪ Y3 satisfying the following conditions:

Y1, Y2 and Y3 are definable;

Y1 is either empty or has a definable open subset V of M such that
Y1 ⊆ V and Y1 is dense and codense in V ;

Y2 is either empty or a nowhere dense subset of M having no isolated
points (Cantor-like set);

Y3 is either empty or discrete.

This partition and corollaries imply the theorem.
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Section 4

Characterization by bounded 1-types
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Kulpeshov’s characterization of weak o-minimality

Definition

A complete 1-type p(x) ∈ SM
1 (M) is convex if the set of realizations of

p(x) is a convex set in any elementary extension of M.

Fact (Kulpeshov, 1998)

M is weakly o-minimal if and only if every complete type p(x) ∈ SM
1 (M)

is convex.
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Definition (bounded types)

Definition

A partial 1-type p(x) in M is bounded if ‘a < x < b’ ∈ p(x) for some
a, b ∈ M .

Suppose a complete 1- type p(x) ∈ SM
1 (M) is bounded. Put

B := {b ∈ M | ‘x > b’ ∈ p(x)} and C := {c ∈ M | ‘x < c’ ∈ p(x)}.
We have three possibilities:

(1) (Non-gap case) p(x) is one of the following three forms:

(a) M |= p(m) for some m ∈ M ;
(b) Either B has a largest element m or C has a smallest element m;

(2) (definable gap case) (B,C) is a definable gap.

(3) (Non-definable gap case) (B,C) is a non-definable gap.

If condition (n) is satisfied for 1 ≤ n ≤ 3, we say that p(x) is of class n.
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Characterization of ∗-local weak o-minimality by bounded
types

Theorem (F, 2025)

(a) M is locally o-minimal if and only if every bounded complete 1-type
over M of class 1 is convex.

(b) M is ∗-locally weakly o-minimal if and only if every bounded
complete 1-type over M of class 1 and 2 is convex.

(c) M is almost weakly o-minimal if and only if every bounded complete
1-type over M is convex.
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Thank you!
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