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Fundamental insight of computability theory:
Complexity is measured by definability!

One can use the computability-theoretic properties of reals
(elements of 2¢, w*, R, ...) to build structures.

Goal of this talk
Two examples of real numbers building interesting structures:
® in classical mathematics, especially fractal geometry

® in set theory, with a connection to topology



Part |: Projection Theorems in
Fractal Geometry



Limits of Provability

A regularity property is a property of sets of reals (i.e. elements
of R) which describe a “nice” structural behaviour.

Definition

A set A C R has the perfect set property if it is either countable or
if it contains a perfect subset (i.e. a copy of Cantor space 2v).

For example, no set with the Perfect Set Property can be a
counterexample to the Continuum Hypothesis. It is regular.

Question

Which sets satisfy these regularity properties?
Can they be classified?



Turing Computability
Work over w = {0,1,2,...}. Main idea: successful computations
take finite time and finite resources.
Definition

A set A C w is computable if there exists a program P which halts
in finite time and outputs

P(n) = {yes ifne A

no ifné&A.

Turing's insight: overcome finite-time-restriction through oracles:
Definition
A program P is an oracle program for A C w if it can ask at any

point whether “n € A". Write PA. A set A computes B if there
exists a program PA which computes B. Write B <1 A.



Sets of reals

Not only sets of numbers can be analysed, but also sets of reals.
Topologically, we get the Borel hierarchy:

%9 = open sets MY = closed sets
2% = union of N9 j-sets MY = intersection of );%—sets
A% =3x2nng

where 0 < a < ws.
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Superscript 0 indicates first-orderness—this can be made explicit
via Turing computability!



Consistency and Provability

The Borel hierarchy can be extended to the right: there exists a set
that is not Borel (Souslin). Continuous images of Borel sets are
called Z1—this gives the projective hierarchy.
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(Think of X} as computably enumerable with real witnesses.)

Note: The projective hierarchy is well-ordered!
This helps with provability of regularity properties:

Question

Which (projective) pointclasses satisfy regularity properties?



Some Axioms of Set Theory

ZF = Zermelo-Frankel set theory
Some axioms give more sets:
AC = Axiom of Choice
® ‘“every non-empty set has a choice function”

+ equivalent: every set can be well-ordered, Zorn's lemma, every
vector space has a basis

— at the cost of definable structure: Vitali set, Banach-Tarski
Some axioms give more structure:
AD = Axiom of Determinacy

® ‘“every two-player game on R has a winning strategy”

+ every regularity property expressible as games holds for all sets
— incompatible with the Axiom of Choice



Best of both worlds:
(V=L) = Axiom of Constructibility
® ‘“every set is constructible” (think “definable™)

® proves the Axiom of Choice, the generalised continuum
hypothesis, and much more

In (V=L), we get both lots of sets (through AC) and a lot of
structure (through definability of every set)!

This gives us the ideal environment to find optimal definable
counterexamples.



The “usual” pattern for regularity properties

Axioms ‘ Behaviour
ZFC
ZFC
/F4+DC+ AD
ZFC+ (V=L)
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The “usual” pattern for regularity properties

Axioms ‘ Behaviour
ZFC PSP holds for all £} sets (Souslin)
ZFC
/F +DC+ AD
ZFC + (V=L)
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The “usual” pattern for regularity properties

Axioms ‘ Behaviour
ZFC PSP holds for all £} sets (Souslin)
ZFC PSP fails for some set (Bernstein)
/F+DC+ AD
ZFC+ (V=L)
1
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The “usual” pattern for regularity properties

Axioms ‘ Behaviour
ZFC PSP holds for all £} sets (Souslin)
ZFC PSP fails for some set (Bernstein)

ZF + DC+ AD | PSP holds for all sets (Mycielski, Swierczkowski)
ZFC+ (V=L)
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The “usual” pattern for regularity properties

Axioms ‘ Behaviour
ZFC PSP holds for all £} sets (Souslin)
ZFC PSP fails for some set (Bernstein)

ZF + DC+ AD | PSP holds for all sets (Mycielski, Swierczkowski)
ZFC + (V=L) | PSP fails for some M} set (Godel)
1
%

Borel = Al

~



A Projection Theorem for Fractals
The s-dimensional Hausdorff outer measure H* is a generalisation
of Lebesgue outer measure; its coverings are given a weight:
® if s is too large, H?® is zero.
e if sis too small, H* is infinite.
o0 .

HS

0

S dil.nH
Example
* dimy ([0,1]?) =2
¢ dimy(middle-third Cantor set) = log(2)/ log(3)

Every set of reals has a Hausdorff dimension.
dimy is a classical object of study in geometric measure theory.



Definition
A set A C R? has the Marstrand property if for almost every
angle 0 we have dimy(projg(A)) = min{1,dimy(A)}.

dimg(E) = 1.5

po(E)

) dmal(E) =1




Theorem (Marstrand, 1954)

Every £} set has the Marstrand property.

dimy (E) = 1.5

E :

" po(E)

| __—p)  dimalp(B) =1

Can we prove more in ZFC?




Axioms Behaviour
ZFC
ZFC+ CH
/F+DC+ AD
ZFC+ (V=L)
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Axioms Behaviour

ZFC MP holds for all ] sets (Marstrand, 1954)
ZFC+CH
ZF+DC+ AD
ZFC + (V=L)
I DX
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Axioms Behaviour

ZFC MP holds for all ] sets (Marstrand, 1954)
ZFC + CH MP fails for some set (Davies, 1979)
ZF+DC+ AD

ZFC + (V=L)
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Axioms Behaviour

ZFC MP holds for all ] sets (Marstrand, 1954)
ZFC + CH MP fails for some set (Davies, 1979)
ZF + DC + AD | MP holds for all sets (Stull, 2021)
ZFC + (V=L)
P ®
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Axioms Behaviour

ZFC MP holds for all ] sets (Marstrand, 1954)
ZFC + CH MP fails for some set (Davies, 1979)
ZF + DC + AD | MP holds for all sets (Stull, 2021)

ZFC+ (v=L) |77
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Borel = Al
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Completing the Picture for MP

Theorem (R.)
V=L) There exists a I;I1 set E C R? for which
1

dimy(E) =1 yet for every § we have dimpy(projs(E)) = 0.

Borel = Al

How do we construct such a set? By recursion!



From Points to Sets

Theorem (Lutz and Lutz, 2018)

If A C R? then

K%(xIn
dimy(A) = Zm|2n suplinlinf(:r).
€2¥ xeA N0

From (the complexity of) points one can measure the complexity
of sets—hence it's called the point-to-set principle.
Lemma

Every countable set has Hausdorff dimension 0.

Proof.

Suppose A = {x; |i <w}. Let Z =P, x;. Let P compute x;[, on
input (i, n). For fixed i, the pair (i, n) has a description of length
log(n) + ¢, which vanishes /n as n — oc. O



The M}-recursion theorem

Theorem (Erdés, Kunen and Mauldin; A. Miller; Vidnyanszky)

(V=L) If at every step of the recursion there exist
arbitrarily <7-complex witnesses, the constructed set is 1.

The idea:

1. Well-order the set of conditions {c, | @ < w1}.

2. If Ay C R is a partial solution and ¢, is not yet satisfied, show
that {x € R| x satisfies ¢, and AU {x} is a partial solution}
is cofinal in <.

3. Pick such x,, and define A = {x, | @ < w1 }.

Example

(V=L) There is a 1 decomposition of R* into disjoint circles.



Theorem (R.)

(V=L) There exists a 1 set E C R? for which dimy(E) = 1 yet
for every 6 we have dimy(projy(E)) = 0.

Theorem (R.)

(V=L) For every ¢ € (0,1) there exists a M1 set E C R? for which
dimy(E) = 1 + € yet for every 6 we have dimy(projg(E)) = €.

This is optimal by classical facts of geometric measure theory (e.g.
Hausdorff dimension cannot drop by more than 1 under projection).
Takeaway

The complexity of the set is determined by the properties of real
numbers—both globally, and locally!



Part Il: From Reals to Elementary
Substructures



Set-theoretical Structures in Topology

Two set-theoretical structures have found interesting relationships
with topology.

Roitman’s Model Hypothesis is an axiom due to J. Roitman (2011)
to settle variants of the box product problem (is R¥ under the box
topology normal?).

Paul. E. Cohen’s Pathways (1979) are a sequence of sets of reals,
whose existence implies the existence of P-points (a special type of
ultrafilter, whose existence in the random model is still open).

Recently, Barriga-Acosta, Brian, and Dow related these two.



Definition (P. E. Cohen’s Pathways PE)
There exists a cardinal x and an increasing sequence of
sets (Aq)a<k such that:
o A, CwY¥
° Ua<l€ AOC =w"
® for every a, there exists f € A,+1 such that if g € A,
then f £* g

® A, is a Turing ideal

Call the sequence (fo+1)a<x the fundamental sequence. The
fundamental sequence traces the structure w®.



Definition (Roitman’s Model Hypothesis MH)
There exists a cardinal x and an increasing sequence of
sets (Mg )a<x such that:

e M, C H(wl)

O Ua</~; Ma = H(wl)

® for every a, there exists f € M,+1 Nw® such that

if g € M,Nw* then f £* g
° Ma =< H(wl)

Call the sequence (fy+1)a<x the fundamental sequence. The
fundamental sequence traces the structure H(w).



For the sake of emphasis...

Paul E. Cohen’s Pathways PE:




MH vs PE

There exists a cardinal x and an increasing sequence of sets

(AOC)Oé<,‘i
such that
A, Cw”

UAa:ww

a<k

and for every «, there exists

fe Aa+1
such that if

g € Aa
then f £* g.
AND:

A, is a Turing ideal

(M()!)Oé<l'€

Ma =< H(wl)



From Models to Reals

Theorem (Barriga-Acosta, Brian, Dow)

MH implies PE

Proof.

Use the fact that each M,, is an elementary substructure
of H(wi)—and hence closed under first-order definable truths—to
“pull out” the sets of reals. []

Can we go the other way? Can one construct a sequence of
elementary substructures of H(w;) from certain sets of reals alone?

With stronger hypotheses, here is one way to do this.



Going the Other Way?

Let (Aq)a<x with fundamental sequence (fy11)a<x be given.

One approach by recursion:
1. Take some “minimal” structure induced by A,.

2. Find witnesses to satisfy a countable sequence of
Tarski-Vaught-conditions to build an elementary
substructure M, with

° A, CM,
hd a+1 §? Ma
Question

What is a natural choice for the “induced” structure?
How do we find “nice” witnesses?

Computability theory helps!



Structures Induced by Sets of Reals

For a set A C w*, consider

1= Ll

XEA

These sets code a version of computational reduction, called
hyperarithmetic reduction <j:

Theorem (Kleene)
y € Ls[X|Nw® = y <px

This is our “minimal” structure, since:
LA C H(wl)

Note: This resembles the Turing ideal structure of the A, 's, but our
version is quite a bit stronger.



Coding Elements and Sets

Suppose we're at stage a. We are looking at
LA and fat1 € Aati-

We build
Masi1.

Instead of witnesses (elements), we choose codes (reals).

Lemma

Every set a € H(w1) can be coded by a real x € 2.

Given a formula ¢ true in H(w1), look at the set of codes of
witnesses, W/(y) C w*. This set is always projective:

Lemma (Folklore)

A Cw¥ is XL, if and only if it is ¥, over (H(w1), €).



To complete the proof, we assume the following:
1. A, is not only a Turing ideal, but a HYP-ideal.

2. The fundamental sequence (fy+1)a<s Satisfies that
if y € Al(x) for any x € A, then

fat1 74* y.

Call this a (x)-pathway.

Using Projective Determinacy and a Basis Lemma due to
Moschovakis, we get:

Lemma

If H(w1) E ¢, then the set of codes for witnesses W () contains
an element that does not dominate f,1.

Theorem (R.)
(PD) If there is a (x)-pathway, then MH holds.



Conclusions

Definable properties of real numbers determine interesting
properties of sets:

® set theory <— regularity properties
® to characterise them—and other objects in classical
mathematics—use computability theory
® |ocally: point-to-set principle for Hausdorff dimension,
I:I%—recursion, all countable sets
® globally: placement of objects in hierarchies, e.g.
Borel /projective hierarchy, arithmetic hierarchy, to prove
provability

® many other examples beyond descriptive set theory: e.g.
reverse mathematics, computable structure theory
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Thank you



