Building Structures From Reals

Linus Richter

National University of Singapore

7 August, 2025

2025 Fudan Conference on Mathematical Logic

Fundamental insight of computability theory:

Complexity is measured by definability!

One can use the computability-theoretic properties of reals (elements of 2^{ω} , ω^{ω} , \mathbb{R} , ...) to build structures.

Goal of this talk

Two examples of real numbers building interesting structures:

- in classical mathematics, especially fractal geometry
- in set theory, with a connection to topology

Part I: Projection Theorems in

Fractal Geometry

Limits of Provability

A regularity property is a property of sets of reals (i.e. elements of \mathbb{R}) which describe a "nice" structural behaviour.

Definition

A set $A \subseteq \mathbb{R}$ has the perfect set property if it is either countable or if it contains a perfect subset (i.e. a copy of Cantor space 2^{ω}).

For example, no set with the Perfect Set Property can be a counterexample to the Continuum Hypothesis. It is regular.

Question

Which sets satisfy these regularity properties? Can they be classified?

Turing Computability

Work over $\omega = \{0, 1, 2, \ldots\}$. Main idea: successful computations take finite time and finite resources.

Definition

A set $A\subseteq \omega$ is computable if there exists a program P which halts in finite time and outputs

$$P(n) = \begin{cases} \text{yes} & \text{if } n \in A \\ \text{no} & \text{if } n \notin A. \end{cases}$$

Turing's insight: overcome finite-time-restriction through oracles:

Definition

A program P is an oracle program for $A \subseteq \omega$ if it can ask at any point whether " $n \in A$ ". Write P^A . A set A computes B if there exists a program P^A which computes B. Write $B \leq_T A$.

Sets of reals

Not only sets of numbers can be analysed, but also sets of reals. Topologically, we get the Borel hierarchy:

$$\begin{array}{ll} \boldsymbol{\Sigma}^0_1 = \text{open sets} & \boldsymbol{\Pi}^0_1 = \text{closed sets} \\ \boldsymbol{\Sigma}^0_\alpha = \text{union of } \boldsymbol{\Pi}^0_\beta\text{-sets} & \boldsymbol{\Pi}^0_\alpha = \text{intersection of } \boldsymbol{\Sigma}^0_\beta\text{-sets} \\ \boldsymbol{\Delta}^0_\alpha = \boldsymbol{\Sigma}^0_\alpha \cap \boldsymbol{\Pi}^0_\alpha & \end{array}$$

where $\beta < \alpha < \omega_1$.

$$oldsymbol{\Sigma}_1^0 \qquad oldsymbol{\Sigma}_2^0 \qquad oldsymbol{\Sigma}_{lpha+1}^0 \ oldsymbol{\Sigma}_{lpha}^0 \qquad oldsymbol{\Sigma}_{lpha+1}^0 \qquad oldsymbol{\Sigma}_{lpha+1}^0 \qquad oldsymbol{\Sigma}_{lpha+2}^0 \qquad \cdots \ oldsymbol{\Omega}_{lpha+1}^0 \qquad oldsymbol{\Omega}_{lpha+1}^0 \qquad oldsymbol{\Omega}_{lpha+1}^0 \ oldsymbol{\Omega}_{lpha+1}^0 \qquad oldsymbol{\Omega}_{lpha+1}^0 \ oldsymbol{\Sigma}_{lpha+1}^0 \qquad oldsymbol{\Sigma}_{lpha+1}^0 \qquad oldsymbol{\Sigma}_{lpha+1}^0 \ oldsymbol{\Sigma}_{lpha+1}^0 \qquad oldsymbol{\Sigma}_{lpha+1}^0 \ oldsymbol{\Sigma}_{lpha+1}^0 \qquad oldsymbol{\Sigma}_{lpha+1}^0 \ oldsymbol{\Sigma}_$$

Superscript 0 indicates first-orderness—this can be made explicit via Turing computability!

Consistency and Provability

The Borel hierarchy can be extended to the right: there exists a set that is not Borel (Souslin). Continuous images of Borel sets are called Σ_1^1 —this gives the projective hierarchy.

(Think of $\sum_{i=1}^{1}$ as computably enumerable with real witnesses.)

Note: The projective hierarchy is well-ordered! This helps with provability of regularity properties:

Question

Which (projective) pointclasses satisfy regularity properties?

Some Axioms of Set Theory

ZF = Zermelo-Fränkel set theory

Some axioms give more sets:

AC = Axiom of Choice

- "every non-empty set has a choice function"
- + equivalent: every set can be well-ordered, Zorn's lemma, every vector space has a basis
- at the cost of definable structure: Vitali set, Banach-Tarski

Some axioms give more structure:

AD = Axiom of Determinacy

- "every two-player game on $\mathbb R$ has a winning strategy"
- + every regularity property expressible as games holds for all sets
- incompatible with the Axiom of Choice

Best of both worlds:

$$(V=L) = Axiom of Constructibility$$

- "every set is constructible" (think "definable")
- proves the Axiom of Choice, the generalised continuum hypothesis, and much more

In (V=L), we get *both* lots of sets (through AC) *and* a lot of structure (through definability of every set)!

This gives us the ideal environment to find optimal definable counterexamples.

Axioms	Behaviour
ZFC	
ZFC	
ZF + DC + AD	
ZFC + (V=L)	

$$oldsymbol{\Sigma}_1^1 \qquad oldsymbol{\Sigma}_2^1 \ old$$

Axioms	Behaviour
ZFC	PSP holds for all $\sum_{i=1}^{1}$ sets (Souslin)
ZFC	
ZF + DC + AD	
ZFC + (V = L)	

Axioms	Behaviour
ZFC	PSP holds for all $\sum_{i=1}^{1}$ sets (Souslin)
ZFC	PSP fails for some set (Bernstein)
ZF + DC + AD	, ,
ZFC + (V = L)	

Axioms	Behaviour
ZFC	PSP holds for all $\sum_{i=1}^{1}$ sets (Souslin)
ZFC	PSP fails for some set (Bernstein)
ZF + DC + AD	PSP holds for all sets (Mycielski, Swierczkowski)
ZFC + (V=L)	, , , , , , , , , , , , , , , , , , ,

Axioms	Behaviour
ZFC	PSP holds for all $\sum_{i=1}^{1}$ sets (Souslin)
ZFC	PSP fails for some set (Bernstein)
ZF + DC + AD	PSP holds for all sets (Mycielski, Swierczkowski)
ZFC + (V=L)	PSP fails for some $\overline{\mathbb{Q}}_1^1$ set (Gödel)

A Projection Theorem for Fractals

The s-dimensional Hausdorff outer measure \mathcal{H}^s is a generalisation of Lebesgue outer measure; its coverings are given a weight:

- if s is too large, \mathcal{H}^s is zero.
- if s is too small, \mathcal{H}^s is infinite.

Example

- $\dim_H ([0,1]^2) = 2$
- $\dim_H(\text{middle-third Cantor set}) = \log(2)/\log(3)$

Every set of reals has a Hausdorff dimension. dim_H is a classical object of study in geometric measure theory.

Definition

A set $A \subseteq \mathbb{R}^2$ has the Marstrand property if for almost every angle θ we have $\dim_H(\operatorname{proj}_{\theta}(A)) = \min\{1, \dim_H(A)\}.$

Theorem (Marstrand, 1954)

Every $\sum_{i=1}^{n}$ set has the Marstrand property.

Can we prove more in ZFC?

Axioms	Behaviour
ZFC	
ZFC + CH	
ZF + DC + AD	
ZFC + (V = L)	

Axioms	Behaviour
ZFC	MP holds for all \sum_{1}^{1} sets (Marstrand, 1954)
ZFC + CH	
ZF + DC + AD	
ZFC + (V=L)	

Axioms	Behaviour
ZFC	MP holds for all \sum_{1}^{1} sets (Marstrand, 1954)
ZFC + CH	MP fails for some set (Davies, 1979)
ZF + DC + AD	
ZFC + (V=L)	

Axioms	Behaviour
ZFC	MP holds for all \sum_{1}^{1} sets (Marstrand, 1954)
ZFC + CH	MP fails for some set (Davies, 1979)
ZF + DC + AD	MP holds for all sets (Stull, 2021)
ZFC + (V=L)	

Axioms	Behaviour
ZFC	MP holds for all \sum_{1}^{1} sets (Marstrand, 1954)
ZFC + CH	MP fails for some set (Davies, 1979)
ZF + DC + AD	MP holds for all sets (Stull, 2021)
ZFC + (V=L)	??

Completing the Picture for MP

Theorem (R.)

(V=L) There exists a Π_1^1 set $E \subseteq \mathbb{R}^2$ for which $\dim_H(E) = 1$ yet for every θ we have $\dim_H(\operatorname{proj}_{\theta}(E)) = 0$.

How do we construct such a set? By recursion!

From Points to Sets

Theorem (Lutz and Lutz, 2018)

If $A \subseteq \mathbb{R}^2$ then

$$\dim_{H}(A) = \min_{Z \in 2^{\omega}} \sup_{x \in A} \liminf_{n \to \infty} \frac{K^{Z}(x \upharpoonright_{n})}{n}.$$

From (the complexity of) points one can measure the complexity of sets—hence it's called the point-to-set principle.

Lemma

Every countable set has Hausdorff dimension 0.

Proof.

Suppose $A = \{x_i \mid i < \omega\}$. Let $Z = \bigoplus_i x_i$. Let P compute $x_i \upharpoonright_n$ on input (i, n). For fixed i, the pair (i, n) has a description of length $\log(n) + c$, which vanishes /n as $n \to \infty$.

The \prod_{1}^{1} -recursion theorem

Theorem (Erdős, Kunen and Mauldin; A. Miller; Vidnyánszky)

(V=L) If at every step of the recursion there exist arbitrarily \leq_T -complex witnesses, the constructed set is Π_1^1 .

The idea:

- 1. Well-order the set of conditions $\{c_{\alpha} \mid \alpha < \omega_1\}$.
- 2. If $A_{\alpha} \subseteq \mathbb{R}$ is a partial solution and c_{α} is not yet satisfied, show that $\{x \in \mathbb{R} \mid x \text{ satisfies } c_{\alpha} \text{ and } A \cup \{x\} \text{ is a partial solution} \}$ is cofinal in \leq_T .
- 3. Pick such x_{α} , and define $A = \{x_{\alpha} \mid \alpha < \omega_1\}$.

Example

(V=L) There is a Π_1^1 decomposition of \mathbb{R}^3 into disjoint circles.

Theorem (R.)

(V=L) There exists a Π_1^1 set $E \subseteq \mathbb{R}^2$ for which $\dim_H(E) = 1$ yet for every θ we have $\dim_H(\operatorname{proj}_{\theta}(E)) = 0$.

Theorem (R.)

(V=L) For every $\epsilon \in (0,1)$ there exists a Π_1^1 set $E \subseteq \mathbb{R}^2$ for which $\dim_H(E) = 1 + \epsilon$ yet for every θ we have $\dim_H(\operatorname{proj}_{\theta}(E)) = \epsilon$.

This is optimal by classical facts of geometric measure theory (e.g. Hausdorff dimension cannot drop by more than 1 under projection).

Takeaway

The complexity of the set is determined by the properties of real numbers—both globally, and locally!

Part II: From Reals to Elementary Substructures

Set-theoretical Structures in Topology

Two set-theoretical structures have found interesting relationships with topology.

Roitman's Model Hypothesis is an axiom due to J. Roitman (2011) to settle variants of the box product problem (is \mathbb{R}^{ω} under the box topology normal?).

Paul. E. Cohen's Pathways (1979) are a sequence of sets of reals, whose existence implies the existence of *P*-points (a special type of ultrafilter, whose existence in the random model is still open).

Recently, Barriga-Acosta, Brian, and Dow related these two.

Definition (P. E. Cohen's Pathways PE)

There exists a cardinal κ and an increasing sequence of sets $(A_{\alpha})_{\alpha < \kappa}$ such that:

- $A_{\alpha} \subset \omega^{\omega}$
- $\bigcup_{\alpha < \kappa} A_{\alpha} = \omega^{\omega}$
- for every α , there exists $f \in A_{\alpha+1}$ such that if $g \in A_{\alpha}$ then $f \not<^* g$
- A_{α} is a Turing ideal

Call the sequence $(f_{\alpha+1})_{\alpha<\kappa}$ the fundamental sequence. The fundamental sequence traces the structure ω^{ω} .

Definition (Roitman's Model Hypothesis MH)

There exists a cardinal κ and an increasing sequence of sets $(M_{\alpha})_{\alpha \le \kappa}$ such that:

- $M_{\alpha} \subset H(\omega_1)$
- $\bigcup_{\alpha<\kappa}M_{\alpha}=H(\omega_1)$
- for every α , there exists $f \in M_{\alpha+1} \cap \omega^{\omega}$ such that if $g \in M_{\alpha} \cap \omega^{\omega}$ then $f \not<^* g$
- $M_{\alpha} \prec H(\omega_1)$

Call the sequence $(f_{\alpha+1})_{\alpha<\kappa}$ the fundamental sequence. The fundamental sequence traces the structure $H(\omega_1)$.

For the sake of emphasis...

Paul E. Cohen's Pathways PE:

Roitman's Model Hypothesis MH:

MH vs PE

There exists a cardinal κ and an increasing sequence of sets $(A_{\alpha})_{\alpha<\kappa}$ $(M_{\alpha})_{\alpha<\kappa}$

such that

$$A_{lpha} \subset \omega^{\omega}$$
 $M_{lpha} \subset H(\omega_1)$ $M_{lpha} \subset H(\omega_1)$ $M_{lpha} = H(\omega_1)$

and for every α , there exists

$$f \in A_{\alpha+1}$$
 $f \in M_{\alpha+1} \cap \omega^{\omega}$

such that if

$$g \in A_{\alpha}$$
 $g \in M_{\alpha} \cap \omega^{\omega}$

then $f \not<^* g$.

AND:

 A_{α} is a Turing ideal

 $M_{lpha} \prec H(\omega_1)$

From Models to Reals

Theorem (Barriga-Acosta, Brian, Dow)

MH implies PE

Proof.

Use the fact that each M_{α} is an elementary substructure of $H(\omega_1)$ —and hence closed under first-order definable truths—to "pull out" the sets of reals.

Can we go the other way? Can one construct a sequence of elementary substructures of $H(\omega_1)$ from certain sets of reals alone?

With stronger hypotheses, here is one way to do this.

Going the Other Way?

Let $(A_{\alpha})_{\alpha < \kappa}$ with fundamental sequence $(f_{\alpha+1})_{\alpha < \kappa}$ be given.

One approach by recursion:

- 1. Take some "minimal" structure induced by A_{α} .
- 2. Find witnesses to satisfy a countable sequence of Tarski-Vaught-conditions to build an elementary substructure M_{α} with
 - $A_{\alpha} \subset M_{\alpha}$
 - $f_{\alpha+1} \not\in M_{\alpha}$

Question

What is a natural choice for the "induced" structure? How do we find "nice" witnesses?

Computability theory helps!

Structures Induced by Sets of Reals

For a set $A \subseteq \omega^{\omega}$, consider

$$L^A := \bigcup_{x \in A} L_{\omega_1^x}[x].$$

These sets code a version of computational reduction, called hyperarithmetic reduction \leq_h :

Theorem (Kleene)

$$y \in L_{\omega_1^{\mathsf{x}}}[x] \cap \omega^{\omega} \iff y \leq_h x$$

This is our "minimal" structure, since:

$$L^A \subset H(\omega_1)$$

Note: This resembles the Turing ideal structure of the A_{α} 's, but our version is quite a bit stronger.

Coding Elements and Sets

Suppose we're at stage α . We are looking at

$$L^{A_{\alpha}}$$
 and $f_{\alpha+1} \in A_{\alpha+1}$.

We build

$$M_{\alpha+1}$$
.

Instead of witnesses (elements), we choose codes (reals).

Lemma

Every set $a \in H(\omega_1)$ can be coded by a real $x \in 2^{\omega}$.

Given a formula φ true in $H(\omega_1)$, look at the set of codes of witnesses, $W(\varphi) \subset \omega^{\omega}$. This set is always projective:

Lemma (Folklore)

$$A\subseteq\omega^{\omega}$$
 is Σ_{n+1}^{1} if and only if it is Σ_{n} over $(H(\omega_{1}),\in)$.

To complete the proof, we assume the following:

- 1. A_{α} is not only a Turing ideal, but a HYP-ideal.
- 2. The fundamental sequence $(f_{\alpha+1})_{\alpha<\kappa}$ satisfies that if $y\in\Delta^1_n(x)$ for any $x\in A_\alpha$ then

$$f_{\alpha+1} \not<^* y$$
.

Call this a (*)-pathway.

Using Projective Determinacy and a Basis Lemma due to Moschovakis, we get:

Lemma

If $H(\omega_1) \vDash \varphi$, then the set of codes for witnesses $W(\varphi)$ contains an element that does not dominate $f_{\alpha+1}$.

Theorem (R.)

(PD) If there is a (*)-pathway, then MH holds.

Conclusions

Definable properties of real numbers determine interesting properties of sets:

- set theory ←→ regularity properties
- to characterise them—and other objects in classical mathematics—use computability theory

 - globally: placement of objects in hierarchies, e.g.
 Borel/projective hierarchy, arithmetic hierarchy, to prove provability
- many other examples beyond descriptive set theory: e.g. reverse mathematics, computable structure theory

Conclusions

Definable properties of real numbers determine interesting properties of sets:

- set theory ←→ regularity properties
- to characterise them—and other objects in classical mathematics—use computability theory

 - globally: placement of objects in hierarchies, e.g.
 Borel/projective hierarchy, arithmetic hierarchy, to prove provability
- many other examples beyond descriptive set theory: e.g. reverse mathematics, computable structure theory

Thank you