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Fundamental insight of computability theory:

Complexity is measured by definability!

One can use the computability-theoretic properties of reals
(elements of 2ω, ωω, R, . . . ) to build structures.

Goal of this talk

Two examples of real numbers building interesting structures:

• in classical mathematics, especially fractal geometry

• in set theory, with a connection to topology



Part I: Projection Theorems in
Fractal Geometry



Limits of Provability

A regularity property is a property of sets of reals (i.e. elements
of R) which describe a “nice” structural behaviour.

Definition

A set A ⊆ R has the perfect set property if it is either countable or
if it contains a perfect subset (i.e. a copy of Cantor space 2ω).

For example, no set with the Perfect Set Property can be a
counterexample to the Continuum Hypothesis. It is regular.

Question

Which sets satisfy these regularity properties?
Can they be classified?



Turing Computability

Work over ω = {0, 1, 2, . . .}. Main idea: successful computations
take finite time and finite resources.

Definition

A set A ⊆ ω is computable if there exists a program P which halts
in finite time and outputs

P(n) =

{
yes if n ∈ A

no if n ̸∈ A.

Turing’s insight: overcome finite-time-restriction through oracles:

Definition

A program P is an oracle program for A ⊆ ω if it can ask at any
point whether “n ∈ A”. Write PA. A set A computes B if there
exists a program PA which computes B. Write B ≤T A.



Sets of reals

Not only sets of numbers can be analysed, but also sets of reals.
Topologically, we get the Borel hierarchy:
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Superscript 0 indicates first-orderness—this can be made explicit
via Turing computability!



Consistency and Provability
The Borel hierarchy can be extended to the right: there exists a set
that is not Borel (Souslin). Continuous images of Borel sets are
called Σ˜ 1

1—this gives the projective hierarchy.
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(Think of Σ˜ 1
1 as computably enumerable with real witnesses.)

Note: The projective hierarchy is well-ordered!
This helps with provability of regularity properties:

Question

Which (projective) pointclasses satisfy regularity properties?



Some Axioms of Set Theory

ZF = Zermelo-Fränkel set theory

Some axioms give more sets:

AC = Axiom of Choice

• “every non-empty set has a choice function”

+ equivalent: every set can be well-ordered, Zorn’s lemma, every
vector space has a basis

− at the cost of definable structure: Vitali set, Banach-Tarski

Some axioms give more structure:

AD = Axiom of Determinacy

• “every two-player game on R has a winning strategy”

+ every regularity property expressible as games holds for all sets

− incompatible with the Axiom of Choice



Best of both worlds:

(V=L) = Axiom of Constructibility

• “every set is constructible” (think “definable”)

• proves the Axiom of Choice, the generalised continuum
hypothesis, and much more

In (V=L), we get both lots of sets (through AC) and a lot of
structure (through definability of every set)!

This gives us the ideal environment to find optimal definable
counterexamples.



The “usual” pattern for regularity properties

Axioms Behaviour

ZFC

PSP holds for all Σ˜ 1
1 sets (Souslin)

ZFC

PSP fails for some set (Bernstein)

ZF + DC + AD

PSP holds for all sets (Mycielski, Swierczkowski)

ZFC + (V=L)

PSP fails for some Π˜ 1
1 set (Gödel)
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The “usual” pattern for regularity properties

Axioms Behaviour

ZFC PSP holds for all Σ˜ 1
1 sets (Souslin)

ZFC PSP fails for some set (Bernstein)
ZF + DC + AD PSP holds for all sets (Mycielski, Swierczkowski)
ZFC + (V=L) PSP fails for some Π˜ 1

1 set (Gödel)



A Projection Theorem for Fractals
The s-dimensional Hausdorff outer measure Hs is a generalisation
of Lebesgue outer measure; its coverings are given a weight:
• if s is too large, Hs is zero.
• if s is too small, Hs is infinite.

Example

• dimH

(
[0, 1]2

)
= 2

• dimH(middle-third Cantor set) = log(2)/ log(3)

Every set of reals has a Hausdorff dimension.
dimH is a classical object of study in geometric measure theory.



Definition

A set A ⊆ R2 has the Marstrand property if for almost every
angle θ we have dimH(projθ(A)) = min{1, dimH(A)}.



Theorem (Marstrand, 1954)

Every Σ˜ 1
1 set has the Marstrand property.

Can we prove more in ZFC?
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Completing the Picture for MP

Theorem (R.)

(V=L) There exists a Π˜ 1
1 set E ⊆ R2 for which

dimH(E ) = 1 yet for every θ we have dimH(projθ(E )) = 0.

How do we construct such a set? By recursion!



From Points to Sets

Theorem (Lutz and Lutz, 2018)

If A ⊆ R2 then

dimH(A) = min
Z∈2ω

sup
x∈A

lim inf
n→∞

KZ (x↾n)
n

.

From (the complexity of) points one can measure the complexity
of sets—hence it’s called the point-to-set principle.

Lemma

Every countable set has Hausdorff dimension 0.

Proof.

Suppose A = {xi | i < ω}. Let Z =
⊕

i xi . Let P compute xi↾n on
input (i , n). For fixed i , the pair (i , n) has a description of length
log(n) + c, which vanishes /n as n→∞.



The Π˜ 1
1-recursion theorem

Theorem (Erdős, Kunen and Mauldin; A. Miller; Vidnyánszky)

(V=L) If at every step of the recursion there exist
arbitrarily ≤T -complex witnesses, the constructed set is Π˜ 1

1.

The idea:

1. Well-order the set of conditions {cα |α < ω1}.
2. If Aα ⊆ R is a partial solution and cα is not yet satisfied, show

that {x ∈ R | x satisfies cα and A ∪ {x} is a partial solution}
is cofinal in ≤T .

3. Pick such xα, and define A = {xα |α < ω1}.

Example

(V=L) There is a Π˜ 1
1 decomposition of R3 into disjoint circles.



Theorem (R.)

(V=L) There exists a Π˜ 1
1 set E ⊆ R2 for which dimH(E ) = 1 yet

for every θ we have dimH(projθ(E )) = 0.

Theorem (R.)

(V=L) For every ϵ ∈ (0, 1) there exists a Π˜ 1
1 set E ⊆ R2 for which

dimH(E ) = 1 + ϵ yet for every θ we have dimH(projθ(E )) = ϵ.

This is optimal by classical facts of geometric measure theory (e.g.
Hausdorff dimension cannot drop by more than 1 under projection).

Takeaway

The complexity of the set is determined by the properties of real
numbers—both globally, and locally!



Part II: From Reals to Elementary
Substructures



Set-theoretical Structures in Topology

Two set-theoretical structures have found interesting relationships
with topology.

Roitman’s Model Hypothesis is an axiom due to J. Roitman (2011)
to settle variants of the box product problem (is Rω under the box
topology normal?).

Paul. E. Cohen’s Pathways (1979) are a sequence of sets of reals,
whose existence implies the existence of P-points (a special type of
ultrafilter, whose existence in the random model is still open).

Recently, Barriga-Acosta, Brian, and Dow related these two.



Definition (P. E. Cohen’s Pathways PE)

There exists a cardinal κ and an increasing sequence of
sets (Aα)α<κ such that:

• Aα ⊂ ωω

• ⋃
α<κ Aα = ωω

• for every α, there exists f ∈ Aα+1 such that if g ∈ Aα

then f ̸<∗ g

• Aα is a Turing ideal

Call the sequence (fα+1)α<κ the fundamental sequence. The
fundamental sequence traces the structure ωω.



Definition (Roitman’s Model Hypothesis MH)

There exists a cardinal κ and an increasing sequence of
sets (Mα)α<κ such that:

• Mα ⊂ H(ω1)

• ⋃
α<κMα = H(ω1)

• for every α, there exists f ∈ Mα+1 ∩ ωω such that
if g ∈ Mα ∩ ωω then f ̸<∗ g

• Mα ≺ H(ω1)

Call the sequence (fα+1)α<κ the fundamental sequence. The
fundamental sequence traces the structure H(ω1).



For the sake of emphasis...

Paul E. Cohen’s Pathways PE:

f1 f2 f3A0

A1
A2

A3

. . . ωω

Roitman’s Model Hypothesis MH:

f1 f2 f3M0

M1
M2

M3

. . . H(ω1)



MH vs PE

There exists a cardinal κ and an increasing sequence of sets

(Aα)α<κ (Mα)α<κ

such that

Aα ⊂ ωω Mα ⊂ H(ω1)⋃
α<κ

Aα = ωω
⋃
α<κ

Mα = H(ω1)

and for every α, there exists

f ∈ Aα+1 f ∈ Mα+1 ∩ ωω

such that if

g ∈ Aα g ∈ Mα ∩ ωω

then f ̸<∗ g .

AND:

Aα is a Turing ideal Mα ≺ H(ω1)



From Models to Reals

Theorem (Barriga-Acosta, Brian, Dow)

MH implies PE

Proof.

Use the fact that each Mα is an elementary substructure
of H(ω1)—and hence closed under first-order definable truths—to
“pull out” the sets of reals.

Can we go the other way? Can one construct a sequence of
elementary substructures of H(ω1) from certain sets of reals alone?

With stronger hypotheses, here is one way to do this.



Going the Other Way?

Let (Aα)α<κ with fundamental sequence (fα+1)α<κ be given.

One approach by recursion:

1. Take some “minimal” structure induced by Aα.

2. Find witnesses to satisfy a countable sequence of
Tarski-Vaught-conditions to build an elementary
substructure Mα with
• Aα ⊂ Mα

• fα+1 ̸∈ Mα

Question

What is a natural choice for the “induced” structure?
How do we find “nice” witnesses?

Computability theory helps!



Structures Induced by Sets of Reals
For a set A ⊆ ωω, consider

LA :=
⋃
x∈A

Lωx
1
[x ].

These sets code a version of computational reduction, called
hyperarithmetic reduction ≤h:

Theorem (Kleene)

y ∈ Lωx
1
[x ] ∩ ωω ⇐⇒ y ≤h x

This is our “minimal” structure, since:

LA ⊂ H(ω1)

Note: This resembles the Turing ideal structure of the Aα’s, but our

version is quite a bit stronger.



Coding Elements and Sets

Suppose we’re at stage α. We are looking at

LAα and fα+1 ∈ Aα+1.

We build
Mα+1.

Instead of witnesses (elements), we choose codes (reals).

Lemma

Every set a ∈ H(ω1) can be coded by a real x ∈ 2ω.

Given a formula φ true in H(ω1), look at the set of codes of
witnesses, W (φ) ⊂ ωω. This set is always projective:

Lemma (Folklore)

A ⊆ ωω is Σ1
n+1 if and only if it is Σn over (H(ω1),∈).



To complete the proof, we assume the following:

1. Aα is not only a Turing ideal, but a HYP-ideal.

2. The fundamental sequence (fα+1)α<κ satisfies that
if y ∈ ∆1

n(x) for any x ∈ Aα then

fα+1 ̸<∗ y .

Call this a (∗)-pathway.

Using Projective Determinacy and a Basis Lemma due to
Moschovakis, we get:

Lemma

If H(ω1) ⊨ φ, then the set of codes for witnesses W (φ) contains
an element that does not dominate fα+1.

Theorem (R.)

(PD) If there is a (∗)-pathway, then MH holds.



Conclusions

Definable properties of real numbers determine interesting
properties of sets:

• set theory ←→ regularity properties
• to characterise them—and other objects in classical
mathematics—use computability theory
• locally: point-to-set principle for Hausdorff dimension,

Π˜ 1
1-recursion, all countable sets

• globally: placement of objects in hierarchies, e.g.
Borel/projective hierarchy, arithmetic hierarchy, to prove
provability

• many other examples beyond descriptive set theory: e.g.
reverse mathematics, computable structure theory
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