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Outline

The purpose of today’s talk is to discuss a dynamical system [semigroup] which
encodes the dynamics arising from the automorphism group of a first order
structure.

Outline of the talk:

1 Additional background/motivation

2 A new semigroups of types [over arb. theories]

3 A new convolution product [over arb. theories]

4 Idempotents and the classification of subgroups of automorphism group
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Notation + Preliminaries

Remarks:

1 T will always be a complete first order theory.

2 G (x) is an ∅-definable group w.r.t. T .

3 U ,M |= T ; U will be a monster model; M a small elementary submodel.

4 Stable and NIP are properties of first order theories; they are combinatorial
dividing lines.

5 Stable theories are very tame (e.g., Abelian or definable in (C; +,×, 0, 1)).

6 NIP theories are relatively tame (e.g., definable in (R; +,×, 0, 1) or p-adics).

7 All stable theories are NIP.

Kyle Gannon (BICMR) Random dynamics August 5, 2025 3 / 27



Historical background

1 Stable group theory (1970s-1980s)
1 ideas from algebraic groups over algebraically closed fields
2 connected components, stabilizers, generics...

2 Advances beyond stable group theory
1 O-minimal groups, Pillay conjectures, NIP groups
2 invariant measures, fsg types, G00, G000,...

3 Newelski’s insight
1 Connections between topological dynamics and model theory of groups.
2 Ellis semigroup, Newelski conjecture (Chernikov-Simon), WAP/tame flows

4 Convolution dynamics over definable groups
1 Randomized variants of above connection
2 (good) idempotent measures ↔ (good) type-definable subgroups
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Näıve observations

Dynamical systems arise naturally in the model theory.

1 Suppose that M is a first order structure and G (x) is a definable group.
Then G (M) acts on SG (M) via

g · p = {ϕ(g−1 · x) : ϕ(x) ∈ p},

where SG (M) := {p ∈ Sx(M) : p ` G (x)}.
2 Suppose that M is any first order structure. Then Aut(M) acts on Sx(M) via

σ · p = {ϕ(x , σ(b)) : ϕ(x , b) ∈ p}.
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Technical difficulties

But studying these actions in general is a little bit näıve.

1 Arbitrary dynamical systems are hard; [Compact, Hausdorff, totally
disconnected, but usually not Polish].

2 In practice, these systems usually don’t have enough points, unless one is
working in the stable setting.

3 As a model theorist, I would prefer to use model theoretic machinery to study
these systems.

4 We care less about any fixed model M. I am most interested in invariants
which only depending on T . Parametrized by M is also OK.

Solution: Encode a variant of the system into a model theoretic semigroup [a
semigroup of types]; Use model theory to study the semigroup.
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1 Arbitrary dynamical systems are hard; [Compact, Hausdorff, totally
disconnected, but usually not Polish].

2 In practice, these systems usually don’t have enough points, unless one is
working in the stable setting.

3 As a model theorist, I would prefer to use model theoretic machinery to study
these systems.

4 We care less about any fixed model M. I am most interested in invariants
which only depending on T . Parametrized by M is also OK.

Solution: Encode a variant of the system into a model theoretic semigroup [a
semigroup of types]; Use model theory to study the semigroup.

Kyle Gannon (BICMR) Random dynamics August 5, 2025 6 / 27



Not enough points; a practical solution

One often runs into (pathological) problems when working over small models.

Solution: Replace Sx(M) with S fs
x (U ,M).

Alternatively: S fs
x (U ,M) = {tp(a/U) : a ∈ Mx} ⊆ Sx(U).

Slogan: The space S fs
x (U ,M) contains enough points; it’s the completion.

Also, does not depend on choice of U .
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Newelski product

Definable group setting: The group G (M) acts naturally on S fs
G (U ,M) in a

similar way.

This action can be encoded naturally in a semigroup of types.

We define an operation ∗ : S fs
G (U ,M)× S fs

G (U ,M)→ S fs
G (U ,M) via

θ(x , c) ∈ p ∗ q ⇐⇒ θ(x · y , c) ∈ p ⊗ q

⇐⇒ |= θ(a · b, c)

where b |= q|Mc and a |= p|Mcb.

Newelski: The Ellis semigroup of the action of G (M) on S fs
G (U ,M) is isomorphic

to (S fs
G (U ,M), ∗).

Take away: The dynamical system can be encoded in a type space semigroup
with a natural model theoretic product.
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Automorphism problem (?)

Automorphism group setting: A priori, it is unclear how to encode the action of
Aut(M) into a type space semigroup; For example, just consider Aut(M) acting
on Sx(M), how does one identify an automorphism with a type?

Again our space
is still too small.

In the definable group setting, there is an obvious encoding from G (M) into
S fs
G (U ,M) via

g → tp(g/U).

Solution: We should really be looking at a larger space.

1 Replace x with an infinite tuple corresponding to an enumeration of our
model M. Then one could identify σ with the type tp(σ(m̄)/M).

2 Still need to work in the global finitely satisfiable* setting so that we can
construct an analogue of the Newelski product.
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Automorphism version of Newelski product

Let m̄ = m1,m2, ... be an enumeration of M. We let x̄ be a tuple of variables
which is the same order type as m̄.

Let Sm̄(U) := {q ∈ Sx̄(U) : q ⊃ tp(m̄/∅)}.

Let S fs
m̄(U ,M) := {q ∈ Sm̄(U) : q is finitely satisfiable in M}.

Let q ∈ S fs
m̄(U ,M). Then suppose that U ≺ U ′ and ᾱ |= q. Then there exists an

automorphism σ ∈ Aut(U ′) such that σ(m̄) = ᾱ.

We can now define the analogue product.
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A product for types

Let p, q ∈ S fs
m̄(U ,M). Then

p ∗ q := (σ · p̂)|U ,

where ᾱ |= q, σ(m̄) = ᾱ, and p̂ is the unique M-invariant extension of p to
Sx̄(U ′).

Alternatively;

θ(x̄ , b̄) ∈ (p ∗ q) ⇐⇒ θ(x̄ , σ−1(b̄)) ∈ p̂.

One has to check that this definition does not depend on the choice of ᾱ or σ.

Notice that since p̂ is M-invariant, actually whether or not θ(x , σ−1(b̄)) ∈ p̂ just
depends on the type of σ−1(b̄) over M. Since U is saturated, the type of σ−1(b̄)
over M is realized in U .

Hence,
θ(x̄ , b̄) ∈ (p ∗ q) ⇐⇒ θ(x̄ , c̄) ∈ p

where b̄ᾱ ≡ c̄m̄.
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An important map (twisting)

Fix a tuple b̄ = b1, ..., bn from U . Then we have a map hb̄ : Sm̄(U)→ Sȳ (M) via

hb̄(q) = tp(c1, ..., cn/M)

where is ᾱ |= q, then b̄ᾱ ≡ c̄m̄.

Exercise:
Automorphism group: θ(x̄ , b̄) ∈ (p ∗ q) ⇐⇒ θ(x̄ , ȳ) ∈ (px ⊗ hb̄(q)y ).

Notice the similarity;

Definable group: θ(x , b̄) ∈ (p ∗ q) ⇐⇒ θ(x · y , b̄) ∈ (px ⊗ qy ).

Take Away: (S fs
m̄(U ,M), ∗) is the* appropriate semigroup of types in the

automorphism group context.

Kyle Gannon (BICMR) Random dynamics August 5, 2025 12 / 27



An important map (twisting)

Fix a tuple b̄ = b1, ..., bn from U . Then we have a map hb̄ : Sm̄(U)→ Sȳ (M) via
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Part II

Convolution for random automorphisms
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Classical setting

Suppose that G is a locally compact group.

Then we can extend the underlying
multiplication on G to the space of (regular Borel) probability measures on G ,
which we will denote as P(G ). This multiplication on measures is called
convolution.

If µ, ν ∈ P(G ), then the convolution product of µ and ν, denoted µ ∗ ν, is the
unique element of P(G ) such that for any bounded continuous function
f : G → R, ∫

G

f (x)d(µ ∗ ν) =

∫
G

∫
G

f (x · y)dµ(x)dν(y).

Keep in mind: This operation naturally extends the product.
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Examples

1 If a, b ∈ G , then δa ∗ δb = δab.

2 If a1, ..., an, b1, ..., bm ∈ G and r1, ..., rn, s1, ..., sm ∈ R≥0, such that∑
i≤n ri =

∑
j≤m sj = 1,∑

i≤n

riδai

 ∗
∑

j≤m

sjδbj

 =
∑
i≤n

∑
j≤m

ri sjδaibj .

3 If L is the Lesbegue measure restricted to the interval [−1, 1], then
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A space of Keisler Measure

Much of our work is in the context of the following spaces:

Definition

Let π(x̄ ; m̄) be the partial type over M which states “tp(m̄/∅) = tp(m̄′/∅)”. Then

Minv
m̄ (U ,M) := {µ ∈Mm̄(U ,M) : µ([π(x̄ ; m̄)]) = 1, µ is M-invariant}.

Mfs
m̄(U ,M) := {µ ∈Mm̄(U ,M) : µ([π(x̄ ; m̄)]) = 1, µ is f.s. in M}.

By f.s. in M, we mean that if µ(ϕ(x , c)) > 0, then there exists some d ∈ Mx such
that U |= ϕ(d , c).

By M-invariant, we mean that if a, b ∈ U z and a ≡M b, then

µ(ϕ(x , a)) = µ(ϕ(x , b)).

When T is NIP, these spaces admit a convolution operation.
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Twisted Morley product

Suppose that T is NIP (for measurability purposes).

Recall that for a tuple

b̄ = b1, ..., bn from U we have a map hb̄ : Sm̄(U)→ Sȳ (M) via

hb̄(p) = tp(c1, ..., cn/M)

where is ᾱ |= p, then b̄ᾱ ≡ c̄m̄.

Then for µ, ν ∈Minv
m̄ (U ,M), we define the convolution product as follows:

(µ ∗ ν)(ϕ(xi1 , ..., xin , b1, ..., bk)) =

∫
S fs
m̄ (U,M)

(
Fϕµ ◦ hb̄

)
dν

=

∫
Sȳ (M)

Fϕµ d (hb̄)∗ (ν)

= (µ⊗ (hb̄)∗(ν))(ϕ(xi1 , ..., xin , y1, ..., yn)).
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Convolution in automorphism setting

Theorem (G., Hoffmann, Krupiński (2025))

Suppose that T is NIP

1 If µ, ν ∈M†m̄(U ,M), then µ ∗ ν ∈M†m̄(U ,M) for † ∈ {inf, fs}.
2 Definable convolution extends the product on types, i.e. If p, q ∈ S inv

m̄ (U ,M),
then δp∗q = δp ∗ δq.

3 The convolution operation is left continuous, i.e. for any µ ∈Minv
G (U ,M),

the map − ∗ µ : Minv
m̄ (U ,M)→Minv

m̄ (U ,M) is continuous.

4 The definable convolution operation is associative on fs.

5 A variant of the Ellis semigroup isomorphism theorem occurs but for strongly
finitely satisfiable measures.

Open question: Is the convolution product associative on Minv
m̄ (U ,M)?
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Encoding

This new convolution product encodes the standard convolution operation.

Theorem (G., Hoffmann, Krupiński (2025))

Suppose that T is an NIP structure and G be a ∅-definable group. If M |= T we
let MS = (M,S , ·) be the expansion of M by a new sort S with a regular action ·
of G (M) on S and no other structure. Then there exists a type-definable set πG
such that

(Minv
πG

(US ,MS), ∗) ∼= (Minv
G (U ,M), ∗)

As consequence, (counter)examples from the definable group setting transfer the
to automorphism group setting.
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An application

Classifying subgroups of the Automorphism group
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Relatively definable subgroups

A relatively type-definable subgroup of Aut(U) is one which can be described by
our language in a closed way.

A subgroup H of Aut(U) is called relatively m̄-type definable (over M) if there
exists an M-type definable set ρ(x̄ , ȳ) such that

H = {σ ∈ Aut(U) : U |= ρ(σ(m̄), m̄)} .

Examples:

1 If π(x̄ , m̄) := tp(x̄/∅) = tp(m̄/∅), then H = Aut(U/M).

2 If π(x̄ , m̄) :=
∧

mi∈m̄ xi = mi , then H = {σ : σ|M = idM}.
What else?
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Idempotent measures

Let µ ∈Minv
m̄ (U ,M). We say that µ is idempotent if µ ∗ µ = µ.

We let stab(µ) := {σ ∈ Aut(U) : µ(ϕ(x̄ , σ−1(b̄)) = µ(ϕ(x̄ , b̄))}.

Proposition (G., Hoffmann, Krupiński (2025))

Suppose that µ ∈Minv
m̄ (U ,M) and µ is definable. Then stab(µ) is a relatively

m̄-type definable subgroup of Aut(U) (over M).

Consequence: If T is stable, then all measures are definable and so any
M-invariant idempotent Keisler measure implies the existence of a relatively
m̄-type definable subgroup of Aut(U).
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Example I: An idempotent

Consider the structure M = (Q× N;<,E ); the blow up of (Q, <), i.e., every
element of the reals is replaced by infinitely many points with no additional
structure.

Enumerate M with m̄ = m1,m2,m3,... For each i < ω consider the type
pi (xi ) ∈ S inv

xi (U ,M) where miExi ∈ pi and pi ` x 6= c for any c ∈ U . Consider the
type given by

p =
⊗
i∈N

pi (xi )

Then p ∈ S inv
m̄ (U ,M), p is idempotent and generically stable. What is stab(p)?

stab(p) =

{
σ ∈ Aut(U) : U |=

∧
i∈ω

miEσ(mi )

}
.
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Example II: An idempotent

Let T be the theory of the random graph. Let m̄ be an enumeration of M. Let
Φ(x̄) be a formula without parameters. Then there is a unique measure µ in
Minv

m̄ (U ,M) which satisfies the following: For any finite sets of parameters
B1, . . . ,Bn, possibly pairwise indistinct, and for any ε : N×

⋃n
i=1 Bi → {0, 1} we

have that

µ

(
Φ(x̄) ∧

n∧
i=1

∧
b∈Bi

Rε(i,b)(xi , b)

)
=

{
1

2|B1|+···+|Bn| |= Φ(m̄),

0 otherwise,

The measure µ is idempotent and definable, but not generically stable.

What is
stab(µ)?

stab(µ) = Aut(U/M).
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Results in stable theories

In the stable case, idempotent measures completely classify relatively
type-definable subgroups of the automorphism group.

Theorem (G., Hoffmann, Krupinski (2025))

Suppose that T is stable and µ ∈Minv
m̄ (U ,M). Then the following are equivalent.

1 µ is idempotent.

2 stab(µ) is a relatively m̄-type definable subgroup of Aut(U) and µ is the
unique Keisler measure such that µ([ρ(x̄ , m̄)]) = 1 and µ is stab(µ)-invariant,
where ρ(x̄ , m̄) is the relative type-definable definition for stab(µ).

This gives a one-to-one correspondence between idempotent Keisler measures in
Minv

m̄ (U ,M) and relatively m̄-type definable subgroup of Aut(U) (over M).

Remark: Similar theorem from the definable group setting; G is a stable group,
then idempotent Keisler measures ↔ type-definable subgroups.

The proof relies on an automorphism variant of Newelski’s variant of Hrushovski’s
group chunk theorem. To do this, we needed to develop some stable group theory
for relatively type-definable subgroups of Aut(U).
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Conjecture (CGK + GHK)

It seems plausible that a variant of this theorem is true outside of the stable
setting.

lem-jecture

Let T be an arbitrary theory. Suppose that µ ∈Minv
m̄ (U ,M) and µ is fim and

idempotent. Then µ( ˜[stab(µ)]) = 1 where

˜[stab(µ)] = {tp(σ(m̄)) : σ ∈ stab(µ) ⊆ Aut(U)}.

The above is known to hold in a variety of situations, but open in general.

Conjecture (CGK + GHK)

Suppose that T is an arbitrary theory. There there is a one-to-one correspondence
between fim measures and fim relatively m̄-type definable subgroups of Aut(U)
(over M) via µ→ stab(µ).
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Thank you

Thank you!
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