Fields with operators satisfying compatibility conditions (joint work with Omar Leon Sanchez)

Jan Dobrowolski

Xiamen University Malaysia

Fudan Conference on Mathematical Logic, 8 August 2025

Definition

Let R, S be rings (we assume rings are commutative and with 1). A function $\partial : R \to S$ is called a *derivation*, if it satisfies

- (additivity) $\partial(a+b) = \partial(a) + \partial(b)$ for all $a, b \in R$.
- (Leibniz rule) $\partial(ab) = \partial(a)b + a\partial(b)$ for all $a, b \in R$.

If K is a field equipped with several commuting derivations $\partial_1, \ldots, \partial_n$, we will sometimes call ∂_i partial derivations.

How to determine whether a system of partial differential equations over K is consistent (i.e whether it has a solution in an extension $L \supseteq K$ in which the derivations still commute)?

Example

$$\begin{cases} \partial_1(z) = z \\ \partial_2(z) = 1 \end{cases} \tag{1}$$

Definition

Let R, S be rings (we assume rings are commutative and with 1). A function $\partial : R \to S$ is called a *derivation*, if it satisfies

- (additivity) $\partial(a+b) = \partial(a) + \partial(b)$ for all $a, b \in R$.
- (Leibniz rule) $\partial(ab) = \partial(a)b + a\partial(b)$ for all $a, b \in R$.

If K is a field equipped with several commuting derivations $\partial_1, \ldots, \partial_n$, we will sometimes call ∂_i partial derivations.

How to determine whether a system of partial differential equations over K is consistent (i.e whether it has a solution in an extension $L \supseteq K$ in which the derivations still commute)?

Example

$$\begin{cases} \partial_1(z) = z \\ \partial_2(z) = 1 \end{cases} \tag{1}$$

Definition

Let R, S be rings (we assume rings are commutative and with 1). A function $\partial : R \to S$ is called a *derivation*, if it satisfies

- (additivity) $\partial(a+b) = \partial(a) + \partial(b)$ for all $a, b \in R$.
- (Leibniz rule) $\partial(ab) = \partial(a)b + a\partial(b)$ for all $a, b \in R$.

If K is a field equipped with several commuting derivations $\partial_1, \ldots, \partial_n$, we will sometimes call ∂_i partial derivations.

How to determine whether a system of partial differential equations over K is consistent (i.e. whether it has a solution in an extension $L \supseteq K$ in which the derivations still commute)?

Example

$$\begin{cases} \partial_1(z) = z \\ \partial_2(z) = 1 \end{cases} \tag{1}$$

Definition

Let R, S be rings (we assume rings are commutative and with 1). A function $\partial : R \to S$ is called a *derivation*, if it satisfies

- (additivity) $\partial(a+b) = \partial(a) + \partial(b)$ for all $a, b \in R$.
- (Leibniz rule) $\partial(ab) = \partial(a)b + a\partial(b)$ for all $a, b \in R$.

If K is a field equipped with several commuting derivations $\partial_1, \ldots, \partial_n$, we will sometimes call ∂_i partial derivations.

How to determine whether a system of partial differential equations over K is consistent (i.e. whether it has a solution in an extension $L \supseteq K$ in which the derivations still commute)?

Example

$$\begin{cases} \partial_1(z) = z \\ \partial_2(z) = 1 \end{cases} \tag{1}$$

$$\begin{cases} \partial_1(z) = z \\ \partial_2(z) = 1 \end{cases} \tag{2}$$

This system is inconsistent, as if z were a solution, then we would have $\partial_1 \partial_2(z) = \partial_1(1) = 0$ but $\partial_2 \partial_1(z) = \partial_2(z) = 1 \neq 0 = \partial_1 \partial_2(z)$.

Note that the system above is algebraically consistent, that is, if we replace $\partial_1(z)$ and $\partial_2(z)$ with new variables z_1 and z_2 , then we obtain a system of polynomial (even linear) equations in variables z, z_1, z_2

$$\begin{cases} z_1 = z \\ z_2 = 1 \end{cases} \tag{3}$$

which of course is consistent. However, applying ∂_2 to the equation $\partial_1(z) = z$, we obtain $\partial_2(\partial_1(z)) = \partial_2(z)$ and applying ∂_1 to $\partial_2(z) = 1$ we obtain $\partial_1(\partial_2(z)) = 0$, and replacing both $\partial_1(\partial_2(z))$ and $\partial_2(\partial_1(z))$ with a new variable z_{12} and $\partial_i(z)$ with z_i , we get

$$\begin{cases} z_{12} = z_2 \\ z_{12} = 0 \end{cases} \tag{4}$$

$$\begin{cases} \partial_1(z) = z \\ \partial_2(z) = 1 \end{cases} \tag{2}$$

This system is inconsistent, as if z were a solution, then we would have $\partial_1\partial_2(z) = \partial_1(1) = 0$ but $\partial_2\partial_1(z) = \partial_2(z) = 1 \neq 0 = \partial_1\partial_2(z)$.

Note that the system above is algebraically consistent, that is, if we replace $\partial_1(z)$ and $\partial_2(z)$ with new variables z_1 and z_2 , then we obtain a system of polynomial (even linear) equations in variables z, z_1, z_2

$$\begin{cases} z_1 = z \\ z_2 = 1 \end{cases} \tag{3}$$

which of course is consistent. However, applying ∂_2 to the equation $\partial_1(z) = z$, we obtain $\partial_2(\partial_1(z)) = \partial_2(z)$ and applying ∂_1 to $\partial_2(z) = 1$ we obtain $\partial_1(\partial_2(z)) = 0$, and replacing both $\partial_1(\partial_2(z))$ and $\partial_2(\partial_1(z))$ with a new variable z_{12} and $\partial_i(z)$ with z_i , we get

$$\begin{cases} z_{12} = z_2 \\ z_{12} = 0 \end{cases} \tag{4}$$

$$\begin{cases} \partial_1(z) = z \\ \partial_2(z) = 1 \end{cases} \tag{2}$$

This system is inconsistent, as if z were a solution, then we would have $\partial_1\partial_2(z)=\partial_1(1)=0$ but $\partial_2\partial_1(z)=\partial_2(z)=1\neq 0=\partial_1\partial_2(z)$.

Note that the system above is algebraically consistent, that is, if we replace $\partial_1(z)$ and $\partial_2(z)$ with new variables z_1 and z_2 , then we obtain a system of polynomial (even linear) equations in variables z, z_1, z_2

$$\begin{cases} z_1 = z \\ z_2 = 1 \end{cases} \tag{3}$$

which of course is consistent. However, applying ∂_2 to the equation $\partial_1(z) = z$, we obtain $\partial_2(\partial_1(z)) = \partial_2(z)$ and applying ∂_1 to $\partial_2(z) = 1$ we obtain $\partial_1(\partial_2(z)) = 0$, and replacing both $\partial_1(\partial_2(z))$ and $\partial_2(\partial_1(z))$ with a new variable z_{12} and $\partial_i(z)$ with z_i , we get

$$\begin{cases} z_{12} = z_2 \\ z_{12} = 0 \end{cases} \tag{4}$$

$$\begin{cases} \partial_1(z) = z \\ \partial_2(z) = 1 \end{cases} \tag{2}$$

This system is inconsistent, as if z were a solution, then we would have $\partial_1\partial_2(z)=\partial_1(1)=0$ but $\partial_2\partial_1(z)=\partial_2(z)=1\neq 0=\partial_1\partial_2(z)$.

Note that the system above is algebraically consistent, that is, if we replace $\partial_1(z)$ and $\partial_2(z)$ with new variables z_1 and z_2 , then we obtain a system of polynomial (even linear) equations in variables z, z_1 , z_2

$$\begin{cases} z_1 = z \\ z_2 = 1 \end{cases} \tag{3}$$

which of course is consistent. However, applying ∂_2 to the equation $\partial_1(z) = z$, we obtain $\partial_2(\partial_1(z)) = \partial_2(z)$ and applying ∂_1 to $\partial_2(z) = 1$ we obtain $\partial_1(\partial_2(z)) = 0$, and replacing both $\partial_1(\partial_2(z))$ and $\partial_2(\partial_1(z))$ with a new variable z_{12} and $\partial_i(z)$ with z_i , we get

$$\begin{cases} z_{12} = z_2 \\ z_{12} = 0 \end{cases} \tag{4}$$

$$\begin{cases} \partial_1(z) = z \\ \partial_2(z) = 1 \end{cases} \tag{2}$$

This system is inconsistent, as if z were a solution, then we would have $\partial_1\partial_2(z)=\partial_1(1)=0$ but $\partial_2\partial_1(z)=\partial_2(z)=1\neq 0=\partial_1\partial_2(z)$.

Note that the system above is algebraically consistent, that is, if we replace $\partial_1(z)$ and $\partial_2(z)$ with new variables z_1 and z_2 , then we obtain a system of polynomial (even linear) equations in variables z, z_1, z_2

$$\begin{cases}
z_1 = z \\
z_2 = 1
\end{cases}$$
(3)

which of course is consistent. However, applying ∂_2 to the equation $\partial_1(z) = z$, we obtain $\partial_2(\partial_1(z)) = \partial_2(z)$ and applying ∂_1 to $\partial_2(z) = 1$ we obtain $\partial_1(\partial_2(z)) = 0$, and replacing both $\partial_1(\partial_2(z))$ and $\partial_2(\partial_1(z))$ with a new variable z_{12} and $\partial_i(z)$ with z_i , we get

$$\begin{cases} z_{12} = z_2 \\ z_{12} = 0 \end{cases} \tag{4}$$

$$\begin{cases} \partial_1(z) = z \\ \partial_2(z) = 1 \end{cases} \tag{2}$$

This system is inconsistent, as if z were a solution, then we would have $\partial_1\partial_2(z)=\partial_1(1)=0$ but $\partial_2\partial_1(z)=\partial_2(z)=1\neq 0=\partial_1\partial_2(z)$.

Note that the system above is algebraically consistent, that is, if we replace $\partial_1(z)$ and $\partial_2(z)$ with new variables z_1 and z_2 , then we obtain a system of polynomial (even linear) equations in variables z, z_1, z_2

$$\begin{cases}
z_1 = z \\
z_2 = 1
\end{cases}$$
(3)

which of course is consistent. However, applying ∂_2 to the equation $\partial_1(z) = z$, we obtain $\partial_2(\partial_1(z)) = \partial_2(z)$ and applying ∂_1 to $\partial_2(z) = 1$ we obtain $\partial_1(\partial_2(z)) = 0$, and replacing both $\partial_1(\partial_2(z))$ and $\partial_2(\partial_1(z))$ with a new variable z_{12} and $\partial_i(z)$ with z_i , we get

$$\begin{cases} z_{12} = z_2 \\ z_{12} = 0 \end{cases} \tag{4}$$

$$\begin{cases} \partial_1(z) = z \\ \partial_2(z) = 1 \end{cases} \tag{2}$$

This system is inconsistent, as if z were a solution, then we would have $\partial_1\partial_2(z)=\partial_1(1)=0$ but $\partial_2\partial_1(z)=\partial_2(z)=1\neq 0=\partial_1\partial_2(z)$.

Note that the system above is algebraically consistent, that is, if we replace $\partial_1(z)$ and $\partial_2(z)$ with new variables z_1 and z_2 , then we obtain a system of polynomial (even linear) equations in variables z, z_1, z_2

$$\begin{cases}
z_1 = z \\
z_2 = 1
\end{cases}$$
(3)

which of course is consistent. However, applying ∂_2 to the equation $\partial_1(z) = z$, we obtain $\partial_2(\partial_1(z)) = \partial_2(z)$ and applying ∂_1 to $\partial_2(z) = 1$ we obtain $\partial_1(\partial_2(z)) = 0$, and replacing both $\partial_1(\partial_2(z))$ and $\partial_2(\partial_1(z))$ with a new variable z_{12} and $\partial_i(z)$ with z_i , we get

$$\begin{cases} z_{12} = z_2 \\ z_{12} = 0 \end{cases} \tag{4}$$

$$\begin{cases} \partial_1(z) = z \\ \partial_2(z) = 1 \end{cases} \tag{2}$$

This system is inconsistent, as if z were a solution, then we would have $\partial_1\partial_2(z)=\partial_1(1)=0$ but $\partial_2\partial_1(z)=\partial_2(z)=1\neq 0=\partial_1\partial_2(z).$

Note that the system above is algebraically consistent, that is, if we replace $\partial_1(z)$ and $\partial_2(z)$ with new variables z_1 and z_2 , then we obtain a system of polynomial (even linear) equations in variables z, z_1, z_2

$$\begin{cases}
z_1 = z \\
z_2 = 1
\end{cases}$$
(3)

which of course is consistent. However, applying ∂_2 to the equation $\partial_1(z)=z$, we obtain $\partial_2(\partial_1(z))=\partial_2(z)$ and applying ∂_1 to $\partial_2(z)=1$ we obtain $\partial_1(\partial_2(z))=0$, and replacing both $\partial_1(\partial_2(z))$ and $\partial_2(\partial_1(z))$ with a new variable z_{12} and $\partial_i(z)$ with z_i , we get

$$\begin{cases}
z_{12} = z_2 \\
z_{12} = 0
\end{cases}$$
(4)

$$\begin{cases} \partial_1(z) = z \\ \partial_2(z) = 1 \end{cases} \tag{2}$$

This system is inconsistent, as if z were a solution, then we would have $\partial_1 \partial_2(z) = \partial_1(1) = 0$ but $\partial_2 \partial_1(z) = \partial_2(z) = 1 \neq 0 = \partial_1 \partial_2(z)$.

Note that the system above is algebraically consistent, that is, if we replace $\partial_1(z)$ and $\partial_2(z)$ with new variables z_1 and z_2 , then we obtain a system of polynomial (even linear) equations in variables z, z_1, z_2

$$\begin{cases}
z_1 = z \\
z_2 = 1
\end{cases}$$
(3)

which of course is consistent. However, applying ∂_2 to the equation $\partial_1(z) = z$, we obtain $\partial_2(\partial_1(z)) = \partial_2(z)$ and applying ∂_1 to $\partial_2(z) = 1$ we obtain $\partial_1(\partial_2(z)) = 0$, and replacing both $\partial_1(\partial_2(z))$ and $\partial_2(\partial_1(z))$ with a new variable z_{12} and $\partial_i(z)$ with z_i , we get

$$\begin{cases}
z_{12} = z_2 \\
z_{12} = 0
\end{cases}$$
(4)

$$\begin{cases} \partial_1(z) = z \\ \partial_2(z) = 1 \end{cases} \tag{2}$$

This system is inconsistent, as if z were a solution, then we would have $\partial_1\partial_2(z)=\partial_1(1)=0$ but $\partial_2\partial_1(z)=\partial_2(z)=1\neq 0=\partial_1\partial_2(z)$.

Note that the system above is algebraically consistent, that is, if we replace $\partial_1(z)$ and $\partial_2(z)$ with new variables z_1 and z_2 , then we obtain a system of polynomial (even linear) equations in variables z, z_1 , z_2

$$\begin{cases}
z_1 = z \\
z_2 = 1
\end{cases}$$
(3)

which of course is consistent. However, applying ∂_2 to the equation $\partial_1(z) = z$, we obtain $\partial_2(\partial_1(z)) = \partial_2(z)$ and applying ∂_1 to $\partial_2(z) = 1$ we obtain $\partial_1(\partial_2(z)) = 0$, and replacing both $\partial_1(\partial_2(z))$ and $\partial_2(\partial_1(z))$ with a new variable z_{12} and $\partial_i(z)$ with z_i , we get

$$\begin{cases}
z_{12} = z_2 \\
z_{12} = 0
\end{cases}$$
(4)

It is not hard to see that a given system of partial differential equations is consistent if and only if, for every $k < \omega$, the system of equations obtained by differentiating the system $\leq k$ many times is algebraically consistent.

Fact (Pierce 2007; Leon Sanchez and Gustavson 2017)

There exists a number $k < \omega$ depending only on the complexity of a given system of polynomial partial differential equations such that if the system is inconsistent, then the system of polynomial equations obtained by differentiating the given system $\leq k$ many times is algebraically inconsistent.

This yields an algorithm deciding consistency of a system of polynomial partial differential equations, and also allows to deduce the existence of a model companion of the theory of fields with n commuting derivations for any n.

It is not hard to see that a given system of partial differential equations is consistent if and only if, for every $k < \omega$, the system of equations obtained by differentiating the system $\leq k$ many times is algebraically consistent.

Fact (Pierce 2007; Leon Sanchez and Gustavson 2017)

There exists a number $k < \omega$ depending only on the complexity of a given system of polynomial partial differential equations such that if the system is inconsistent, then the system of polynomial equations obtained by differentiating the given system $\leq k$ many times is algebraically inconsistent.

This yields an algorithm deciding consistency of a system of polynomial partial differential equations, and also allows to deduce the existence of a model companion of the theory of fields with n commuting derivations for any n.

It is not hard to see that a given system of partial differential equations is consistent if and only if, for every $k < \omega$, the system of equations obtained by differentiating the system $\leq k$ many times is algebraically consistent.

Fact (Pierce 2007; Leon Sanchez and Gustavson 2017)

There exists a number $k < \omega$ depending only on the complexity of a given system of polynomial partial differential equations such that if the system is inconsistent, then the system of polynomial equations obtained by differentiating the given system $\leq k$ many times is algebraically inconsistent.

This yields an algorithm deciding consistency of a system of polynomial partial differential equations, and also allows to deduce the existence of a model companion of the theory of fields with n commuting derivations for any n.

It is not hard to see that a given system of partial differential equations is consistent if and only if, for every $k < \omega$, the system of equations obtained by differentiating the system $\leq k$ many times is algebraically consistent.

Fact (Pierce 2007; Leon Sanchez and Gustavson 2017)

There exists a number $k < \omega$ depending only on the complexity of a given system of polynomial partial differential equations such that if the system is inconsistent, then the system of polynomial equations obtained by differentiating the given system $\leq k$ many times is algebraically inconsistent.

This yields an algorithm deciding consistency of a system of polynomial partial differential equations, and also allows to deduce the existence of a model companion of the theory of fields with n commuting derivations for any n.

It is not hard to see that a given system of partial differential equations is consistent if and only if, for every $k < \omega$, the system of equations obtained by differentiating the system $\leq k$ many times is algebraically consistent.

Fact (Pierce 2007; Leon Sanchez and Gustavson 2017)

There exists a number $k < \omega$ depending only on the complexity of a given system of polynomial partial differential equations such that if the system is inconsistent, then the system of polynomial equations obtained by differentiating the given system $\leq k$ many times is algebraically inconsistent.

This yields an algorithm deciding consistency of a system of polynomial partial differential equations, and also allows to deduce the existence of a model companion of the theory of fields with n commuting derivations for any n.

It is not hard to see that a given system of partial differential equations is consistent if and only if, for every $k < \omega$, the system of equations obtained by differentiating the system $\leq k$ many times is algebraically consistent.

Fact (Pierce 2007; Leon Sanchez and Gustavson 2017)

There exists a number $k < \omega$ depending only on the complexity of a given system of polynomial partial differential equations such that if the system is inconsistent, then the system of polynomial equations obtained by differentiating the given system $\leq k$ many times is algebraically inconsistent.

This yields an algorithm deciding consistency of a system of polynomial partial differential equations, and also allows to deduce the existence of a model companion of the theory of fields with n commuting derivations for any n.

Suppose k is a field (of characteristic 0) with two commuting derivations ∂_1 and ∂_2 .

When we start from an element $a = a_{0,0}$, we consider elements a_{k_1,k_2} that are "prototypes" of $\partial_1^{k_1} \partial_2^{k_2}(a)$.

A differential kernel of height r over k is a field $k(a_{k_1,k_2})_{k_1,k_2\in\omega\wedge k_1+k_2\leq r}$ such that whenever $f((a_{k_1,k_2})_{k_1+k_2\leq r-1})=0$ for some polynomial f over k, then the polynomial obtained by differentiating f with respect to ∂_1 and ∂_2 both vanish on $(a_{k_1,k_2})_{k_1+k_2\leq r}$.

Equivalently, $a_{k_1,k_2} \mapsto a_{k_1+1,k_2}$ defines a derivation on $k(a_{k_1,k_2})_{k_1,k_2 \in \omega \wedge k_1+k_2 \leq r-1}$ extending ∂_1 , and $a_{k_1,k_2} \mapsto a_{k_1,k_2+1}$ defines a derivation on $k(a_{k_1,k_2})_{k_1,k_2 \in \omega \wedge k_1+k_2 \leq r-1}$ extending ∂_2 .

Write $(\ell_1, \ell_2) \prec (k_1, k_2)$ for $(\ell_1 + \ell_2, \ell_1, \ell_2) <_{lex} (k_1 + k_2, k_1, k_2)$. We say (k_1, k_2) is a leader, if a_{k_1, k_2} is algebraic over $k(a_{\ell_1, \ell_2})_{(\ell_1, \ell_2) \prec (k_1, k_2)}$.

A leader is minimal, if there is no leader $(\ell_1, \ell_2) \neq (k_1, k_2)$ with $\ell_1 \leq k_1$ and $\ell_2 \leq k_2$ (we will write $(\ell_1, \ell_2) \leq (k_1, k_2)$ for $\ell_1 \leq k_1 \wedge \ell_2 \leq k_2$).

The companionability of the theory of fields with commuting derivations was deduced by Pierce from his following result:

Fact(Pierce)

Suppose k is a field (of characteristic 0) with two commuting derivations ∂_1 and ∂_2 . When we start from an element $a=a_{0,0}$, we consider elements a_{k_1,k_2} that are "prototypes" of $\partial_1^{k_1}\partial_2^{k_2}(a)$.

A differential kernel of height r over k is a field $k(a_{k_1,k_2})_{k_1,k_2 \in \omega \wedge k_1 + k_2 \leq r}$ such that whenever $f((a_{k_1,k_2})_{k_1+k_2 \leq r-1}) = 0$ for some polynomial f over k, then the polynomial obtained by differentiating f with respect to ∂_1 and ∂_2 both vanish on $(a_{k_1,k_2})_{k_1+k_2 \leq r}$.

Equivalently, $a_{k_1,k_2}\mapsto a_{k_1+1,k_2}$ defines a derivation on $k(a_{k_1,k_2})_{k_1,k_2\in\omega\wedge k_1+k_2\leq r-1}$ extending ∂_1 , and $a_{k_1,k_2}\mapsto a_{k_1,k_2+1}$ defines a derivation on $k(a_{k_1,k_2})_{k_1,k_2\in\omega\wedge k_1+k_2\leq r-1}$ extending ∂_2 .

Write $(\ell_1, \ell_2) \prec (k_1, k_2)$ for $(\ell_1 + \ell_2, \ell_1, \ell_2) <_{lex} (k_1 + k_2, k_1, k_2)$. We say (k_1, k_2) is a leader, if a_{k_1, k_2} is algebraic over $k(a_{\ell_1, \ell_2})_{(\ell_1, \ell_2) \prec (k_1, k_2)}$.

A leader is minimal, if there is no leader $(\ell_1, \ell_2) \neq (k_1, k_2)$ with $\ell_1 \leq k_1$ and $\ell_2 \leq k_2$ (we will write $(\ell_1, \ell_2) \leq (k_1, k_2)$ for $\ell_1 \leq k_1 \wedge \ell_2 \leq k_2$).

The companionability of the theory of fields with commuting derivations was deduced by Pierce from his following result:

Fact(Pierce)

Suppose k is a field (of characteristic 0) with two commuting derivations ∂_1 and ∂_2 . When we start from an element $a=a_{0,0}$, we consider elements a_{k_1,k_2} that are "prototypes" of $\partial_1^{k_1}\partial_2^{k_2}(a)$.

A differential kernel of height r over k is a field $k(a_{k_1,k_2})_{k_1,k_2\in\omega\wedge k_1+k_2\leq r}$ such that whenever $f((a_{k_1,k_2})_{k_1+k_2\leq r-1})=0$ for some polynomial f over k, then the polynomial obtained by differentiating f with respect to ∂_1 and ∂_2 both vanish on $(a_{k_1,k_2})_{k_1+k_2\leq r}$.

Equivalently, $a_{k_1,k_2} \mapsto a_{k_1+1,k_2}$ defines a derivation on $k(a_{k_1,k_2})_{k_1,k_2 \in \omega \wedge k_1+k_2 \leq r-1}$ extending ∂_1 , and $a_{k_1,k_2} \mapsto a_{k_1,k_2+1}$ defines a derivation on $k(a_{k_1,k_2})_{k_1,k_2 \in \omega \wedge k_1+k_2 \leq r-1}$ extending ∂_2 .

Write $(\ell_1, \ell_2) \prec (k_1, k_2)$ for $(\ell_1 + \ell_2, \ell_1, \ell_2) <_{lex} (k_1 + k_2, k_1, k_2)$. We say (k_1, k_2) is a *leader*, if a_{k_1, k_2} is algebraic over $k(a_{\ell_1, \ell_2})_{(\ell_1, \ell_2) \prec (k_1, k_2)}$.

A leader is minimal, if there is no leader $(\ell_1, \ell_2) \neq (k_1, k_2)$ with $\ell_1 \leq k_1$ and $\ell_2 \leq k_2$ (we will write $(\ell_1, \ell_2) \leq (k_1, k_2)$ for $\ell_1 \leq k_1 \wedge \ell_2 \leq k_2$).

The companionability of the theory of fields with commuting derivations was deduced by Pierce from his following result:

Fact(Pierce

Suppose k is a field (of characteristic 0) with two commuting derivations ∂_1 and ∂_2 . When we start from an element $a=a_{0,0}$, we consider elements a_{k_1,k_2} that are "prototypes" of $\partial_1^{k_1}\partial_2^{k_2}(a)$.

A differential kernel of height r over k is a field $k(a_{k_1,k_2})_{k_1,k_2\in\omega\wedge k_1+k_2\leq r}$ such that whenever $f((a_{k_1,k_2})_{k_1+k_2\leq r-1})=0$ for some polynomial f over k, then the polynomial obtained by differentiating f with respect to ∂_1 and ∂_2 both vanish on $(a_{k_1,k_2})_{k_1+k_2\leq r}$.

Equivalently, $a_{k_1,k_2} \mapsto a_{k_1+1,k_2}$ defines a derivation on $k(a_{k_1,k_2})_{k_1,k_2 \in \omega \wedge k_1+k_2 \leq r-1}$ extending ∂_1 , and $a_{k_1,k_2} \mapsto a_{k_1,k_2+1}$ defines a derivation on $k(a_{k_1,k_2})_{k_1,k_2 \in \omega \wedge k_1+k_2 \leq r-1}$ extending ∂_2 .

Write $(\ell_1, \ell_2) \prec (k_1, k_2)$ for $(\ell_1 + \ell_2, \ell_1, \ell_2) <_{lex} (k_1 + k_2, k_1, k_2)$. We say (k_1, k_2) is a leader, if a_{k_1, k_2} is algebraic over $k(a_{\ell_1, \ell_2})_{(\ell_1, \ell_2) \prec (k_1, k_2)}$.

A leader is minimal, if there is no leader $(\ell_1, \ell_2) \neq (k_1, k_2)$ with $\ell_1 \leq k_1$ and $\ell_2 \leq k_2$ (we will write $(\ell_1, \ell_2) \leq (k_1, k_2)$ for $\ell_1 \leq k_1 \wedge \ell_2 \leq k_2$).

The companionability of the theory of fields with commuting derivations was deduced by Pierce from his following result:

Fact(Pierce)

Suppose k is a field (of characteristic 0) with two commuting derivations ∂_1 and ∂_2 . When we start from an element $a=a_{0,0}$, we consider elements a_{k_1,k_2} that are "prototypes" of $\partial_1^{k_1}\partial_2^{k_2}(a)$.

A differential kernel of height r over k is a field $k(a_{k_1,k_2})_{k_1,k_2\in\omega\wedge k_1+k_2\leq r}$ such that whenever $f((a_{k_1,k_2})_{k_1+k_2\leq r-1})=0$ for some polynomial f over k, then the polynomial obtained by differentiating f with respect to ∂_1 and ∂_2 both vanish on $(a_{k_1,k_2})_{k_1+k_2\leq r}$.

Equivalently, $a_{k_1,k_2} \mapsto a_{k_1+1,k_2}$ defines a derivation on $k(a_{k_1,k_2})_{k_1,k_2 \in \omega \wedge k_1+k_2 \leq r-1}$ extending ∂_1 , and $a_{k_1,k_2} \mapsto a_{k_1,k_2+1}$ defines a derivation on $k(a_{k_1,k_2})_{k_1,k_2 \in \omega \wedge k_1+k_2 \leq r-1}$ extending ∂_2 .

Write $(\ell_1, \ell_2) \prec (k_1, k_2)$ for $(\ell_1 + \ell_2, \ell_1, \ell_2) <_{lex} (k_1 + k_2, k_1, k_2)$. We say (k_1, k_2) is a leader, if a_{k_1, k_2} is algebraic over $k(a_{\ell_1, \ell_2})_{(\ell_1, \ell_2) \prec (k_1, k_2)}$.

A leader is minimal, if there is no leader $(\ell_1, \ell_2) \neq (k_1, k_2)$ with $\ell_1 \leq k_1$ and $\ell_2 \leq k_2$ (we will write $(\ell_1, \ell_2) \leq (k_1, k_2)$ for $\ell_1 \leq k_1 \wedge \ell_2 \leq k_2$).

The companionability of the theory of fields with commuting derivations was deduced by Pierce from his following result:

Fact(Pierce)

Suppose k is a field (of characteristic 0) with two commuting derivations ∂_1 and ∂_2 . When we start from an element $a=a_{0,0}$, we consider elements a_{k_1,k_2} that are "prototypes" of $\partial_1^{k_1}\partial_2^{k_2}(a)$.

A differential kernel of height r over k is a field $k(a_{k_1,k_2})_{k_1,k_2\in\omega\wedge k_1+k_2\leq r}$ such that whenever $f((a_{k_1,k_2})_{k_1+k_2\leq r-1})=0$ for some polynomial f over k, then the polynomial obtained by differentiating f with respect to ∂_1 and ∂_2 both vanish on $(a_{k_1,k_2})_{k_1+k_2\leq r}$.

Equivalently, $a_{k_1,k_2} \mapsto a_{k_1+1,k_2}$ defines a derivation on $k(a_{k_1,k_2})_{k_1,k_2 \in \omega \wedge k_1+k_2 \leq r-1}$ extending ∂_1 , and $a_{k_1,k_2} \mapsto a_{k_1,k_2+1}$ defines a derivation on $k(a_{k_1,k_2})_{k_1,k_2 \in \omega \wedge k_1+k_2 \leq r-1}$ extending ∂_2 .

Write $(\ell_1, \ell_2) \prec (k_1, k_2)$ for $(\ell_1 + \ell_2, \ell_1, \ell_2) <_{lex} (k_1 + k_2, k_1, k_2)$. We say (k_1, k_2) is a leader, if

A leader is minimal, if there is no leader $(\ell_1, \ell_2) \neq (k_1, k_2)$ with $\ell_1 \leq k_1$ and $\ell_2 \leq k_2$ (we will write $(\ell_1, \ell_2) \leq (k_1, k_2)$ for $\ell_1 \leq k_1 \wedge \ell_2 \leq k_2$).

The companionability of the theory of fields with commuting derivations was deduced by Pierce from his following result:

Fact(Pierce)

Suppose k is a field (of characteristic 0) with two commuting derivations ∂_1 and ∂_2 . When we start from an element $a=a_{0,0}$, we consider elements a_{k_1,k_2} that are "prototypes" of $\partial_1^{k_1}\partial_2^{k_2}(a)$.

A differential kernel of height r over k is a field $k(a_{k_1,k_2})_{k_1,k_2\in\omega\wedge k_1+k_2\leq r}$ such that whenever $f((a_{k_1,k_2})_{k_1+k_2\leq r-1})=0$ for some polynomial f over k, then the polynomial obtained by differentiating f with respect to ∂_1 and ∂_2 both vanish on $(a_{k_1,k_2})_{k_1+k_2\leq r}$.

Equivalently, $a_{k_1,k_2} \mapsto a_{k_1+1,k_2}$ defines a derivation on $k(a_{k_1,k_2})_{k_1,k_2 \in \omega \wedge k_1+k_2 \leq r-1}$ extending ∂_1 , and $a_{k_1,k_2} \mapsto a_{k_1,k_2+1}$ defines a derivation on $k(a_{k_1,k_2})_{k_1,k_2 \in \omega \wedge k_1+k_2 \leq r-1}$ extending ∂_2 .

Write $(\ell_1, \ell_2) \prec (k_1, k_2)$ for $(\ell_1 + \ell_2, \ell_1, \ell_2) <_{lex} (k_1 + k_2, k_1, k_2)$. We say (k_1, k_2) is a leader, if a_{k_1, k_2} is algebraic over $k(a_{\ell_1, \ell_2})_{(\ell_1, \ell_2) \prec (k_1, k_2)}$.

A leader is minimal, if there is no leader $(\ell_1, \ell_2) \neq (k_1, k_2)$ with $\ell_1 \leq k_1$ and $\ell_2 \leq k_2$ (we will write $(\ell_1, \ell_2) \leq (k_1, k_2)$ for $\ell_1 \leq k_1 \wedge \ell_2 \leq k_2$).

The companionability of the theory of fields with commuting derivations was deduced by Pierce from his following result:

Fact(Pierce)

Suppose k is a field (of characteristic 0) with two commuting derivations ∂_1 and ∂_2 . When we start from an element $a=a_{0,0}$, we consider elements a_{k_1,k_2} that are "prototypes" of $\partial_1^{k_1}\partial_2^{k_2}(a)$.

A differential kernel of height r over k is a field $k(a_{k_1,k_2})_{k_1,k_2\in\omega\wedge k_1+k_2\leq r}$ such that whenever $f((a_{k_1,k_2})_{k_1+k_2\leq r-1})=0$ for some polynomial f over k, then the polynomial obtained by differentiating f with respect to ∂_1 and ∂_2 both vanish on $(a_{k_1,k_2})_{k_1+k_2\leq r}$.

Equivalently, $a_{k_1,k_2} \mapsto a_{k_1+1,k_2}$ defines a derivation on $k(a_{k_1,k_2})_{k_1,k_2 \in \omega \wedge k_1+k_2 \leq r-1}$ extending ∂_1 , and $a_{k_1,k_2} \mapsto a_{k_1,k_2+1}$ defines a derivation on $k(a_{k_1,k_2})_{k_1,k_2 \in \omega \wedge k_1+k_2 \leq r-1}$ extending ∂_2 .

Write $(\ell_1, \ell_2) \prec (k_1, k_2)$ for $(\ell_1 + \ell_2, \ell_1, \ell_2) <_{lex} (k_1 + k_2, k_1, k_2)$. We say (k_1, k_2) is a *leader*, if a_{k_1, k_2} is algebraic over $k(a_{\ell_1, \ell_2})_{(\ell_1, \ell_2) \prec (k_1, k_2)}$.

A leader is minimal, if there is no leader $(\ell_1, \ell_2) \neq (k_1, k_2)$ with $\ell_1 \leq k_1$ and $\ell_2 \leq k_2$ (we will write $(\ell_1, \ell_2) \leq (k_1, k_2)$ for $\ell_1 \leq k_1 \wedge \ell_2 \leq k_2$).

The companionability of the theory of fields with commuting derivations was deduced by Pierce from his following result:

Fact(Pierce

Suppose k is a field (of characteristic 0) with two commuting derivations ∂_1 and ∂_2 . When we start from an element $a = a_{0,0}$, we consider elements a_{k_1,k_2} that are "prototypes" of $\partial_1^{k_1} \partial_2^{k_2}(a)$.

A differential kernel of height r over k is a field $k(a_{k_1,k_2})_{k_1,k_2\in\omega\wedge k_1+k_2\leq r}$ such that whenever $f((a_{k_1,k_2})_{k_1+k_2\leq r-1})=0$ for some polynomial f over k, then the polynomial obtained by differentiating f with respect to ∂_1 and ∂_2 both vanish on $(a_{k_1,k_2})_{k_1+k_2\leq r}$.

Equivalently, $a_{k_1,k_2} \mapsto a_{k_1+1,k_2}$ defines a derivation on $k(a_{k_1,k_2})_{k_1,k_2 \in \omega \wedge k_1+k_2 \leq r-1}$ extending ∂_1 , and $a_{k_1,k_2} \mapsto a_{k_1,k_2+1}$ defines a derivation on $k(a_{k_1,k_2})_{k_1,k_2 \in \omega \wedge k_1+k_2 \leq r-1}$ extending ∂_2 .

Write $(\ell_1, \ell_2) \prec (k_1, k_2)$ for $(\ell_1 + \ell_2, \ell_1, \ell_2) <_{lex} (k_1 + k_2, k_1, k_2)$. We say (k_1, k_2) is a *leader*, if a_{k_1, k_2} is algebraic over $k(a_{\ell_1, \ell_2})_{(\ell_1, \ell_2) \prec (k_1, k_2)}$.

A leader is minimal, if there is no leader $(\ell_1, \ell_2) \neq (k_1, k_2)$ with $\ell_1 \leq k_1$ and $\ell_2 \leq k_2$ (we will write $(\ell_1, \ell_2) \leq (k_1, k_2)$ for $\ell_1 \leq k_1 \wedge \ell_2 \leq k_2$).

The companionability of the theory of fields with commuting derivations was deduced by Pierce from his following result:

Fact(Pierce)

If a kernel L of height 2r has no minimal leader of length bigger than r, then L has a differential kernel extension of arbitrary height $s \ge 2r$.

The proof of this statement is by an inductive construction of partial kernels $k(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$ satisfying the differential condition: If a polynomial f over k vanishes on $(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1-1,k_2)}$, then the polynomial $\partial_1(f)$ vanishes on $k(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$, and likewise for ∂_2 . (*) The tricky part in the proof is choosing a_{k_1,k_2} when both (k_1-1,k_2) and (k_1,k_2-1) are leaders

If a kernel L of height 2r has no minimal leader of length bigger than r, then L has a differential kernel extension of arbitrary height $s \geq 2r$.

The proof of this statement is by an inductive construction of partial kernels $k(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$ satisfying the differential condition:

If a polynomial f over k vanishes on $(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1-1,k_2)}$, then the polynomial $\partial_1(f)$ vanishes on $k(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$, and likewise for ∂_2 .

The tricky part in the proof is choosing a_{k_1,k_2} when both (k_1-1,k_2) and (k_1,k_2-1) are leaders.

If a kernel L of height 2r has no minimal leader of length bigger than r, then L has a differential kernel extension of arbitrary height $s \ge 2r$.

The proof of this statement is by an inductive construction of partial kernels $k(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$ satisfying the differential condition: If a polynomial f over k vanishes on $(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1-1,k_2)}$, then the polynomial $\partial_1(f)$ vanishes on $k(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$, and likewise for ∂_2 . (*) The tricky part in the proof is choosing a_{k_1,k_2} when both (k_1-1,k_2) and (k_1,k_2-1) are

If a kernel L of height 2r has no minimal leader of length bigger than r, then L has a differential kernel extension of arbitrary height $s \ge 2r$.

The proof of this statement is by an inductive construction of partial kernels $k(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$ satisfying the differential condition: If a polynomial f over k vanishes on $(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1-1,k_2)}$, then the polynomial $\partial_1(f)$ vanishes on $k(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$, and likewise for ∂_2 . (*)

The tricky part in the proof is choosing a_{k_1,k_2} when both (k_1-1,k_2) and (k_1,k_2-1) are leaders.

If a kernel L of height 2r has no minimal leader of length bigger than r, then L has a differential kernel extension of arbitrary height $s \ge 2r$.

The proof of this statement is by an inductive construction of partial kernels $k(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$ satisfying the differential condition: If a polynomial f over k vanishes on $(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1-1,k_2)}$, then the polynomial $\partial_1(f)$ vanishes on $k(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$, and likewise for ∂_2 . (*) The tricky part in the proof is choosing a_{k_1,k_2} when both (k_1-1,k_2) and (k_1,k_2-1) are leaders.

If a kernel L of height 2r has no minimal leader of length bigger than r, then L has a differential kernel extension of arbitrary height $s \ge 2r$.

The proof of this statement is by an inductive construction of partial kernels $k(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$ satisfying the differential condition: If a polynomial f over k vanishes on $(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1-1,k_2)}$, then the polynomial $\partial_1(f)$ vanishes on $k(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$, and likewise for ∂_2 . (*) The tricky part in the proof is choosing a_{k_1,k_2} when both (k_1-1,k_2) and (k_1,k_2-1) are

The tricky part in the proof is choosing a_{k_1,k_2} when both (k_1-1,k_2) and (k_1,k_2-1) are leaders.

If a kernel L of height 2r has no minimal leader of length bigger than r, then L has a differential kernel extension of arbitrary height $s \ge 2r$.

The proof of this statement is by an inductive construction of partial kernels $k(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$ satisfying the differential condition: If a polynomial f over k vanishes on $(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1-1,k_2)}$, then the polynomial $\partial_1(f)$ vanishes on $k(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$, and likewise for ∂_2 .

The tricky part in the proof is choosing a_{k_1,k_2} when both (k_1-1,k_2) and (k_1,k_2-1) are leaders.

In that case, let $(\ell_1,\ell_2) \leq (k_1-1,k_2)$ and $(m_1,m_2) \leq (k_1,k_2-1)$ be minimal leaders. Put $p_1 = \max(\ell_1,m_1)$ and $p_2 = \max(\ell_2,m_2)$. Then $p_1+p_2 \leq \ell_1+\ell_2+m_1+m_2 \leq r+r=2r$ so $(p_1,p_2) \neq (k_1,k_2)$ (and $(p_1,p_2) \leq (k_1,k_2)$). Suppose for example that $p_1 < k_1$. Then $m_1 \leq p_1 \leq k_1-1$, but we also know $m_2 \leq k_2-1$, so $(m_1,m_2) \leq (k_1-1,k_2-1)$ and hence (k_1-1,k_2-1) is a leader. As ∂_1 and ∂_2 commute on $k(a_{q_1,q_2})_{(q_1,q_2) \prec (k_1-1,k_2-1)}$, it follows that the unique extensions $\tilde{\partial}_1$ to $k(a_{q_1,q_2})_{(q_1,q_2) \prec (k_1-1,k_2)}$, and $\tilde{\partial}_2$ to $k(a_{q_1,q_2})_{(q_1,q_2) \prec (k_1,k_2-1)}$ commute on $k(a_{q_1,q_2})_{(q_1,q_2) \preceq (k_1-1,k_2-1)}$, and we can put $a_{k_1,k_2} := \tilde{\partial}_1(a_{k_1-1,k_2}) = \tilde{\partial}_2(a_{k_1,k_2-1})$.

If a kernel L of height 2r has no minimal leader of length bigger than r, then L has a differential kernel extension of arbitrary height $s \ge 2r$.

The proof of this statement is by an inductive construction of partial kernels $k(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$ satisfying the differential condition: If a polynomial f over k vanishes on $(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1-1,k_2)}$, then the polynomial $\partial_1(f)$ vanishes on $k(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$, and likewise for ∂_2 . (*) The tricky part in the proof is choosing a_{k_1,k_2} when both (k_1-1,k_2) and (k_1,k_2-1) are leaders.

In that case, let $(\ell_1,\ell_2) \leq (k_1-1,k_2)$ and $(m_1,m_2) \leq (k_1,k_2-1)$ be minimal leaders. Put $p_1 = \max(\ell_1,m_1)$ and $p_2 = \max(\ell_2,m_2)$. Then $p_1+p_2 \leq \ell_1+\ell_2+m_1+m_2 \leq r+r=2r$ so $(p_1,p_2) \neq (k_1,k_2)$ (and $(p_1,p_2) \leq (k_1,k_2)$). Suppose for example that $p_1 < k_1$. Then $m_1 \leq p_1 \leq k_1-1$, but we also know $m_2 \leq k_2-1$, so $(m_1,m_2) \leq (k_1-1,k_2-1)$ and hence (k_1-1,k_2-1) is a leader. As ∂_1 and ∂_2 commute on $k(a_{q_1,q_2})_{(q_1,q_2) \prec (k_1-1,k_2-1)}$, it follows that the unique extensions $\tilde{\partial}_1$ to $k(a_{q_1,q_2})_{(q_1,q_2) \prec (k_1-1,k_2)}$, and $\tilde{\partial}_2$ to $k(a_{q_1,q_2})_{(q_1,q_2) \prec (k_1,k_2-1)}$ commute on $k(a_{q_1,q_2})_{(q_1,q_2) \preceq (k_1-1,k_2-1)}$, and we can put $a_{k_1,k_2} := \tilde{\partial}_1(a_{k_1-1,k_2}) = \tilde{\partial}_2(a_{k_1,k_2-1})$.

If a kernel L of height 2r has no minimal leader of length bigger than r, then L has a differential kernel extension of arbitrary height $s \ge 2r$.

The proof of this statement is by an inductive construction of partial kernels $k(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$ satisfying the differential condition: If a polynomial f over k vanishes on $(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1-1,k_2)}$, then the polynomial $\partial_1(f)$ vanishes on $k(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$, and likewise for ∂_2 . (*) The tricky part in the proof is choosing a_{k_1,k_2} when both (k_1-1,k_2) and (k_1,k_2-1) are leaders.

In that case, let $(\ell_1,\ell_2) \leq (k_1-1,k_2)$ and $(m_1,m_2) \leq (k_1,k_2-1)$ be minimal leaders. Put $p_1 = \max(\ell_1,m_1)$ and $p_2 = \max(\ell_2,m_2)$. Then $p_1+p_2 \leq \ell_1+\ell_2+m_1+m_2 \leq r+r=2r$ so $(p_1,p_2) \neq (k_1,k_2)$ (and $(p_1,p_2) \leq (k_1,k_2)$). Suppose for example that $p_1 < k_1$. Then $m_1 \leq p_1 \leq k_1-1$, but we also know $m_2 \leq k_2-1$, so $(m_1,m_2) \leq (k_1-1,k_2-1)$ and hence (k_1-1,k_2-1) is a leader. As ∂_1 and ∂_2 commute on $k(a_{q_1,q_2})_{(q_1,q_2) \prec (k_1-1,k_2-1)}$, it follows that the unique extensions $\tilde{\partial}_1$ to $k(a_{q_1,q_2})_{(q_1,q_2) \prec (k_1-1,k_2)}$, and $\tilde{\partial}_2$ to $k(a_{q_1,q_2})_{(q_1,q_2) \prec (k_1,k_2-1)}$ commute on $k(a_{q_1,q_2})_{(q_1,q_2) \prec (k_1-1,k_2-1)}$, and we can put $a_{k_1,k_2} := \tilde{\partial}_1(a_{k_1-1,k_2}) = \tilde{\partial}_2(a_{k_1,k_2-1})$.

If a kernel L of height 2r has no minimal leader of length bigger than r, then L has a differential kernel extension of arbitrary height $s \ge 2r$.

The proof of this statement is by an inductive construction of partial kernels $k(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$ satisfying the differential condition:

If a polynomial f over k vanishes on $(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1-1,k_2)}$, then the polynomial $\partial_1(f)$ vanishes on $k(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$, and likewise for ∂_2 .

The tricky part in the proof is choosing a_{k_1,k_2} when both (k_1-1,k_2) and (k_1,k_2-1) are leaders.

In that case, let $(\ell_1,\ell_2) \leq (k_1-1,k_2)$ and $(m_1,m_2) \leq (k_1,k_2-1)$ be minimal leaders. Put $p_1 = \max(\ell_1,m_1)$ and $p_2 = \max(\ell_2,m_2)$. Then $p_1+p_2 \leq \ell_1+\ell_2+m_1+m_2 \leq r+r=2r$ so $(p_1,p_2) \neq (k_1,k_2)$ (and $(p_1,p_2) \leq (k_1,k_2)$). Suppose for example that $p_1 < k_1$. Then $m_1 \leq p_1 \leq k_1-1$, but we also know $m_2 \leq k_2-1$, so $(m_1,m_2) \leq (k_1-1,k_2-1)$ and hence (k_1-1,k_2-1) is a leader. As ∂_1 and ∂_2 commute on $k(a_{q_1,q_2})_{(q_1,q_2) \prec (k_1-1,k_2-1)}$, it follows that the unique extensions $\tilde{\partial}_1$ to $k(a_{q_1,q_2})_{(q_1,q_2) \prec (k_1-1,k_2)}$, and $\tilde{\partial}_2$ to $k(a_{q_1,q_2})_{(q_1,q_2) \prec (k_1,k_2-1)}$ commute on $k(a_{q_1,q_2})_{(q_1,q_2) \prec (k_1-1,k_2-1)}$, and we can put $a_{k_1,k_2} := \tilde{\partial}_1(a_{k_1-1,k_2}) = \tilde{\partial}_2(a_{k_1,k_2-1})$.

If a kernel L of height 2r has no minimal leader of length bigger than r, then L has a differential kernel extension of arbitrary height $s \geq 2r$.

The proof of this statement is by an inductive construction of partial kernels $k(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$ satisfying the differential condition: If a polynomial f over k vanishes on $(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1-1,k_2)}$, then the polynomial $\partial_1(f)$ vanishes on $k(a_{\ell_1,\ell_2})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$, and likewise for ∂_2 . (*) The tricky part in the proof is choosing a_{k_1,k_2} when both (k_1-1,k_2) and (k_1,k_2-1) are leaders.

In that case, let $(\ell_1,\ell_2) \leq (k_1-1,k_2)$ and $(m_1,m_2) \leq (k_1,k_2-1)$ be minimal leaders. Put $p_1 = \max(\ell_1,m_1)$ and $p_2 = \max(\ell_2,m_2)$. Then $p_1+p_2 \leq \ell_1+\ell_2+m_1+m_2 \leq r+r=2r$ so $(p_1,p_2) \neq (k_1,k_2)$ (and $(p_1,p_2) \leq (k_1,k_2)$). Suppose for example that $p_1 < k_1$. Then $m_1 \leq p_1 \leq k_1-1$, but we also know $m_2 \leq k_2-1$, so $(m_1,m_2) \leq (k_1-1,k_2-1)$ and hence (k_1-1,k_2-1) is a leader. As ∂_1 and ∂_2 commute on $k(a_{q_1,q_2})_{(q_1,q_2) \prec (k_1-1,k_2-1)}$, it follows that the unique extensions $\tilde{\partial}_1$ to $k(a_{q_1,q_2})_{(q_1,q_2) \prec (k_1-1,k_2)}$, and $\tilde{\partial}_2$ to $k(a_{q_1,q_2})_{(q_1,q_2) \prec (k_1,k_2-1)}$ commute on $k(a_{q_1,q_2})_{(q_1,q_2) \preceq (k_1-1,k_2-1)}$, and we can put $a_{k_1,k_2} := \tilde{\partial}_1(a_{k_1-1,k_2}) = \tilde{\partial}_2(a_{k_1,k_2-1})$.

Let R be a ring.

Example 1 Consider the algebra $D = R[x]/(x^2)$. Then a function $e: R \to D$ of the form $e(s) = s + f(s)x + (x^2)$ is a ring homomorphism iff f is additive and e(st) = e(s)e(t) for all $s, t \in R$.

This means $st + f(st) + (x^2) = (s + f(s))(t + f(t)) + (x^2) = st + (sf(t) + f(s)t)x + (x^2)$ i.e. f(st) = sf(t) + f(s)t, i.e. f is a derivation.

Example 2 If $D = R \times R$, then $e : R \to D$ given by e(s) = (s, f(s)) is a ring homomorphism iff $f : R \to R$ is a ring endomorphism.

Example 3 If $D = R[x]/(x^3)$, then $e: R \to D$ given by $e(s) = s + f(s)x + g(s)x^2 + (x^3)$ is a ring homomorphism iff f is a derivation, and g is an order two derivation w.r.t. f, i.e. g is additive and g(st) = g(s)t + 2f(s)f(t) + sg(t).

Definition (Moosa-Scanlon)

Let R be a ring.

Example 1 Consider the algebra $D = R[x]/(x^2)$. Then a function $e: R \to D$ of the form $e(s) = s + f(s)x + (x^2)$ is a ring homomorphism iff f is additive and e(st) = e(s)e(t) for all $s, t \in R$.

This means $st + f(st) + (x^2) = (s + f(s))(t + f(t)) + (x^2) = st + (sf(t) + f(s)t)x + (x^2)$ i.e. f(st) = sf(t) + f(s)t, i.e. f is a derivation.

Example 2 If D=R imes R, then e:R o D given by e(s)=(s,f(s)) is a ring homomorphism iff f:R o R is a ring endomorphism.

Example 3 If $D = R[x]/(x^3)$, then $e: R \to D$ given by $e(s) = s + f(s)x + g(s)x^2 + (x^3)$ is a ring homomorphism iff f is a derivation, and g is an order two derivation w.r.t. f, i.e. g is additive and g(st) = g(s)t + 2f(s)f(t) + sg(t).

Definition (Moosa-Scanlon)

Let R be a ring.

Example 1 Consider the algebra $D = R[x]/(x^2)$. Then a function $e: R \to D$ of the form $e(s) = s + f(s)x + (x^2)$ is a ring homomorphism iff f is additive and e(st) = e(s)e(t) for all $s, t \in R$.

This means $st + f(st) + (x^2) = (s + f(s))(t + f(t)) + (x^2) = st + (sf(t) + f(s)t)x + (x^2)$ i.e. f(st) = sf(t) + f(s)t, i.e. f is a derivation.

Example 2 If $D = R \times R$, then $e : R \to D$ given by e(s) = (s, f(s)) is a ring homomorphism iff $f : R \to R$ is a ring endomorphism.

Example 3 If $D = R[x]/(x^3)$, then $e: R \to D$ given by $e(s) = s + f(s)x + g(s)x^2 + (x^3)$ is a ring homomorphism iff f is a derivation, and g is an order two derivation w.r.t. f, i.e. g is additive and g(st) = g(s)t + 2f(s)f(t) + sg(t).

Definition (Moosa-Scanlon)

Let R be a ring.

Example 1 Consider the algebra $D = R[x]/(x^2)$. Then a function $e: R \to D$ of the form $e(s) = s + f(s)x + (x^2)$ is a ring homomorphism iff f is additive and e(st) = e(s)e(t) for all $s, t \in R$.

This means $st + f(st) + (x^2) = (s + f(s))(t + f(t)) + (x^2) = st + (sf(t) + f(s)t)x + (x^2)$ i.e. f(st) = sf(t) + f(s)t, i.e. f is a derivation.

Example 2 If $D = R \times R$, then $e : R \to D$ given by e(s) = (s, f(s)) is a ring homomorphism iff $f : R \to R$ is a ring endomorphism.

Example 3 If $D = R[x]/(x^3)$, then $e: R \to D$ given by $e(s) = s + f(s)x + g(s)x^2 + (x^3)$ is a ring homomorphism iff f is a derivation, and g is an order two derivation w.r.t. f, i.e. g is additive and g(st) = g(s)t + 2f(s)f(t) + sg(t).

Definition (Moosa-Scanlon)

Let R be a ring.

Example 1 Consider the algebra $D = R[x]/(x^2)$. Then a function $e: R \to D$ of the form $e(s) = s + f(s)x + (x^2)$ is a ring homomorphism iff f is additive and e(st) = e(s)e(t) for all $s, t \in R$.

This means $st + f(st) + (x^2) = (s + f(s))(t + f(t)) + (x^2) = st + (sf(t) + f(s)t)x + (x^2)$ i.e. f(st) = sf(t) + f(s)t, i.e. f is a derivation.

Example 2 If $D = R \times R$, then $e : R \to D$ given by e(s) = (s, f(s)) is a ring homomorphism iff $f : R \to R$ is a ring endomorphism.

Example 3 If $D = R[x]/(x^3)$, then $e: R \to D$ given by $e(s) = s + f(s)x + g(s)x^2 + (x^3)$ is a ring homomorphism iff f is a derivation, and g is an order two derivation w.r.t. f, i.e. g is additive and g(st) = g(s)t + 2f(s)f(t) + sg(t).

Definition (Moosa-Scanlon)

Let R be a ring.

Example 1 Consider the algebra $D = R[x]/(x^2)$. Then a function $e: R \to D$ of the form $e(s) = s + f(s)x + (x^2)$ is a ring homomorphism iff f is additive and e(st) = e(s)e(t) for all $s, t \in R$.

This means $st + f(st) + (x^2) = (s + f(s))(t + f(t)) + (x^2) = st + (sf(t) + f(s)t)x + (x^2)$ i.e. f(st) = sf(t) + f(s)t, i.e. f is a derivation.

Example 2 If $D = R \times R$, then $e : R \to D$ given by e(s) = (s, f(s)) is a ring homomorphism iff $f : R \to R$ is a ring endomorphism.

Example 3 If $D = R[x]/(x^3)$, then $e: R \to D$ given by $e(s) = s + f(s)x + g(s)x^2 + (x^3)$ is a ring homomorphism iff f is a derivation, and g is an order two derivation w.r.t. f, i.e. g is additive and g(st) = g(s)t + 2f(s)f(t) + sg(t).

Definition (Moosa-Scanlon)

Let R be a ring.

Example 1 Consider the algebra $D = R[x]/(x^2)$. Then a function $e: R \to D$ of the form $e(s) = s + f(s)x + (x^2)$ is a ring homomorphism iff f is additive and e(st) = e(s)e(t) for all $s, t \in R$.

This means $st + f(st) + (x^2) = (s + f(s))(t + f(t)) + (x^2) = st + (sf(t) + f(s)t)x + (x^2)$ i.e. f(st) = sf(t) + f(s)t, i.e. f is a derivation.

Example 2 If $D = R \times R$, then $e : R \to D$ given by e(s) = (s, f(s)) is a ring homomorphism iff $f : R \to R$ is a ring endomorphism.

Example 3 If $D = R[x]/(x^3)$, then $e: R \to D$ given by $e(s) = s + f(s)x + g(s)x^2 + (x^3)$ is a ring homomorphism iff f is a derivation, and g is an order two derivation w.r.t. f, i.e. g is additive and g(st) = g(s)t + 2f(s)f(t) + sg(t).

Definition (Moosa-Scanlon)

Let R be a ring.

Example 1 Consider the algebra $D = R[x]/(x^2)$. Then a function $e: R \to D$ of the form $e(s) = s + f(s)x + (x^2)$ is a ring homomorphism iff f is additive and e(st) = e(s)e(t) for all $s, t \in R$.

This means $st + f(st) + (x^2) = (s + f(s))(t + f(t)) + (x^2) = st + (sf(t) + f(s)t)x + (x^2)$ i.e. f(st) = sf(t) + f(s)t, i.e. f is a derivation.

Example 2 If $D = R \times R$, then $e : R \to D$ given by e(s) = (s, f(s)) is a ring homomorphism iff $f : R \to R$ is a ring endomorphism.

Example 3 If $D = R[x]/(x^3)$, then $e: R \to D$ given by $e(s) = s + f(s)x + g(s)x^2 + (x^3)$ is a ring homomorphism iff f is a derivation, and g is an order two derivation w.r.t. f, i.e. g is additive and g(st) = g(s)t + 2f(s)f(t) + sg(t).

Definition (Moosa-Scanlon)

Applications of model theory of fields with operators usually rely on the existence of a *model companion*. Recall a model M of a theory T is *existentially closed* if every quantifier-free formula $\phi(x)$ over M that has realisation in some $M \subseteq N \models T$, has a realisation in M. So, informally speaking, a field with operators is existentially closed when it is closed under adding solutions of systems of equations.

A model companion of a theory T is a theory axiomatising the class of existentially closed models of T. We say T is companionable if T has a model companion.

Robinson has proved that the theory of fields of characteristic zero with a derivation has a model companion called DCF₀, and Macintyre has proved that the theory of fields with an automorphism has a model companion called *ACFA*.

Applications of model theory of fields with operators usually rely on the existence of a model companion. Recall a model M of a theory T is existentially closed if every quantifier-free formula $\phi(x)$ over M that has realisation in some $M \subseteq N \models T$, has a realisation in M. So, informally speaking, a field with operators is existentially closed when it is closed under adding solutions of systems of equations.

A model companion of a theory T is a theory axiomatising the class of existentially closed models of T. We say T is companionable if T has a model companion.

Robinson has proved that the theory of fields of characteristic zero with a derivation has a model companion called DCF₀, and Macintyre has proved that the theory of fields with an automorphism has a model companion called ACFA.

Applications of model theory of fields with operators usually rely on the existence of a *model* companion. Recall a model M of a theory T is existentially closed if every quantifier-free formula $\phi(x)$ over M that has realisation in some $M \subseteq N \models T$, has a realisation in M.

So, informally speaking, a field with operators is existentially closed when it is closed under adding solutions of systems of equations.

A model companion of a theory T is a theory axiomatising the class of existentially closed models of T. We say T is companionable if T has a model companion.

Robinson has proved that the theory of fields of characteristic zero with a derivation has a model companion called DCF_0 , and Macintyre has proved that the theory of fields with an automorphism has a model companion called ACFA.

Applications of model theory of fields with operators usually rely on the existence of a *model companion*. Recall a model M of a theory T is *existentially closed* if every quantifier-free formula $\phi(x)$ over M that has realisation in some $M \subseteq N \models T$, has a realisation in M. So, informally speaking, a field with operators is existentially closed when it is closed under adding solutions of systems of equations.

A model companion of a theory T is a theory axiomatising the class of existentially closed models of T. We say T is companionable if T has a model companion.

Robinson has proved that the theory of fields of characteristic zero with a derivation has a model companion called DCF₀, and Macintyre has proved that the theory of fields with an automorphism has a model companion called *ACFA*.

Applications of model theory of fields with operators usually rely on the existence of a *model companion*. Recall a model M of a theory T is *existentially closed* if every quantifier-free formula $\phi(x)$ over M that has realisation in some $M \subseteq N \models T$, has a realisation in M. So, informally speaking, a field with operators is existentially closed when it is closed under adding solutions of systems of equations.

A model companion of a theory T is a theory axiomatising the class of existentially closed models of T. We say T is companionable if T has a model companion.

Robinson has proved that the theory of fields of characteristic zero with a derivation has a model companion called DCF₀, and Macintyre has proved that the theory of fields with an automorphism has a model companion called ACFA.

Applications of model theory of fields with operators usually rely on the existence of a *model companion*. Recall a model M of a theory T is *existentially closed* if every quantifier-free formula $\phi(x)$ over M that has realisation in some $M \subseteq N \models T$, has a realisation in M. So, informally speaking, a field with operators is existentially closed when it is closed under adding solutions of systems of equations.

A model companion of a theory T is a theory axiomatising the class of existentially closed models of T. We say T is companionable if T has a model companion.

Robinson has proved that the theory of fields of characteristic zero with a derivation has a model companion called DCF₀, and Macintyre has proved that the theory of fields with an automorphism has a model companion called ACFA.

Applications of model theory of fields with operators usually rely on the existence of a *model companion*. Recall a model M of a theory T is *existentially closed* if every quantifier-free formula $\phi(x)$ over M that has realisation in some $M \subseteq N \models T$, has a realisation in M. So, informally speaking, a field with operators is existentially closed when it is closed under adding solutions of systems of equations.

A model companion of a theory T is a theory axiomatising the class of existentially closed models of T. We say T is companionable if T has a model companion.

Robinson has proved that the theory of fields of characteristic zero with a derivation has a model companion called DCF_0 , and Macintyre has proved that the theory of fields with an automorphism has a model companion called ACFA.

Applications of model theory of fields with operators usually rely on the existence of a *model companion*. Recall a model M of a theory T is *existentially closed* if every quantifier-free formula $\phi(x)$ over M that has realisation in some $M \subseteq N \models T$, has a realisation in M. So, informally speaking, a field with operators is existentially closed when it is closed under adding solutions of systems of equations.

A model companion of a theory T is a theory axiomatising the class of existentially closed models of T. We say T is companionable if T has a model companion.

Robinson has proved that the theory of fields of characteristic zero with a derivation has a model companion called DCF_0 , and Macintyre has proved that the theory of fields with an automorphism has a model companion called ACFA.

More generally, Moosa and Scanlon have proved that, in characteristic zero, the theory of fields with \mathcal{D} -operators has a model companion for every finite dimensional algebra \mathcal{D} (with a distinguished basis) assuming $res(B_i) = k$ for a local decomposition $\mathcal{D} = B_1 \times \cdots \times B_k$ of \mathcal{D} .

In positive characteristic, Beyarslan, Hoffmann, Kamensky and Kowalski have proved that a model companion exists iff the nilradical of \mathcal{D} coincides with the kernel of the Frobenius morphism $\mathcal{D} \to \mathcal{D}$.

Applications of model theory of fields with operators usually rely on the existence of a *model companion*. Recall a model M of a theory T is *existentially closed* if every quantifier-free formula $\phi(x)$ over M that has realisation in some $M \subseteq N \models T$, has a realisation in M. So, informally speaking, a field with operators is existentially closed when it is closed under adding solutions of systems of equations.

A model companion of a theory T is a theory axiomatising the class of existentially closed models of T. We say T is companionable if T has a model companion.

Robinson has proved that the theory of fields of characteristic zero with a derivation has a model companion called DCF_0 , and Macintyre has proved that the theory of fields with an automorphism has a model companion called ACFA.

The results of Moosa-Scanlon and Beyarslan-Hoffmann-Kamensky-Kowalski deal with the *free* case, that is, ∂_i are not required to satisfy any compatibility with each other.

The most straightforward compatibility condition on the operators ∂_i is that they commute with each other: $\partial_i \partial_j = \partial_j \partial_i$ for all $1 \leq i, j \leq m$.

In case of $\mathcal{D} = k \times k \times k$, this yields the theory of fields with two commuting automorphisms, which is **not** companionable by a result of Hrushovski.

However, the theory of fields with n commuting derivations is known to be companionable for any n by a result of Pierce.

- fields with Lie-commuting derivations (studied by Yaffe),
- fields with iterative Hasse-Schmidt derivations (studied by Ziegler),
- fields with g-iterative Hasse-Schmidt derivations for a finite group scheme g (studied by Hoffmann-Kowalski), and

The results of Moosa-Scanlon and Beyarslan-Hoffmann-Kamensky-Kowalski deal with the *free* case, that is, ∂_i are not required to satisfy any compatibility with each other.

The most straightforward compatibility condition on the operators ∂_i is that they commute with each other: $\partial_i \partial_j = \partial_j \partial_i$ for all $1 \leq i, j \leq m$.

In case of $\mathcal{D}=k\times k\times k$, this yields the theory of fields with two commuting automorphisms, which is **not** companionable by a result of Hrushovski.

However, the theory of fields with n commuting derivations is known to be companionable for any n by a result of Pierce.

- fields with Lie-commuting derivations (studied by Yaffe),
- fields with iterative Hasse-Schmidt derivations (studied by Ziegler),
- ullet fields with ${\mathfrak g}$ -iterative Hasse-Schmidt derivations for a finite group scheme ${\mathfrak g}$ (studied by Hoffmann-Kowalski), and

The results of Moosa-Scanlon and Beyarslan-Hoffmann-Kamensky-Kowalski deal with the *free* case, that is, ∂_i are not required to satisfy any compatibility with each other.

The most straightforward compatibility condition on the operators ∂_i is that they commute with each other: $\partial_i \partial_j = \partial_j \partial_i$ for all $1 \leq i, j \leq m$.

In case of $\mathcal{D}=k\times k\times k$, this yields the theory of fields with two commuting automorphisms, which is **not** companionable by a result of Hrushovski.

However, the theory of fields with n commuting derivations is known to be companionable for any n by a result of Pierce.

- fields with Lie-commuting derivations (studied by Yaffe),
- fields with iterative Hasse-Schmidt derivations (studied by Ziegler),
- ullet fields with ${\mathfrak g}$ -iterative Hasse-Schmidt derivations for a finite group scheme ${\mathfrak g}$ (studied by Hoffmann-Kowalski), and
- fields with commuting \mathcal{D} -operators for any local algebra \mathcal{D} (with $\mathfrak{m} = \ker(Fr) = \operatorname{P}(Fr)$

The results of Moosa-Scanlon and Beyarslan-Hoffmann-Kamensky-Kowalski deal with the *free* case, that is, ∂_i are not required to satisfy any compatibility with each other.

The most straightforward compatibility condition on the operators ∂_i is that they commute with each other: $\partial_i \partial_j = \partial_j \partial_i$ for all $1 \leq i, j \leq m$.

In case of $\mathcal{D}=k\times k\times k$, this yields the theory of fields with two commuting automorphisms, which is **not** companionable by a result of Hrushovski.

However, the theory of fields with n commuting derivations is known to be companionable for any n by a result of Pierce.

- fields with Lie-commuting derivations (studied by Yaffe),
- fields with iterative Hasse-Schmidt derivations (studied by Ziegler),
- ullet fields with ${\mathfrak g}$ -iterative Hasse-Schmidt derivations for a finite group scheme ${\mathfrak g}$ (studied by Hoffmann-Kowalski), and
- fields with commuting \mathcal{D} -operators for any local algebra \mathcal{D} (with $\mathfrak{m} = \ker(Fr) = \operatorname{P}(Fr)$

The results of Moosa-Scanlon and Beyarslan-Hoffmann-Kamensky-Kowalski deal with the *free* case, that is, ∂_i are not required to satisfy any compatibility with each other.

The most straightforward compatibility condition on the operators ∂_i is that they commute with each other: $\partial_i \partial_j = \partial_j \partial_i$ for all $1 \leq i, j \leq m$.

In case of $\mathcal{D} = k \times k \times k$, this yields the theory of fields with two commuting automorphisms, which is **not** companionable by a result of Hrushovski.

However, the theory of fields with n commuting derivations is known to be companionable for any n by a result of Pierce.

- fields with Lie-commuting derivations (studied by Yaffe),
- fields with iterative Hasse-Schmidt derivations (studied by Ziegler),
- ullet fields with ${\mathfrak g}$ -iterative Hasse-Schmidt derivations for a finite group scheme ${\mathfrak g}$ (studied by Hoffmann-Kowalski), and
- fields with commuting \mathcal{D} -operators for any local algebra \mathcal{D} (with $\mathfrak{m} = \ker(Fr) = \operatorname{P}(Fr)$

The results of Moosa-Scanlon and Beyarslan-Hoffmann-Kamensky-Kowalski deal with the *free* case, that is, ∂_i are not required to satisfy any compatibility with each other.

The most straightforward compatibility condition on the operators ∂_i is that they commute with each other: $\partial_i \partial_j = \partial_j \partial_i$ for all $1 \leq i, j \leq m$.

In case of $\mathcal{D} = k \times k \times k$, this yields the theory of fields with two commuting automorphisms, which is **not** companionable by a result of Hrushovski.

However, the theory of fields with n commuting derivations is known to be companionable for any n by a result of Pierce.

- fields with Lie-commuting derivations (studied by Yaffe),
- fields with iterative Hasse-Schmidt derivations (studied by Ziegler),
- ullet fields with g-iterative Hasse-Schmidt derivations for a finite group scheme g (studied by Hoffmann-Kowalski), and
- fields with commuting \mathcal{D} -operators for any local algebra \mathcal{D} (with $\mathfrak{m} = \ker(Fr) = \operatorname{P}(Fr)$

The results of Moosa-Scanlon and Beyarslan-Hoffmann-Kamensky-Kowalski deal with the *free* case, that is, ∂_i are not required to satisfy any compatibility with each other.

The most straightforward compatibility condition on the operators ∂_i is that they commute with each other: $\partial_i \partial_j = \partial_j \partial_i$ for all $1 \leq i, j \leq m$.

In case of $\mathcal{D} = k \times k \times k$, this yields the theory of fields with two commuting automorphisms, which is **not** companionable by a result of Hrushovski.

However, the theory of fields with n commuting derivations is known to be companionable for any n by a result of Pierce.

- fields with Lie-commuting derivations (studied by Yaffe),
- fields with iterative Hasse-Schmidt derivations (studied by Ziegler),
- ullet fields with g-iterative Hasse-Schmidt derivations for a finite group scheme ${\mathfrak g}$ (studied by Hoffmann-Kowalski), and

The results of Moosa-Scanlon and Beyarslan-Hoffmann-Kamensky-Kowalski deal with the *free* case, that is, ∂_i are not required to satisfy any compatibility with each other.

The most straightforward compatibility condition on the operators ∂_i is that they commute with each other: $\partial_i \partial_j = \partial_j \partial_i$ for all $1 \leq i, j \leq m$.

In case of $\mathcal{D} = k \times k \times k$, this yields the theory of fields with two commuting automorphisms, which is **not** companionable by a result of Hrushovski.

However, the theory of fields with n commuting derivations is known to be companionable for any n by a result of Pierce.

- fields with Lie-commuting derivations (studied by Yaffe),
- fields with iterative Hasse-Schmidt derivations (studied by Ziegler),
- ullet fields with ${\mathfrak g}$ -iterative Hasse-Schmidt derivations for a finite group scheme ${\mathfrak g}$ (studied by Hoffmann-Kowalski), and
- fields with commuting D-operators for any local algebra D (with m ➡ ket ⟨Fr⟩) ₺ ↓ ₺ ₺ ₺ ੭००

The results of Moosa-Scanlon and Beyarslan-Hoffmann-Kamensky-Kowalski deal with the *free* case, that is, ∂_i are not required to satisfy any compatibility with each other.

The most straightforward compatibility condition on the operators ∂_i is that they commute with each other: $\partial_i \partial_j = \partial_j \partial_i$ for all $1 \leq i, j \leq m$.

In case of $\mathcal{D} = k \times k \times k$, this yields the theory of fields with two commuting automorphisms, which is **not** companionable by a result of Hrushovski.

However, the theory of fields with n commuting derivations is known to be companionable for any n by a result of Pierce.

- fields with Lie-commuting derivations (studied by Yaffe),
- fields with iterative Hasse-Schmidt derivations (studied by Ziegler),
- ullet fields with ${\mathfrak g}$ -iterative Hasse-Schmidt derivations for a finite group scheme ${\mathfrak g}$ (studied by Hoffmann-Kowalski), and
- fields with commuting \mathcal{D} -operators for any local algebra \mathcal{D} (with $\mathfrak{m} = \ker(Fr)$).

We fix a field k for the rest of the talk. Let \mathcal{D}_1 and \mathcal{D}_2 be local algebras over k with $res(\mathcal{D}_i) = k$ (we assume all algebras and rings are commutative and have 1). Recall that by $\mathcal{D}_i(R)$ we denote the base change of \mathcal{D}_i from k to R, i.e. $\mathcal{D}_i(R) = \mathcal{D}_i \otimes_k R$. Fix a k-algebra homomorphism $r: \mathcal{D}_2 \to \mathcal{D}_1 \otimes_k \mathcal{D}_2$. Let $R \supset k$. We we have two lifts of r:

$$r^\iota:\mathcal{D}_2(R) o\mathcal{D}_1(\mathcal{D}_2(R))$$
 and $r^{e_1}:\mathcal{D}_2(R) o\mathcal{D}_1(\mathcal{D}_2(R))$

where the lift r^{ι} is with respect to the standard R-algebra structure on $\mathcal{D}_2(R)$ and on $\mathcal{D}_1(\mathcal{D}_2(R))$, while the lift r^{e_1} is with respect to the R-linear structure on $\mathcal{D}_1(\mathcal{D}_2(R))$ given by

$$R \xrightarrow{e_1} \mathcal{D}_1(R) \xrightarrow{\operatorname{Id}_{\mathcal{D}_1(R)} \otimes 1} \mathcal{D}_1(\mathcal{D}_2(R)).$$

We say that (e_1,e_2) commute with respect to r^* (where $*\in\{\iota,e_1\}$) if the diagram

$$R \xrightarrow{e_1} \mathcal{D}_1(R)$$

$$\downarrow^{e_2} \qquad \qquad \downarrow^{\mathcal{D}_1(e_2)}$$

$$\mathcal{D}_2(R) \xrightarrow{r^*} \mathcal{D}_1(\mathcal{D}_2(R))$$

$$(5)$$

commutes. If $\mathcal{D}_1=\mathcal{D}_2$ and $e_1=e_2$ we simply say that e_1 commutes with respect to $r_1=r_2$.

We fix a field k for the rest of the talk. Let \mathcal{D}_1 and \mathcal{D}_2 be local algebras over k with $res(\mathcal{D}_i) = k$ (we assume all algebras and rings are commutative and have 1). Recall that by $\mathcal{D}_i(R)$ we denote the base change of \mathcal{D}_i from k to R, i.e. $\mathcal{D}_i(R) = \mathcal{D}_i \otimes_k R$. Fix a k-algebra homomorphism $r: \mathcal{D}_2 \to \mathcal{D}_1 \otimes_k \mathcal{D}_2$. Let $R \supseteq k$. We we have two lifts of r:

$$r^\iota:\mathcal{D}_2(R) o\mathcal{D}_1(\mathcal{D}_2(R))$$
 and $r^{e_1}:\mathcal{D}_2(R) o\mathcal{D}_1(\mathcal{D}_2(R))$

where the lift r^{ι} is with respect to the standard R-algebra structure on $\mathcal{D}_2(R)$ and on $\mathcal{D}_1(\mathcal{D}_2(R))$, while the lift r^{e_1} is with respect to the R-linear structure on $\mathcal{D}_1(\mathcal{D}_2(R))$ given by

$$R \xrightarrow{e_1} \mathcal{D}_1(R) \xrightarrow{\operatorname{Id}_{\mathcal{D}_1(R)} \otimes 1} \mathcal{D}_1(\mathcal{D}_2(R)).$$

We say that (e_1,e_2) commute with respect to r^* (where $*\in\{\iota,e_1\}$) if the diagram

$$R \xrightarrow{e_1} \mathcal{D}_1(R)$$

$$\downarrow e_2 \qquad \qquad \downarrow \mathcal{D}_1(e_2)$$

$$\mathcal{D}_2(R) \xrightarrow{r^*} \mathcal{D}_1(\mathcal{D}_2(R))$$

$$(5)$$

commutes. If $\mathcal{D}_1=\mathcal{D}_2$ and $e_1=e_2$ we simply say that e_1 commutes with respect to $r_1=r_2$.

We fix a field k for the rest of the talk. Let \mathcal{D}_1 and \mathcal{D}_2 be local algebras over k with $res(\mathcal{D}_i) = k$ (we assume all algebras and rings are commutative and have 1). Recall that by $\mathcal{D}_i(R)$ we denote the base change of \mathcal{D}_i from k to R, i.e. $\mathcal{D}_i(R) = \mathcal{D}_i \otimes_k R$.

Fix a k-algebra homomorphism $r: \mathcal{D}_2 \to \mathcal{D}_1 \otimes_k \mathcal{D}_2$. Let $R \supseteq k$. We we have two lifts of r:

$$r^\iota:\mathcal{D}_2(R) o\mathcal{D}_1(\mathcal{D}_2(R))$$
 and $r^{\mathrm{e}_1}:\mathcal{D}_2(R) o\mathcal{D}_1(\mathcal{D}_2(R))$

where the lift r' is with respect to the standard R-algebra structure on $\mathcal{D}_2(R)$ and on $\mathcal{D}_1(\mathcal{D}_2(R))$, while the lift r^{e_1} is with respect to the R-linear structure on $\mathcal{D}_1(\mathcal{D}_2(R))$ given by

$$R \xrightarrow{e_1} \mathcal{D}_1(R) \xrightarrow{\operatorname{Id}_{\mathcal{D}_1(R)} \otimes 1} \mathcal{D}_1(\mathcal{D}_2(R)).$$

We say that (e_1,e_2) commute with respect to r^* (where $*\in\{\iota,e_1\}$) if the diagram

$$R \xrightarrow{e_1} \mathcal{D}_1(R) \qquad (5)$$

$$\downarrow^{e_2} \qquad \qquad \downarrow^{\mathcal{D}_1(e_2)}$$

$$\mathcal{D}_2(R) \xrightarrow{r^*} \mathcal{D}_1(\mathcal{D}_2(R))$$

commutes. If $\mathcal{D}_1=\mathcal{D}_2$ and $e_1=e_2$ we simply say that e_1 commutes with respect to $f_1=f_2$ and $f_3=f_4=f_4$.

We fix a field k for the rest of the talk. Let \mathcal{D}_1 and \mathcal{D}_2 be local algebras over k with $res(\mathcal{D}_i) = k$ (we assume all algebras and rings are commutative and have 1). Recall that by $\mathcal{D}_i(R)$ we denote the base change of \mathcal{D}_i from k to R, i.e. $\mathcal{D}_i(R) = \mathcal{D}_i \otimes_k R$. Fix a k-algebra homomorphism $r: \mathcal{D}_2 \to \mathcal{D}_1 \otimes_k \mathcal{D}_2$. Let $R \supseteq k$. We we have two lifts of r:

$$r^\iota:\mathcal{D}_2(R) o\mathcal{D}_1(\mathcal{D}_2(R))$$
 and $r^{\mathrm{e}_1}:\mathcal{D}_2(R) o\mathcal{D}_1(\mathcal{D}_2(R))$

where the lift r^{ι} is with respect to the standard R-algebra structure on $\mathcal{D}_2(R)$ and on $\mathcal{D}_1(\mathcal{D}_2(R))$, while the lift r^{e_1} is with respect to the R-linear structure on $\mathcal{D}_1(\mathcal{D}_2(R))$ given by

$$R \xrightarrow{e_1} \mathcal{D}_1(R) \xrightarrow{\operatorname{Id}_{\mathcal{D}_1(R)} \otimes 1} \mathcal{D}_1(\mathcal{D}_2(R)).$$

We say that (e_1,e_2) commute with respect to r^* (where $*\in\{\iota,e_1\}$) if the diagram

$$R \xrightarrow{e_1} \mathcal{D}_1(R)$$

$$\downarrow^{e_2} \qquad \downarrow^{\mathcal{D}_1(e_2)}$$

$$\mathcal{D}_2(R) \xrightarrow{r^*} \mathcal{D}_1(\mathcal{D}_2(R))$$

$$(5)$$

commutes. If $\mathcal{D}_1=\mathcal{D}_2$ and $e_1=e_2$ we simply say that e_1 commutes with respect to $f_1=f_2$ and $f_3=f_4=f_4$.

We fix a field k for the rest of the talk. Let \mathcal{D}_1 and \mathcal{D}_2 be local algebras over k with $res(\mathcal{D}_i) = k$ (we assume all algebras and rings are commutative and have 1). Recall that by $\mathcal{D}_i(R)$ we denote the base change of \mathcal{D}_i from k to R, i.e. $\mathcal{D}_i(R) = \mathcal{D}_i \otimes_k R$. Fix a k-algebra homomorphism $r: \mathcal{D}_2 \to \mathcal{D}_1 \otimes_k \mathcal{D}_2$. Let $R \supseteq k$. We we have two lifts of r:

$$r^\iota:\mathcal{D}_2(R) o\mathcal{D}_1(\mathcal{D}_2(R))$$
 and $r^{e_1}:\mathcal{D}_2(R) o\mathcal{D}_1(\mathcal{D}_2(R))$

where the lift r^{ι} is with respect to the standard R-algebra structure on $\mathcal{D}_2(R)$ and on $\mathcal{D}_1(\mathcal{D}_2(R))$, while the lift r^{e_1} is with respect to the R-linear structure on $\mathcal{D}_1(\mathcal{D}_2(R))$ given by

$$R \xrightarrow{e_1} \mathcal{D}_1(R) \xrightarrow{\operatorname{Id}_{\mathcal{D}_1(R)} \otimes 1} \mathcal{D}_1(\mathcal{D}_2(R)).$$

We say that (e_1,e_2) commute with respect to r^* (where $*\in\{\iota,e_1\}$) if the diagram

$$R \xrightarrow{e_1} \mathcal{D}_1(R)$$

$$\downarrow^{e_2} \qquad \qquad \downarrow^{\mathcal{D}_1(e_2)}$$

$$\mathcal{D}_2(R) \xrightarrow{r^*} \mathcal{D}_1(\mathcal{D}_2(R))$$

$$(5)$$

commutes. If $\mathcal{D}_1 = \mathcal{D}_2$ and $e_1 = e_2$ we simply say that e_1 commutes with respect to r.

Let (R,e) be a \mathcal{D} -ring and r be the canonical embedding $\mathcal{D}_2 \hookrightarrow \mathcal{D}_1 \otimes_k \mathcal{D}_2(F)$. Then, (e_1,e_2)

Let $\bar{\epsilon}_1 = (\epsilon_{1,0}, \epsilon_{1,1}, \dots, \epsilon_{1,m_1})$ and $\bar{\epsilon}_2 = (\epsilon_{2,0}, \epsilon_{2,1}, \dots, \epsilon_{2,m_2})$ be bases of \mathcal{D}_1 and \mathcal{D}_2 with $\epsilon_{1,0} = \epsilon_{2,0} = 1$, and write $e_i = \sum_{0 \le i \le m_i} \partial_{i,j}$. Let $a \in R$. Then

$$\begin{split} \mathcal{D}_{1}(\mathsf{e}_{2}) \circ e_{1}(\mathsf{a}) &= \mathcal{D}_{1}(\mathsf{e}_{2}) \left(\mathsf{a} + \epsilon_{1,1} \partial_{1,1}(\mathsf{a}) + \dots + \epsilon_{1,m_{1}} \partial_{1,m_{1}}(\mathsf{a}) \right) \\ &= 1 \otimes 1 \otimes \mathsf{e}_{2}(\mathsf{a}) + \epsilon_{1,1} \otimes 1 \otimes \mathsf{e}_{2}(\partial_{1,1}(\mathsf{a})) + \dots + \epsilon_{1,m_{1}} \otimes 1 \otimes \mathsf{e}_{2}(\partial_{1,m_{1}}(\mathsf{a})) \\ &= 1 \otimes 1 \otimes \mathsf{a} + 1 \otimes \epsilon_{2,1} \otimes \partial_{2,1}(\mathsf{a}) + \dots + 1 \otimes \epsilon_{2,m_{2}} \otimes \partial_{2,m_{2}}(\mathsf{a}) + \\ &\qquad \qquad \epsilon_{1,1} \otimes 1 \otimes \partial_{1,1}(\mathsf{a}) + \epsilon_{1,1} \otimes \epsilon_{2,1} \otimes \partial_{2,1} \partial_{1,1}(\mathsf{a}) + \dots + \epsilon_{1,1} \otimes \epsilon_{2,m_{2}} \otimes \partial_{2,m_{2}} \partial_{1,1}(\mathsf{a}) + \dots \\ &\qquad \qquad \epsilon_{1,m_{1}} \otimes 1 \otimes \partial_{1,m_{1}}(\mathsf{a}) + \epsilon_{1,m_{1}} \otimes \epsilon_{2,1} \otimes \partial_{2,1} \partial_{1,m_{1}}(\mathsf{a}) + \dots + \epsilon_{1,m_{1}} \otimes \epsilon_{2,m_{2}} \otimes \partial_{2,m_{2}} \partial_{1,m_{1}}(\mathsf{a}) \end{split}$$

Let (R, \underline{e}) be a $\underline{\mathcal{D}}$ -ring and r be the canonical embedding $\mathcal{D}_2 \hookrightarrow \mathcal{D}_1 \otimes_k \mathcal{D}_2(F)$. Then, (e_1, e_2) commute on R with respect to r^{e_1} if and only if for all $1 \leq i \leq m_1$ and $1 \leq j \leq m_2$ we have $\partial_{1,i}\partial_{2,j}(a) = \partial_{2,j}\partial_{1,i}(a)$ for all $a \in R$.

Let $\bar{\epsilon}_1=(\epsilon_{1,0},\epsilon_{1,1},\ldots,\epsilon_{1,m_1})$ and $\bar{\epsilon}_2=(\epsilon_{2,0},\epsilon_{2,1},\ldots,\epsilon_{2,m_2})$ be bases of \mathcal{D}_1 and \mathcal{D}_2 with $\epsilon_{1,0}=\epsilon_{2,0}=1$, and write $e_i=\sum_{0\leq j\leq m_i}\partial_{i,j}$. Let $a\in R$. Then

$$\mathcal{D}_{1}(e_{2}) \circ e_{1}(a) = \mathcal{D}_{1}(e_{2}) \left(a + \epsilon_{1,1} \partial_{1,1}(a) + \dots + \epsilon_{1,m_{1}} \partial_{1,m_{1}}(a) \right)$$

$$= 1 \otimes 1 \otimes e_{2}(a) + \epsilon_{1,1} \otimes 1 \otimes e_{2}(\partial_{1,1}(a)) + \dots + \epsilon_{1,m_{1}} \otimes 1 \otimes e_{2}(\partial_{1,m_{1}}(a))$$

$$= 1 \otimes 1 \otimes a + 1 \otimes \epsilon_{2,1} \otimes \partial_{2,1}(a) + \dots + 1 \otimes \epsilon_{2,m_{2}} \otimes \partial_{2,m_{2}}(a) +$$

$$\epsilon_{1,1} \otimes 1 \otimes \partial_{1,1}(a) + \epsilon_{1,1} \otimes \epsilon_{2,1} \otimes \partial_{2,1} \partial_{1,1}(a) + \dots + \epsilon_{1,1} \otimes \epsilon_{2,m_{2}} \otimes \partial_{2,m_{2}} \partial_{1,1}(a) + \dots$$

$$\epsilon_{1,m_{1}} \otimes 1 \otimes \partial_{1,m_{1}}(a) + \epsilon_{1,m_{1}} \otimes \epsilon_{2,1} \otimes \partial_{2,1} \partial_{1,m_{1}}(a) + \dots + \epsilon_{1,m_{1}} \otimes \epsilon_{2,m_{2}} \otimes \partial_{2,m_{2}} \partial_{1,m_{1}}(a)$$

As $r^{e_1} = \mathcal{D}_2(e_1)$, for $r^{e_1} \circ e_2(a)$ we get the same expression but with $\partial_{1,i}\partial_{2,j}$ in place of $\partial_{2,j}\partial_{1,i}$. As $(\epsilon_{1,i} \otimes \epsilon_{2,j} : 0 \leq i \leq m_1, 0 \leq j \leq m_2)$ is an R-linear basis of $\mathcal{D}_1(\mathcal{D}_2(R))$, it follows that $\mathcal{D}_1(e_2) \circ e_1(a) = r^{e_1} \circ e_2(a)$ if and only if $\partial_{1,i}\partial_{2,j}(a) = \partial_{2,j}\partial_{1,j}(a)$ for all $1 \leq i \leq m_1, 1 \leq j \leq m_2$.

Let (R, \underline{e}) be a $\underline{\mathcal{D}}$ -ring and r be the canonical embedding $\mathcal{D}_2 \hookrightarrow \mathcal{D}_1 \otimes_k \mathcal{D}_2(F)$. Then, (e_1, e_2) commute on R with respect to r^{e_1} if and only if for all $1 \leq i \leq m_1$ and $1 \leq j \leq m_2$ we have $\partial_{1,i}\partial_{2,j}(a) = \partial_{2,j}\partial_{1,i}(a)$ for all $a \in R$.

Let $\bar{\epsilon}_1 = (\epsilon_{1,0}, \epsilon_{1,1}, \dots, \epsilon_{1,m_1})$ and $\bar{\epsilon}_2 = (\epsilon_{2,0}, \epsilon_{2,1}, \dots, \epsilon_{2,m_2})$ be bases of \mathcal{D}_1 and \mathcal{D}_2 with

 $\epsilon_{1,0}=\epsilon_{2,0}=1$, and write $e_i=\sum_{0\leq j\leq m_i}\partial_{i,j}$. Let $a\in R$. Then $\mathcal{D}_1(e_2)\circ e_1(a)=\mathcal{D}_1(e_2)\,(a+\epsilon_{1,1}\partial_{1,1}(a)+\cdots+\epsilon_{1,m_1}\partial_{1,m_1}(a)) \ =1\otimes 1\otimes e_2(a)+\epsilon_{1,1}\otimes 1\otimes e_2(\partial_{1,1}(a))+\cdots+\epsilon_{1,m_1}\otimes 1\otimes e_2(\partial_{1,m_1}(a))$

$$=1\otimes 1\otimes a+1\otimes \epsilon_{2,1}\otimes \partial_{2,1}(a)+\cdots+1\otimes \epsilon_{2,m_2}\otimes \partial_{2,m_2}(a)+\\ \epsilon_{1,1}\otimes 1\otimes \partial_{1,1}(a)+\epsilon_{1,1}\otimes \epsilon_{2,1}\otimes \partial_{2,1}\partial_{1,1}(a)+\cdots+\epsilon_{1,1}\otimes \epsilon_{2,m_2}\otimes \partial_{2,m_2}\partial_{1,1}(a)+\cdots\\ \epsilon_{1,m_1}\otimes 1\otimes \partial_{1,m_1}(a)+\epsilon_{1,m_1}\otimes \epsilon_{2,1}\otimes \partial_{2,1}\partial_{1,m_1}(a)+\cdots+\epsilon_{1,m_1}\otimes \epsilon_{2,m_2}\otimes \partial_{2,m_2}\partial_{1,m_1}(a)$$
As $r^{e_1}=\mathcal{D}_2(e_1)$, for $r^{e_1}\circ e_2(a)$ we get the same expression but with $\partial_{1,i}\partial_{2,i}$ in place of $\partial_{2,i}\partial_{1,i}$.

As $r^{e_1} = \mathcal{D}_2(e_1)$, for $r^{e_1} \circ e_2(a)$ we get the same expression but with $\partial_{1,i}\partial_{2,j}$ in place of $\partial_{2,j}\partial_{1,i}$. As $(\epsilon_{1,i} \otimes \epsilon_{2,j} : 0 \leq i \leq m_1, 0 \leq j \leq m_2)$ is an R-linear basis of $\mathcal{D}_1(\mathcal{D}_2(R))$, it follows that $\mathcal{D}_1(e_2) \circ e_1(a) = r^{e_1} \circ e_2(a)$ if and only if $\partial_{1,i}\partial_{2,j}(a) = \partial_{2,j}\partial_{1,i}(a)$ for all $1 \leq i \leq m_1, 1 \leq j \leq m_2$.

Let (R, \underline{e}) be a $\underline{\mathcal{D}}$ -ring and r be the canonical embedding $\mathcal{D}_2 \hookrightarrow \mathcal{D}_1 \otimes_k \mathcal{D}_2(F)$. Then, (e_1, e_2) commute on R with respect to r^{e_1} if and only if for all $1 \leq i \leq m_1$ and $1 \leq j \leq m_2$ we have $\partial_{1,i}\partial_{2,j}(a) = \partial_{2,j}\partial_{1,i}(a)$ for all $a \in R$.

Let $\bar{\epsilon}_1=(\epsilon_{1,0},\epsilon_{1,1},\ldots,\epsilon_{1,m_1})$ and $\bar{\epsilon}_2=(\epsilon_{2,0},\epsilon_{2,1},\ldots,\epsilon_{2,m_2})$ be bases of \mathcal{D}_1 and \mathcal{D}_2 with $\epsilon_{1,0}=\epsilon_{2,0}=1$, and write $e_i=\sum_{0\leq j\leq m_i}\partial_{i,j}$. Let $a\in R$. Then

$$\mathcal{D}_{1}(e_{2}) \circ e_{1}(a) = \mathcal{D}_{1}(e_{2}) \left(a + \epsilon_{1,1}\partial_{1,1}(a) + \cdots + \epsilon_{1,m_{1}}\partial_{1,m_{1}}(a)\right)$$

$$= 1 \otimes 1 \otimes e_{2}(a) + \epsilon_{1,1} \otimes 1 \otimes e_{2}(\partial_{1,1}(a)) + \cdots + \epsilon_{1,m_{1}} \otimes 1 \otimes e_{2}(\partial_{1,m_{1}}(a))$$

$$= 1 \otimes 1 \otimes a + 1 \otimes \epsilon_{2,1} \otimes \partial_{2,1}(a) + \cdots + 1 \otimes \epsilon_{2,m_{2}} \otimes \partial_{2,m_{2}}(a) +$$

$$\epsilon_{1,1} \otimes 1 \otimes \partial_{1,1}(a) + \epsilon_{1,1} \otimes \epsilon_{2,1} \otimes \partial_{2,1}\partial_{1,1}(a) + \cdots + \epsilon_{1,1} \otimes \epsilon_{2,m_{2}} \otimes \partial_{2,m_{2}}\partial_{1,1}(a) + \cdots$$

$$\epsilon_{1,m_{1}} \otimes 1 \otimes \partial_{1,m_{1}}(a) + \epsilon_{1,m_{1}} \otimes \epsilon_{2,1} \otimes \partial_{2,1}\partial_{1,m_{1}}(a) + \cdots + \epsilon_{1,m_{1}} \otimes \epsilon_{2,m_{2}} \otimes \partial_{2,m_{2}}\partial_{1,m_{1}}(a)$$

As $r^{\mathbf{e}_1} = \mathcal{D}_2(\mathbf{e}_1)$, for $r^{\mathbf{e}_1} \circ \mathbf{e}_2(a)$ we get the same expression but with $\partial_{1,i}\partial_{2,j}$ in place of $\partial_{2,j}\partial_{1,i}$. As $(\epsilon_{1,i} \otimes \epsilon_{2,j} : 0 \leq i \leq m_1, 0 \leq j \leq m_2)$ is an R-linear basis of $\mathcal{D}_1(\mathcal{D}_2(R))$, it follows that $\mathcal{D}_1(\mathbf{e}_2) \circ \mathbf{e}_1(a) = r^{\mathbf{e}_1} \circ \mathbf{e}_2(a)$ if and only if $\partial_{1,i}\partial_{2,j}(a) = \partial_{2,j}\partial_{1,i}(a)$ for all $1 \leq i \leq m_1, 1 \leq j \leq m_2$.

Let (R, \underline{e}) be a $\underline{\mathcal{D}}$ -ring and r be the canonical embedding $\mathcal{D}_2 \hookrightarrow \mathcal{D}_1 \otimes_k \mathcal{D}_2(F)$. Then, (e_1, e_2) commute on R with respect to r^{e_1} if and only if for all $1 \leq i \leq m_1$ and $1 \leq j \leq m_2$ we have $\partial_{1,i}\partial_{2,j}(a) = \partial_{2,j}\partial_{1,i}(a)$ for all $a \in R$.

Let $\bar{\epsilon}_1=(\epsilon_{1,0},\epsilon_{1,1},\ldots,\epsilon_{1,m_1})$ and $\bar{\epsilon}_2=(\epsilon_{2,0},\epsilon_{2,1},\ldots,\epsilon_{2,m_2})$ be bases of \mathcal{D}_1 and \mathcal{D}_2 with $\epsilon_{1,0}=\epsilon_{2,0}=1$, and write $e_i=\sum_{0\leq j\leq m_i}\partial_{i,j}$. Let $a\in R$. Then

$$\mathcal{D}_{1}(e_{2}) \circ e_{1}(a) = \mathcal{D}_{1}(e_{2}) \left(a + \epsilon_{1,1}\partial_{1,1}(a) + \cdots + \epsilon_{1,m_{1}}\partial_{1,m_{1}}(a)\right)$$

$$= 1 \otimes 1 \otimes e_{2}(a) + \epsilon_{1,1} \otimes 1 \otimes e_{2}(\partial_{1,1}(a)) + \cdots + \epsilon_{1,m_{1}} \otimes 1 \otimes e_{2}(\partial_{1,m_{1}}(a))$$

$$= 1 \otimes 1 \otimes a + 1 \otimes \epsilon_{2,1} \otimes \partial_{2,1}(a) + \cdots + 1 \otimes \epsilon_{2,m_{2}} \otimes \partial_{2,m_{2}}(a) +$$

$$\epsilon_{1,1} \otimes 1 \otimes \partial_{1,1}(a) + \epsilon_{1,1} \otimes \epsilon_{2,1} \otimes \partial_{2,1}\partial_{1,1}(a) + \cdots + \epsilon_{1,1} \otimes \epsilon_{2,m_{2}} \otimes \partial_{2,m_{2}}\partial_{1,1}(a) + \cdots$$

$$\epsilon_{1,m_{1}} \otimes 1 \otimes \partial_{1,m_{1}}(a) + \epsilon_{1,m_{1}} \otimes \epsilon_{2,1} \otimes \partial_{2,1}\partial_{1,m_{1}}(a) + \cdots + \epsilon_{1,m_{1}} \otimes \epsilon_{2,m_{2}} \otimes \partial_{2,m_{2}}\partial_{1,m_{1}}(a)$$

As $r^{e_1}=\mathcal{D}_2(e_1)$, for $r^{e_1}\circ e_2(a)$ we get the same expression but with $\partial_{1,i}\partial_{2,j}$ in place of $\partial_{2,j}\partial_{1,i}$. As $(\epsilon_{1,i}\otimes \epsilon_{2,j}:0\leq i\leq m_1,0\leq j\leq m_2)$ is an R-linear basis of $\mathcal{D}_1(\mathcal{D}_2(R))$, it follows that $\mathcal{D}_1(e_2)\circ e_1(a)=r^{e_1}\circ e_2(a)$ if and only if $\partial_{1,i}\partial_{2,j}(a)=\partial_{2,j}\partial_{1,i}(a)$ for all $1\leq i\leq m_1, 1\leq j\leq m_2$.

Let $m \in \mathbb{N}$ and

$$\mathcal{D} = k[\epsilon_1, \dots, \epsilon_m]/(\epsilon_1, \dots, \epsilon_m)^2$$

with $\pi(\epsilon_i)=0$ and ranked basis $(1,\epsilon_1,\ldots,\epsilon_m)$. This recovers differential rings with m-many derivations. Let $(c_\ell^{ij})_{i,j,\ell=1}^m$ be a tuple from k such that for each ℓ the $m\times m$ -matrix $(c_\ell^{ij})_{i,j=1}^m$ is skew-symmetric. Consider the k-algebra homomorphism $r:\mathcal{D}\to\mathcal{D}(\mathcal{D}(k))$ determined by

$$r(\epsilon_\ell) = 1 \otimes \epsilon_\ell + \sum_{i,j=1}^m \epsilon_i \otimes \epsilon_j \otimes c_\ell^j$$

for $\ell=1,\ldots,m$. Then, on any \mathcal{D} -ring (R,e), e commutes on R with respect to r^e if and only if

$$[\partial_i,\partial_j]=c_1^{ij}\partial_1+\cdots+c_m^{ij}\partial_m$$

for $1 \le i, j \le m$.

Let $m \in \mathbb{N}$ and

$$\mathcal{D} = k[\epsilon_1, \dots, \epsilon_m]/(\epsilon_1, \dots, \epsilon_m)^2$$

with $\pi(\epsilon_i)=0$ and ranked basis $(1,\epsilon_1,\ldots,\epsilon_m)$. This recovers differential rings with m-many derivations. Let $(c_\ell^{ij})_{i,j,\ell=1}^m$ be a tuple from k such that for each ℓ the $m\times m$ -matrix $(c_\ell^{ij})_{i,j,\ell=1}^m$ is skew-symmetric. Consider the k-algebra homomorphism $r:\mathcal{D}\to\mathcal{D}(\mathcal{D}(k))$ determined by

$$r(\epsilon_\ell) = 1 \otimes \epsilon_\ell + \sum_{i,j=1}^m \epsilon_i \otimes \epsilon_j \otimes c_\ell^j$$

for $\ell=1,\ldots,m$. Then, on any \mathcal{D} -ring (R,e), e commutes on R with respect to r^e if and only if

$$[\partial_i,\partial_j]=c_1^{ij}\partial_1+\cdots+c_m^{ij}\partial_m$$

for $1 \le i, j \le m$.

Let $m \in \mathbb{N}$ and

$$\mathcal{D} = k[\epsilon_1, \ldots, \epsilon_m]/(\epsilon_1, \ldots, \epsilon_m)^2$$

with $\pi(\epsilon_i)=0$ and ranked basis $(1,\epsilon_1,\ldots,\epsilon_m)$. This recovers differential rings with m-many derivations. Let $(c_\ell^{ij})_{i,j,\ell=1}^m$ be a tuple from k such that for each ℓ the $m\times m$ -matrix $(c_\ell^{ij})_{i,j,\ell=1}^m$ is skew-symmetric. Consider the k-algebra homomorphism $r:\mathcal{D}\to\mathcal{D}(\mathcal{D}(k))$ determined by

$$r(\epsilon_\ell) = 1 \otimes \epsilon_\ell + \sum_{i,j=1}^m \epsilon_i \otimes \epsilon_j \otimes c_\ell^j$$

for $\ell=1,\ldots,m$. Then, on any \mathcal{D} -ring (R,e), e commutes on R with respect to r^e if and only if

$$[\partial_i,\partial_j]=c_1^{ij}\partial_1+\cdots+c_m^{ij}\partial_m$$

for $1 \leq i, j \leq m$.

Let $m \in \mathbb{N}$ and

$$\mathcal{D} = k[\epsilon_1, \ldots, \epsilon_m]/(\epsilon_1, \ldots, \epsilon_m)^2$$

with $\pi(\epsilon_i)=0$ and ranked basis $(1,\epsilon_1,\ldots,\epsilon_m)$. This recovers differential rings with m-many derivations. Let $(c_\ell^{ij})_{i,j,\ell=1}^m$ be a tuple from k such that for each ℓ the $m\times m$ -matrix $(c_\ell^{ij})_{i,j,\ell=1}^m$ is skew-symmetric. Consider the k-algebra homomorphism $r:\mathcal{D}\to\mathcal{D}(\mathcal{D}(k))$ determined by

$$r(\epsilon_\ell) = 1 \otimes \epsilon_\ell + \sum_{i,j=1}^m \epsilon_i \otimes \epsilon_j \otimes c_\ell^{ji}$$

for $\ell = 1, ..., m$. Then, on any \mathcal{D} -ring (R, e), e commutes on R with respect to r^e if and only if

$$[\partial_i,\partial_j]=c_1^{ij}\partial_1+\cdots+c_m^{ij}\partial_m$$

for $1 \le i, j \le m$.

Let $m \in \mathbb{N}$ and

$$\mathcal{D} = k[\epsilon_1, \dots, \epsilon_m]/(\epsilon_1, \dots, \epsilon_m)^2$$

with $\pi(\epsilon_i)=0$ and ranked basis $(1,\epsilon_1,\ldots,\epsilon_m)$. This recovers differential rings with m-many derivations. Let $(c_\ell^{ij})_{i,j,\ell=1}^m$ be a tuple from k such that for each ℓ the $m\times m$ -matrix $(c_\ell^{ij})_{i,j,\ell=1}^m$ is skew-symmetric. Consider the k-algebra homomorphism $r:\mathcal{D}\to\mathcal{D}(\mathcal{D}(k))$ determined by

$$r(\epsilon_\ell) = 1 \otimes \epsilon_\ell + \sum_{i,j=1}^m \epsilon_i \otimes \epsilon_j \otimes c_\ell^{ji}$$

for $\ell=1,\ldots,m$. Then, on any \mathcal{D} -ring (R,e), e commutes on R with respect to r^e if and only if

$$[\partial_i,\partial_j]=c_1^{ij}\partial_1+\cdots+c_m^{ij}\partial_m$$

for $1 \le i, j \le m$.

Assume char(k)=p>0. Let $n\in\mathbb{N}$ and $\mathcal{D}=k[\epsilon]/(\epsilon)^{p^n}$ with $\pi(\epsilon)=0$ and ranked basis $(1,\epsilon,\ldots,\epsilon^{p^n-1})$. This recovers rings equipped with a (p^n-1) -truncated Hasse-Schmidt derivation. Consider the k-algebra homomorphism $r:\mathcal{D}\to\mathcal{D}\otimes_k\mathcal{D}$ determined by

$$r(\epsilon) = \epsilon \otimes 1 + 1 \otimes \epsilon$$

(the fact that char(k)=p yields that r is indeed a homomorphism). Then, on any \mathcal{D} -ring (R,e), e commutes on R with respect to r^ι if and only if for $1\leq i,j\leq n$ we have

$$\partial_j \partial_i = \left\{ egin{array}{ll} inom{i+j}{i} \ \partial_{i+j} & i+j \leq p^n-1 \ 0 & i+j \geq p^n \end{array}
ight.$$

Assume char(k)=p>0. Let $n\in\mathbb{N}$ and $\mathcal{D}=k[\epsilon]/(\epsilon)^{p^n}$ with $\pi(\epsilon)=0$ and ranked basis $(1,\epsilon,\ldots,\epsilon^{p^n-1})$. This recovers rings equipped with a (p^n-1) -truncated Hasse-Schmidt derivation. Consider the k-algebra homomorphism $r:\mathcal{D}\to\mathcal{D}\otimes_k\mathcal{D}$ determined by

$$r(\epsilon) = \epsilon \otimes 1 + 1 \otimes \epsilon$$

(the fact that char(k) = p yields that r is indeed a homomorphism). Then, on any \mathcal{D} -ring (R, e), e commutes on R with respect to r^{ι} if and only if for $1 \leq i, j \leq n$ we have

$$\partial_j \partial_i = \left\{ egin{array}{ll} inom{i+j}{i} \ \partial_{i+j} & i+j \leq p^n-1 \ 0 & i+j \geq p^n \end{array}
ight.$$

Assume char(k)=p>0. Let $n\in\mathbb{N}$ and $\mathcal{D}=k[\epsilon]/(\epsilon)^{p^n}$ with $\pi(\epsilon)=0$ and ranked basis $(1,\epsilon,\ldots,\epsilon^{p^n-1})$. This recovers rings equipped with a (p^n-1) -truncated Hasse-Schmidt derivation. Consider the k-algebra homomorphism $r:\mathcal{D}\to\mathcal{D}\otimes_k\mathcal{D}$ determined by

$$r(\epsilon) = \epsilon \otimes 1 + 1 \otimes \epsilon$$

(the fact that char(k) = p yields that r is indeed a homomorphism). Then, on any \mathcal{D} -ring (R, e), e commutes on R with respect to r^{t} if and only if for $1 \leq i, j \leq n$ we have

$$\partial_j \partial_i = \left\{ \begin{array}{cc} \binom{i+j}{i} \partial_{i+j} & & i+j \leq p^n - 1 \\ 0 & & i+j \geq p^n \end{array} \right.$$

Assume char(k)=p>0. Let $n\in\mathbb{N}$ and $\mathcal{D}=k[\epsilon]/(\epsilon)^{p^n}$ with $\pi(\epsilon)=0$ and ranked basis $(1,\epsilon,\ldots,\epsilon^{p^n-1})$. This recovers rings equipped with a (p^n-1) -truncated Hasse-Schmidt derivation. Consider the k-algebra homomorphism $r:\mathcal{D}\to\mathcal{D}\otimes_k\mathcal{D}$ determined by

$$r(\epsilon) = \epsilon \otimes 1 + 1 \otimes \epsilon$$

(the fact that char(k) = p yields that r is indeed a homomorphism). Then, on any \mathcal{D} -ring (R, e), e commutes on R with respect to r^{ι} if and only if for $1 \leq i, j \leq n$ we have

$$\partial_j \partial_i = \left\{ egin{array}{ll} inom{i+j} & i+j \leq p^n-1 \ 0 & i+j \geq p^n \end{array}
ight.$$

Let \mathfrak{m} be the maximal ideal of \mathcal{D} and let $d < \omega$ be minimal such that $\mathfrak{m}^{d+1} = 0$.

We say that a homomorphism $r: \mathcal{D} \to \mathcal{D} \otimes_k \mathcal{D}$ is of Lie-commutation type if there is a tuple $(c_\ell^{ij})_{i,i,\ell=1}^m$ from k such that

$$r(\epsilon_\ell) = \epsilon_\ell \otimes 1 + \sum_{i,j=1}^m \epsilon_i \otimes \epsilon_j \otimes c_\ell^j$$

and $c_\ell^{ji}=0$ unless $\epsilon_i,\epsilon_j\in\mathfrak{m}^d$. We call the tuple (c_ℓ^{ji}) the *Lie-coefficients* of r.

Let r be of Lie-commutation type. Then, on any \mathcal{D} -ring (R, e), e commutes on R with respect to r^e if and only if

$$[\partial_i,\partial_j]=c_1^{ij}\partial_1+\cdots+c_m^{ij}\partial_m$$

Let \mathfrak{m} be the maximal ideal of \mathcal{D} and let $d < \omega$ be minimal such that $\mathfrak{m}^{d+1} = 0$. We say that a homomorphism $r : \mathcal{D} \to \mathcal{D} \otimes_k \mathcal{D}$ is of Lie-commutation type if there is a tuple $(c_\ell^{ij})_{i,i,\ell=1}^m$ from k such that

$$r(\epsilon_\ell) = \epsilon_\ell \otimes 1 + \sum_{i,j=1}^m \epsilon_i \otimes \epsilon_j \otimes c_\ell^{ji}$$

and $c_{\ell}^{ii}=0$ unless $\epsilon_i,\epsilon_j\in\mathfrak{m}^d$. We call the tuple (c_{ℓ}^{ii}) the Lie-coefficients of r.

Let r be of Lie-commutation type. Then, on any \mathcal{D} -ring (R, e), e commutes on R with respect to r^e if and only if

$$[\partial_i,\partial_j]=c_1^{ij}\partial_1+\cdots+c_m^{ij}\partial_m$$

Let $\mathfrak m$ be the maximal ideal of $\mathcal D$ and let $d<\omega$ be minimal such that $\mathfrak m^{d+1}=0$. We say that a homomorphism $r:\mathcal D\to\mathcal D\otimes_k\mathcal D$ is of Lie-commutation type if there is a tuple $(c_\ell^{ij})_{i,j,\ell=1}^m$ from k such that

$$r(\epsilon_\ell) = \epsilon_\ell \otimes 1 + \sum_{i,j=1}^m \epsilon_i \otimes \epsilon_j \otimes c_\ell^{ji}$$

and $c_\ell^{ji}=0$ unless $\epsilon_i,\epsilon_j\in\mathfrak{m}^d$. We call the tuple (c_ℓ^{ji}) the *Lie-coefficients* of r.

Let r be of Lie-commutation type. Then, on any \mathcal{D} -ring (R, e), e commutes on R with respect to r^e if and only if

$$[\partial_i,\partial_j]=c_1^{ij}\partial_1+\cdots+c_m^{ij}\partial_m$$

Let \mathfrak{m} be the maximal ideal of \mathcal{D} and let $d < \omega$ be minimal such that $\mathfrak{m}^{d+1} = 0$. We say that a homomorphism $r : \mathcal{D} \to \mathcal{D} \otimes_k \mathcal{D}$ is of Lie-commutation type if there is a tuple $(c_\ell^{ij})_{i,i,\ell=1}^m$ from k such that

$$r(\epsilon_\ell) = \epsilon_\ell \otimes 1 + \sum_{i,j=1}^m \epsilon_i \otimes \epsilon_j \otimes c_\ell^{ji}$$

and $c_{\ell}^{ji}=0$ unless $\epsilon_i,\epsilon_j\in\mathfrak{m}^d$. We call the tuple (c_{ℓ}^{ji}) the *Lie-coefficients* of r.

Let r be of Lie-commutation type. Then, on any \mathcal{D} -ring (R,e), e commutes on R with respect to r^e if and only if

$$[\partial_i,\partial_j]=c_1^{ij}\partial_1+\cdots+c_m^{ij}\partial_m$$

HS-commutativity

We say $r: \mathcal{D} \to \mathcal{D} \otimes_k \mathcal{D}$ is of HS-iteration if there is a tuple $(c_\ell^{ij})_{i,i,\ell=1}^m$ from k such that

$$r(\epsilon_\ell) = \epsilon_\ell \otimes 1 + 1 \otimes \epsilon_\ell + \sum_{i,j=1}^m \epsilon_i \otimes \epsilon_j \otimes c_\ell^{ij}.$$

We call the tuple (c_ℓ^{ij}) the HS-coefficients of r.

Let r be of HS-iteration type. Then, on any \mathcal{D} -ring (R,e), e commutes on R with respect to r^{ι} if and only if

$$\partial_i \partial_j = c_1^{ij} \partial_1 + \dots + c_m^{ij} \partial_m$$
, for all $1 \le i, j \le m$,

HS-commutativity

We say $r: \mathcal{D} \to \mathcal{D} \otimes_k \mathcal{D}$ is of HS-iteration if there is a tuple $(c_\ell^{ij})_{i,i,\ell=1}^m$ from k such that

$$r(\epsilon_\ell) = \epsilon_\ell \otimes 1 + 1 \otimes \epsilon_\ell + \sum_{i,j=1}^m \epsilon_i \otimes \epsilon_j \otimes c_\ell^{ij}.$$

We call the tuple (c_{ℓ}^{ij}) the HS-coefficients of r.

Let r be of HS-iteration type. Then, on any \mathcal{D} -ring (R,e), e commutes on R with respect to r^{ι} if and only if

 $\partial_i \partial_j = c_1^{ij} \partial_1 + \dots + c_m^{ij} \partial_m$, for all $1 \le i, j \le m$

HS-commutativity

We say $r: \mathcal{D} \to \mathcal{D} \otimes_k \mathcal{D}$ is of HS-iteration if there is a tuple $(c_\ell^{ij})_{i,j,\ell=1}^m$ from k such that

$$r(\epsilon_\ell) = \epsilon_\ell \otimes 1 + 1 \otimes \epsilon_\ell + \sum_{i,j=1}^m \epsilon_i \otimes \epsilon_j \otimes c_\ell^{ij}.$$

We call the tuple (c_{ℓ}^{ij}) the HS-coefficients of r.

Let r be of HS-iteration type. Then, on any \mathcal{D} -ring (R,e), e commutes on R with respect to r^{ι} if and only if

$$\partial_i \partial_j = c_1^{ij} \partial_1 + \dots + c_m^{ij} \partial_m, \quad \text{ for all } 1 \leq i, j \leq m,$$

Let r be of HS-iteration type. Suppose there exists a \mathcal{D}^r -ring (R, e) where the operators $(\partial_1, \ldots, \partial_m)$ are k-linearly independent (as functions $R \to R$).

Then $\partial_i \partial_j \partial_k = \sum_{\ell} c_{\ell}^{ij} \partial_{\ell} \partial_k = \sum_r \left(\sum_{\ell} c_{\ell}^{ij} c_r^{\ell k} \right) \partial_r$. On the other hand,

$$\partial_i\partial_j\partial_k=\sum_\ell\partial_i(c_\ell^{jk}\partial_\ell)=\sum_\ell c_\ell^{jk}\partial_i\partial_\ell=\sum_\ell\sum_r c_\ell^{jk}c_r^{i\ell}\partial_r$$

As $(\partial_1, \ldots, \partial_m)$ are k-linearly independent, comparing coefficients on both sides yields that $\sum_{\ell} c_{\ell}^{ij} c_{r}^{\ell k} = \sum_{\ell} c_{\ell}^{jk} c_{r}^{i\ell}$ for all $1 \leq i, j, k, r \leq m$.

Definition

$$\sum_\ell c_\ell^{ij} c_r^{\ell k} = \sum_\ell c_\ell^{jk} c_r^{jk}$$

Let r be of HS-iteration type. Suppose there exists a \mathcal{D}^r -ring (R, e) where the operators $(\partial_1, \ldots, \partial_m)$ are k-linearly independent (as functions $R \to R$).

Then $\partial_i \partial_j \partial_k = \sum_{\ell} c^{ij}_{\ell} \partial_\ell \partial_k = \sum_r \left(\sum_{\ell} c^{ij}_{\ell} c^{\ell k}_r \right) \partial_r$. On the other hand,

$$\partial_i \partial_j \partial_k = \sum_\ell \partial_i (c_\ell^{jk} \partial_\ell) = \sum_\ell c_\ell^{jk} \partial_i \partial_\ell = \sum_\ell \sum_r c_\ell^{jk} c_r^{i\ell} \partial_r$$

As $(\partial_1, \ldots, \partial_m)$ are k-linearly independent, comparing coefficients on both sides yields that $\sum_{\ell} c_{\ell}^{ij} c_{r}^{\ell k} = \sum_{\ell} c_{\ell}^{jk} c_{r}^{i\ell}$ for all $1 \leq i, j, k, r \leq m$.

Definition

$$\sum_\ell c^{ij}_\ell c^{\ell k}_r = \sum_\ell c^{jk}_\ell c^{i\ell}_r$$

Let r be of HS-iteration type. Suppose there exists a \mathcal{D}^r -ring (R, e) where the operators $(\partial_1, \ldots, \partial_m)$ are k-linearly independent (as functions $R \to R$).

Then $\partial_i \partial_j \partial_k = \sum_\ell c_\ell^{ij} \partial_\ell \partial_k = \sum_r \left(\sum_\ell c_\ell^{ij} c_r^{\ell k} \right) \partial_r$. On the other hand,

$$\partial_i\partial_j\partial_k=\sum_\ell\partial_i(c_\ell^{jk}\partial_\ell)=\sum_\ell c_\ell^{jk}\partial_i\partial_\ell=\sum_\ell\sum_r c_\ell^{jk}c_r^{i\ell}\partial_r$$

As $(\partial_1, \ldots, \partial_m)$ are k-linearly independent, comparing coefficients on both sides yields that $\sum_{\ell} c_{\ell}^{ij} c_{r}^{\ell k} = \sum_{\ell} c_{\ell}^{ik} c_{r}^{i\ell}$ for all $1 \leq i, j, k, r \leq m$.

Definition

$$\sum_{\ell} c^{ij}_{\ell} c^{\ell k}_r = \sum_{\ell} c^{jk}_{\ell} c^{jk}_r$$

Let r be of HS-iteration type. Suppose there exists a \mathcal{D}^r -ring (R, e) where the operators $(\partial_1, \ldots, \partial_m)$ are k-linearly independent (as functions $R \to R$).

Then $\partial_i \partial_j \partial_k = \sum_\ell c_\ell^{ij} \partial_\ell \partial_k = \sum_r \left(\sum_\ell c_\ell^{ij} c_r^{\ell k} \right) \partial_r$. On the other hand,

$$\partial_i\partial_j\partial_k = \sum_\ell \partial_i (c_\ell^{jk}\partial_\ell) = \sum_\ell c_\ell^{jk}\partial_i\partial_\ell = \sum_\ell \sum_r c_\ell^{jk}c_r^{i\ell}\partial_r$$

As $(\partial_1, \ldots, \partial_m)$ are k-linearly independent, comparing coefficients on both sides yields that $\sum_{\ell} c_{\ell}^{ij} c_{r}^{\ell k} = \sum_{\ell} c_{\ell}^{ik} c_{r}^{i\ell}$ for all $1 \leq i, j, k, r \leq m$.

Definition

$$\sum_{\ell} c^{ij}_{\ell} c^{\ell k}_r = \sum_{\ell} c^{jk}_{\ell} c^{i\ell}_r$$

Let r be of HS-iteration type. Suppose there exists a \mathcal{D}^r -ring (R, e) where the operators $(\partial_1, \ldots, \partial_m)$ are k-linearly independent (as functions $R \to R$).

Then $\partial_i \partial_j \partial_k = \sum_\ell c_\ell^{ij} \partial_\ell \partial_k = \sum_r \left(\sum_\ell c_\ell^{ij} c_r^{\ell k} \right) \partial_r$. On the other hand,

$$\partial_i\partial_j\partial_k = \sum_\ell \partial_i (c_\ell^{jk}\partial_\ell) = \sum_\ell c_\ell^{jk}\partial_i\partial_\ell = \sum_\ell \sum_r c_\ell^{jk}c_r^{i\ell}\partial_r$$

As $(\partial_1, \ldots, \partial_m)$ are k-linearly independent, comparing coefficients on both sides yields that $\sum_{\ell} c_{\ell}^{ij} c_{r}^{\ell k} = \sum_{\ell} c_{\ell}^{jk} c_{r}^{i\ell}$ for all $1 \leq i, j, k, r \leq m$.

Definition

$$\sum_\ell c^{ij}_\ell c^{\ell k}_r = \sum_\ell c^{jk}_\ell c^{i\ell}_r$$

Let r be of HS-iteration type. Suppose there exists a \mathcal{D}^r -ring (R, e) where the operators $(\partial_1, \ldots, \partial_m)$ are k-linearly independent (as functions $R \to R$).

Then $\partial_i \partial_j \partial_k = \sum_\ell c_\ell^{ij} \partial_\ell \partial_k = \sum_r \left(\sum_\ell c_\ell^{ij} c_r^{\ell k} \right) \partial_r$. On the other hand,

$$\partial_i\partial_j\partial_k = \sum_\ell \partial_i (c_\ell^{jk}\partial_\ell) = \sum_\ell c_\ell^{jk}\partial_i\partial_\ell = \sum_\ell \sum_r c_\ell^{jk}c_r^{i\ell}\partial_r$$

As $(\partial_1, \ldots, \partial_m)$ are k-linearly independent, comparing coefficients on both sides yields that $\sum_{\ell} c_{\ell}^{ij} c_{r}^{\ell k} = \sum_{\ell} c_{\ell}^{jk} c_{r}^{i\ell}$ for all $1 \leq i, j, k, r \leq m$.

Definition

$$\sum_\ell c^{ij}_\ell c^{\ell k}_r = \sum_\ell c^{jk}_\ell c^{i\ell}_r$$

Jacobi condition

For similar reasons, we introduce the following definition.

Definition

Let r be of Lie type. We say r is Jacobi, if for each ℓ , the $m \times m$ matrix $(c_{\ell}^{ij})_{i,j=1}^{m}$ is skew-symmetric, and for each $1 \leq i, j, k, r \leq m$ we have

$$\sum_{p=1}^{m} \left(c_{p}^{ij} c_{r}^{pk} + c_{p}^{ki} c_{r}^{pj} + c_{p}^{jk} c_{r}^{pi} \right) = 0$$

(this is a form of the Jacobi identity)

Remark

Both the iterativity and the Jacobi conditions become more complicated when we do not assume that c_ℓ^{ij} are in k (hence constant for all ∂_r).

For operators $e_1: R \to \mathcal{D}_1(R)$ and $e_2: R \to \mathcal{D}_2(R)$, we say that (e_1, e_2) Γ -commutes if

- e_1 commutes with respect to $r_1^{e_1}$,
- e_2 commutes with respect to r_2^ι , and
- $\partial_{1,i}\partial_{2,j} = \partial_{2,j}\partial_{1,i}$ for all $1 \leq i \leq m_1$ and $1 \leq j \leq m_2$.

- 1. Let Γ be Jacobi-associative. If char(k)=0, then the theory of fields with Γ -commuting $(\mathcal{D}_1,\mathcal{D}_2)$ -operators is companionable. In positive characteristic the same is true if the maximal ideal of \mathcal{D}_i coincides with the kernel of the Frobenius homomorphism $Fr:\mathcal{D}_i\to\mathcal{D}_i$ for i=1,2.
- 2. The model companion is a stable theory. In characteristic 0 it is |k|-stable, and satisfies Zilber's Dichotomy for finite-dimensional types:
- if a finite-dimensional type of U-rank 1 is not locally modular, then it is non-orthogonal to the field of constants $C := \{x : (\forall u, i)(\partial_{u,i}(x) = 0)\}.$

For operators $e_1:R \to \mathcal{D}_1(R)$ and $e_2:R \to \mathcal{D}_2(R)$, we say that (e_1,e_2) Γ -commutes if

- e_1 commutes with respect to $r_1^{e_1}$,
- ullet e_2 commutes with respect to r_2^ι , and
- $\partial_{1,i}\partial_{2,j}=\partial_{2,j}\partial_{1,i}$ for all $1\leq i\leq m_1$ and $1\leq j\leq m_2$.

- 1. Let Γ be Jacobi-associative. If char(k)=0, then the theory of fields with Γ -commuting $(\mathcal{D}_1,\mathcal{D}_2)$ -operators is companionable. In positive characteristic the same is true if the maximal ideal of \mathcal{D}_i coincides with the kernel of the Frobenius homomorphism $Fr:\mathcal{D}_i\to\mathcal{D}_i$ for i=1,2. 2. The model companion is a stable theory. In characteristic 0 it is |k|-stable, and satisfies
- 2. The model companion is a stable theory. In characteristic 0 it is |k|-stable, and satisfies Zilber's Dichotomy for finite-dimensional types:
- if a finite-dimensional type of U-rank 1 is not locally modular, then it is non-orthogonal to the field of constants $C := \{x : (\forall u, i)(\partial_{u,i}(x) = 0)\}.$

For operators $e_1:R \to \mathcal{D}_1(R)$ and $e_2:R \to \mathcal{D}_2(R)$, we say that (e_1,e_2) Γ -commutes if

- e_1 commutes with respect to $r_1^{e_1}$,
- e_2 commutes with respect to r_2^{ι} , and
- $\partial_{1,i}\partial_{2,j}=\partial_{2,j}\partial_{1,i}$ for all $1\leq i\leq m_1$ and $1\leq j\leq m_2$.

- 1. Let Γ be Jacobi-associative. If char(k)=0, then the theory of fields with Γ -commuting $(\mathcal{D}_1,\mathcal{D}_2)$ -operators is companionable. In positive characteristic the same is true if the maximal ideal of \mathcal{D}_i coincides with the kernel of the Frobenius homomorphism $Fr:\mathcal{D}_i\to\mathcal{D}_i$ for i=1,2. 2. The model companion is a stable theory. In characteristic 0 it is |k|-stable, and satisfies Zilber's Dichotomy for finite-dimensional types:
- if a finite-dimensional type of U-rank 1 is not locally modular, then it is non-orthogonal to the field of constants $C := \{x : (\forall u, i)(\partial_{u,i}(x) = 0)\}.$

For operators $e_1:R \to \mathcal{D}_1(R)$ and $e_2:R \to \mathcal{D}_2(R)$, we say that (e_1,e_2) Γ -commutes if

- e_1 commutes with respect to $r_1^{e_1}$,
- ullet e_2 commutes with respect to r_2^ι , and
- $\partial_{1,i}\partial_{2,j}=\partial_{2,j}\partial_{1,i}$ for all $1\leq i\leq m_1$ and $1\leq j\leq m_2$.

- 1. Let Γ be Jacobi-associative. If char(k)=0, then the theory of fields with Γ -commuting $(\mathcal{D}_1,\mathcal{D}_2)$ -operators is companionable. In positive characteristic the same is true if the maximal ideal of \mathcal{D}_i coincides with the kernel of the Frobenius homomorphism $Fr:\mathcal{D}_i\to\mathcal{D}_i$ for i=1,2.
- 2. The model companion is a stable theory. In characteristic 0 it is |k|-stable, and satisfies Zilber's Dichotomy for finite-dimensional types:
- if a finite-dimensional type of U-rank 1 is not locally modular, then it is non-orthogonal to the field of constants $C := \{x : (\forall u, i)(\partial_{u,i}(x) = 0)\}.$

For operators $e_1:R \to \mathcal{D}_1(R)$ and $e_2:R \to \mathcal{D}_2(R)$, we say that (e_1,e_2) Γ -commutes if

- e_1 commutes with respect to $r_1^{e_1}$,
- e_2 commutes with respect to r_2^ι , and
- $\partial_{1,i}\partial_{2,j}=\partial_{2,j}\partial_{1,i}$ for all $1\leq i\leq m_1$ and $1\leq j\leq m_2$.

Theorem (D., Leon Sanchez 2025)

- 1. Let Γ be Jacobi-associative. If char(k)=0, then the theory of fields with Γ -commuting $(\mathcal{D}_1,\mathcal{D}_2)$ -operators is companionable. In positive characteristic the same is true if the maximal ideal of \mathcal{D}_i coincides with the kernel of the Frobenius homomorphism $Fr: \mathcal{D}_i \to \mathcal{D}_i$ for i=1,2.
- 2. The model companion is a stable theory. In characteristic 0 it is |k|-stable, and satisfies Zilber's Dichotomy for finite-dimensional types:

if a finite-dimensional type of U-rank 1 is not locally modular, then it is non-orthogonal to the field of constants $C := \{x : (\forall u, i)(\partial_{u,i}(x) = 0)\}.$

For operators $e_1:R \to \mathcal{D}_1(R)$ and $e_2:R \to \mathcal{D}_2(R)$, we say that (e_1,e_2) Γ -commutes if

- e_1 commutes with respect to $r_1^{e_1}$,
- e_2 commutes with respect to r_2^ι , and
- $\partial_{1,i}\partial_{2,j}=\partial_{2,j}\partial_{1,i}$ for all $1\leq i\leq m_1$ and $1\leq j\leq m_2$.

- 1. Let Γ be Jacobi-associative. If char(k)=0, then the theory of fields with Γ -commuting $(\mathcal{D}_1,\mathcal{D}_2)$ -operators is companionable. In positive characteristic the same is true if the maximal ideal of \mathcal{D}_i coincides with the kernel of the Frobenius homomorphism $Fr:\mathcal{D}_i\to\mathcal{D}_i$ for i=1,2.
- 2. The model companion is a stable theory. In characteristic 0 it is |k|-stable, and satisfies Zilber's Dichotomy for finite-dimensional types:
- if a finite-dimensional type of U-rank 1 is not locally modular, then it is non-orthogonal to the field of constants $C := \{x : (\forall u, i)(\partial_{u,i}(x) = 0)\}.$

Fact by Pierce repeated

If a kernel L of height 2r has no minimal separable leader of length bigger than r, then L has a differential kernel extension of arbitrary height $s \ge 2r$.

The proof of this statement is by inductive construction of partial kernels $k(a_{(\ell_1,\ell_2)})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$ satisfying the differential condition:

If a polynomial f over k vanishes on $(a_{(\ell_1,\ell_2)})_{(\ell_1,\ell_2)\prec(k_1-1,k_2)}$, then the polynomial $\partial_1(f)$ vanishes on $k(a_{(\ell_1,\ell_2)})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$, and likewise for ∂_2 .

While the notion of a differential kernel has a natural analogue in our context of Γ -commuting operators, the above condition (*) for "partial" kernel $(a_{(\ell_1,\ell_2)})_{(\ell_1,\ell_2)\prec(k_1-1,k_2)}$ does not seem to have any reasonable analogue in our context.

Hence, we do the kernel construction differently - given a kernel of length s, we first we construct some "approximation" of a kernel of length r+1 that induces **non-** Γ -**commuting** operators, on which we then perform suitable a sequence of specialisations that eventually yield Γ -commutativity.

Fact by Pierce repeated

If a kernel L of height 2r has no minimal separable leader of length bigger than r, then L has a differential kernel extension of arbitrary height $s \ge 2r$.

The proof of this statement is by inductive construction of partial kernels $k(a_{(\ell_1,\ell_2)})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$ satisfying the differential condition:

If a polynomial f over k vanishes on $(a_{(\ell_1,\ell_2)})_{(\ell_1,\ell_2)\prec(k_1-1,k_2)}$, then the polynomial $\partial_1(f)$ vanishes on $k(a_{(\ell_1,\ell_2)})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$, and likewise for ∂_2 .

While the notion of a differential kernel has a natural analogue in our context of Γ -commuting operators, the above condition (*) for "partial" kernel $(a_{(\ell_1,\ell_2)})_{(\ell_1,\ell_2)\prec(k_1-1,k_2)}$ does not seem to have any reasonable analogue in our context.

Hence, we do the kernel construction differently - given a kernel of length s, we first we construct some "approximation" of a kernel of length r+1 that induces **non**- Γ -**commuting** operators, on which we then perform suitable a sequence of specialisations that eventually yield Γ -commutativity.

Fact by Pierce repeated

If a kernel L of height 2r has no minimal separable leader of length bigger than r, then L has a differential kernel extension of arbitrary height $s \ge 2r$.

The proof of this statement is by inductive construction of partial kernels $k(a_{(\ell_1,\ell_2)})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$ satisfying the differential condition:

If a polynomial f over k vanishes on $(a_{(\ell_1,\ell_2)})_{(\ell_1,\ell_2)\prec(k_1-1,k_2)}$, then the polynomial $\partial_1(f)$ vanishes on $k(a_{(\ell_1,\ell_2)})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$, and likewise for ∂_2 .

While the notion of a differential kernel has a natural analogue in our context of Γ -commuting operators, the above condition (*) for "partial" kernel $(a_{(\ell_1,\ell_2)})_{(\ell_1,\ell_2)\prec(k_1-1,k_2)}$ does not seem to have any reasonable analogue in our context.

Hence, we do the kernel construction differently - given a kernel of length s, we first we construct some "approximation" of a kernel of length r+1 that induces **non-** Γ -**commuting** operators, on which we then perform suitable a sequence of specialisations that eventually yield Γ -commutativity.

Fact by Pierce repeated

If a kernel L of height 2r has no minimal separable leader of length bigger than r, then L has a differential kernel extension of arbitrary height $s \ge 2r$.

The proof of this statement is by inductive construction of partial kernels $k(a_{(\ell_1,\ell_2)})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$ satisfying the differential condition:

If a polynomial
$$f$$
 over k vanishes on $(a_{(\ell_1,\ell_2)})_{(\ell_1,\ell_2)\prec(k_1-1,k_2)}$, then the polynomial $\partial_1(f)$ vanishes on $k(a_{(\ell_1,\ell_2)})_{(\ell_1,\ell_2)\prec(k_1,k_2)}$, and likewise for ∂_2 .

While the notion of a differential kernel has a natural analogue in our context of Γ -commuting operators, the above condition (*) for "partial" kernel $(a_{(\ell_1,\ell_2)})_{(\ell_1,\ell_2)\prec(k_1-1,k_2)}$ does not seem to have any reasonable analogue in our context.

Hence, we do the kernel construction differently - given a kernel of length s, we first we construct some "approximation" of a kernel of length r+1 that induces **non-** Γ -**commuting** operators, on which we then perform suitable a sequence of specialisations that eventually yield Γ -commutativity.

Let $r, n \in \mathbb{N}$ and $\mathfrak{n} := \{1, \ldots, n\}$. A $\underline{\mathcal{D}}$ -kernel of length r (in n-variables) over (K, \underline{e}) consists of a field extension of the form

$$L_r = K(a_t^{\xi} : (\xi, t) \in \mathfrak{d}^{\leq r} \times \mathfrak{n})$$

together with a $\underline{\mathcal{D}}$ -operator $\underline{e}: L_{r-1} \to \underline{\mathcal{D}}(L_r)$ extending that on K such that for each $u \in \{1,2\}$ and $\xi \in \mathfrak{d}^{\leq r-1}$ we have

$$e_u(a_t^{\xi}) = \epsilon_{u,0} a_t^{\xi} + \epsilon_{u,1} a_t^{((u,1),\xi)} + \cdots + \epsilon_{i,m_u} a_t^{((u,m_u),\xi)},$$

In other words, $\partial_{u,j}(a_t^{\xi})=a_t^{((u,j),\xi)}$. We set $L_0=K$ and normally assume that $r\geq 2$. Note that $\underline{e}(L_{r-2})\subseteq \underline{\mathcal{D}}(L_{r-1})$.

Let (L_r, \underline{e}) be a $\underline{\mathcal{D}}$ -kernel. When $r \geq 2$, we say that the $\underline{\mathcal{D}}$ -kernel has Γ -commuting operators if \underline{e} commutes with respect to Γ . In this case we also say that L_r is a $\underline{\mathcal{D}}^{\Gamma}$ -kernel.

We set $\mathbb{N}_0^0 = \mathbb{N}_0^{m_1} \times \{(\xi_1, \dots, \xi_{m_2}) \in \mathbb{N}_0^{m_2} : \xi_1 + \dots + \xi_{m_2} \leq 1\}$. We equip $\mathbb{N}_0^0 \times \mathfrak{n}$ with two orders: for (α, t) and (β, t) in $\mathbb{N}_0^0 \times \mathfrak{n}$ we set $(\alpha, t) \leq (\beta, t')$ if t = t' and $\alpha \leq \beta$ in the product order of $\mathbb{N}^{m_1 + m_2} \supseteq \mathbb{N}_0^0$; on the other hand, $(\alpha, t) \trianglelefteq (\beta, t')$ when

$$(\alpha, t, |\alpha|) \leq_{\mathsf{rlex}} (\beta, t', |\beta|)$$

where \leq_{rlex} denotes the right-lexicographic order on $\mathbb{N}_0^{m_1+m_2+2}\supseteq\mathbb{N}_0^\mathfrak{d}\times\mathbb{N}_0\times\mathbb{N}_0$ and $|\alpha|$ denotes the sum of the entries of α .

Let $r, n \in \mathbb{N}$ and $\mathfrak{n} := \{1, \ldots, n\}$. A $\underline{\mathcal{D}}$ -kernel of length r (in n-variables) over (K, \underline{e}) consists of a field extension of the form

$$L_r = K(a_t^{\xi} : (\xi, t) \in \mathfrak{d}^{\leq r} \times \mathfrak{n})$$

together with a $\underline{\mathcal{D}}$ -operator $\underline{e}: L_{r-1} \to \underline{\mathcal{D}}(L_r)$ extending that on K such that for each $u \in \{1,2\}$ and $\xi \in \mathfrak{d}^{\leq r-1}$ we have

$$e_u(a_t^{\xi}) = \epsilon_{u,0} a_t^{\xi} + \epsilon_{u,1} a_t^{((u,1),\xi)} + \cdots + \epsilon_{i,m_u} a_t^{((u,m_u),\xi)},$$

In other words, $\partial_{u,j}(a_t^{\xi}) = a_t^{((u,j),\xi)}$. We set $L_0 = K$ and normally assume that $r \geq 2$. Note that $\underline{e}(L_{r-2}) \subseteq \underline{\mathcal{D}}(L_{r-1})$.

Let (L_r, \underline{e}) be a $\underline{\mathcal{D}}$ -kernel. When $r \geq 2$, we say that the $\underline{\mathcal{D}}$ -kernel has Γ -commuting operators if \underline{e} commutes with respect to Γ . In this case we also say that L_r is a $\underline{\mathcal{D}}^{\Gamma}$ -kernel.

We set $\mathbb{N}_0^0 = \mathbb{N}_0^{m_1} \times \{(\xi_1, \dots, \xi_{m_2}) \in \mathbb{N}_0^{m_2} : \xi_1 + \dots + \xi_{m_2} \leq 1\}$. We equip $\mathbb{N}_0^0 \times \mathfrak{n}$ with two orders: for (α, t) and (β, t) in $\mathbb{N}_0^0 \times \mathfrak{n}$ we set $(\alpha, t) \leq (\beta, t')$ if t = t' and $\alpha \leq \beta$ in the product order of $\mathbb{N}^{m_1 + m_2} \supseteq \mathbb{N}_0^0$; on the other hand, $(\alpha, t) \leq (\beta, t')$ when

$$(\alpha, t, |\alpha|) \leq_{\mathsf{rlex}} (\beta, t', |\beta|)$$

where \leq_{rlex} denotes the right-lexicographic order on $\mathbb{N}_0^{m_1+m_2+2}\supseteq\mathbb{N}_0^\mathfrak{d}\times\mathbb{N}_0\times\mathbb{N}_0$ and $|\alpha|$ denotes the sum of the entries of α .

Let $r, n \in \mathbb{N}$ and $\mathfrak{n} := \{1, \ldots, n\}$. A $\underline{\mathcal{D}}$ -kernel of length r (in n-variables) over (K, \underline{e}) consists of a field extension of the form

$$L_r = K(a_t^{\xi} : (\xi, t) \in \mathfrak{d}^{\leq r} \times \mathfrak{n})$$

together with a $\underline{\mathcal{D}}$ -operator $\underline{e}: L_{r-1} \to \underline{\mathcal{D}}(L_r)$ extending that on K such that for each $u \in \{1,2\}$ and $\xi \in \mathfrak{d}^{\leq r-1}$ we have

$$e_{u}(a_{t}^{\xi}) = \epsilon_{u,0} a_{t}^{\xi} + \epsilon_{u,1} a_{t}^{((u,1),\xi)} + \cdots + \epsilon_{i,m_{u}} a_{t}^{((u,m_{u}),\xi)},$$

In other words, $\partial_{u,j}(a_t^{\xi}) = a_t^{((u,j),\xi)}$. We set $L_0 = K$ and normally assume that $r \geq 2$. Note that $\underline{e}(L_{r-2}) \subseteq \underline{\mathcal{D}}(L_{r-1})$.

Let (L_r, \underline{e}) be a $\underline{\mathcal{D}}$ -kernel. When $r \geq 2$, we say that the $\underline{\mathcal{D}}$ -kernel has Γ -commuting operators if \underline{e} commutes with respect to Γ . In this case we also say that L_r is a $\underline{\mathcal{D}}^{\Gamma}$ -kernel.

We set $\mathbb{N}_0^0 = \mathbb{N}_0^{m_1} \times \{(\xi_1, \dots, \xi_{m_2}) \in \mathbb{N}_0^{m_2} : \xi_1 + \dots + \xi_{m_2} \leq 1\}$. We equip $\mathbb{N}_0^0 \times \mathfrak{n}$ with two orders: for (α, t) and (β, t) in $\mathbb{N}_0^0 \times \mathfrak{n}$ we set $(\alpha, t) \leq (\beta, t')$ if t = t' and $\alpha \leq \beta$ in the product order of $\mathbb{N}^{m_1 + m_2} \supseteq \mathbb{N}_0^0$; on the other hand, $(\alpha, t) \trianglelefteq (\beta, t')$ when

$$(\alpha, t, |\alpha|) \leq_{\mathsf{rlex}} (\beta, t', |\beta|)$$

where \leq_{rlex} denotes the right-lexicographic order on $\mathbb{N}_0^{m_1+m_2+2}\supseteq\mathbb{N}_0^\mathfrak{d}\times\mathbb{N}_0\times\mathbb{N}_0$ and $|\alpha|$ denotes the sum of the entries of α .

Let $r, n \in \mathbb{N}$ and $\mathfrak{n} := \{1, \ldots, n\}$. A $\underline{\mathcal{D}}$ -kernel of length r (in n-variables) over (K, \underline{e}) consists of a field extension of the form

$$L_r = K(a_t^{\xi} : (\xi, t) \in \mathfrak{d}^{\leq r} \times \mathfrak{n})$$

together with a $\underline{\mathcal{D}}$ -operator $\underline{e}: L_{r-1} \to \underline{\mathcal{D}}(L_r)$ extending that on K such that for each $u \in \{1,2\}$ and $\xi \in \mathfrak{d}^{\leq r-1}$ we have

$$e_u(a_t^{\xi}) = \epsilon_{u,0} a_t^{\xi} + \epsilon_{u,1} a_t^{((u,1),\xi)} + \cdots + \epsilon_{i,m_u} a_t^{((u,m_u),\xi)},$$

In other words, $\partial_{u,j}(a_t^{\xi}) = a_t^{((u,j),\xi)}$. We set $L_0 = K$ and normally assume that $r \geq 2$. Note that $\underline{e}(L_{r-2}) \subseteq \underline{\mathcal{D}}(L_{r-1})$.

Let (L_r, \underline{e}) be a $\underline{\mathcal{D}}$ -kernel. When $r \geq 2$, we say that the $\underline{\mathcal{D}}$ -kernel has Γ -commuting operators if \underline{e} commutes with respect to Γ . In this case we also say that L_r is a $\underline{\mathcal{D}}^{\Gamma}$ -kernel.

We set $\mathbb{N}_0^0 = \mathbb{N}_0^{m_1} \times \{(\xi_1, \dots, \xi_{m_2}) \in \mathbb{N}_0^{m_2} : \xi_1 + \dots + \xi_{m_2} \leq 1\}$. We equip $\mathbb{N}_0^0 \times \mathfrak{n}$ with two orders: for (α, t) and (β, t) in $\mathbb{N}_0^0 \times \mathfrak{n}$ we set $(\alpha, t) \leq (\beta, t')$ if t = t' and $\alpha \leq \beta$ in the product order of $\mathbb{N}^{m_1 + m_2} \supseteq \mathbb{N}_0^0$; on the other hand, $(\alpha, t) \trianglelefteq (\beta, t')$ when

$$(\alpha, t, |\alpha|) \leq_{\mathsf{rlex}} (\beta, t', |\beta|)$$

where \leq_{rlex} denotes the right-lexicographic order on $\mathbb{N}_0^{m_1+m_2+2} \supseteq \mathbb{N}_0^{\mathfrak{d}} \times \mathbb{N}_0 \times \mathbb{N}_0$ and $|\alpha|$ denotes the sum of the entries of α .

Let $r, n \in \mathbb{N}$ and $\mathfrak{n} := \{1, \dots, n\}$. A $\underline{\mathcal{D}}$ -kernel of length r (in n-variables) over (K, \underline{e}) consists of a field extension of the form

$$L_r = K(a_t^{\xi} : (\xi, t) \in \mathfrak{d}^{\leq r} \times \mathfrak{n})$$

together with a $\underline{\mathcal{D}}$ -operator $\underline{e}: L_{r-1} \to \underline{\mathcal{D}}(L_r)$ extending that on K such that for each $u \in \{1,2\}$ and $\xi \in \mathfrak{d}^{\leq r-1}$ we have

$$e_u(a_t^{\xi}) = \epsilon_{u,0} a_t^{\xi} + \epsilon_{u,1} a_t^{((u,1),\xi)} + \cdots + \epsilon_{i,m_u} a_t^{((u,m_u),\xi)},$$

In other words, $\partial_{u,j}(a_t^{\xi}) = a_t^{((u,j),\xi)}$. We set $L_0 = K$ and normally assume that $r \geq 2$. Note that $\underline{e}(L_{r-2}) \subseteq \underline{\mathcal{D}}(L_{r-1})$.

Let (L_r, \underline{e}) be a $\underline{\mathcal{D}}$ -kernel. When $r \geq 2$, we say that the $\underline{\mathcal{D}}$ -kernel has Γ -commuting operators if \underline{e} commutes with respect to Γ . In this case we also say that L_r is a $\underline{\mathcal{D}}^{\Gamma}$ -kernel.

We set $\mathbb{N}_0^0 = \mathbb{N}_0^{m_1} \times \{(\xi_1, \dots, \xi_{m_2}) \in \mathbb{N}_0^{m_2} : \xi_1 + \dots + \xi_{m_2} \leq 1\}$. We equip $\mathbb{N}_0^0 \times \mathfrak{n}$ with two orders: for (α, t) and (β, t) in $\mathbb{N}_0^0 \times \mathfrak{n}$ we set $(\alpha, t) \leq (\beta, t')$ if t = t' and $\alpha \leq \beta$ in the product order of $\mathbb{N}^{m_1+m_2} \supseteq \mathbb{N}_0^0$; on the other hand, $(\alpha, t) \leq (\beta, t')$ when

$$(\alpha, t, |\alpha|) \leq_{\mathsf{rlex}} (\beta, t', |\beta|)$$

where \leq_{rlex} denotes the right-lexicographic order on $\mathbb{N}_0^{m_1+m_2+2}\supseteq\mathbb{N}_0^{\mathfrak{d}}\times\mathbb{N}_0\times\mathbb{N}_0$ and $|\alpha|$ denotes the sum of the entries of α .

Let $\mathbb{N}_0^{\mathfrak{d}}(r) = \{ \beta \in \mathbb{N}_0^{\mathfrak{d}} : |\beta| \leq r \}$. Write $\beta \in \mathbb{N}_0^{\mathfrak{d}}(r)$ as

$$\beta = ((\beta_{1,1}, \ldots, \beta_{1,m_1}), (\beta_{2,1}, \ldots, \beta_{2,m_2}))$$

and consider the map $\psi: \mathbb{N}_0^{\mathfrak{d}}(r) o \mathfrak{d}^{\leq r}$ given by

$$\psi(\beta) = ((1, m_1), \dots, (1, m_1), \dots, (1, 1), \dots, (1, 1), (2, m_2), \dots, (2, m_2), \dots, (2, 1), \dots, (2, 1))$$

where (u,i) appears $\beta_{u,i}$ -times. Clearly ψ is injective, thus we identify $\mathbb{N}_0^{\mathfrak{d}}(r)$ with its image in $\mathfrak{d}^{\leq r}$.

Now consider the map $\rho: \mathfrak{d}^{\leq r} \to \mathbb{N}_0^{\mathfrak{d}}(r)$ where $\xi \in \mathfrak{d}^{\leq r}$ is mapped to $(\rho_1(\xi), \rho_2(\xi))$ where $\rho_1(\xi)$ is the unique tuple of $\mathbb{N}_0^{m_1}$ in which each (1,i) appears as many times as it appears in ξ (identifying $\mathbb{N}_0^{m_1}$ with the image of $\mathbb{N}_0^{m_1} \times \{(0,\ldots,0)\}$ in $\mathfrak{d}^{\leq r}$ under ψ), and $\rho_2(\xi) = (0,\ldots,0,1,0,\ldots,0)$ with 1 in the k-position if $\rho_{2,1}+\cdots+\rho_{2,m_2}=1$ and $\rho_{2,k}=1$, and $\rho_2(\xi) = (0,\ldots,0)$ if $\rho_{2,1}+\cdots+\rho_{2,m_2}\neq 1$.

Let $\mathbb{N}_0^{\mathfrak{d}}(r) = \{ \beta \in \mathbb{N}_0^{\mathfrak{d}} : \ |\beta| \leq r \}$. Write $\beta \in \mathbb{N}_0^{\mathfrak{d}}(r)$ as

$$\beta = ((\beta_{1,1}, \ldots, \beta_{1,m_1}), (\beta_{2,1}, \ldots, \beta_{2,m_2}))$$

and consider the map $\psi: \mathbb{N}_0^{\mathfrak{d}}(r) \to \mathfrak{d}^{\leq r}$ given by

$$\psi(\beta) = ((1, m_1), \ldots, (1, m_1), \ldots, (1, 1), \ldots, (1, 1), (2, m_2), \ldots, (2, m_2), \ldots, (2, 1), \ldots, (2, 1))$$

where (u, i) appears $\beta_{u,i}$ -times. Clearly ψ is injective, thus we identify $\mathbb{N}_0^{\mathfrak{d}}(r)$ with its image in $\mathfrak{d}^{\leq r}$.

Now consider the map $\rho: \mathfrak{d}^{\leq r} \to \mathbb{N}_0^{\mathfrak{d}}(r)$ where $\xi \in \mathfrak{d}^{\leq r}$ is mapped to $(\rho_1(\xi), \rho_2(\xi))$ where $\rho_1(\xi)$ is the unique tuple of $\mathbb{N}_0^{m_1}$ in which each (1,i) appears as many times as it appears in ξ (identifying $\mathbb{N}_0^{m_1}$ with the image of $\mathbb{N}_0^{m_1} \times \{(0,\ldots,0)\}$ in $\mathfrak{d}^{\leq r}$ under ψ), and $\rho_2(\xi) = (0,\ldots,0,1,0,\ldots,0)$ with 1 in the k-position if $\rho_{2,1}+\cdots+\rho_{2,m_2}=1$ and $\rho_{2,k}=1$, and $\rho_2(\xi) = (0,\ldots,0)$ if $\rho_{2,1}+\cdots+\rho_{2,m_2}\neq 1$.

Let $\mathbb{N}_0^{\mathfrak{d}}(r) = \{ \beta \in \mathbb{N}_0^{\mathfrak{d}} : \ |\beta| \le r \}$. Write $\beta \in \mathbb{N}_0^{\mathfrak{d}}(r)$ as

$$\beta = ((\beta_{1,1}, \ldots, \beta_{1,m_1}), (\beta_{2,1}, \ldots, \beta_{2,m_2}))$$

and consider the map $\psi: \mathbb{N}_0^{\mathfrak{d}}(r) \to \mathfrak{d}^{\leq r}$ given by

$$\psi(\beta) = ((1, m_1), \ldots, (1, m_1), \ldots, (1, 1), \ldots, (1, 1), (2, m_2), \ldots, (2, m_2), \ldots, (2, 1), \ldots, (2, 1))$$

where (u, i) appears $\beta_{u,i}$ -times. Clearly ψ is injective, thus we identify $\mathbb{N}_0^{\mathfrak{d}}(r)$ with its image in $\mathfrak{d}^{\leq r}$.

Now consider the map $\rho: \mathfrak{d}^{\leq r} \to \mathbb{N}_0^{\mathfrak{d}}(r)$ where $\xi \in \mathfrak{d}^{\leq r}$ is mapped to $(\rho_1(\xi), \rho_2(\xi))$ where $\rho_1(\xi)$ is the unique tuple of $\mathbb{N}_0^{m_1}$ in which each (1,i) appears as many times as it appears in ξ (identifying $\mathbb{N}_0^{m_1}$ with the image of $\mathbb{N}_0^{m_1} \times \{(0,\ldots,0)\}$ in $\mathfrak{d}^{\leq r}$ under ψ), and $\rho_2(\xi) = (0,\ldots,0,1,0,\ldots,0)$ with 1 in the k-position if $\rho_{2,1}+\cdots+\rho_{2,m_2}=1$ and $\rho_{2,k}=1$, and $\rho_2(\xi) = (0,\ldots,0)$ if $\rho_{2,1}+\cdots+\rho_{2,m_2}\neq 1$.

Let $(X_{\mu,t})_{(\mu,t)\in\mathbb{N}_0^0(s+1)\times\mathfrak{n}}$ be an algebraically independent over L_s tuple of elements of Ω . Let $(\tau_0,t)\in\mathbb{N}_0^0\times\mathfrak{n}$ with $|\tau_0|=s$ and suppose we have extended the $\underline{\mathcal{D}}$ -structure $\underline{e}:L_{s-1}\to\underline{\mathcal{D}}(L_s)$ to $\underline{e}:L_{d/(\tau_0,t)}\to\underline{\mathcal{D}}(\Omega)$. We consider cases:

Case 1. Suppose (τ_0, t) is a leader. Since $|\tau_0| \geq 2r > r$ and L_s is a generic prolongation of L_r , (τ_0, t) is a separable leader. There is a unique $\underline{\mathcal{D}}$ -structure $L_{\leq l(\tau_0, j)} \to \underline{\mathcal{D}}(\Omega)$ extending $L_{\leq l(\tau_0, t)} \to \underline{\mathcal{D}}(\Omega)$. Hence we can put $a_t^{\prime(i, \tau_0)} := \partial_i(a_t^{\tau_0})$ for each $i \in \mathfrak{d}$.

Case 2. Suppose (τ_0, t) is not a leader so we are allowed to choose $(a_t^{\prime(i,\tau_0)})_{i\in\mathfrak{d}}$ arbitrarily. Write $\tau_0=(k,\eta)$ for some $k\in\mathfrak{d}$ and, for $i\in\mathfrak{d}$, consider two subcases:

Case 2.1. If $i \leq k$, define $a_t^{\prime(i,\tau_0)} := \chi_{i,\tau_0} X_{\rho(i,\tau_0),t} + \ell_{i,\tau_0}(L_{s,t})$

Case 2.2. If i > k, note that $a_t^{\prime \rho(i,\tau_0)} = a_t^{\prime(k,\rho(i,\tau_0))}$ has already been defined at an earlier inductive step as $\rho(i,\eta) \triangleleft_i \tau_0$. So we set $a_t^{\prime(i,\tau_0)} := \chi_{i,\tau_0} a_t^{\prime \rho(i,\tau_0)} + \ell_{i,\tau_0}(L_{s,t})$.

Let $(X_{\mu,t})_{(\mu,t)\in\mathbb{N}_0^0(s+1)\times\mathfrak{n}}$ be an algebraically independent over L_s tuple of elements of Ω .

Let $(\tau_0,t) \in \mathbb{N}_0^0 \times \mathfrak{n}$ with $|\tau_0| = s$ and suppose we have extended the $\underline{\mathcal{D}}$ -structure $\underline{e}: L_{s-1} \to \underline{\mathcal{D}}(L_s)$ to $\underline{e}: L_{\triangleleft l(\tau_0,t)} \to \underline{\mathcal{D}}(\Omega)$. We consider cases:

Case 1. Suppose (τ_0, t) is a leader. Since $|\tau_0| \geq 2r > r$ and L_s is a generic prolongation of L_r , (τ_0, t) is a separable leader. There is a unique $\underline{\mathcal{D}}$ -structure $L_{\leq l(\tau_0, j)} \to \underline{\mathcal{D}}(\Omega)$ extending $L_{d_l(\tau_0, t)} \to \underline{\mathcal{D}}(\Omega)$. Hence we can put $a_t^{\prime(i, \tau_0)} := \partial_i(a_t^{\tau_0})$ for each $i \in \mathfrak{d}$.

Case 2. Suppose (τ_0, t) is not a leader so we are allowed to choose $(a_t^{\prime(i,\tau_0)})_{i\in\mathfrak{d}}$ arbitrarily. Write $\tau_0=(k,\eta)$ for some $k\in\mathfrak{d}$ and, for $i\in\mathfrak{d}$, consider two subcases:

Case 2.1. If $i \leq k$, define $a_t^{\prime(i,\tau_0)} := \chi_{i,\tau_0} X_{\rho(i,\tau_0),t} + \ell_{i,\tau_0}(L_{s,t})$

Case 2.2. If i > k, note that $a_t'^{\rho(i,\tau_0)} = a_t'^{(k,\rho(i,\tau_0))}$ has already been defined at an earlier inductive step as $\rho(i,\eta) \triangleleft_l \tau_0$. So we set $a_t'^{(i,\tau_0)} := \chi_{i,\tau_0} a_t'^{\rho(i,\tau_0)} + \ell_{i,\tau_0}(L_{s,t})$.

We assume we have a $\underline{\mathcal{D}}^{\Gamma}$ -kernel $L_s = K(a_t^{\xi})_{(\xi,t) \in \mathfrak{d}^{\leq s} \times \mathfrak{n}}$ which is a generic prolongation of L_{2r} and show the existence of a generic prolongation L_{s+1} . Let $(X_{\mu,t})_{(\mu,t) \in \mathbb{N}_0^{\mathfrak{d}}(s+1) \times \mathfrak{n}}$ be an algebraically independent over L_s tuple of elements of Ω . Let $(\tau_0,t) \in \mathbb{N}_0^{\mathfrak{d}} \times \mathfrak{n}$ with $|\tau_0| = s$ and suppose we have extended the \mathcal{D} -structure

Case 1. Suppose (τ_0, t) is a leader. Since $|\tau_0| \geq 2r > r$ and L_s is a generic prolongation of L_r (τ_0, t) is a separable leader. There is a unique $\underline{\mathcal{D}}$ -structure $L_{\leq_l(\tau_0, j)} \to \underline{\mathcal{D}}(\Omega)$ extending $L_{t_l(\tau_0, t)} \to \mathcal{D}(\Omega)$. Hence we can put $a_t^{\prime(i, \tau_0)} := \partial_t(a_t^{\tau_0})$ for each $i \in \mathfrak{d}$.

Case 2. Suppose (τ_0, t) is not a leader so we are allowed to choose $(a_t^{\prime(i,\tau_0)})_{i\in\mathfrak{d}}$ arbitrarily. Write $\tau_0=(k,\eta)$ for some $k\in\mathfrak{d}$ and, for $i\in\mathfrak{d}$, consider two subcases:

Case 2.1. If $i \leq k$, define $a_t^{\prime(i,\tau_0)} := \chi_{i,\tau_0} X_{\rho(i,\tau_0),t} + \ell_{i,\tau_0}(L_{s,t})$

 $\underline{e}: L_{s-1} \to \underline{\mathcal{D}}(L_s)$ to $\underline{e}: L_{\triangleleft_l(\tau_0,t)} \to \underline{\mathcal{D}}(\Omega)$. We consider cases:

Case 2.2. If i > k, note that $a_t'^{\rho(i,\tau_0)} = a_t'^{(k,\rho(i,\tau_0))}$ has already been defined at an earlier inductive step as $\rho(i,\eta) \triangleleft_l \tau_0$. So we set $a_t'^{(i,\tau_0)} := \chi_{i,\tau_0} a_t'^{\rho(i,\tau_0)} + \ell_{i,\tau_0} (L_{s,t})$.

Let $(X_{\mu,t})_{(\mu,t)\in\mathbb{N}_0^{\mathfrak{d}}(s+1)\times\mathfrak{n}}$ be an algebraically independent over L_s tuple of elements of Ω . Let $(\tau_0,t)\in\mathbb{N}_0^{\mathfrak{d}}\times\mathfrak{n}$ with $|\tau_0|=s$ and suppose we have extended the $\underline{\mathcal{D}}$ -structure $\underline{e}:L_{s-1}\to\underline{\mathcal{D}}(L_s)$ to $\underline{e}:L_{\lhd/(\tau_0,t)}\to\underline{\mathcal{D}}(\Omega)$. We consider cases:

Case 1. Suppose (τ_0, t) is a leader. Since $|\tau_0| \geq 2r > r$ and L_s is a generic prolongation of L_r , (τ_0, t) is a separable leader. There is a unique $\underline{\mathcal{D}}$ -structure $L_{\leq_l(\tau_0, j)} \to \underline{\mathcal{D}}(\Omega)$ extending $L_{\prec_l(\tau_0, t)} \to \underline{\mathcal{D}}(\Omega)$. Hence we can put $a_t^{\prime(i, \tau_0)} := \partial_i(a_t^{\tau_0})$ for each $i \in \mathfrak{d}$.

Case 2. Suppose (τ_0, t) is not a leader so we are allowed to choose $(a_t^{\prime(i,\tau_0)})_{i\in\mathfrak{d}}$ arbitrarily. Write $\tau_0=(k,\eta)$ for some $k\in\mathfrak{d}$ and, for $i\in\mathfrak{d}$, consider two subcases:

Case 2.1. If $i \leq k$, define $a_t^{\prime(i,\tau_0)} := \chi_{i,\tau_0} X_{\rho(i,\tau_0),t} + \ell_{i,\tau_0}(L_{s,t})$

Case 2.2. If i > k, note that $a_t^{(\rho(i,\tau_0)} = a_t^{\prime(k,\rho(i,\tau_0))}$ has already been defined at an earlier inductive step as $\rho(i,\eta) \triangleleft_l \tau_0$. So we set $a_t^{\prime(i,\tau_0)} := \chi_{i,\tau_0} a_t^{\prime\rho(i,\tau_0)} + \ell_{i,\tau_0} (L_{s,t})$.

Let $(X_{\mu,t})_{(\mu,t)\in\mathbb{N}_0^{\mathfrak{d}}(s+1)\times\mathfrak{n}}$ be an algebraically independent over L_s tuple of elements of Ω . Let $(\tau_0,t)\in\mathbb{N}_0^{\mathfrak{d}}\times\mathfrak{n}$ with $|\tau_0|=s$ and suppose we have extended the $\underline{\mathcal{D}}$ -structure $\underline{e}:L_{s-1}\to\underline{\mathcal{D}}(L_s)$ to $\underline{e}:L_{s/(\tau_0,t)}\to\underline{\mathcal{D}}(\Omega)$. We consider cases:

Case 1. Suppose (τ_0, t) is a leader. Since $|\tau_0| \geq 2r > r$ and L_s is a generic prolongation of L_r , (τ_0, t) is a separable leader. There is a unique $\underline{\mathcal{D}}$ -structure $L_{\leq_l(\tau_0, j)} \to \underline{\mathcal{D}}(\Omega)$ extending $L_{\prec_l(\tau_0, t)} \to \underline{\mathcal{D}}(\Omega)$. Hence we can put $a_t^{\prime(i, \tau_0)} := \partial_i(a_t^{\tau_0})$ for each $i \in \mathfrak{d}$.

Case 2. Suppose (τ_0, t) is not a leader so we are allowed to choose $(a_t'^{(i,\tau_0)})_{i\in\mathfrak{d}}$ arbitrarily. Write $\tau_0=(k,\eta)$ for some $k\in\mathfrak{d}$ and, for $i\in\mathfrak{d}$, consider two subcases:

Case 2.1. If $i \leq k$, define $a_t'^{(i,\tau_0)} := \chi_{i,\tau_0} X_{\rho(i,\tau_0),t} + \ell_{i,\tau_0}(L_{s,t})$

Case 2.2. If i > k, note that $a_t'^{\rho(i,\tau_0)} = a_t'^{(k,\rho(i,\tau_0))}$ has already been defined at an earlier inductive step as $\rho(i,\eta) \triangleleft_I \tau_0$. So we set $a_t'^{(i,\tau_0)} := \chi_{i,\tau_0} a_t'^{\rho(i,\tau_0)} + \ell_{i,\tau_0}(L_{s,t})$.

Let $(X_{\mu,t})_{(\mu,t)\in\mathbb{N}_0^0(s+1)\times\mathfrak{n}}$ be an algebraically independent over L_s tuple of elements of Ω . Let $(\tau_0,t)\in\mathbb{N}_0^0\times\mathfrak{n}$ with $|\tau_0|=s$ and suppose we have extended the $\underline{\mathcal{D}}$ -structure $\underline{e}:L_{s-1}\to\underline{\mathcal{D}}(L_s)$ to $\underline{e}:L_{d/(\tau_0,t)}\to\underline{\mathcal{D}}(\Omega)$. We consider cases:

Case 1. Suppose (τ_0, t) is a leader. Since $|\tau_0| \geq 2r > r$ and L_s is a generic prolongation of L_r , (τ_0, t) is a separable leader. There is a unique $\underline{\mathcal{D}}$ -structure $L_{\leq_l(\tau_0, j)} \to \underline{\mathcal{D}}(\Omega)$ extending $L_{\prec_l(\tau_0, t)} \to \underline{\mathcal{D}}(\Omega)$. Hence we can put $a_t^{\prime(i, \tau_0)} := \partial_i(a_t^{\tau_0})$ for each $i \in \mathfrak{d}$.

Case 2. Suppose (τ_0, t) is not a leader so we are allowed to choose $(a_t^{\prime(i,\tau_0)})_{i\in\mathfrak{d}}$ arbitrarily. Write $\tau_0=(k,\eta)$ for some $k\in\mathfrak{d}$ and, for $i\in\mathfrak{d}$, consider two subcases:

Case 2.1. If $i \leq k$, define $a_t'^{(i,\tau_0)} := \chi_{i,\tau_0} X_{\rho(i,\tau_0),t} + \ell_{i,\tau_0}(L_{s,t})$

Case 2.2. If i > k, note that $a_t^{\prime p(t),\prime 0} = a_t^{\prime (k,\rho(t),\prime 0)}$ has already been defined at an earlier inductive step as $\rho(i,\eta) \triangleleft_l \tau_0$. So we set $a_t^{\prime (i,\tau_0)} := \chi_{i,\tau_0} a_t^{\prime \rho(i,\tau_0)} + \ell_{i,\tau_0} (L_{s,t})$. This construction yields a kernel which is not necessarily Γ -commuting. We fix this by performing specialisations.

Let $(X_{\mu,t})_{(\mu,t)\in\mathbb{N}_0^{\mathfrak{d}}(s+1)\times\mathfrak{n}}$ be an algebraically independent over L_s tuple of elements of Ω . Let $(\tau_0,t)\in\mathbb{N}_0^{\mathfrak{d}}\times\mathfrak{n}$ with $|\tau_0|=s$ and suppose we have extended the $\underline{\mathcal{D}}$ -structure $\underline{e}:L_{s-1}\to\underline{\mathcal{D}}(L_s)$ to $\underline{e}:L_{\lhd/(\tau_0,t)}\to\underline{\mathcal{D}}(\Omega)$. We consider cases:

Case 1. Suppose (τ_0, t) is a leader. Since $|\tau_0| \geq 2r > r$ and L_s is a generic prolongation of L_r , (τ_0, t) is a separable leader. There is a unique $\underline{\mathcal{D}}$ -structure $L_{\leq_l(\tau_0, j)} \to \underline{\mathcal{D}}(\Omega)$ extending $L_{\prec_l(\tau_0, t)} \to \underline{\mathcal{D}}(\Omega)$. Hence we can put $a_t^{\prime(i, \tau_0)} := \partial_i(a_t^{\tau_0})$ for each $i \in \mathfrak{d}$.

Case 2. Suppose (τ_0, t) is not a leader so we are allowed to choose $(a_t'^{(i,\tau_0)})_{i\in\mathfrak{d}}$ arbitrarily. Write $\tau_0=(k,\eta)$ for some $k\in\mathfrak{d}$ and, for $i\in\mathfrak{d}$, consider two subcases:

Case 2.1. If $i \leq k$, define $a_t'^{(i,\tau_0)} := \chi_{i,\tau_0} X_{\rho(i,\tau_0),t} + \ell_{i,\tau_0}(L_{s,t})$

Case 2.2. If i > k, note that $a_t'^{\rho(i,\tau_0)} = a_t'^{(k,\rho(i,\tau_0))}$ has already been defined at an earlier inductive step as $\rho(i,\eta) \triangleleft_I \tau_0$. So we set $a_t'^{(i,\tau_0)} := \chi_{i,\tau_0} a_t'^{\rho(i,\tau_0)} + \ell_{i,\tau_0}(L_{s,t})$. This construction yields a kernel which is not necessarily Γ -commuting. We fix this by performing specialisations.

We prove by induction on $(\mu, t) \in \mathbb{N}_0^{\mathfrak{d}}(s+1) \times \mathfrak{n}$ with respect to \leq that there is a specialisation $(a_t^{\xi})_{(\xi,j) \in \mathfrak{d}^{s+1} \times \mathfrak{n}}$ of the tuple $(a'_t^{\xi})_{(\xi,t) \in \mathfrak{d}^{s+1} \times \mathfrak{n}}$ over L_s such that, considering the $\underline{\mathcal{D}}$ -structure on L_s given by the kernel $K(a_t^{\xi})_{(\xi,t) \in \mathfrak{d}^{s+1} \times \mathfrak{n}}$ satisfying:

For all $(\tau,t')\in\mathbb{N}_0^{\mathfrak{d}}\times\mathfrak{n}$ and $i,j\in\mathfrak{d}$ with $(\rho(i,j, au),t')\unlhd(\mu,t)$ we have

$$\partial_i \partial_j (\mathsf{a}_{t'}^{ au}) = \chi_{ij} \partial_j \partial_i (\mathsf{a}_{t'}^{ au}) + \sum_\ell c_\ell^{ij} \partial_\ell (\mathsf{a}_{t'}^{ au}).$$

i.e. $\partial_i \partial_j (a_{t'}^{\tau})$ is what it is expected to be, together with a number of auxiliary conditions letting us carry out the construction.