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Derivations

Definition

Let R,S be rings (we assume rings are commutative and with 1). A function ∂ : R → S is
called a derivation, if it satisfies

(additivity) ∂(a+ b) = ∂(a) + ∂(b) for all a, b ∈ R.

(Leibniz rule) ∂(ab) = ∂(a)b + a∂(b) for all a, b ∈ R.

If K is a field equipped with several commuting derivations ∂1, . . . , ∂n, we will sometimes call
∂i partial derivations.
How to determine whether a system of partial differential equations over K is consistent (i.e.
whether it has a solution in an extension L ⊇ K in which the derivations still commute)?

Example

Consider the system {
∂1(z) = z

∂2(z) = 1
(1)
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Consistency of systems of differential equations

{
∂1(z) = z

∂2(z) = 1
(2)

This system is inconsistent, as if z were a solution, then we would have ∂1∂2(z) = ∂1(1) = 0 but
∂2∂1(z) = ∂2(z) = 1 ̸= 0 = ∂1∂2(z).
Note that the system above is algebraically consistent, that is, if we replace ∂1(z) and ∂2(z) with new
variables z1 and z2, then we obtain a system of polynomial (even linear) equations in variables z , z1, z2{

z1 = z

z2 = 1
(3)

which of course is consistent. However, applying ∂2 to the equation ∂1(z) = z , we obtain
∂2(∂1(z)) = ∂2(z) and applying ∂1 to ∂2(z) = 1 we obtain ∂1(∂2(z)) = 0, and replacing both ∂1(∂2(z))
and ∂2(∂1(z)) with a new variable z12 and ∂i (z) with zi , we get{

z12 = z2

z12 = 0
(4)

Together with the equation z2 = 1 we had before, this gives an inconsistent system of polynomial
equations. So, differentiating the given system once revealed inconsistency.
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Revealing inconsistency of a system

It is not hard to see that a given system of partial differential equations is consistent if and only
if, for every k < ω, the system of equations obtained by differentiating the system ≤ k many
times is algebraically consistent.

Fact (Pierce 2007; Leon Sanchez and Gustavson 2017)

There exists a number k < ω depending only on the complexity of a given system of
polynomial partial differential equations such that if the system is inconsistent, then the system
of polynomial equations obtained by differentiating the given system ≤ k many times is
algebraically inconsistent.

This yields an algorithm deciding consistency of a system of polynomial partial differential
equations, and also allows to deduce the existence of a model companion of the theory of fields
with n commuting derivations for any n.
The methods used both by Pierce and by Leon Sanchez and Gustavson are based on the notion
of a differential kernel, which was introduced by Lando in 1970. Below, for simplicity, we
restrict ourselves to the case of two commuting derivations and characteristic 0.
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Differential kernels (after Lando, Cohn, Pierce,...)
Suppose k is a field (of characteristic 0) with two commuting derivations ∂1 and ∂2.
When we start from an element a = a0,0, we consider elements ak1,k2 that are ”prototypes” of

∂k11 ∂
k2
2 (a).

A differential kernel of height r over k is a field k(ak1,k2)k1,k2∈ω∧k1+k2≤r such that whenever
f ((ak1,k2)k1+k2≤r−1) = 0 for some polynomial f over k, then the polynomial obtained by
differentiating f with respect to ∂1 and ∂2 both vanish on (ak1,k2)k1+k2≤r .
Equivalently, ak1,k2 7→ ak1+1,k2 defines a derivation on k(ak1,k2)k1,k2∈ω∧k1+k2≤r−1 extending ∂1,
and ak1,k2 7→ ak1,k2+1 defines a derivation on k(ak1,k2)k1,k2∈ω∧k1+k2≤r−1 extending ∂2.

Write (ℓ1, ℓ2) ≺ (k1, k2) for (ℓ1 + ℓ2, ℓ1, ℓ2) <lex (k1 + k2, k1, k2). We say (k1, k2) is a leader, if
ak1,k2 is algebraic over k(aℓ1,ℓ2)(ℓ1,ℓ2)≺(k1,k2).
A leader is minimal, if there is no leader (ℓ1, ℓ2) ̸= (k1, k2) with ℓ1 ≤ k1 and ℓ2 ≤ k2 (we will
write (ℓ1, ℓ2) ≤ (k1, k2) for ℓ1 ≤ k1 ∧ ℓ2 ≤ k2).

The companionability of the theory of fields with commuting derivations was deduced by Pierce
from his following result:

Fact(Pierce)

If a kernel L of height 2r has no minimal leaders at levels higher than r , then L has a
differential kernel extension of arbitrary height s ≥ 2r .
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Fact(Pierce)

If a kernel L of height 2r has no minimal leader of length bigger than r , then L has a
differential kernel extension of arbitrary height s ≥ 2r .

The proof of this statement is by an inductive construction of partial kernels
k(aℓ1,ℓ2)(ℓ1,ℓ2)≺(k1,k2) satisfying the differential condition:
If a polynomial f over k vanishes on (aℓ1,ℓ2)(ℓ1,ℓ2)≺(k1−1,k2), then the polynomial ∂1(f ) vanishes
on k(aℓ1,ℓ2)(ℓ1,ℓ2)≺(k1,k2), and likewise for ∂2. (*)
The tricky part in the proof is choosing ak1,k2 when both (k1 − 1, k2) and (k1, k2 − 1) are
leaders.

In that case, let (ℓ1, ℓ2) ≤ (k1 − 1, k2) and (m1,m2) ≤ (k1, k2 − 1) be minimal leaders. Put
p1 = max(ℓ1,m1) and p2 = max(ℓ2,m2). Then p1 + p2 ≤ ℓ1 + ℓ2 +m1 +m2 ≤ r + r = 2r so
(p1, p2) ̸= (k1, k2) (and (p1, p2) ≤ (k1, k2)). Suppose for example that p1 < k1. Then
m1 ≤ p1 ≤ k1 − 1, but we also know m2 ≤ k2 − 1, so (m1,m2) ≤ (k1 − 1, k2 − 1) and hence
(k1 − 1, k2 − 1) is a leader. As ∂1 and ∂2 commute on k(aq1,q2)(q1,q2)≺(k1−1,k2−1), it follows that

the unique extensions ∂̃1 to k(aq1,q2)(q1,q2)≺(k1−1,k2), and ∂̃2 to k(aq1,q2)(q1,q2)≺(k1,k2−1)

commute on k(aq1,q2)(q1,q2)⪯(k1−1,k2−1), and we can put ak1,k2 := ∂̃1(ak1−1,k2) = ∂̃2(ak1,k2−1).
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Fields with operators

Let R be a ring.
Example 1 Consider the algebra D = R[x ]/(x2). Then a function e : R → D of the form
e(s) = s + f (s)x + (x2) is a ring homomorphism iff f is additive and e(st) = e(s)e(t) for all
s, t ∈ R.
This means st + f (st) + (x2) = (s + f (s))(t + f (t)) + (x2) = st + (sf (t) + f (s)t)x + (x2)
i.e. f (st) = sf (t) + f (s)t, i.e. f is a derivation.
Example 2 If D = R × R, then e : R → D given by e(s) = (s, f (s)) is a ring homomorphism
iff f : R → R is a ring endomorphism.
Example 3 If D = R[x ]/(x3), then e : R → D given by e(s) = s + f (s)x + g(s)x2 + (x3) is a
ring homomorphism iff f is a derivation, and g is an order two derivation w.r.t. f , i.e. g is
additive and g(st) = g(s)t + 2f (s)f (t) + sg(t).

Definition (Moosa-Scanlon)

More generally, if k is a field and D a finite-dimensional algebra over k equipped with a basis
(1, ϵ1, . . . , ϵm), then a D-operator on a ring R ⊇ k is a homomorphism e : R → D ⊗k R of the
form s 7→ s + ∂1(s)ϵ1 + · · ·+ ∂m(s)ϵn with ∂i : R → R. We will denote D ⊗k R by D(R).
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Applications of model theory of fields with operators usually rely on the existence of a model
companion. Recall a model M of a theory T is existentially closed if every quantifier-free
formula ϕ(x) over M that has realisation in some M ⊆ N |= T , has a realisation in M.
So, informally speaking, a field with operators is existentially closed when it is closed under
adding solutions of systems of equations.

A model companion of a theory T is a theory axiomatising the class of existentially closed
models of T . We say T is companionable if T has a model companion.
Robinson has proved that the theory of fields of characteristic zero with a derivation has a
model companion called DCF0, and Macintyre has proved that the theory of fields with an
automorphism has a model companion called ACFA.
More generally, Moosa and Scanlon have proved that, in characteristic zero, the theory of fields
with D-operators has a model companion for every finite dimensional algebra D (with a
distinguished basis) assuming res(Bi ) = k for a local decomposition D = B1 × · · · × Bk of D.
In positive characteristic, Beyarslan, Hoffmann, Kamensky and Kowalski have proved that a
model companion exists iff the nilradical of D coincides with the kernel of the Frobenius
morphism D → D.
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More generally, Moosa and Scanlon have proved that, in characteristic zero, the theory of fields
with D-operators has a model companion for every finite dimensional algebra D (with a
distinguished basis) assuming res(Bi ) = k for a local decomposition D = B1 × · · · × Bk of D.
In positive characteristic, Beyarslan, Hoffmann, Kamensky and Kowalski have proved that a
model companion exists iff the nilradical of D coincides with the kernel of the Frobenius
morphism D → D.
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Compatibility conditions
The results of Moosa-Scanlon and Beyarslan-Hoffmann-Kamensky-Kowalski deal with the free
case, that is, ∂i are not required to satisfy any compatibility with each other.

The most straightforward compatibility condition on the operators ∂i is that they commute
with each other: ∂i∂j = ∂j∂i for all 1 ≤ i , j ≤ m.
In case of D = k × k × k , this yields the theory of fields with two commuting automorphisms,
which is not companionable by a result of Hrushovski.

However, the theory of fields with n commuting derivations is known to be companionable for
any n by a result of Pierce.

In our work, we have proved that for a local D, and a general compatibility notion that we call
Γ-commutativity, the theory of fields with Γ-commuting D-operators is always companionable
in characteristic zero, and in positive characteristic is companionable if the maximal ideal of D
coincides with the kernel of the Frobenius morphism Fr : D → D. The examples falling into
this framework include:

fields with Lie-commuting derivations (studied by Yaffe),
fields with iterative Hasse-Schmidt derivations (studied by Ziegler),
fields with g-iterative Hasse-Schmidt derivations for a finite group scheme g (studied by
Hoffmann-Kowalski), and
fields with commuting D-operators for any local algebra D (with m = ker(Fr)).
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Compatibility conditions (a simplified version)
We fix a field k for the rest of the talk. Let D1 and D2 be local algebras over k with
res(Di ) = k (we assume all algebras and rings are commutative and have 1). Recall that by
Di (R) we denote the base change of Di from k to R, i.e. Di (R) = Di ⊗k R.
Fix a k-algebra homomorphism r : D2 → D1 ⊗k D2. Let R ⊇ k . We we have two lifts of r :

r ι : D2(R) → D1(D2(R)) and r e1 : D2(R) → D1(D2(R))

where the lift r ι is with respect to the standard R-algebra structure on D2(R) and on
D1(D2(R)), while the lift r e1 is with respect to the R-linear structure on D1(D2(R)) given by

R
e1−→ D1(R)

IdD1(R) ⊗1
−−−−−−→ D1(D2(R)).

We say that (e1, e2) commute with respect to r∗ (where ∗ ∈ {ι, e1}) if the diagram

R
e1 //

e2

��

D1(R)

D1(e2)

��
D2(R)

r∗ // D1(D2(R))

(5)

commutes. If D1 = D2 and e1 = e2 we simply say that e1 commutes with respect to r .
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Example: usual commutativity

Let (R, e) be a D-ring and r be the canonical embedding D2 ↪→ D1 ⊗k D2(F ).Then, (e1, e2)
commute on R with respect to r e1 if and only if for all 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2 we have
∂1,i∂2,j(a) = ∂2,j∂1,i (a) for all a ∈ R.

Let ϵ̄1 = (ϵ1,0, ϵ1,1, . . . , ϵ1,m1) and ϵ̄2 = (ϵ2,0, ϵ2,1, . . . , ϵ2,m2) be bases of D1 and D2 with
ϵ1,0 = ϵ2,0 = 1, and write ei =

∑
0≤j≤mi

∂i,j . Let a ∈ R. Then

D1(e2) ◦ e1(a) = D1(e2) (a+ ϵ1,1∂1,1(a) + · · ·+ ϵ1,m1∂1,m1(a))

= 1⊗ 1⊗ e2(a) + ϵ1,1 ⊗ 1⊗ e2(∂1,1(a)) + · · ·+ ϵ1,m1 ⊗ 1⊗ e2(∂1,m1(a))

= 1⊗ 1⊗ a+ 1⊗ ϵ2,1 ⊗ ∂2,1(a) + · · ·+ 1⊗ ϵ2,m2 ⊗ ∂2,m2(a) +

ϵ1,1 ⊗ 1⊗ ∂1,1(a) + ϵ1,1 ⊗ ϵ2,1 ⊗ ∂2,1∂1,1(a) + · · ·+ ϵ1,1 ⊗ ϵ2,m2 ⊗ ∂2,m2∂1,1(a) + . . .

ϵ1,m1 ⊗ 1⊗ ∂1,m1(a) + ϵ1,m1 ⊗ ϵ2,1 ⊗ ∂2,1∂1,m1(a) + · · ·+ ϵ1,m1 ⊗ ϵ2,m2 ⊗ ∂2,m2∂1,m1(a)

As r e1 = D2(e1), for r
e1 ◦ e2(a) we get the same expression but with ∂1,i∂2,j in place of ∂2,j∂1,i .

As (ϵ1,i ⊗ ϵ2,j : 0 ≤ i ≤ m1, 0 ≤ j ≤ m2) is an R-linear basis of D1(D2(R)), it follows that
D1(e2) ◦ e1(a) = r e1 ◦ e2(a) if and only if
∂1,i∂2,j(a) = ∂2,j∂1,i (a) for all 1 ≤ i ≤ m1, 1 ≤ j ≤ m2.
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Example: Lie-commuting derivations

Let m ∈ N and
D = k[ϵ1, . . . , ϵm]/(ϵ1, . . . , ϵm)

2

with π(ϵi ) = 0 and ranked basis (1, ϵ1, . . . , ϵm). This recovers differential rings with m-many

derivations. Let (c ijℓ )
m
i,j,ℓ=1 be a tuple from k such that for each ℓ the m×m-matrix (c ijℓ )

m
i,j=1 is

skew-symmetric. Consider the k-algebra homomorphism r : D → D(D(k)) determined by

r(ϵℓ) = 1⊗ ϵℓ +
m∑

i,j=1

ϵi ⊗ ϵj ⊗ c jiℓ

for ℓ = 1, . . . ,m. Then, on any D-ring (R, e), e commutes on R with respect to r e if and only if

[∂i , ∂j ] = c ij1 ∂1 + · · ·+ c ijm∂m

for 1 ≤ i , j ≤ m.
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Example: Iterative truncated Hasse-Schmidt derivations

Assume char(k) = p > 0. Let n ∈ N and D = k[ϵ]/(ϵ)p
n

with π(ϵ) = 0 and ranked basis
(1, ϵ, . . . , ϵp

n−1). This recovers rings equipped with a (pn − 1)-truncated Hasse-Schmidt
derivation. Consider the k-algebra homomorphism r : D → D ⊗k D determined by

r(ϵ) = ϵ⊗ 1 + 1⊗ ϵ

(the fact that char(k) = p yields that r is indeed a homomorphism). Then, on any D-ring
(R, e), e commutes on R with respect to r ι if and only if for 1 ≤ i , j ≤ n we have

∂j∂i =

{ (
i+j
i

)
∂i+j i + j ≤ pn − 1

0 i + j ≥ pn
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Lie commutativity

Let m be the maximal ideal of D and let d < ω be minimal such that md+1 = 0.
We say that a homomorphism r : D → D ⊗k D is of Lie-commutation type if there is a tuple
(c ijℓ )

m
i,j,ℓ=1 from k such that

r(ϵℓ) = ϵℓ ⊗ 1 +
m∑

i,j=1

ϵi ⊗ ϵj ⊗ c jiℓ

and c jiℓ = 0 unless ϵi , ϵj ∈ md . We call the tuple (c jiℓ ) the Lie-coefficients of r .

Let r be of Lie-commutation type. Then, on any D-ring (R, e), e commutes on R with respect
to r e if and only if

[∂i , ∂j ] = c ij1 ∂1 + · · ·+ c ijm∂m

where (c ijℓ ) is the tuple of Lie coefficients of r .
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Associativity condition

Let r be of HS-iteration type. Suppose there exists a Dr -ring (R, e) where the operators
(∂1, . . . , ∂m) are k-linearly independent (as functions R → R).

Then ∂i∂j∂k =
∑

ℓ c
ij
ℓ ∂ℓ∂k =

∑
r

(∑
ℓ c

ij
ℓ c

ℓk
r

)
∂r . On the other hand,

∂i∂j∂k =
∑
ℓ

∂i (c
jk
ℓ ∂ℓ) =

∑
ℓ

c jkℓ ∂i∂ℓ =
∑
ℓ

∑
r

c jkℓ c iℓr ∂r

As (∂1, . . . , ∂m) are k-linearly independent, comparing coefficients on both sides yields that∑
ℓ c

ij
ℓ c

ℓk
r =

∑
ℓ c

jk
ℓ c iℓr for all 1 ≤ i , j , k , r ≤ m.

Definition

Let r be of HS-type. We say that r is associative if for all 1 ≤ i , j , k, r ≤ m we have∑
ℓ

c ijℓ c
ℓk
r =

∑
ℓ

c jkℓ c iℓr
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Jacobi condition

For similar reasons, we introduce the following definition.

Definition

Let r be of Lie type. We say r is Jacobi, if for each ℓ, the m ×m matrix (c ijℓ )
m
i,j=1 is

skew-symmetric, and for each 1 ≤ i , j , k , r ≤ m we have

m∑
p=1

(
c ijp c

pk
r + ckip cpjr + c jkp cpir

)
= 0

(this is a form of the Jacobi identity)

Remark

Both the iterativity and the Jacobi conditions become more complicated when we do not
assume that c ijℓ are in k (hence constant for all ∂r ).



Let r1 : D1 → D1 ⊗k D1 be of Lie type and Jacobi, and let r2 : D2 → D2 ⊗k D2 be of
HS-iteration type and associative. Put Γ = (r1, r2). We say that Γ is Jacobi-associative if e1 is
Jacobi and e2 is associative.

For operators e1 : R → D1(R) and e2 : R → D2(R), we say that (e1, e2) Γ-commutes if

e1 commutes with respect to r e11 ,

e2 commutes with respect to r ι2, and

∂1,i∂2,j = ∂2,j∂1,i for all 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2.

Theorem (D., Leon Sanchez 2025)

1. Let Γ be Jacobi-associative. If char(k) = 0, then the theory of fields with Γ-commuting
(D1,D2)-operators is companionable. In positive characteristic the same is true if the maximal
ideal of Di coincides with the kernel of the Frobenius homomorphism Fr : Di → Di for i = 1, 2.
2. The model companion is a stable theory. In characteristic 0 it is |k|-stable, and satisfies
Zilber’s Dichotomy for finite-dimensional types:
if a finite-dimensional type of U-rank 1 is not locally modular, then it is non-orthogonal to the
field of constants C := {x : (∀u, i)(∂u,i (x) = 0)}.
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Fact by Pierce repeated

If a kernel L of height 2r has no minimal separable leader of length bigger than r , then L has a
differential kernel extension of arbitrary height s ≥ 2r .

The proof of this statement is by inductive construction of partial kernels k(a(ℓ1,ℓ2))(ℓ1,ℓ2)≺(k1,k2)

satisfying the differential condition:
If a polynomial f over k vanishes on (a(ℓ1,ℓ2))(ℓ1,ℓ2)≺(k1−1,k2), then the polynomial ∂1(f )
vanishes on k(a(ℓ1,ℓ2))(ℓ1,ℓ2)≺(k1,k2), and likewise for ∂2. (*)
While the notion of a differential kernel has a natural analogue in our context of Γ-commuting
operators, the above condition (*) for “partial” kernel (a(ℓ1,ℓ2))(ℓ1,ℓ2)≺(k1−1,k2) does not seem to
have any reasonable analogue in our context.
Hence, we do the kernel construction differently - given a kernel of length s, we first we
construct some “approximation” of a kernel of length r + 1 that induces non-Γ-commuting
operators, on which we then perform suitable a sequence of specialisations that eventually yield
Γ-commutativity.
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Some more details
Let r , n ∈ N and n := {1, . . . , n}. A D-kernel of length r (in n-variables) over (K , e) consists of
a field extension of the form

Lr = K (aξt : (ξ, t) ∈ d≤r × n)

together with a D-operator e : Lr−1 → D(Lr ) extending that on K such that for each
u ∈ {1, 2} and ξ ∈ d≤r−1 we have

eu(a
ξ
t ) = ϵu,0 a

ξ
t + ϵu,1 a

((u,1),ξ)
t + · · ·+ ϵi,mu a

((u,mu),ξ)
t ,

In other words, ∂u,j(a
ξ
t ) = a

((u,j),ξ)
t . We set L0 = K and normally assume that r ≥ 2. Note that

e(Lr−2) ⊆ D(Lr−1).
Let (Lr , e) be a D-kernel. When r ≥ 2, we say that the D-kernel has Γ-commuting operators if
e commutes with respect to Γ. In this case we also say that Lr is a DΓ-kernel.
We set Nd

0 = Nm1
0 × {(ξ1, . . . , ξm2) ∈ Nm2

0 : ξ1 + · · ·+ ξm2 ≤ 1}. We equip Nd
0 × n with two

orders: for (α, t) and (β, t) in Nd
0 × n we set (α, t) ≤ (β, t ′) if t = t ′ and α ≤ β in the product

order of Nm1+m2 ⊇ Nd
0 ; on the other hand, (α, t) ⊴ (β, t ′) when

(α, t, |α|) ≤rlex (β, t
′, |β|)

where ≤rlex denotes the right-lexicographic order on Nm1+m2+2
0 ⊇ Nd

0 × N0 × N0 and |α|
denotes the sum of the entries of α.
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Let Nd
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We assume we have a DΓ-kernel Ls = K (aξt )(ξ,t)∈d≤s×n which is a generic prolongation of L2r
and show the existence of a generic prolongation Ls+1.
Let (Xµ,t)(µ,t)∈Nd

0 (s+1)×n be an algebraically independent over Ls tuple of elements of Ω.

Let (τ0, t) ∈ Nd
0 × n with |τ0| = s and suppose we have extended the D-structure

e : Ls−1 → D(Ls) to e : L◁l (τ0,t) → D(Ω). We consider cases:

Case 1. Suppose (τ0, t) is a leader. Since |τ0| ≥ 2r > r and Ls is a generic prolongation of Lr ,
(τ0, t) is a separable leader. There is a unique D-structure L⊴l (τ0,j) → D(Ω) extending

L◁l (τ0,t) → D(Ω). Hence we can put a
′(i,τ0)
t := ∂i (a

τ0
t ) for each i ∈ d.

Case 2. Suppose (τ0, t) is not a leader so we are allowed to choose (a
′(i,τ0)
t )i∈d arbitrarily.

Write τ0 = (k, η) for some k ∈ d and, for i ∈ d, consider two subcases:

Case 2.1. If i ≤ k , define a
′(i,τ0)
t := χi,τ0Xρ(i,τ0),t + ℓi,τ0(Ls,t)

Case 2.2. If i > k , note that a
′ρ(i,τ0)
t = a

′(k,ρ(i,τ0))
t has already been defined at an earlier

inductive step as ρ(i , η) ◁l τ0. So we set a
′(i,τ0)
t := χi,τ0a

′ρ(i,τ0)
t + ℓi,τ0(Ls,t).

This construction yields a kernel which is not necessarily Γ-commuting. We fix this by
performing specialisations.
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We prove by induction on (µ, t) ∈ Nd
0(s + 1)× n with respect to ⊴ that there is a

specialisation (aξt )(ξ,j)∈ds+1×n of the tuple (a′
ξ
t )(ξ,t)∈ds+1×n over Ls such that, considering the

D-structure on Ls given by the kernel K (aξt )(ξ,t)∈ds+1×n satisfying:

For all (τ, t ′) ∈ Nd
0 × n and i , j ∈ d with (ρ(i , j , τ), t ′) ⊴ (µ, t) we have

∂i∂j(a
τ
t′) = χij∂j∂i (a

τ
t′) +

∑
ℓ

c ijℓ ∂ℓ(a
τ
t′).

i.e. ∂i∂j(a
τ
t′) is what it is expected to be,

together with a number of auxiliary conditions letting us carry out the construction.


