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Conventions/Background

All rings are commutative with unit.

K is a field and K alg is the algebraic closure of K .

V ,W ,V ′,W ′ are K -varieties. V → W is a K -variety morphism.

V (K ) is the set of K -points of V .

An is n-dimensional affine space over K , so An(K ) = K n.
——————————————————————————————————–
Roughly speaking:

V is defined by a finite system of polynomial equations and inequations with
coefficients from K . V → W is a polynomial map.

V (K ) is the solution set of the system in K .

We are primarily interested in V (K ) – basically quantifier free definable sets in K .

Even more roughly:

V “is” V (K alg), K -varieties are sets definable in K alg with parameters from K .
——————————————————————————————————–
Suppose W is smooth.

f : V → W is étale if V is smooth and TpV → Tf (p)W is an iso. for any p ∈ V .



Largeness

K is large if it satisfies one of the following equivalent conditions:

• A smooth 1-dim K -variety with a K -point has infinitely many K -points.

• If f ∈ K [x , y ] and (a, b) ∈ K 2 satisfy

f (a, b) = 0 ̸= ∂f
∂y (a, b)

then f has infinitely many zeros in K . (Large fields form a ∀∃ elem. class.)

Pop (’96) introduced largeness, proved inverse Galois theorem over K (t), K large.

“the ‘right class’ of fields over which one can do a lot of interesting mathematics.”
–Pop, “Little survery on large fields”



Non-large fields

——————————————————————————————————–
K is large if whenever f ∈ K [x , y ] and (a, b) ∈ K 2 satisfy

f (a, b) = 0 ̸= ∂f
∂y (a, b)

then f has infinitely many zeros in K .
——————————————————————————————————–
Finite fields are not large.

f (x , y) = x4 + y4 − 1.

f (0, 1) = 0 ̸= 4 = ∂f /∂y(0, 1)

Fermat: Only zeros of f in Q2 are (±1, 0), (0,±1).

Faltings: f has only finitely many zeros in any number field.

Similar (hard) results show that function fields are not large.

function field = f.g. extension of a field F that is not algebraic over F , e.g. F (t).
——————————————————————————————————–
Most other fields you have heard of are large.

All logically tame infinite fields known before 2022 are large.



Large fields

——————————————————————————————————–
K is large if whenever f ∈ K [x , y ] and (a, b) ∈ K 2 satisfy

f (a, b) = 0 ̸= ∂f
∂y (a, b)

then f has infinitely many zeros in K .
——————————————————————————————————–
K algebraically closed =⇒ non-constant f ∈ K [x , y ] has infinitely many zeros.

More generally, separably closed fields are large.
——————————————————————————————————–
Implicit function theorem =⇒ R is large =⇒ real closed fields are large.

Polynomial IFT =⇒ henselian valued fields are large.

Qp, K ((t)) are henselian valued. Local fields are large, global fields are not.
——————————————————————————————————–
K is pseudofinite if K infinite and satisfies Th(finite fields).

Weil conj. for curves =⇒ Pseudofinite is PAC =⇒ Pseudofinite is large.

Infinite algebraic extensions of finite fields are also PAC.

(PAC means pseudo algebraically closed.)



More large fields

——————————————————————————————————–
Hasse Principle: A Q-variety with a point in R and in each Qp has a Q-point.
——————————————————————————————————–
Often fails.

K satisfies a local-global principle if it satisfies a form of the Hasse principle.

(For more precision see “Little survey on large fields” by Pop.)

K satisfies a local-global principle =⇒ K is large.

α ∈ Qalg is totally real if all roots of its min. poly. are in R.
Qtr = field of totally real algebraic numbers.
——————————————————————————————————–
An abs. irred. Qtr-variety with a point in any completion of Qtr has a Qtr-point.

Equivalently: A absolutely irreducible Qtr-variety with a point in every
real closure of Qtr with respect to a field order has a Qtr-point.

——————————————————————————————————–
Hence Qtr is large.

The field of totally p-adic algebraic numbers is also large.

More generally pseudo real closed and psuedo p-adically closed field are large.



Possibly large fields

Qab = max. abelian extension of Q = extension of Q by all roots of unity.
——————————————————————————————————–
Open Question: Is Qab large?
——————————————————————————————————–
Large fields are closed under algebraic extensions.

Qsolv = max. solvable extension of Q = smallest root-closed subfield of Qalg.
——————————————————————————————————–
Famous Conjecture: Qsolv is PAC, hence large.
——————————————————————————————————–

——————————————————————————————————–
Conjecture (Koenigsmann):

K has < ∞ separable extensions of any given degree =⇒ K is large.
——————————————————————————————————–

Colliot-Thélène, Jarden: Gal(K alg/K ) is pro-p =⇒ K is large.



The étale-open topology

An étale-image is a subset of W (K ) of the form f (V (K )) for étale f : V → W .

Étale-images are closed under finite intersections and unions.

Étale-images form a basis for the étale-open topology on W (K ).

Also call it the EK -topology.
——————————————————————————————————–
Some Properties:

• Refines the Zariski topology.

• V (K ) → W (K ) is continuous for any V → W .

• V (K ) → W (K ) is an open map for V → W étale.

• Topology on K n refines, but may not agree, with the product topology.

• Topology on K n = product topology ⇐⇒ EK induced by a field top. on K .
——————————————————————————————————–
Theorem (Johnson, Tran, W, Ye):
The EK -topology on K is discrete ⇐⇒ K is not large.
——————————————————————————————————–



——————————————————————————————————–
K is large if whenever f ∈ K [x , y ] and (a, b) ∈ K 2 satisfy

f (a, b) = 0 ̸= ∂f
∂y (a, b)

then f has infinitely many zeros in K .
——————————————————————————————————–
An étale-image is a subset of W (K ) of the form f (V (K )) for étale f : V → W .

Étale-images form a basis for the étale-open (EK -) topology on W (K ).
——————————————————————————————————–
Theorem (JTWY): The EK -topology on K is discrete ⇐⇒ K is not large.
——————————————————————————————————–
Proof: Any étale V → A1 is (Zariski) locally isomorphic to a morphism e:

Sets of the form {a ∈ K : (∃b ∈ K ) f (a, b) = 0 ̸= ∂f
∂y (a, b)} form a basis on K .



étale vs étale

The étale-open topology is not the étale topology!!!!!!!

étale-open topology étale topology

a topology not a topology

defined on V (K ) defined on V

not like the analytic topology like the analytic topology



Examples

Theorem (JTWY):

K separably closed =⇒ EK is the Zariski topology
K real closed =⇒ EK is the order topology
K henselian valued & not sep. closed =⇒ EK is the valuation topology
K is PAC and not sep. closed =⇒ EK is something new

K is PAC, Char(K ) ̸= 2 =⇒ U − U cofinite for any nonempty open U ⊆ K .

With respect to the étale-open topology:

K is HD ⇐⇒ K is not sep. closed
K is zero-dimensional ⇐⇒ K is not sep. closed or R.
K is loc. compact HD ⇐⇒ K is a local field other than C.
EK given by abs. value/valuation on K ⇐⇒ K is not sep. closed and we

have K ≡ K∗ for henselian K∗.



Our old theorem

——————————————————————————————————–
The stable fields conjecture: An infinite field is stable iff separably closed.
——————————————————————————————————–

True when “stable” is replaced by stronger stability-theoretic conditions.

C(t) might be stable?????????

——————————————————————————————————–
Theorem (JTWY): A large field is stable iff separably closed.
——————————————————————————————————–

Uses that the topology is HD, non-discrete, and has a definable basis.



Our new theorem

R is a local (i.e. unique maximal ideal m) integral domain that is not a field.

Frac(R) is its fraction field.

R is henselian if any simple root of f ∈ R[x ] in R/m lifts to a root of f in R.

simple root: f (α) = 0 ̸= f ′(α).

Examples: Val. ring of henselian valuation, K [[x1, . . . , xn]], complete local rings

–Pop, “Henselian implies large”
K ((x , y)) = Frac(K [[x , y ]]).

——————————————————————————————————–
Theorem (Pop ’07): Frac(R) is large when R is henselian.
——————————————————————————————————–



Our new theorem

R is a local (i.e. unique maximal ideal m) integral domain that is not a field.

Frac(R) is its fraction field.

R is henselian if any simple root of f ∈ R[x ] in R/m lifts to a root of f in R.

simple root: f (α) = 0 ̸= f ′(α).

——————————————————————————————————–
Theorem (JTWY): K is large ⇐⇒ K ≡ Frac(R) for R henselian.
——————————————————————————————————–

R is not the fraction field of a henselian local domain.

——————————————————————————————————–
Problem: Find logically tame henselian R with Frac(R) pseudofinite.
——————————————————————————————————–
Can’t be noetherian.

Other perspective: Def. of largeness axiomatizes the theory of fraction fields
of henselian local domains.



Proof of our new theorem

——————————————————————————————————–
Theorem (JTWY): K is large ⇐⇒ K ≡ Frac(R) for R henselian.
——————————————————————————————————–

⇐= Pop + large fields are an elementary class.

Separably closed case of =⇒ follows by standard valuation theory.

Main tool in non-separably closed case: Polynomial inverse function theorem.
——————————————————————————————————–
Theorem (JTWY): If K is not separably closed then V (K ) → W (K ) is a

local homeomorphism for étale V → W .
——————————————————————————————————–

——————————————————————————————————–
Corollary (not used for new theorem):
V smooth irreducible =⇒ V (K ) locally homeomorphic to K dimV .
——————————————————————————————————–

V (K ) is a “manifold”.



Proof of our new theorem: Nash functions

U ⊆ Rn open and definable, s : U → R.
s is a Nash function if s is C∞ and definable. (Equiv: analytic and algebraic.)
Artin-Mazur: s is Nash ⇐⇒ s is the composition of the inverse of an

étale map with a polynomial map.
——————————————————————————————————–
Theorem (JTWY): If K is not separably closed then V (K ) → W (K ) is a

local homeomorphism for étale V → W .
——————————————————————————————————–
Suppose K is large and not separably closed. U ⊆ V (K ) étale-open.
s : U → W (K ) is Nash if s = h ◦ (e|P)−1 for e : V ′ → V étale,
h : V ′ → W a morphism, P ⊆ V ′(K ) open, e gives a homeo. P → U.
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Proof of our new theorem: Nash functions

U ⊆ Rn open and definable, s : U → R.
s is a Nash function if s is C∞ and definable. (Equiv: analytic and algebraic.)
Artin-Mazur: s is Nash ⇐⇒ s is the composition of the inverse of an

étale map with a polynomial map.
——————————————————————————————————–
Theorem (JTWY): If K is not separably closed then V (K ) → W (K ) is a

local homeomorphism for étale V → W .
——————————————————————————————————–
Suppose K is large and not separably closed. U ⊆ V (K ) étale-open.
s : U → W (K ) is Nash if s = h ◦ (e|P)−1 for e : V ′ → V étale,
h : V ′ → W a morphism, P ⊆ V ′(K ) open, e gives a homeo. P → U.



Suppose K is large and not separably closed. O ⊆ V (K ) étale-open.

f : O → W (K ) is Nash if f = h ◦ (e|P)−1 for
e : V ′ → V étale, h : V ′ → W a morphism, e gives a homeo. P → O.
——————————————————————————————————–
Example: n

√
x on a nbhd of 1 when Char(K ) ∤ n.

Nash maps are closed under compositions.

Nash maps O → K form a ring.
——————————————————————————————————–
Theorem (JTWY): The ring of germs of Nash maps to K on K n at the origin

is isomorphic to the ring of algebraic formal power series
over K in n variables. (Real closed case well-known.)

——————————————————————————————————–
f ∈ K [[t1, . . . , tn]] is algebraic if algebraic over K [t1, . . . , tn].

K [[t1, . . . , tn]]
alg is a henselian local domain.

We can evaluate f ∈ K [[t1, . . . , tn]]
alg on sufficiently small elements of K n.

K is a |K |+-saturated elementary extension of K .

Let ε = (ε1, . . . , εn) ∈ Kn be K -infinitesimal, i.e. in every nbhd of 0 def. over K .

Evalε : K [[t1, . . . , tn]]
alg → K, Evalε(f ) = f (ε1, . . . , εn). A ring morphism.

Image of Evalε is a henselian local domain (they are closed under quotients).



——————————————————————————————————–
Theorem (JTWY): The ring of germs of Nash maps to K on K n at the origin

is isomorphic to the ring of algebraic formal power series
over K in n variables. (Real closed case well-known.)

——————————————————————————————————–
f ∈ K [[t1, . . . , tn]] is algebraic if algebraic over K [t1, . . . , tn].

K [[t1, . . . , tn]]
alg is a henselian local domain.

We can evaluate f ∈ K [[t1, . . . , tn]]
alg on sufficiently small elements of K n.

K is a |K |+-saturated elementary extension of K .

Let ε = (ε1, . . . , εn) ∈ Kn be K -infinitesimal, i.e. in every nbhd of 0 def. over K .

Evalε : K [[t1, . . . , tn]]
alg → K, Evalε(f ) = f (ε1, . . . , εn). A ring morphism.

Image of Evalε is a henselian local domain (they are closed under quotients).
——————————————————————————————————–

K [[ti ]]
alg
i<κ is the ring of algebraic power series in κ variables.

Still a henselian local domain.

ε = (εi )i<κ ∈ Kκ is K -infinitesimal if every finite subtuple is.

Can still define Evalε : K [[ti ]]
alg
i<κ → K, each series depends on only finitely many ti .

——————————————————————————————————–
Final Lemma: ∃ K -infinitesimal ε = (εi )i<κ s.t. the fraction field of

the image of Evalε is an elementary extension of K .
——————————————————————————————————–



IFT for Nash maps

Suppose K is large and not separably closed.
——————————————————————————————————–
Theorem (W): Nash maps over K satisfy the inverse and implicit function

theorems with respect to the étale-open topology.
——————————————————————————————————–
Ex: O ⊆ K 2 open, f : O → K Nash, (a, b) ∈ O s.t. f (a, b) = 0 ̸= ∂f /∂y(a, b).

∃ nbhd a ∈ U, unique Nash s : U → K s.t. s(a) = b and f (a∗, s(a∗)) = 0 ∀a∗ ∈ U.

Roughly:

Large ⇐⇒ inverse/implicit func. thm holds ⇐⇒ ≡ Frac(R) for R henselian



Thank you.

“Large implies Henselian”, on arxiv soon.


