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Conventions/Background

All rings are commutative with unit.

K is a field and K212 is the algebraic closure of K.

V, W, V' W’ are K-varieties. V — W is a K-variety morphism.
V(K) is the set of K-points of V.

A" is n-dimensional affine space over K, so A"(K) = K".

Roughly speaking:

V is defined by a finite system of polynomial equations and inequations with
coefficients from K.  V — W is a polynomial map.

V(K) is the solution set of the system in K.

We are primarily interested in V/(K) — basically quantifier free definable sets in K.

Even more roughly:

V “is" V(K®8), K-varieties are sets definable in K& with parameters from K.

Suppose W is smooth.
f: V — Wis étale if V is smooth and T,V — T¢,)W is an iso. for any p € V.



Largeness

K is large if it satisfies one of the following equivalent conditions:
e A smooth 1-dim K-variety with a K-point has infinitely many K-points.

o If f € K[x,y] and (a, b) € K? satisfy
f(a,b) =0# 5 (a,b)

then f has infinitely many zeros in K. (Large fields form a V3 elem. class.)
K
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Pop ('96) introduced largeness, proved inverse Galois theorem over K(t), K large.

“the ‘right class’ of fields over which one can do a lot of interesting mathematics.”
—Pop, “Little survery on large fields"



Non-large fields

K is large if whenever f € K[x,y] and (a, b) € K? satisfy
f(a,b) =0# §(a, b)

then f has infinitely many zeros in K.

Finite fields are not large.

f(x,y) =x*+y* -1

f(0,1) =0 # 4 = 9f /ay(0,1)

Fermat: Only zeros of f in Q2 are (+1,0), (0,%1).
Faltings: f has only finitely many zeros in any number field.
Similar (hard) results show that function fields are not large.

function field = f.g. extension of a field F that is not algebraic over F, e.g. F(t).

Most other fields you have heard of are large.

All logically tame infinite fields known before 2022 are large.



Large fields

K is large if whenever f € K[x,y] and (a, b) € K? satisfy
f(a,b) =0 5 (a,b)

ay

then f has infinitely many zeros in K.

K algebraically closed = non-constant € K|[x, y| has infinitely many zeros.
More generally, separably closed fields are large.

Implicit function theorem = Rislarge = real closed fields are large.
Polynomial IFT = henselian valued fields are large.

Qp, K((t)) are henselian valued.  Local fields are large, global fields are not.

K is pseudofinite if K infinite and satisfies Th(finite fields).

Weil conj. for curves — Pseudofinite is PAC — Pseudofinite is large.
Infinite algebraic extensions of finite fields are also PAC.

(PAC means pseudo algebraically closed.)



More large fields

Hasse Principle: A Q-variety with a point in R and in each Q, has a Q-point.

Often fails.

K satisfies a local-global principle if it satisfies a form of the Hasse principle.
(For more precision see “Little survey on large fields” by Pop.)

K satisfies a local-global principle = K is large.

a € Q8 is totally real if all roots of its min. poly. are in R.
Qtr = field of totally real algebraic numbers.

An abs. irred. Q%-variety with a point in any completion of Q% has a Q%-point.

Equivalently: A absolutely irreducible Q%-variety with a point in every
real closure of Q% with respect to a field order has a Q' -point.

Hence Q'F is large.
The field of totally p-adic algebraic numbers is also large.
More generally pseudo real closed and psuedo p-adically closed field are large.



Possibly large fields

Qap = max. abelian extension of Q = extension of Q by all roots of unity.

Open Question: s Qg large?

Large fields are closed under algebraic extensions.

Qsolv = max. solvable extension of Q = smallest root-closed subfield of Q2.

Famous Conjecture: Qs is PAC, hence large.

Conjecture (Koenigsmann):

K has < oo separable extensions of any given degree — K is large.

Colliot-Thélene, Jarden: Gal(K*&/K)is pro-p = K is large.



The étale-open topology

An étale-image is a subset of W(K) of the form f(V/(K)) for étale f: V — W.
Etale—images are closed under finite intersections and unions.
Etale-images form a basis for the étale-open topology on W(K).

Also call it the €k-topology.

Some Properties:
o Refines the Zariski topology.
o V(K) — W(K) is continuous for any V — W.
e V(K) — W(K) is an open map for V — W étale.
e Topology on K" refines, but may not agree, with the product topology.
e Topology on K" = product topology <= &k induced by a field top. on K.

Theorem (Johnson, Tran, W, Ye):
The Ek-topology on K is discrete <= K is not large.




K is large if whenever f € K[x,y] and (a, b) € K? satisfy
f(a,b) =0 # 5 (a,b)

then f has infinitely many zeros in K.

An étale-image is a subset of W(K) of the form f(V/(K)) for étale f: V — W.
Etale-images form a basis for the étale-open (€x-) topology on W(K).

Theorem (JTWY): The Ex-topology on K is discrete <= K is not large.

Proof: Any étale V — Al is (Zariski) locally isomorphic to a morphism e:
IS
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Sets of the form {a € K : (3b € K) f(a,b) =0 # %(a, b)} form a basis on K.




étale vs étale

étale-open topology étale topology
a topology not a topology
defined on V(K) defined on V

not like the analytic topology like the analytic topology



Theorem (JTWY):

K separably closed —> €k is the Zariski topology
K real closed = &k is the order topology

K henselian valued & not sep. closed —> & is the valuation topology
K is PAC and not sep. closed —> &k is something new

K is PAC, Char(K) #2 = U — U cofinite for any nonempty open U C K.

With respect to the étale-open topology:
K is HD
K is zero-dimensional
K is loc. compact HD
&k given by abs. value/valuation on K

K is not sep. closed

K is not sep. closed or R.

K is a local field other than C.
K is not sep. closed and we
have K = K* for henselian K*.

rree



Our old theorem

The stable fields conjecture:  An infinite field is stable iff separably closed.

True when “stable” is replaced by stronger stability-theoretic conditions.

Theorem (JTWY): A large field is stable iff separably closed.

Uses that the topology is HD, non-discrete, and has a definable basis.



Our new theorem

R is a local (i.e. unique maximal ideal m) integral domain that is not a field.

Frac(R) is its fraction field.

R is henselian if any simple root of f € R[x] in R/m lifts to a root of f in R.

simple root:  f(«a) =0 # ().

Examples:  Val. ring of henselian valuation, K[[x1,...,xy]], complete local rings
it was generally believed that the above fields K = k((x, y)), and more general

K = Quot(R) with R complete Noetherian local and Krull.dim(R) > 1, were not
large fields. Note that these fields are definitely not Henselian valued fields!

—Pop, “Henselian implies large”
K((x, y)) = Frac(K[[x, y]])-

Theorem (Pop ’'07):  Frac(R) is large when R is henselian.




Our new theorem

R is a local (i.e. unique maximal ideal m) integral domain that is not a field.
Frac(R) is its fraction field.

R is henselian if any simple root of f € R[x] in R/m lifts to a root of f in R.
simple root:  f(a) =0 # /().

Theorem (JTWY): Kislarge <= K = Frac(R) for R henselian.

R is not the fraction field of a henselian local domain.

Problem:  Find logically tame henselian R with Frac(R) pseudofinite.

Can't be noetherian.

Other perspective: Def. of largeness axiomatizes the theory of fraction fields
of henselian local domains.



Proof of our new theorem

Theorem (JTWY): Kislarge <= K = Frac(R) for R henselian.

<= Pop + large fields are an elementary class.
Separably closed case of = follows by standard valuation theory.

Main tool in non-separably closed case: Polynomial inverse function theorem.

Theorem (JTWY):  If K is not separably closed then V(K) — W(K) is a
local homeomorphism for étale V — W.

Corollary (not used for new theorem): _
V smooth irreducible == V(K locally homeomorphic to K4mV.

V(K) is a "manifold”.



Proof of our new theorem: Nash functions

U C R" open and definable, s: U — R.

s is a Nash function if s is C* and definable. (Equiv: analytic and algebraic.)

Artin-Mazur: sis Nash <= s is the composition of the inverse of an
étale map with a polynomial map.

Theorem (JTWY):  If K is not separably closed then V(K) — W(K) is a
local homeomorphism for étale V — W.

Suppose K is large and not separably closed. U C V/(K) étale-open.
s: U— W(K)is Nash if s = ho (e|p)~! for e: V' — V étale,
h: V' — W a morphism, P C V'(K) open, e gives a homeo. P — U.

h
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Suppose K is large and not separably closed. O C V/(K) étale-open.
f: O — W(K)is Nash if f = ho (e|p)~* for
e: V' — V étale, h: V/ — W a morphism, e gives a homeo. P — O.

Example: /x on a nbhd of 1 when Char(K) { n.
Nash maps are closed under compositions.
Nash maps O — K form a ring.

Theorem (JTWY): The ring of germs of Nash maps to K on K" at the origin
is isomorphic to the ring of algebraic formal power series
over K in n variables. (Real closed case well-known.)

f € K[[t, ..., ts]] is algebraic if algebraic over K|ti, ..., t,].
K{[t1, -, ts]]*'® is a henselian local domain.
We can evaluate f € K[[ti,. .., t,]]*' on sufficiently small elements of K".

K is a |K|"-saturated elementary extension of K.

Let € = (e1,...,€5) € K" be K-infinitesimal, i.e. in every nbhd of 0 def. over K.
Eval.: K{[[t1, ..., t,]]*® = K, Eval.(f) = f(e1,...,€,). A ring morphism.
Image of Eval. is a henselian local domain (they are closed under quotients).



Theorem (JTWY):  The ring of germs of Nash maps to K on K" at the origin
is isomorphic to the ring of algebraic formal power series
over K in n variables. (Real closed case well-known.)

f € K[[ti, ..., ty]] is algebraic if algebraic over K|[t1, ..., t].
K{[t1, -, ts]]*'® is a henselian local domain.
We can evaluate f € K[[ti, ..., t,]]*'® on sufficiently small elements of K".

K is a |K|"-saturated elementary extension of K.

Let e = (e1,...,&,) € K" be K-infinitesimal, i.e. in every nbhd of 0 def. over K.
Eval.: K|[[t1, ..., t,]]*® = K, Eval.(f) = f(e1,...,€,). A ring morphism.
Image of Eval. is a henselian local domain (they are closed under quotients).

K[[t,-]],.aigﬁ is the ring of algebraic power series in r variables.

Still a henselian local domain.
e = (gi)i<x € K" is K-infinitesimal if every finite subtuple is.

Can still define Eval, : K[[t,-]]j?‘lf,,C — K, each series depends on only finitely many t;.

Final Lemma: 3 K-infinitesimal € = (&;);<x s.t. the fraction field of
the image of Eval. is an elementary extension of K.



IFT for Nash maps

Suppose K is large and not separably closed.

Theorem (W):  Nash maps over K satisfy the inverse and implicit function
theorems with respect to the étale-open topology.

Ex: O C K2 open, f: O — K Nash, (a,b) € O s.t. f(a,b) =0 # af /dy(a, b).

Kl,

[)
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3 nbhd a € U, unique Nash s: U — K s.t. s(a) = b and f(a*,s(a*)) =0 Va* € U.

Roughly:
Large <= inverse/implicit func. thm holds <= = Frac(R) for R henselian




Thank you.

“Large implies Henselian”, on arxiv soon.



