The model theory of large fields

Erik Walsberg

August 6, 2025

Conventions/Background

All rings are commutative with unit.

K is a field and K^{alg} is the algebraic closure of K.

V, W, V', W' are K-varieties. $V \rightarrow W$ is a K-variety morphism.

V(K) is the set of K-points of V.

 \mathbb{A}^n is *n*-dimensional affine space over K, so $\mathbb{A}^n(K) = K^n$.

Roughly speaking:

V is defined by a finite system of polynomial equations and inequations with coefficients from K. $V \to W$ is a polynomial map.

V(K) is the solution set of the system in K.

We are primarily interested in V(K) – basically quantifier free definable sets in K.

Even more roughly:

V "is" $V(K^{\mathrm{alg}})$, K-varieties are sets definable in K^{alg} with parameters from K.

Suppose W is smooth.

 $f \colon V \to W$ is **étale** if V is smooth and $T_p V \to T_{f(p)} W$ is an iso. for any $p \in V$.

Largeness

 ${\it K}$ is large if it satisfies one of the following equivalent conditions:

- A smooth 1-dim K-variety with a K-point has infinitely many K-points.
- If $f \in K[x, y]$ and $(a, b) \in K^2$ satisfy

$$f(a,b) = 0 \neq \frac{\partial f}{\partial y}(a,b)$$

then f has infinitely many zeros in K. (Large fields form a $\forall \exists$ elem. class.)

Pop ('96) introduced largeness, proved inverse Galois theorem over K(t), K large.

"the 'right class' of fields over which one can do a lot of interesting mathematics."

—Pop, "Little survery on large fields"

Non-large fields

K is large if whenever $f \in K[x, y]$ and $(a, b) \in K^2$ satisfy

$$f(a,b) = 0 \neq \frac{\partial f}{\partial y}(a,b)$$

then f has infinitely many zeros in K.

Finite fields are not large.

$$f(x,y) = x^4 + y^4 - 1.$$

$$f(0,1)=0\neq 4=\partial f/\partial y(0,1)$$

Fermat: Only zeros of f in \mathbb{Q}^2 are $(\pm 1,0)$, $(0,\pm 1)$.

Faltings: *f* has only finitely many zeros in any number field.

Similar (hard) results show that function fields are not large.

function field = f.g. extension of a field F that is not algebraic over F, e.g. F(t).

Most other fields you have heard of are large.

All logically tame infinite fields known before 2022 are large.

Large fields

K is **large** if whenever $f \in K[x, y]$ and $(a, b) \in K^2$ satisfy

$$f(a,b) = 0 \neq \frac{\partial f}{\partial y}(a,b)$$

then f has infinitely many zeros in K.

K algebraically closed \implies non-constant $f \in K[x, y]$ has infinitely many zeros. More generally, separably closed fields are large.

Implicit function theorem \implies \mathbb{R} is large \implies real closed fields are large.

Polynomial IFT \implies henselian valued fields are large.

 \mathbb{Q}_p , K((t)) are henselian valued. Local fields are large, global fields are not.

K is **pseudofinite** if K infinite and satisfies Th(finite fields).

Weil conj. for curves \implies Pseudofinite is PAC \implies Pseudofinite is large. Infinite algebraic extensions of finite fields are also PAC.

(PAC means pseudo algebraically closed.)

More large fields

Hasse Principle: A \mathbb{Q} -variety with a point in \mathbb{R} and in each \mathbb{Q}_p has a \mathbb{Q} -point.

Often fails.

 ${\it K}$ satisfies a local-global principle if it satisfies a form of the Hasse principle.

(For more precision see "Little survey on large fields" by Pop.)

 $\alpha \in \mathbb{Q}^{\mathrm{alg}}$ is **totally real** if all roots of its min. poly. are in \mathbb{R} .

K satisfies a local-global principle \implies K is large.

 $\mathbb{Q}^{\mathrm{tr}} = \mathsf{field}$ of totally real algebraic numbers.

An abs. irred. \mathbb{Q}^{tr} -variety with a point in any completion of \mathbb{Q}^{tr} has a \mathbb{Q}^{tr} -point.

Equivalently: A absolutely irreducible \mathbb{Q}^{tr} -variety with a point in every real closure of \mathbb{Q}^{tr} with respect to a field order has a \mathbb{Q}^{tr} -point.

Hence \mathbb{O}^{tr} is large.

The field of totally p-adic algebraic numbers is also large.

More generally pseudo real closed and psuedo p-adically closed field are large.

Possibly large fields

 $\mathbb{Q}_{ab}=\text{max.}$ abelian extension of $\mathbb{Q}=\text{extension}$ of \mathbb{Q} by all roots of unity.

Open Question: Is \mathbb{Q}_{ab} large?

Large fields are closed under algebraic extensions.

 $\mathbb{Q}_{\mathrm{solv}}=\mathsf{max}.$ solvable extension of $\mathbb{Q}=\mathsf{smallest}$ root-closed subfield of $\mathbb{Q}^{\mathrm{alg}}.$

Famous Conjecture: \mathbb{Q}_{solv} is PAC, hence large.

Conjecture (Koenigsmann):

K has $<\infty$ separable extensions of any given degree \implies K is large.

Colliot-Thélène, Jarden: $\operatorname{Gal}(K^{\operatorname{alg}}/K)$ is pro- $p \implies K$ is large.

The étale-open topology

An **étale-image** is a subset of W(K) of the form f(V(K)) for étale $f: V \to W$.

Étale-images are closed under finite intersections and unions.

Étale-images form a basis for the étale-open topology on W(K).

Also call it the \mathcal{E}_K -topology.

Some Properties:

- Refines the Zariski topology.
- $V(K) \to W(K)$ is continuous for any $V \to W$.
- $V(K) \rightarrow W(K)$ is an open map for $V \rightarrow W$ étale.
- Topology on K^n refines, but may not agree, with the product topology.
- Topology on $K^n = \text{product topology} \iff \mathcal{E}_K \text{ induced by a field top. on } K$.

Theorem (Johnson, Tran, W, Ye):

The \mathcal{E}_K -topology on K is discrete \iff K is not large.

K is **large** if whenever $f \in K[x,y]$ and $(a,b) \in K^2$ satisfy $f(a,b) = 0 \neq \tfrac{\partial f}{\partial y}(a,b)$ then f has infinitely many zeros in K.

An **étale-image** is a subset of W(K) of the form f(V(K)) for étale $f: V \to W$.

Étale-images form a basis for the **étale-open** (\mathcal{E}_{K} -) **topology** on W(K).

Theorem (JTWY): The \mathcal{E}_K -topology on K is discrete \iff K is not large.

Proof: Any étale $V \to \mathbb{A}^1$ is (Zariski) locally isomorphic to a morphism e:

Sets of the form $\{a \in K : (\exists b \in K) \mid f(a,b) = 0 \neq \frac{\partial f}{\partial y}(a,b)\}$ form a basis on K.

étale vs étale

The étale-open topology is **not** the étale topology!!!!!!!

étale-open topology	étale topology
a topology	not a topology
defined on $V(K)$	defined on V
not like the analytic topology	like the analytic topology

Examples

Theorem (JTWY):

K separably closed $\Longrightarrow \mathcal{E}_K$ is the Zariski topology

 ${\mathcal K}$ real closed \Longrightarrow ${\mathcal E}_{{\mathcal K}}$ is the order topology

K henselian valued & not sep. closed \implies \mathcal{E}_K is the valuation topology

 ${\mathcal K}$ is PAC and not sep. closed \Longrightarrow ${\mathcal E}_{{\mathcal K}}$ is something new

K is PAC, $\operatorname{Char}(K) \neq 2 \implies U - U$ cofinite for any nonempty open $U \subseteq K$.

With respect to the étale-open topology:

K is HD \iff K is not sep. closed

K is zero-dimensional \iff K is not sep. closed or \mathbb{R} .

K is loc. compact HD \iff K is a local field other than \mathbb{C} .

 \mathcal{E}_K given by abs. value/valuation on $K\iff K$ is not sep. closed and we have $K\equiv K^*$ for henselian K^* .

Our old theorem

The stable fields conjecture: An infinite field is stable iff separably closed.

True when "stable" is replaced by stronger stability-theoretic conditions.

 $\mathbb{C}(t)$ might be stable????????

Theorem (JTWY): A large field is stable iff separably closed.

Uses that the topology is HD, non-discrete, and has a definable basis.

Our new theorem

R is a local (i.e. unique maximal ideal \mathfrak{m}) integral domain that is not a field. Frac(R) is its fraction field.

R is **henselian** if any simple root of $f \in R[x]$ in R/\mathfrak{m} lifts to a root of f in R. simple root: $f(\alpha) = 0 \neq f'(\alpha)$.

Examples: Val. ring of henselian valuation, $K[[x_1, \ldots, x_n]]$, complete local rings

it was generally believed that the above fields K = k((x, y)), and more general K = Quot(R) with R complete Noetherian local and Krull.dim(R) > 1, were not large fields. Note that these fields are definitely *not* Henselian valued fields!

-Pop, "Henselian implies large"

$$K((x,y)) = \operatorname{Frac}(K[[x,y]]).$$

Theorem (Pop '07): Frac(R) is large when R is henselian.

Our new theorem

R is a local (i.e. unique maximal ideal \mathfrak{m}) integral domain that is not a field. Frac(R) is its fraction field.

R is **henselian** if any simple root of $f \in R[x]$ in R/\mathfrak{m} lifts to a root of f in R. simple root: $f(\alpha) = 0 \neq f'(\alpha)$.

Theorem (JTWY): K is large \iff $K \equiv \operatorname{Frac}(R)$ for R henselian.

 ${\mathbb R}$ is not the fraction field of a henselian local domain.

Problem: Find logically tame henselian R with Frac(R) pseudofinite.

Can't be noetherian.

Other perspective: Def. of largeness axiomatizes the theory of fraction fields

of henselian local domains.

Proof of our new theorem

Theorem (JTWY): K is large \iff $K \equiv \operatorname{Frac}(R)$ for R henselian.

 \leftarrow Pop + large fields are an elementary class.

Separably closed case of \Longrightarrow follows by standard valuation theory.

Main tool in non-separably closed case: Polynomial inverse function theorem.

Theorem (JTWY): If K is not separably closed then $V(K) \to W(K)$ is a local homeomorphism for étale $V \to W$.

Corollary (not used for new theorem):

V smooth irreducible $\implies V(K)$ locally homeomorphic to $K^{\dim V}$.

V(K) is a "manifold".

 $U \subseteq \mathbb{R}^n$ open and definable, $s \colon U \to \mathbb{R}$.

s is a **Nash function** if s is C^{∞} and definable. (Equiv. analytic and algebraic.)

Theorem (JTWY): If K is not separably closed then $V(K) \to W(K)$ is a local homeomorphism for étale $V \to W$.

 $U \subseteq \mathbb{R}^n$ open and definable, $s \colon U \to \mathbb{R}$.

s is a **Nash function** if s is C^{∞} and definable. (Equiv. analytic and algebraic.)

Artin-Mazur: s is Nash \iff s is the composition of the inverse of an étale map with a polynomial map.

Theorem (JTWY): If K is not separably closed then $V(K) \to W(K)$ is a local homeomorphism for étale $V \to W$.

 $U \subseteq \mathbb{R}^n$ open and definable, $s \colon U \to \mathbb{R}$.

s is a **Nash function** if s is C^{∞} and definable. (Equiv. analytic and algebraic.)

Artin-Mazur: s is Nash \iff s is the composition of the inverse of an étale map with a polynomial map.

Theorem (JTWY): If K is not separably closed then $V(K) \to W(K)$ is a local homeomorphism for étale $V \to W$.

 $U \subseteq \mathbb{R}^n$ open and definable, $s \colon U \to \mathbb{R}$.

s is a **Nash function** if s is C^{∞} and definable. (Equiv. analytic and algebraic.)

Artin-Mazur: s is Nash \iff s is the composition of the inverse of an étale map with a polynomial map.

Theorem (JTWY): If K is not separably closed then $V(K) \to W(K)$ is a local homeomorphism for étale $V \to W$.

Suppose K is large and not separably closed. $O \subseteq V(K)$ étale-open. $f: O \to W(K)$ is **Nash** if $f = h \circ (e|_P)^{-1}$ for $e: V' \to V$ étale, $h: V' \to W$ a morphism, e gives a homeo. $P \to O$.

Example: $\sqrt[n]{x}$ on a nbhd of 1 when $Char(K) \nmid n$.

Nash maps are closed under compositions.

Nash maps $O \rightarrow K$ form a ring.

Theorem (JTWY): The ring of germs of Nash maps to K on K^n at the origin is isomorphic to the ring of algebraic formal power series over K in n variables. (Real closed case well-known.)

 $f \in K[[t_1, \ldots, t_n]]$ is **algebraic** if algebraic over $K[t_1, \ldots, t_n]$. $K[[t_1, \ldots, t_n]]^{\text{alg}}$ is a henselian local domain.

We can evaluate $f \in K[[t_1, \dots, t_n]]^{alg}$ on sufficiently small elements of K^n .

 \mathbb{K} is a $|K|^+$ -saturated elementary extension of K.

Let $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n) \in \mathbb{K}^n$ be K-infinitesimal, i.e. in every nbhd of 0 def. over K.

 $\operatorname{Eval}_{\varepsilon} \colon \mathcal{K}[[t_1,\ldots,t_n]]^{\operatorname{alg}} \to \mathbb{K}, \ \operatorname{Eval}_{\varepsilon}(f) = f(\varepsilon_1,\ldots,\varepsilon_n).$ A ring morphism.

Image of $\mathrm{Eval}_{arepsilon}$ is a henselian local domain (they are closed under quotients).

$t \in K[[t_1, \ldots, t_n]]$ is algebraic if algebraic over $K[t_1, \ldots, t_n]$.
$\mathcal{K}[[t_1,\ldots,t_n]]^{\mathrm{alg}}$ is a henselian local domain.
We can evaluate $f \in K[[t_1,\ldots,t_n]]^{\mathrm{alg}}$ on sufficiently small elements of K^n .
\mathbb{K} is a $ K ^+$ -saturated elementary extension of K .

The ring of germs of Nash maps to K on K^n at the origin is isomorphic to the ring of algebraic formal power series over K in n variables. (Real closed case well-known.)

Let $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n) \in \mathbb{K}^n$ be K-infinitesimal, i.e. in every nbhd of 0 def. over K. $\mathrm{Eval}_{\varepsilon} \colon K[[t_1, \dots, t_n]]^{\mathrm{alg}} \to \mathbb{K}$, $\mathrm{Eval}_{\varepsilon}(f) = f(\varepsilon_1, \dots, \varepsilon_n)$. A ring morphism.

Image of $Eval_{\varepsilon}$ is a henselian local domain (they are closed under quotients).

 $\mathcal{K}[[t_i]]_{i<\kappa}^{\mathrm{alg}}$ is the ring of algebraic power series in κ variables.

Still a henselian local domain. $C = (C_1) \cdot C \times K^{K_1} = K \text{ infinitesimal if every finite subtuple is}$

Theorem (JTWY):

 $\varepsilon = (\varepsilon_i)_{i < \kappa} \in \mathbb{K}^{\kappa}$ is *K*-infinitesimal if every finite subtuple is.

Can still define $\operatorname{Eval}_{\varepsilon} \colon K[[t_i]]^{\operatorname{alg}}_{i < \kappa} \to \mathbb{K}$, each series depends on only finitely many t_i . Final Lemma: $\exists K$ -infinitesimal $\varepsilon = (\varepsilon_i)_{i < \kappa}$ s.t. the fraction field of

the image of $\text{Eval}_{\varepsilon}$ is an elementary extension of K.

IFT for Nash maps

Suppose K is large and not separably closed.

Theorem (W): Nash maps over K satisfy the inverse and implicit function theorems with respect to the étale-open topology.

Ex: $O \subseteq K^2$ open, $f: O \to K$ Nash, $(a,b) \in O$ s.t. $f(a,b) = 0 \neq \partial f/\partial y(a,b)$.

 \exists nbhd $a \in U$, unique Nash $s \colon U \to K$ s.t. s(a) = b and $f(a^*, s(a^*)) = 0 \ \forall a^* \in U$.

Roughly:

Large \iff inverse/implicit func. thm holds \iff $\equiv \operatorname{Frac}(R)$ for R henselian

	Thank you.	
'Large implies Henselian", on arxiv soon.		