
EXERCISES

STRONG MINIMALITY AND GEOMETRIC STABILITY

The following are exercises accompanying the lecture notes for the course Geo-
metric Stability Theory and Strong Minimality. Most of the exercises appear as
natural lemmas and examples in the text, and are copied from where they appear.
Each section also has some added exercises at the end (many of which are more
challenging) under the heading Additional Exercises for ....

2. Uncountable Categoricity and Strong Minimality

(1) Give an example of an infinite structure M such that every unary definable
set in M is finite or cofinite, but M is not strongly minimal.

(2) Let T be a complete theory in a countable language with infinite models.
(a) Suppose that for every M |= T , and every finite subset A ⊂ M , the

automorphism group Aut(M/A) (automorphisms of M fixing A point-
wise) has a co-countable orbit. Show that T is strongly minimal.

(b) Use (a) to show that each of pure sets, vector spaces, and algebraically
closed fields are strongly minimal.

(3) Show that the theory of pairs of infinite sets with a bijection is uncountably
categorical, while the theory of pairs of infinite sets (without a bijection) is
not.

(4) Show that the theory of a fibered family of affine vector spaces (Example
2.9(4)) is uncountably categorical.

(5) Additional Exercises for Section 2

(6) Show that T := Th((Z/4Z)ω,+) is uncountably categorical.
(7) Let M be an infinite set, and E an equivalence relation on M , so that

T := Th(M,E) (in the language with one binary relation) is uncountably
categorical. Show that one of the following holds:
(a) There is a cofinite E-class.
(b) There is a positive integer n such that cofinitely many elements of M

belong to classes of size n.
In each of the above cases, conclude that T is strongly minimal.

3. Definable Sets in Strongly Minimal Theories

Throughout, assume M is a strongly minimal structure.

(1) Show that uniform finiteness holds in Mn: That is, let X ⊂ Mm ×Mn be
definable. Then there is N so that for all y ∈ Mm, either Xy is infinite or
|Xy| ≤ N .

(2) Show the following:
(a) dim(Mn) = n for each n.
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2 STRONG MINIMALITY AND GEOMETRIC STABILITY

(b) If X ⊂ Mn is definable, we have dim(X) = −∞ if and only if X is
empty, and dim(X) = 0 if and only if X is non-empty and finite.

(3) Suppose M |= ACFp for some p. Let P (x, y) be a non-constant binary
polynomial with coefficients in M . Show that dim({(x, y) : P (x, y) = 0}) =
1.

(4) Show the following:
(a) dim(X × Y ) = dim(X) + dim(Y ) for any definable X and Y .
(b) If f : X → Y is a definable surjection, then dim(X) ≥ dim(Y ).
(c) If f : X → Y is a definable bijection, then dim(X) = dim(Y ).
(d) More generally, say that the definable sets X and Y are in definable

finite-to-finite correspondence if there is a definable Z ⊂ X×Y so that
both projections Z → X and Z → Y are surjective with finite fibers.
So that in this case we have dim(X) = dim(Y ).

(5) Show the following:
(a) A finite set is stationary if and only if it is a single point.
(b) Each Mn is stationary.
(c) If dim(X) = 1, then X is stationary if and only if X is infinite and

every definable subset of X is finite or cofinite. In this case we say X
is strongly minimal (as a definable set).

(d) Suppose T = ACFp, and P (X,Y ) is a non-constant binary polynomial
with coefficients in M . Then {(x, y) : P (x, y) = 0} is stationary if and
only if P = Qk for some irreducible Q and some k.

(6) Let X be A-definable and stationary of dimension d. Show that the d-
dimensional A-definable subsets of X are closed under finite intersections,
and thus they determine a complete consistent type over A.

(7) Show that stationarity is preserved under elementary extensions. That is,
let N be an elementary extension of M , and let ϕ(x, a) be a formula in
n variables with parameters in M . Show that ϕ(x, a) defines a stationary
subset of Mn if and only if it defines a stationary subset of Nn.

(8) (a) Show that if X and Y are almost equal, then dim(X) = dim(Y ).
(b) Show that almost equality is an equivalence relation, but almost con-

tainment is not a partial order.
(c) If X and Y are stationary of dimension d, show that X and Y are

almost equal if and only if dim(X ∩ Y ) = d.
(9) Let X ⊂ Mn be A-definable of dimension d. Show that there is an A-

definable function X → Md with all fibers finite. Hint: first show that
if X ⊂ Mn and dim(X) ̸= n, there is a finite-to-one A-definable function
X → Mn−1. Now use induction.

(10) (a) Show that if X and Y are definable and almost equal, then X is
stationary if and only if Y is. Thus the term stationary class is well-
defined.

(b) Show that if [X] and [Y ] are d-dimensional almost equality classes,
then the class [X] ∪ [Y ] = [X ∪ Y ] is well-defined.

(c) Conclude that every d-dimensional almost equality class decomposes
uniquely into a union of finitely many stationary classes.

(11) Let a ∈ Mn. Then there is an A-definable set X containing a such that for
every other A-definable Y containing a, X is almost contained in Y .
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Additional Exercises for Section 3

(12) Let X ⊂ Mn be non-empty and definable.
(a) Show that dim(X) ≥ d if and only if there is a projection X → Md

whose image is almost equal to Md. Thus, show that dim(X) is the
largest d such that there is a projection X → Md whose image is
almost equal to Md.

(b) Similarly, show that dim(X) ≤ d if and only if there is a definable
finite-to-one function X → Md. Thus, show that dim(X) is also the
smallest d such that there is a finite-to-one definable function X →
Md.

(c) Show that dim(X) is the unique d such that there is a finite-to-one
definable function X → Md whose image is almost equal to Md.

(13) Suppose M is a vector space over the field F , and X ⊂ Mn is a definable
vector subspace. Show that dimF (X) = dimF (M)× dim(X), where dimF

denotes the usual dimension of F -vector spaces in linear algebra.
(14) Suppose F is an infinite field, M is an F -vector space, and ∅ ̸= X ⊂ Mn

is definable. Show that X is stationary if and only if it is almost equal to
a translate of a vector subspace of Mn. What happens if F is finite?

(15) (For those comfortable with some algebraic geometry). Suppose M |=
ACFp.
(a) Suppose V is an affine variety over M . Show that the set V (M) is

definable, and dim(V (M)) is the same as dim(V ) (the dimension as a
variety).

(b) Suppose X ⊂ Mn is definable. Show that M is stationary if and only
if it is almost equal to V (M) for some irreducible affine variety V over
M .

(16) (Hard) Show that unlike dimension, stationarity is not always definable in
families: in some strongly minimal structure, there is a definable family
X ⊂ Mn × T so that {t : Xt is stationary} is not definable. Do this as
follows:
(a) Let M = R × {1, 2}, and let π : M → R be the projection. Equip V

with the following:
• The ternary relation π(x) + π(y) = π(z).
• The unary function (x, i) 7→ (x+ 1, i).

Show that M with this structure is strongly minimal.
(b) Consider the definable family {Xt : t ∈ M} where Xt is the set of

(x, y) ∈ M2 with π(y) = π(x)+ π(t). Show that Xt is both stationary
for infinitely many t and non-stationary for infinitely many t. Conclude
that {t : Xt is stationary} is not definable.

(17) On the other hand, show that stationarity is definable in the theory of
F -vector spaces for a fixed field F . (In fact, stationarity is definable in all
natural examples – in particular also in algebraically closed fields, but this
is much harder to prove).

4. Interpretable Sets

For the first two exercises, let M be any structure.

(1) (a) Th(Meq) only depends on Th(M).
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(b) If S = Mn/E is a sort in Meq, a set X ⊂ S is ∅-definable if and only
if its preimage in Mn is ∅-definable in M .

(c) In particular, the ∅-definable sets in each Mn are unaffected by passing
to Meq.

(2) Let X ⊂ Mn be A-definable, and let E be an A-definable equivalence
relation on X. Show that the quotient X/E is naturally identified with an
A-definable set in Meq.

Hint: Let X and E be definable over a finite tuple t ∈ Mm from A.
Construct a ∅-definable equivalence relation on Mm ×Mn.

For the remaining exercises, assume M is strongly minimal.
(3) Check that dimension is well-defined on interpretable sets.
(4) Show that all items in Theorem 3.31 remain true in Meq. Hint: many of

(1)-(7) are interdependent, so you don’t have to prove them all directly.
For those you do have to prove, try to use weak elimination of imaginar-
ies to reduce to a property of dimension in definable sets. This should
work everywhere except definability of dimension (because there you need
to control parameters, and weak elimination of imaginaries requires uncon-
trollable extra parameters). Instead, prove definability of dimension using
function additivity.

Additional Exercises for Section 4

(5) A structure N is said to have elimination of imaginaries if each sort in Neq

is in ∅-definable bijection with a subset of some Nk. This says, roughly, that
Neq is no different that N itself. A very useful fact in the model theory of
fields is that every algebraically closed field has elimination of imaginaries.
Let us sketch a proof. So, suppose M |= ACF .
(a) Show that acl(∅) ∩M is infinite.
(b) By rerunning the proof and using (a), show that we do not need added

parameters in the statement of weak elimination of imaginaries for M :
that is, every ∅-definable set in Meq is the image of a ∅-definable set
in some Mn under a finite-to-one ∅-definable function.

(c) Conclude that to prove M has elimination of imaginaries, it suffices to
show that each symmetric power (Mn)(m) is in ∅-definable bijection
with a subset of some Mk (here (Mn)(m) is the set of all m-element
subsets of Mn, which is in particular a sort in Meq).

(d) Use symmetric functions to prove elimination of imaginaries for sym-
metric powers as in (3), and conclude that M has elimination of
imaginaries. (Precisely, for M (m), symmetric functions suffice. For
(Mn)(m), something similar but more complicated is required).

5. Dimension of Types

For the first two exercises, M and N denote any structures.

(1) Suppose M is saturated. Then so is Meq.
(2) Let M and N be saturated models of the same complete theory. If |M | =

|N | then M and N are isomorphic.
For the remaining exerices, work in a fixed uncountable satu-

rated strongly minimal structure M .
(3) Show the following basic properties of the notation dim(a/A):
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(a) dim(a/A) only depends on tp(a/A).
(b) If a ∈ Mn then dim(a/A) ≤ n.
(c) If σ is a permutation of a1, ..., an then dim(σ(a1)...σ(an)/A) = dim(a1...an/A).
(d) If A ⊂ B then dim(a/B) ≤ dim(a/A).

(4) Let X and Y be A-definable.
(a) Show that X is almost contained in Y if and only if every generic point

of X over A belongs to Y .
(b) Show that X and Y are almost equal if and only if they have the same

generic points over A.
(5) (Model-Theoretic Galois Theory)

(a) Show that if A is small, a, b ∈ Meq, and tp(a/A) = tp(b/A), there is
an automorphism of M fixing A point-wise and sending a to b. Hint:
use the uniqueness of saturated models.

(b) Conclude that for small A, the assertion that a ∈ acl(A) is equivalent
to the assertion that a has finite orbit under the action of Aut(M/A)
(automorphisms fixing A point-wise).

(c) Similarly, say that a is definable over A (denoted a ∈ dcl(A)) if the set
{a} is A-definable. Show that for small A, a ∈ dcl(A) is equivalent to
the assertion that a is fixed by all of Aut(M/A).

(d) Give examples to show that (2) and (3) fail if A is not small (i.e. if
|A| = |M |).

(e) (Hard) On the other hand, show that (1) does hold even if A is not
small (this is a unique feature of strongly minimal theories).

(6) Characterize the acl operator in natural examples, as follows:
(a) Suppose M |= ACFp and A ⊂ M . Show that acl(A) ∩M is the (field-

theoretic) algebraic closure of the field generated by A. (It may help
to use the previous exercise).

(b) Find similar characterizations of algebraic closure (inside the sort M
only) in the theories of the pure set, the integers with successor, and
vector spaces.

(7) Use additivity to prove the following:
(a) dim(ab/A) ≤ dim(a/A) + dim(b/A).
(b) If b ∈ acl(A) then dim(a/Ab) = dim(a/A).
(c) If a and b are interalgebraic over A then dim(a/A) = dim(b/A).

(8) Show the following properties of independence:
(a) If b ∈ acl(A) then every a is independent from b over A.
(b) a is independent from itself over A if and only if a ∈ acl(A).
(c) If a is independent from bc over A if and only if it is independent from

both b over A and c over Ab.

Additional Exercises for Section 5

(9) Let A ⊂ M . Show that A is an elementary submodel of M if and only if A
is infinite and algebraically closed (i.e. acl(A) ∩M = A).

(10) Let us prove Zilber’s non-finite axiomatizability theorem in the strongly
minimal case. So, supposeM is moreover ℵ0-categorical. Let a1, a2, ... be an
infinite sequence of independent generics of M (i.e. dim(an+1/a1...an) = 1
for all n). Let An = acl(a1...an) ∩M (a substructure of M).
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(a) Fix any non-principal ultraproduct U on Z+. Let A∗ = Πn→UAn, and
M∗ = Πn→UM . Show that A∗ is algebraically closed as a subset of
M∗ (i.e. acl(A∗) ∩M∗ = A∗).

(b) Conclude from the previous exercise that A∗ |= Th(M).
(c) Show that each An is finite, and thereby conclude that Th(M) is not

finitely axiomatizable.

6. Canonical Bases

Continue to assume M is a fixed uncountable, saturated strongly min-
imal structure.

(1) Suppose c and d are both canonical parameters for the definable set X.
Show that c and d are interdefinable (each can be defined using the other).

(2) Show that any two canonical bases of the same stationary almost equality
class are interdefinable.

(3) Prove Theorem 6.10 using Theorem 6.7 and compactness.
(4) Let X be A-definable of dimension d ≥ 0.

(a) If X is stationary, then Cb([X]) is definable over A.
(b) In general, if [Y ] is any stationary component of [X], then Cb([Y ]) ∈

acl(A).
(c) X can be decomposed over acl(A): that is, there are finitely many

disjoint stationary d-dimensional acl(A)-definable sets whose union is
X.

(5) (a) Prove that Loc(a/A) (and thus Cb(a/A)) are well-defined.
(b) Prove that dim(a/Cb(a/A)) = dim(a/A) for all a and A.

(6) Prove that a stationary plane curve is trivial (= not non-trivial) if and only
if it is almost equal to a horizontal or vertical line.

(7) Characterize the possible sizes of families non-trivial plane curves in the
common examples:
(a) In a pure set, every stationary non-trivial plane curve X is almost

equal to the diagonal y = x, and thus dim(Cb(X)) = 0.
(b) In an F -vector spacee, every stationary non-trivial plane curve X is

almost equal to the graph of an affine linear map y = cx + v. In this
case, v is a canonical base, so dim(Cb(X)) ≤ 1.

(c) In ACF, dim(Cb(X)) can be arbitrarily large (consider the graph of a
generic polynomial function of degree d).

(8) Show that if (M, ·, ...) is an expansion of a group, then M is non-trivial.

Additional Exercises for Section 6

(9) Let X be stationary, and c ∈ Meq. Let Aut(M/c) be the automorphisms of
M fixing c, and let Aut(M/[X]) be the automorphisms of M that preserve
[X] as a class (i.e. σ(X) ∈ [X]). Show that c is a canonical base of [X] if
and only if Aut(M/c) = Aut(M/[X]). (In general stability, this is really
the definition of canonical bases).

(10) Show that M is trivial if and only if whenever A ⊂ M , b ∈ M , and b ∈
acl(A), there is a ∈ A with b ∈ acl(a).

(11) Let f : X → Y be a finite-to-one A-definable function, and let W ⊂ X be
definable and stationary.



EXERCISES 7

(a) Show that f(W ) is stationary, and Cb([f(W )]) is definable over A
together with Cb([W ]).

(b) Show that if a and b are interalgebraic over A, then so are Cb(a/A)
and Cb(b/A).

(12) Let X be a strongly minimal set in Meq.
(a) Show that there is a definable finite-to-finite correspondence between

X and M .
(b) Show that X is trivial (viewed with its induced structure from M) if

and only if M is, and X is locally modular if and only if M is.
(13) Let X be stationary and A-definable. A Morley sequence in X over A is

an infinite sequence a1, a2, ... of elements of X so that each an is generic in
X over Aa1...an−1.
(a) Show that any permutation of a Morley sequence is a Morley sequence.
(b) Show that a Morley sequence is indiscernible over A: for all i1 < ... <

in and j1 < ... < jn, we have tp(ai1 ...ain/A) = tp(aj1 ...ajn/A).
(c) (Hard) Conversely, show that every indiscernible sequence arises this

way: let a1, a2, ... be an A-indiscernible sequence of tuples in Meq.
Show that there are B ⊃ A, and a stationary B-definable set X, so
that a1, a2, ... is a Morley sequence in X over B.

(d) (Hard) Show that if a1, a2, ... is a Morley sequence in X over A, then
Cb([X]) ∈ acl(a1a2...). (This says that [X] is determined by a suffi-
ciently big finite sample of points).

7. The Locally Modular Case

Throughout, assume M is uncountable, saturated, strongly minimal,
non-trivial, and locally modular.

(1) Show that the germ groupoid is a well-defined groupoid.
(2) Let C,D be objects in the germ groupoid, and F a definable collection of

morphisms C → D. Then dim(F ) ≤ 1. Thus, if f : C → D is a morphism,
then dim(f/CD) ≤ 1.

(3) Suppose F , G, H are A-definable collections of morphisms from C to D, D
to E, and C to E, respectively. Then {(f, g, h) ∈ F × G ×H : g ◦ f = h}
is A-definable.

(4) Suppose [X] is an almost equality class of stationary non-trivial plane
curves, with canonical base t satisfying dim(t) = 1. So [X] contains some
t-definable member – without loss of generality X itself. Now let (a, b) ∈ X
be generic over t. Show that (a, b, t) is a non-trivial configuration. Con-
versely, if (a, b, t) is any non-trivial configuration, then there is a stationary
t-definable non-trivial plane curve X so that (a, b) ∈ X is generic over t.

(5) Show that if (a, b, t) is a non-trivial configuration, then so is (b, a, t).
Hint: this just says that if X is a stationary non-trivial plane curve with

canonical base t, then t is also a canonical base for X−1 = {(y, x) : (x, y) ∈
X}.

(6) Let [X] and [Y ] be almost equality classes of stationary non-trivial plane
curves, with canonical bases t12 and t23 satisfying dim(t12) = dim(t23) = 1
and dim(t12t23) = 2. Without loss of generality assume X is t12-definable
and Y is t23-definable. Let a1 ∈ X be generic over t12t23. Show that there
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are a2, a3 with (a1, a2) ∈ X and (a2, a3) ∈ Y , and that for any such a2 and
a3, s = (a1, a2, a3, t12, t23, t13) is a composition configuration.

Additional Exercises for Section 7

(7) (Hard) Prove our more general characterization of local modularity, namely
that Cb(a/A) ∈ acl(a) for all a ∈ Meq and A ⊂ Meq. More generally, for
each a ∈ Meq, b ∈ Meq, and A ⊂ Meq, consider the following statements:

I. Cb(a/Ab) ∈ acl(Aa).
II. dim(Cb(a/Ab)/A) ≤ dim(a/A)− dim(a/Ab).
III. There is c ∈ Meq with c ∈ acl(Aa)∩acl(Ab) and dim(c/A) = dim(a/A)+

dim(b/A)− dim(ab/A).

(a) Show that for all a, b, A, the statements I, II, and III are equivalent.
(b) Now show that I, II, and III hold for all a, b, A. First, using weak

elimination of imaginaries, show that we may assume a ∈ Mn for
some n, and that dim(a/A) = n.

(c) Now work by induction on n. First show the case n ≤ 1 directly. Then
show that the case n = 2 is a restatement of local modularity. Finally,
for the inductive step when n ≥ 3, replace A by A′ = Aan, and replace
a by a′ = a1...an−1.

(d) Lastly, show that I, II, and III imply the desired statement (Cb(a/A) ∈
acl(a) for all a and A).

(8) Let us sketch the proof of the weak trichotomy theorem. Suppose that
instead of knowing M is locally modular, we know M is k-linear for some
k ≥ 1: namely, k is the maximum value of dim(Cb(X)) over all stationary
plane curves X.
(a) By mimicking the entirety of our Section 7, show that there is a k-

dimensional definable stationary group of automorphisms of some ob-
ject in the germ groupoid of M (this is very long but ultimately it
adapts quite directly.)

(b) Show that in fact, there are a definable strongly minimal set X, and a
k-dimensional stationary definable group of permutations of X, acting
transitively on X.

(c) A theorem of Hrushovski (coming from the theory of groups of finite
Morley rank) says that if G is a k-dimensional stationary definable
transitive group of permutations of a strongly minimal set X, and
k ≥ 2, then some cofinite subset of X can be definably endowed with
the structure of an algebraically closed field (precisely, X is either a
field itself, or is the projective line over such a field – and then the
group is the algebro-geometric automorphism group of X). Use this
to show that M is in finite-to-finite definable correspondence with an
algebraically closed field, and that using the field structure we can
contradict the maximality of k.

(This is how model theorists construct fields: we really just contruct higher-
dimemsional group actions, and use that such actions always arise from
fields).
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8. The Structure of the Group

Throughout, assume M is saturated, uncountable, strongly minimal,
and locally modular, and G is a ∅-definable strongly minimal group in
Meq.

(1) (a) LetH ≤ G be a definable subgroup. Then eitherH is finite, orH = G.
(b) Let f : G → G be a definable endomorphism. Then either f is trivial,

or f is surjective with finite kernel.
(2) Suppose X and Y are both cosets of definable subgroups of Gn. If X and

Y are almost equal, then X and Y are equal.
(3) Suppose {ft : t ∈ T} is a definable family of endomorphisms of G. We show

there are only finitely many distinct endomorphisms amont the ft. Toward
a contradiction, assume there are infinitely many distinct maps.
(a) By modding T by an equivalence relation, show that there is such a

family which is faithful : whenever s ̸= t the maps fs and ft agree in
only finitely many points. Conclude in this case that dim(T ) ≥ 1.

(b) Now assume {ft} is faithful, and consider the family {gt,a : (t, a) ∈
T × G}, where gt,a(x) = a · ft(x). Use the previous exercise to show
that {gt,a} is still faithful.

(c) Conclude that for generic (t, a) ∈ T × G, the canonical base of the
graph of gt,a has dimension at least 2, and thus we contradict local
modularity.

(4) Prove that every stationary definable subgroup of everyGn is acl(∅)-definable,
as follows:

Suppose H ≤ Gn is a stationary definable subgroup of dimension d. Let
c be a canonical parameter of H, so H is c-definable. Let a ∈ Gn be generic
over c, and let ca be a canonical parameter of the coset a ·H.
(a) Show that ca is also a canonical base of [a ·H].
(b) Show that dim(a/cca) = d, by computing dim(aca/c) in two ways.

Conclude that a is generic in a ·H over ca.
(c) Conclude that Loc(a/ca) = [a · H] and Cb(a/ca) = ca, and thus by

local modularity, ca ∈ acl(a).
(d) Show that c is definable over (ca, a) (hint: H = a−1 ·(a ·H)). Conclude

that c ∈ acl(a).
(e) Finally, show that c ∈ acl(∅) by computing dim(ac) in two ways. Con-

clude that H is acl(∅)-definable.

Additional Exercises for Section 8

(5) (Very Hard) Prove that every strongly minimal group is abelian (regardless
of local modularity). A bit easier: just do it assuming there is an element
of infinite order.

Bonus Section: Totally Categorical Implies Locally Modular

Here we sketch the proof of our black box, that totally categorical theories are
locally modular. This will be quite involved. Throughout, work in a saturated
uncountable strongly minimal structure M .

(1) Suppose X ⊂ Mm and Y ∈ Mn are definable, dim(X) = dim(Y ) = d, Y is
stationary, and f : X → Y is definable and finite-to-one. Show that there
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is a positive integer k so that f−1(y) has size k for almost all y ∈ Y . We
will say that f is generically k-to-1.

Definition 0.1. Say that M is unimodular if for all X, Y , and f as above,
the value k only depends on X and Y , and not on f .

(2) Show that vector spaces are unimodular, and algebraically closed fields are
not.

(3) (Hard) Show that if M is ℵ0-categorical, then M is unimodular.
Hint: Given X, Y , f , and k as above, assume X, Y , and f are definable

over a finite tuple t. Let b ∈ Y be generic over t. Let Y (b) be the (finite)
set of points y ∈ Y with acl(yt) = acl(bt), and let X(b) be the (finite) set
of points x ∈ X with acl(xt) = acl(bt). By restricting the whole problem

to X(b) and Y (b), show that k = |X(b)|
|Y (b)| , and that |X(b)| and |Y (b)| only

depend on X and Y .
From now on, assume M is unimodular.

(4) Show that we can assign a value Z.deg(X) ∈ Q (called the Zilber degree)
to every definable set X in Meq with the following properties:

• Z.deg(Mn) = 1 for all n.
• If dim(X) = dim(Y ) and X and Y are disjoint then Z.deg(X ∪ Y ) =
Z.deg(X) + Z.deg(Y ). In particular, if X is finite then Z.deg(X) =
|X|.

• Z.deg(X) only depends on the almost equality class [X].
• If dim(X) = dim(Y ), Y is stationary, and f : X → Y is definable and

generically k-to-1, then k = Z.deg(X)
Z.deg(Y ) .

Definition 0.2. Let f : X → Y be A-definable in Meq, where Y is sta-
tionary. Say that f is generically dominant if for any generic a ∈ X over
A, f(a) is generic in Y over A.

(5) Show that the definition of generically dominant is well-defined (it doesn’t
depend on A).

(6) Suppose f : X → Y is generically dominant (so Y is stationary). Show

that for all generic y ∈ Y we have Z.deg(f−1(y)) = Z.deg(X)
Z.deg(Y ) .

Recall that if M is not locally modular, we can find faithful families of
plane curves X ⊂ M2×T with dim(T ) arbitrarily large. Moreover, we may
assume that T is stationary and that for generic t ∈ T , Xt is stationary.

Definition 0.3. Let X ⊂ M2 × T be a faithful definable family of plane
curves, where T is stationary and dim(T ) ≥ 2. A common point of X is a
point a ∈ M2 belonging to almost all Xt.

(7) Let X ⊂ M2 × T be a faithful definable family of plane curves, where T is
stationary and dim(T ) ≥ 2, and Xt is stationary for generic t ∈ T .
(a) Show that X has only finitely many common points, and thus X is

almost equal to a family without any common points.
(b) Show that the projections X → T and X → M2 are generically dom-

inant.
(c) Let I ⊂ M2 × T 2 be the ‘intersection family’ of X: (x, t, u) ∈ I

if (x, t), (x, u) ∈ X. Show that dim(I) = 2 · dim(T ), and if X has
no common points, then the projections I → X and I → T 2 are
generically dominant.



EXERCISES 11

(8) Let X ⊂ M2×T be a ∅-definable faithful family of plane curves as above: T
is stationary of dimension at least 2,Xt is stationary for generic t, andX has
no common points. By analyzing various generically dominant projections,
show that for generic (t, u) ∈ T 2 we have

|Xt ∩Xu| = Z.deg(Xt)× Z.deg(Xu).

In particular, the number of intersection points of Xt and Xu only depends
on their Zilber degrees, which in turn only depends on the almost equality
classes [Xt] and [Xu].

(9) Now find a contradiction by deleting an intersection point off of two curves:
their Zilber degrees don’t change, but their intersection size does. Precisely,
take X ⊂ M2 × T as above, where dim(T ) ≥ 3. Fix p ∈ M2 generic, and
form a new family Y ⊂ M2 × U as follows:

• U is any stationary component of the set of t ∈ T with p ∈ Xt.
• Let XU be the subfamily of X indexed by U . Then let Y be XU with
all common points removed: so (x, t) ∈ Y if t ∈ U , x ∈ Xt, and x is
not a common point of XU .

(a) Show that dim(U) ≥ 2.
(b) Let (t, u) ∈ U2 be generic over p. Show that (t, u) is also generic in

T 2 over ∅. Conclude that |Xt| ∩ |Xu| = |Yt| ∩ |Yu|, as both equal
Z.deg(Xt)×Z.deg(Xu). This is absurd, since p is removed from both
Xt and Xu when passing to Yt and Yu.
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