STRONG MINIMALITY AND GEOMETRIC STABILITY

BEN CASTLE

1. INTRODUCTION

This course serves as an introduction to geometric stability theory, focusing on
the special case of strongly minimal structures. Geometric stability is a beautiful
and powerful part of modern model theory aimed at recovering familiar algebraic
objects from abstract logical data, and has been at the center of celebrated appli-
cations of model theory in other areas. Unfortunately, it is also quite abstract and
technical. On the other hand, the strongly minimal case (where the subject origi-
nated) is both accessible and still quite relevant to modern research. Thus, our aim
is to give a sensible account of some of the main notions and theorems while staying
entirely in the strongly minimal setting. Our main result will be the ‘locally mod-
ular group configuration theorem’ (essentially [2]) — an important special case of
the celebrated (general) group configuration theorem of Hrushovski. This theorem
roughly says that strongly minimal structures of ‘linear’ complexity always arise
from definable abelian groups. We will also emphasize the ensuing classification
theorems one obtains for totally categorical strongly minimal theories.

Note that our general approach is to be as elementary and ‘hands-on’ as possible,
focusing on developing useful intuition for any further studies in stability theory.
As a consequence, we will develop the material in a rather unique way (going in a
different order and with different emphases from other treatments). Nevertheless,
some useful references may include [6] and [4].

Throughout the text, there are various exercises appearing as natural lemmas
and examples that we will use. Such things are relegated to the exercises largely
due to the time constraints of this particular course. In a separate document, we
also include a fully compiled exercise list which contains all in-text exercises plus a
few supplementary challenging ones.

2. UNCOUNTABLE CATEGORICITY AND STRONG MINIMALITY

For now, we give an imprecise summary of the earliest developments of geometric
stability theory. Our starting point is Morley’s Theorem. Let T denote a complete
theory in a countable language with infinite models. By Lowenheim Skolem, 7" has
at least one model in every infinite cardinality. Recall:

Definition 2.1. For k an infinite cardinal, T is k-categorical if T has only one model
of cardinality x up to isomorphism. T is totally cateogircal if it is k-categorical for
all infinite k.

Fact 2.2 (Morley 1965, [5]). If T is k-categorical for some uncountable k, then T
is k-categorical for all uncountable k.
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(Thus we just say uncountably categorical.)

This theorem is most notable because of the ideas introduced in the proof —
it directly led to many ideas in modern stability theory and its generalizations.
Modern treatments of Morley’s theorem typically follow a later version due to
Baldwin-Lachlan (1971, [I]). One of the advantages of the Baldwin-Lachlan proof
is that it characterizes which theories are uncountably categorical. Recall that
countably categorical theories already have a satisfying characterization:

Fact 2.3. T is Ng-categorical if and only if for all n, there are only finitely many
complete n-types over () (equivalently, there are only finitely many formulas in n
variables up to equivalence).

Baldwin-Lachlan gave a characterization of uncountable categoricity in terms of
a new notion called strong minimality:

Definition 2.4. T is strongly minimal if in all models M | T, every unary de-
finable subset X C M (over any parameters) is finite or cofinite. In general, a
structure (in any language) is strongly minimal if its complete theory is.

It is important that X is unary above; otherwise the diagonal {(z,z)} C M is
always infinite and coinfinite.
It is also important that one considers all models of T" instead of just one:

Exercise 2.5. Give an example of an infinite structure M such that every unary
definable set in M is finite or cofinite, but M is not strongly minimal.

Here are some positive examples:

Example 2.6. Each of the following theories is strongly minimal, by quantifier
elimination:

(1) The theory of pure infinite sets.

(2) The theory of the integers with the successor function.

(3) The theory of infinite vector spaces over a field. To clarify, this means we
have a fixed field F' (countable for now), and we take the theory of infinite
F-vector spaces in the language (+,—,0) augmented by unary function
symbols for each ¢ € F' (interpreted as scaling by ¢).

(4) The theory ACF, of algebraically closed fields of a fixed characteristic p
(which could be zero).

Let us check that ACF, is strongly minimal; the others are easier. Let M |=
ACF,, and let X C M be unary and definable. By quantifier elimination, X is a
finite Boolean combination of solution sets of polynomials. The solution set of a
single polynomial p(z) = 0 is either all of M (if p = 0), or of cardinality at most
deg(p) — hence is finite or cofinite. So X is a finite Boolean combination of finite
and cofinite sets, so is itself finite or cofinite.

Exercise 2.7. We give a more general test for strong minimality. Let 7" be a
complete theory in a countable language.

(1) Suppose that for every M |= T, and every finite subset A C M, the auto-
morphism group Aut(M/A) (automorphisms of M fixing A point-wise) has
a co-countable orbit. Show that T is strongly minimal. (This is actually
an exact characterization but the converse requires further material).

(2) Use (a) to show that examples (1)-(4) above are strongly minimal.
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Note that each of (1)-(4) above is uncountably categorical. Consider, for exam-
ple, F-vector spaces where F' is countable. In this case, a model is determined by
its dimension as an F-vector space. If M is uncountable, then dim(M) is easily
seen to be |M| — thus two uncountable models of the same cardinality have the
same dimension, so are isomorphic.

Similar arguments can made in each of the examples using a different numerical
invariant in place of vector space dimension:

(1) For pure infinite sets, a model is determined by its cardinality.

(2) For Th(Z, s), a model is determined by the number of copies of Z it contains.

(3) For ACF,, amodel is determined by its transcendence degree over the prime
model — that is, the largest size of an algebraically independent subset of
the field.

Baldwin and Lachlan show that this is the typical situation:

Fact 2.8. (1) If T is strongly minimal, there is a cardinal-valued map M —
dim(M) on models M =T so that two models M, N =T are isomorphic
if and only dim(M) = dim(N). If M is uncontable, then dim(M) = |M| -
thus T s uncountably categorical.

(2) In general, T is uncountably categorical if and only if there is a strongly
minimal theory T' such that T is ‘prime over T'".

We won’t go into details, but clause (2) means that arbitrary uncountably cate-
gorical theories are built out of strongly minimal ones, so one can understand un-
countably categorical theories well by just focusing on the strongly minimal case.
The idea of ‘prime’ is that any two strongly minimal pieces of T should be ‘linked’
by some definable relation to make sure they have the same cardinality.

Example 2.9. (1) Let M be strongly minimal. Consider M? with its induced
structure from M. Then Th(M?) is uncountably categorical, and is prime
over Th(M). One can decompose M? into two strongly minimal pieces (the
two M factors), which are ‘linked’ by the diagonal.

(2) Let T be the theory of pairs of infinite sets with a bijection: a model is the
disjoint union of two infinite sets X and Y, and the language consists of a
bijection X — Y. Then T is prime over the theory of pure infinite sets.

(3) On the other hand, let T" be the theory of pairs of infinite sets (with no
bijection). Then T is not prime over the theory of infinite sets.

Exercise 2.10. Show explicitly that (2) (the theory of pairs of infinite sets
with a bijection) is uncountably categorical, while (3) (pairs of infinite sets
without a bijection) is not.

(4) (More complicated example): We give an example of an uncountably cate-
gorical theory that can’t be decomposed cleanly into finitely many strongly
minimal ones (again, without going into details about what exactly that
means; the relevant property of the theory is that it is not almost strongly
minimal). Let T be the theory of a fibered family of affine vector spaces, in
the following sense: Fix a countable field F', and an infinite F-vector space
V. Let M be the disjoint union of V' and V2, with the following language:

e The vector space structure on V.
e The left projection V2 = V ((z,y) + ).
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e The fiber-wise difference map (V?2)2 — V, given by (x,y)(z,2) — y—z
and (x,y), (w, z) — 0 if x # w.

Let T be the theory of M in this language. In general, T' describes a vector
space V, in addition to a V-indexed family of affine copies of V' (affine
means that each copy of V' has no clearly labeled identity element, and
thus only becomes a vector space after fixing one point). Using this idea,
one can show that any two copies of V are definably isomorphic, but not
in a uniform way. Nevertheless:

Exercise 2.11. Show that T is uncountably categorical. (In this case T is
prime over the theory of F-vector spaces).

Note: a similar example to (4) above is T := Th((Z/4Z)“,+), the (theory of
the) product of infinitely many cyclic groups of order 4. This theory T is the
‘canonical’ example of an uncountably categorical theory that isn’t essentially a
product of strongly minimal factors (i.e. is not almost strongly minimal). While T
is easier to define than (4) above, it is less obvious why it has the relevant properties.
Nevertheless, the reason is really the same: T is prime over the theory of Fao-vector
spaces, and decomposes into an Fo-vector space V' together with a family of affine
copies of V. We leave this as an additional exercise.

Another advantage of the Baldwin-Lachlan treatment is it makes clear which
uncountably categorical theories are also totally categorical:

Fact 2.12. (1) If T s strongly minimal, then T is totally categorical if and
only if every model of T has infinite dimension.
(2) If T is prime over the strongly minimal theory T', then T is totally cate-
gorical if and only if T' is.

Thus pure sets are totally categorical, as are F-vector spaces when F' is finite;
while our other strongly minimal examples are not totally categorical. Notice that in
our totally categorical examples, it’s not really that there are no finite-dimensional
models — it’s just that the finite-dimensional models are finite. For example, for
the theory of F-vector spaces (for a finite field F'), one has a unique ‘n-dimensional
model’ for all n (namely an n-dimensional F-vector space) — it’s just not actually a
model of the complete theory of infinite F-vector spaces under consideration. The
following was formerly a major open problem aimed at capturing this phenomenon:

Conjecture 2.13 (Now Zilber’s Theorem). Suppose T is totally categorical. Then
T is not finitely aziomatizable. More precisely, there is a collection of finite struc-
tures {Mp} such that any non-principal ultraproduct of the M, is a model of T.
Thus T cannot be finitely axiomatizable because any sentence of T also holds of
some M,.

Here the M,, are thought of as the ‘finite-dimensional subspaces’ of models of T'.

Zilber gave a simple proof of this conjecture in the strongly minimal case, and
an extremely complicated proof in general. If T is the theory of pure infinite sets,
his construction produces for M, a finite set of size n. If T' is the theory of F-vector
spaces for F' a finite field, then M, is the unique n-dimensional F-vector space.

Let’s imagine the general case by considering our fibered family of affine spaces
V' UV? above. One should take for M, a fibered family of n-dimensional spaces. To
start, fix an n-dimensional V,, < V. This gives us a distinguished V,,-indexed family
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of affine copies of V (the fibers above V,, in V2). Call these X1, ..., X,,. We would
like to shrink each X; into an affine copy of V;,. This basically amounts to choosing
a point a; € X, and then taking the V,-translate of a; (which is uniformly a;-
definable once a; is chosen). So for the construction to work, we have to introduce
some arbitrary choices. Now as it turns out, this is not a problem if our original
strongly minimal piece (i.e. the base ‘V’ in this example) is a pure set or vector
space. On the other hand, the abstract proof runs into a problem when we choose
arbitrary points (speficially the proof that ultraproducts of the finite structure are
models of T'). So one has a major issue (and this is why the proof got complicated).
As it turned out, Zilber got around this issue in a totally unexpected and re-
markable way — by showing that the two cases he could handle were exhaustive:

Fact 2.14 (Zilber). Every totally categorical theory T is prime over either the
theory of pure infinite sets or the theory of infinite F-vector spaces for some finite
field F. More precisely, in any model M =T, there is an infinite interpretable set
X such that the induced structure on X is precisely a pure set or a vector space
over a finite field.

By ‘the induced structure is a vector space’ above, we mean one can endow X
with the structure of an F-vector space so that the definable subsets of each X™ are
exactly those definable in the vector space language (and similarly for pure sets).

This is an amazing fact: totally categorical theories are by definition the most
model-theoretically well-behaved, and out of nowhere, they all arise from pure sets
and linear algebra. This started a trend of results in model theory of a similar form
— from purely model-theoretic assumptions on a theory, one recognizes a very con-
crete algebraic structure. Results in this style are collectively known as ‘geometric
stability theory’. One of the goals of this course is to cover as much as possible
of the proof of Fact (essentially giving the whole proof modulo a couple black
boxes).

Note that Fact can be proven by combining model theory with some clas-
sification theorems for abstract ‘combinatorial geometries’ (this is really why the
subject is called ‘geometric’ stability theory). The fact that this works is specific
to Nop-categoricity. We will instead use a purely model-theoretic approach (roughly
developed by Hrushovski in his ‘group configuration theorem’), which generalizes
to prove similar facts in the non-Ry-categorical setting, and thus has proven more
useful over time.

3. DEFINABLE SETS IN STRONGLY MINIMAL THEORIES

Until otherwise stated, fix a strongly minimal structure M. We now
allow the case that the language of M is unountable: then Th(M) might not be
uncountably categorical, but it is still x-categorical for uncountable x larger than
the language.

The main tool associated to strong minimality is a dimension theory for definable
sets in M™. This means every definable set X C M™ is assigned a number dim(X),
and this assignment has nice properties. Actually, we will develop two dimension
theories: one for definable sets, and one for tuples (equivalently, for types) — these
two theories are in a sense ‘dual’ to each other. The first is more concrete and
hands-on; the second is smoother and more generalizable. In the end, having both
perspectives will be advantageous.
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3.1. Definability of Finiteness. The most fundamental building block of the
dimension theory is referred to as uniform finiteness:

Lemma 3.1 (Uniform Finiteness). Let X C M™ x M be definable. Then there is
N € Z* so that for ally € M™, either | X,| < N or |M — X,| < N.

Proof. Otherwise, by compactness, we could build an elementary extension N of
M and a tuple a € N™ so that for all k, |X,| > k and |N — X,| > k. Thus X, is
infinite and coinfinite in N, contradicting the strong minimality of T (]

Exercise 3.2. Show that uniform finiteness holds in M™: That is, let X C M™ x
M™ be definable. Then there is N so that for all y € M™, either X, is infinite or
| Xy| < N.

Uniform finiteness shows that finiteness is ‘definable in families’:

Corollary 3.3 (Finiteness is Definable). Let X C M™ x M be A-definable. Then
{y € M™: X, is finite} is A-definable.

Proof. By uniform finiteness, this set is defined by ‘X, has at most N distinct
elements’ for some sufficiently large N. O

3.2. The Definition of Dimension. We will now assign every definable set X C
M™ a dimension. Let us sketch how this is done. For X C M, we set dim(X) =0
if X # 0 is finite and dim(X) = 1 if X is cofinite (and dim(f)) = —o0)) — the idea
is that X is a ‘line’. Then we extend inductively. Uniform finiteness (or rather
definability of finiteness) is the key to making this work: for example, suppose
() # X C M? is definable. Consider the left projection X — M. By definability of
finiteness, the set X0 = {y € M : X, is cofinite} is definable — so this set is itself
either finite or cofinite. If X.,; is cofinite, we set dim(X) = 2. If X,o¢ is finite,
we set dim(X) to be 0 if X is finite and 1 if X is infinite. Then we do something
similar in M3, considering the leftmost projection X — M?.

Let us make the sketch above precise. Throughout, let us view M as a single
point (this is useful for inductive arguments).

Definition 3.4. For each n > 0 and each definable set X C M", we inductively
associate the dimension of X, dim(X) € {—00,0,1,...,n}. We do this as follows:

e For n =0, we set dim(@) = —oo and dim(M?) = 0.

e Forn =1, we set dim(X) = —oo if X is empty, dim(X) = 1 if X is cofinite,
and dim(X) = 0 otherwise.

e Suppose n > 1 and we have defined dimension for subsets of M™. Write
M1 as M™ x M. If X C M™ x M is definable, then for e € {—0o0,0,1}
we set

X(e) ={y e M" : dim(X,) = e}.
By definability of finiteness, each X (e) is definable, and thus has a dimen-
sion. Now set

dim(X) = max{dim(X(e)) +e:e € {—00,0,1}}.

Example 3.5. Suppose M is a pure infinite set, and fix distinct elements a, b, c €
M. Let X C M? be defined by ‘c = a or y = b, and = # ¢’. X is the union of a
horizontal line and a vertical line, with one point removed from the horizontal line.
Basic intuition should suggest that dim(X) = 1. Let us check:
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e X(—o00) = {c}, since ¢ is the only point not extendable to an element of X.
So dim(X (—o0)) = 0.
e X(1) = {a}, since a is the unique point extendable to infinitely many points
of X. So dim(X (1)) =0.
e X(0) =M — {a,c} (every other point). So dim(X(0)) = 1.
Thus dim(X) = max{0 + (—0),0+ 1,140} = 1.

A key feature of dimension is its definability (we will use this essentially con-
stantly):

Exercise 3.6 (Dimension is Definable). Show by induction that dimension is defin-
able in families: if X C M™ x M™ is A-definable, then for each d € {—00,0,...,n}
the set {y € M™ : dim(X,) = d} is A-definable.

Here are some properties that fall straight out of the definition:

Exercise 3.7. Show the following:
(1) dim(M™) = n for each n.
(2) If X C M™ is definable, we have dim(X) = —oo if and only if X is empty,
and dim(X) = 0 if and only if X is non-empty and finite.

Exercise 3.8. Suppose M = ACF, for some p. Let P(x,y) be a non-constant
binary polynomial with coefficients in M. Show that dim({(z,y) : P(z,y) = 0}) =
1.

3.3. Basic Properties. The definition of dimension above is natural but clunky
and hard to work with. Most notably, the definition changes if we permute the
coordinates, which is undesirable. We now want to develop some basic proper-
ties, ultimately showing that dimension is actually very well-behaved (in particular
invariant under coordinate permutations and much more). When working with di-
mension later on, it will be much more useful to have this basic set of properties
than the original definition.
First, and most basically (but surprisingly tricky), is the following:

Lemma 3.9. (1) If X CY C M™ are definable, then dim(X) < dim(Y").
(2) If X1,..., X, € M™ are definable, then

dim(X; U...U X,;,) = max{dim(X), ..., dim(X,,) }.

(Put another way, if we split a d-dimensional set into finitely many definable
pieces, one of them has dimension d).

Proof. We prove both statements jointly by induction on n. The cases n = 0 and
n = 1 are clear (a union of finitely many finite sets is finite).
Suppose both statements are true for a fixed n > 1, and consider n + 1. We
prove (1) and (2):
(1) Lt X CY C M™x M. Let e € {—00,0,1} with dim(X (e)) + e = dim(X).
By the base case, for all y € X(e) we have dim(Y;) > e. So X(e) is
contained in the union of Y'(f) over all f € {—00,0,1} with f > e. By (2)
of the inductive hypothesis, there is a single f > e with dim(X (e)NY (f)) =
dim(X (e)). By (1) of the inductive hypothesis, dim(Y'(f)) > dim(X (e)).
So by definition,

dim(Y) > dim(Y (f) + f) > dim(X (e)) 4+ e = dim(X).
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(2) By induction, we may assume m = 2. That is, we consider definable X, Y €
M™ x M, and we show that dim(X UY) = max{dim(X),dim(Y)}. The
> direction follows by (1). We show <, i.e. that one of X and Y has
dimension at least dim(X UY'). Let e € {—00,0,1} with dim(X UY) =
dim((X UY)(e)) + e. By the base case, for each y € (X UY)(e) we have
y€ X(e)oryeY(e) So(XUY)(e) is contained in X(e) UY (e), and by
the inductive hypothesis one of X (e),Y (e) has dimension at least dim((X U
Y)(e)). Without loss of generality assume dim(X (e)) = dim((X UY)(e)).
Then

dim(X) > dim(X(e)) + e = dim((X UY)(e)) + e = dim(X UY).
O

It is rather annoying to always ‘cut’ M™ into M™ ! and M in the inductive
definition. In some cases, we may want to invoke a similar definition of dimension
where we factor M™ as e.g. M" 3 x M?. We now want to show that doing this
does not change the definition.

Lemma 3.10 (‘m-cutting’). Let X C M™*t" = M™ x M™ be definable. For each
i€ {—-00,0,...,n} let X,,,(i) = {y € M™ : dim(X,) =i}. Then

dim(X) = max{dim(X,,(¢)) +i:4 € {—00,0,...,n}}.

Proof. We induct on n. If n = 0, this just says that dim(X) = max{—o0,dim(X) +
0}, which is clear.

Suppose the statement is true for n > 0, and consider X C M™ x M"+l, If
X = 0, the statement just says that —co = max{—oo+i:% € {—00,0,...,n + 1},
which is clear. So assume X # (), and thus dim(X) > 0.

We prove the desired statement by establishing both inequalities:

e <: By definition of dimension, there is e € {—00,0,1} so that dim(X (e)) +
e = dim(X). Since X # 0, e > 0, so dim(X(e)) = d —e. Now X(e) C
M™ x M™. By the inductive hypothesis, there is j so that dim(Y") +
j =dim(X(e)) = d—e, where Y C M™ is the points with j-dimensional
fiber in X (e). The definition of dimension gives that for y € Y, we have
dim(Xy) > j +e — thus y € X,,,(¢) for some i > j+e. So Y is covered by
the X, (i) for i > j + e, and thus by Lemma [3.9] there is a single i > j + e
so that dim(X,, (7)) > dim(Y"). Then

dim(X,, (7)) + f > dim(Y) + j + e = dim(X (e)) + e = dim(X).

o >: Leti € {—o0,...,n+1}. We want to show that dim(X,,(¢))+i < dim(X).
Since X # (), we may assume i > 0.

For each y € X,, (i), there is e € {—00,0,1} so that i = dim(X,) =
dim((X,)(e)) + e. By Lemma [3.9] there are a single e € {—00,0,1} and a
definable Y C X,,(4) so that dim(Y) = dim(X,,(¢)) and dim((X,)(e)) +
e =1 for all y € Y. Since ¢ > 0, we also have e > 0, so this can be
rearranged as dim((X,)(e)) =i —efory € Y. Let Z C X be the set of
points whose M™-coordinate lies in Y. Then by the inductive hypotheses,
dim(Z(e)) > dim(Y') + (¢ — e). Thus

dim(Z) > dim(Z(e)) + e = dim(Y") + i = dim(X,, (7)) + <.
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The above lemma says that dimensions in X™%" can always be reduced to
dimensions in X" and X". Using this idea, we can now show that dimension is
invariant under permutations:

Theorem 3.11. Let X C M™ be definable, and o : {1,...,n} — {1,....,n} a per-
mutation. Then dim(o(X)) = dim(X) (where o(X) denotes the image of X under
permuting coordinates using o ).

Proof. We may assume n > 2 (otherwise o is trivial).

First suppose n = 2, so X C M?. We give a coordinate-free equivalent condition
to ‘dim(X) = d’ for each d € {—00,0,1,2}, which implies the theorem in this case.
The first two are easy: dim(X) = —oo if and only if X is empty, and dim(X) =0
if and only if X is non-empty and finite (see Exercise .

We will give a coordinate-free characterization of ‘dim(X) = 2’. This is enough,
because then dim(X) = 1 has the coordinate-free characterization ‘dim(X) is not
—00, 0, or 2". Now for dimension 2, we show:

Claim 3.12. dim(X) = 2 if and only if for every k € Z* there are A, B C M with
|Al,|B| > k and Ax B C X.

Proof. Let m: X — M be the leftmost projection. First suppose dim(X) = 2, and
fix k. Then cofinitely many fibers X, under 7 are cofinite, so there is a set A C M
with |A| = k and each X, cofinite for @ € A. The intersection of all such X, is still
cofinite, so it contains a set B with |B| = k. Then A x B C X.

Now assume X contains arbitrarily large boxes A x B as in the claim. By uniform
finiteness, there is N so that if | X,| > N for some y, then X, is cofinite. Since X
contains arbitrarily large boxes A x B, infinitely many fibers X, have size at least
N. Thus infinitely many fibers X, are cofinite, and thus dim(X) = 2. O

We have now proven the theorem for n = 2. We now show that the general
case n > 2 reduces to the case n = 2. So let X € M™ be definable where n > 2.
Recall that the permutations of {1,...,n} are generated by all transpositions of the
form (é,4+ 1). Thus, we may assume o has this form for some i. By m-cutting for
m =i — 1, we may assume i = 1, i.e. o = (1,2) (that is, we know that dim(X)
is determined by dimensions in M*~! and M"™ (=1 separately; since o doesn’t
move 1,...,7 — 1, all dimensions in M*~! are unchanged, so these coordinates can
be disregarded). But then by a similar argument, the coordinates i + 2, ...,n don’t
matter either: that is, by m~cutting with m = 2, we reduce to the case n = 2. This
case was already done, so the theorem is proved. (I

Theorem [3.11]implies a very strong consequence, that is the basis for most other
basic properties of dimension:

Corollary 3.13 (Function Additivity). Let f : X — Y be a definable function,
where X C M™ andY C M™.

(1) Fory €Y and e € {—oc,...m}, let Yi(e) = {y € Y : dim(f ' (y)) = e}.

Then
dim(X) = max{dim(Yy(e)) + e: e € {—00,0,...,m}}.

(2) In particular, if dim(f~1(y)) = k for ally € Y, then dim(X) = dim(Y) +k.

Proof. (1) implies (2) automatically. We show (1). Let I' C X x Y be the graph

of f. By m-cutting, dim(T") = dim(X). Now let I C Y x X be the graph written
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backwards, {(y,z) : f(z) = y}. By Theorem dim(I") = dim(T") = dim(X).
But now by n-cutting, dim(I") is the max of all dim(Y}(e)) + e. O

We infer more basic properties:

Exercise 3.14. Show the following:

(1) dim(X xY) = dim(X) 4+ dim(Y") for any definable X and Y.

(2) If f: X =Y is a definable surjection, then dim(X) > dim(Y).

(3) If f: X = Y is a definable bijection, then dim(X) = dim(Y").

(4) More generally, say that the definable sets X and Y are in definable finite-
to-finite correspondence if there is a definable Z C X x Y so that both
projections Z — X and Z — Y are surjective with finite fibers. So that in
this case we have dim(X) = dim(Y").

3.4. Stationarity. So far we have developed properties that hold of many dimen-
sion theories (such as o-minimal dimension). Our goal now is to discuss a spe-
cial property of strongly minimal theories (that is really the basis for a significant
amount of abstract stability theory).

Note that by strong minimality, M cannot be partitioned into two infinite defin-
able sets. That is, suppose M is the disjoint union of two definable sets X and Y.
If X is infinite, then it is cofinite, and thus Y cannot also be infinite. Abstractly,
we will say that M is stationary:

Definition 3.15. Let § # X C M"™ be definable. We say X is stationary if X
cannot be partitioned into two definable subsets of the same dimension as X.

Exercise 3.16. (1) A finite set is stationary if and only if it is a single point.

(2) Each M™ is stationary.

(3) If dim(X) = 1, then X is stationary if and only if X is infinite and every
definable subset of X is finite or cofinite. In this case we say X is strongly
minimal (as a definable set).

(4) Suppose T = ACF,, and P(X,Y) is a non-constant binary polynomial with
coefficients in M. Then {(z,y) : P(x,y) = 0} is stationary if and only if
P = Q" for some irreducible Q and some k.

Note that unlike dimension, stationary is not always definable in fam-
ilies. See the additional exercises.

Exercise 3.17. Let X be A-definable and stationary of dimension d. Show that
the d-dimensional A-definable subsets of X are closed under finite intersections,
and thus they determine a complete consistent type over A. We call this type the
generic type of X over A.

Exercise 3.18. Show that stationarity is preserved under elementary extensions.
That is, suppose N is an elementary extension of M, a is a tuple from M, and
¢(x,a) is a formula in n-variables. Show that ¢(z,a) defines a stationary subset of
M™ if and only if it defines a stationary subset of N™.

In general, there are non-stationary definable sets. For example, in ACF, the
union of two distinct irreducible plane curves is not stationary. However, this
set still decomposes into stationary pieces (namely the two curves). We will prove
something similar in general. The decomposition we get is not unique, but is unique
up to ‘almost equality’:



STRONG MINIMALITY AND GEOMETRIC STABILITY 11

Definition 3.19. Let X and Y be non-empty definable sets.
(1) X is almost contained in Y if dim(X —Y) < dim(X).
(2) X and Y are almost equal if they are almost contained in each other.

Armed with this language, we may say things like ‘almost all elements of X
satisfy property P’ moving forward.

Exercise 3.20. (1) Show that if X and Y are almost equal, then dim(X) =
dim(Y).
(2) Show that almost equality is an equivalence relation, but almost contain-
ment is not a partial order.
(3) If X and Y are stationary of dimension d, show that X and Y are almost
equal if and only if dim(X NY) =d.

Exercise 3.21. Let X € M" be A-definable of dimension d. Show that there
is an A-definable function X — M? with all fibers finite. Hint: first show that if
X C M™ and dim(X) # n, there is a finite-to-one A-definable function X — M~
Now use induction.

Theorem 3.22 (Stationary Decomposition). Let § # X C M™ be definable of
dimension d. Then X is the disjoint union of finitely many stationary definable sets
of dimension d. These sets are unique up to almost equality: if X = X3 U..UX,, =
Y1 U...UY} are two such decompositions, then each X; is almost equal to some Y;
and vice versa.

Proof. Let f : X — M? be a definable function with all fibers finite. By uniform
finiteness, there is IV so that each fiber has size at most N. We claim now that X
cannot be split into a disjoint union of NV + 1 definable sets of dimension d. Indeed,
suppose X is the disjoint union of X, ..., X,+1. Then each f(X;) has dimension
d. Since M? is stationary, the intersection f(X;)N...N f(X,11) has dimension d.
In particular it is non-empty. If y belongs to this intersection, then f~1(y) has at
least N + 1 points, a contradiction.

Now it follows from the previous paragraph that X admits a mazimal splitting
into a disjoint union X = X; U ... U X,;, with each dim(X;) = d (i.e. there is such
a decomposition which can’t be further refined). Then each X; is stationary.

For uniqueness, suppose X = Xj U...UX,, =Y; U...UY} are two such decom-
positions. For each ¢, we have

X; = U(Xi uy;).

J
Since dim(X;) = d, some dim(X; NY;) = d. Since X; and Y; are d-dimensional and
stationary, this implies they are almost equal. The same argument works for each
Y;. m

Definition 3.23. Let () # X C M™ be definable. The degree of X is the number
of stationary components of X as above.

In fact, what we have is a unique factorization theorem for almost equality
classes:

Exercise 3.24. (1) Show that if X and Y are definable and almost equal,
then X is stationary if and only if Y is. Thus the term stationary class is
well-defined.
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(2) Show that if [X] and [Y] are d-dimensional almost equality classes, then
the class [X]U [Y] = [X UY] is well-defined.

(3) Conclude that every d-dimensional almost equality class decomposes uniquely
into a union of finitely many stationary classes.

Recall that a type is isolated if it is implied by a single formula — that is, tp(a/A)
is isolated if there is an A-definable set X containing A such that for any other A-
defianble Y containing A we have X C Y. It follows from the above theorem that
types in strongly minimal theories are ‘almost isolated’ in a sense:

Exercise 3.25. Let a € M™. Then there is an A-definable set X containing a such
that for every other A-definable Y containing a, X is almost contained in Y.

3.5. Recap. Let us summarize our work to this point:

Theorem 3.26. [Basic Properties of Dimension] The dimension function on de-
finable sets satisfies the following:

(1) Dimension is definable in families.

(2) dim(X) = —oo if and only if X = 0 and dim(X) = 0 if and only if X is
non-empty and finite. In particular, finiteness is definable in families.

(3) dim(X; U...U X,,) = max{dim(X3), ...,dim(X,,)}. In particular, if X CY
then dim(X) < dim(Y).

(4) If f : X =Y is definable then

dim(X) = max{dim(Y;) + ¢}

where Y; = {y : dim(f~(y)) = i}.

(5) In particular, if X and Y are in finite correspondence then dim(X) =
dim(Y).

(6) In particular, dim(X xY) = dim(X) 4+ dim(Y").

(7) Ewery d-dimensional almost equality class decomposes uniquely into a union
of finitely many stationary d-dimensional classes.

4. INTERPRETABLE SETS

The main goal of the course is to show that many strongly minimal structures M
interpret infinite groups. This will require working with interpretable sets: recall
these are quotients of definable sets by definable equivalence relations. In particular,
we need to expand the dimension theory to interpretable sets.

4.1. M*1. To streamline the presentation, we briefly recall the construction of the
expansion M®?:

Definition 4.1. We define the multisorted structure M¢? as follows:

e For each (-definable equivalence relation on M™, we have a sort M™/F for
the equivalence classes mod F.

e The language consists of the original language on the home sort M (viewed
as M/E where E is equality), in addition to the projection map M"/F —
M"/E whenever F refines E.

e Definable sets in M*©? are also called interpretable sets in M. Tuples in
M*®? are also called imaginaries in M.
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M*©? is no longer ‘strongly minimal’ in the same sense — strong minimality is
specific to 1-sorted theories. Instead, one can say that the ‘home’ sort M is strongly
minimal.

Passing from M to MY is typically harmless for many reasons, including;:

Exercise 4.2. (1) Th(M¢©?) only depends on Th(M).
(2) If S=M"/FE is a sort in M, a set X C S is P-definable if and only if its
preimage in M™ is (-definable in M.
(3) In particular, the (-definable sets in each M™ are unaffected by passing to
Meq,

The definition of M®? only allows us to quotient by -definable equivalence rela-
tions (this is so the language of M“? only depends on M). However, it is harmless
to add parameters:

Exercise 4.3. Let X C M™ be A-definable, and let E be an A-definable equivalence
relation on X. Show that the quotient X/FE is naturally identified with an A-
definable set in M*“9.

Hint: Let X and F be definable over a finite tuple t € M™ from A. Construct
a (-definable equivalence relation on M™ x M™.

4.2. Dimension in M*¢?. As stated above, we need to extend the dimension theory
from M to M®?. Typically in model theory this is done by defining dimension more
abstractly (e.g. with Morley rank, which is more complicated but makes sense
in any sort). In our case, we use a trick specific to the strongly minimal case.
Namely, we show that strongly minimal theories have an approximate definable
version of the axiom of choice, and that this allows us to reduce the dimension of
an interpretable set to the dimension of a definable set:

Lemma 4.4. Let X C M™ x T be definable in MY, and assume that for allt € T
the fiber Xy is non-empty. Then there is a definable subset Y C X so that for all
t € T the fiber Y; is non-empty and finite (in general Y will need to be defined over
extra parameters).

Proof. By induction on n. First assume n = 1. By uniform finiteness, there is N
so that for all ¢ either |X;| < N or |[M — X;| < N. Fix any N distinct points,
ai,...,any € M. Now given t, we have two cases:

e If X, is finite, let Y; = X;.

o If X, is cofinite, let ¥; = X; N {ay,...,an}.
In the second case, Y; is non-empty because |M — X;| < N.

Now for the inductive step, assume n > 2. For each X;, we use the inductive
hypothesis to choose a finite subset Z; of images of X; in M™~!; then for each
z € Z;, we use the base case to extend Z; to finitely many points of X;. All in all,
this gives a finite subset of X, defined uniformly in .

More precisely: consider any projection w(X) C M™~! x T. By the inductive
hypothesis, there is a definable Z C w(X) so that each Z; is non-empty and finite.
Let Xz be the preimage of Z in X, and consider Xz C M x Z as a family indexed
by Z. By the base case, there is a definable Y C X  so that all fibers Y, are
non-empty and finite. This implies that all fibers Y; are non-empty and finite (each
is a union of finitely many fibers above Z). d
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Corollary 4.5. [Weak Elimination of Imaginaries] Every interpretable set is a
finite-to-one image of a definable set. That is, let Y C M™/E be definable in M®?.
Then there is a definable X C M™ such that the map X — M™/FE is finite-to-one
and has image precisely Y .

Proof. Apply the previous lemma to definably choose a finite subset of each equiv-
alence class in Y. O

Definition 4.6. Let Y be definable in M©?. We set dim(Y) := dim(X) for any
definable X C M™ admitting a definable finite-to-one surjective function f : X —
Y.

Exercise 4.7. Check that this definition of dimension is well-defined.

Exercise 4.8. Show that all items in Theorem [3.26] remain true in M¢9. Hint:
many of (1)-(7) are interdependent, so you don’t have to prove them all directly.
For those you do have to prove, try to use weak elimination of imaginaries to reduce
to a property of dimension in definable sets. This should work everywhere ezcept
definability of dimension (because there you need to control parameters, and weak
elimination of imaginaries requires uncontrollable extra parameters). Instead, prove
definability of dimension using function additivity.

5. DIMENSION OF TYPES

One of the themes of our work to this point is that dimension is well-understood
for definable sets and functions after breaking them into finitely many pieces and
ignoring some small error. Our next goal is to develop the dimension of a complete
type: the idea is that at the level of complete types, we won’t have to break into
cases, because the type will have already concentrated on one of the cases.

Precisely, we will define the dimension dim(a/A) where a € M®9 is a tuple and
A C M*1 is a parameter set — but dim(a/A) will only depend on tp(a/A), so we're
really defining dim(tp(a/A)). The idea is that ‘dim(a/A) = d’ should mean ‘X is
generic in an A-definable set of dimension d’ — so we are replacing definable sets
with their generic types.

Unfortunately, expressions like dim(a/A) will only really capture everything in a
big enough model (where generic types have actual realizations). So we first review
saturated models.

5.1. Saturation.

Definition 5.1. An infinite structure M is saturated if for every A C M with
|A| < |M]|, every consistent type over A has a realization in M.

Definition 5.2. Suppose M is saturated and uncountable. If A C M and |4| <
|M]|, we call A a small set.

So saturation gives that types over small sets can be realized in M.
Exercise 5.3. Suppose M is saturated. Then so is M*®9.
A key fact about saturated models is uniqueness:

Exercise 5.4. Let M and N be saturated models of the same complete theory. If
|M| = |N| then M and N are isomorphic.

In the strongly minimal case, we have:
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Lemma 5.5. Suppose M is strongly minimal, uncountable, and strictly bigger than
its language. Then M is saturated. In particular, strongly minimal theories in
countable languages are uncountably categorical.

Proof. 1t is enough to show that every 1-type over a small set is realized: then to
realize an n-type, realize one coordinate at a time, at each stage adding all previous
choices to the parameter set.

Now Let A C M be small, and let p(z) be a consistent 1-type over A. We
consider two cases:

e First suppose there is a formula ¢(z,a) in p with only finitely many solu-
tions. Choose such a formula ¢(x, a) with the smallest number of solutions.
We claim that every solution of ¢(x,a) realizes p. Indeed, for any other
formula v (x, b) € p, the minimality of |¢(M, a)| implies that ¢(z, b) A (z,b)
cannot define a smaller set than ¢(z,a) — that is, ¢(x, a) implies ¢ (x,b).

e Now suppose no such formula exists. By strong minimality, every formula
in p defines a cofinite subset of M. Since M is uncountable and bigger
than both A and the language, the intersection of all of these cofinite sets
is non-empty.

Now over a countable language, we have shown that every uncountable model
is saturated, and uncountable categoricity follows by the uniqueness of saturated
models. O

From now on, we work in a saturated uncountable strongly minimal
structure M. This is a harmless restriction: the theorems we prove in M will be
elementary, and thus will pass down to all models.

5.2. Dimension and Generic Points.

Definition 5.6. Let a € M7, and let A C M*°? be small. We define dim(a/A) to
be the smallest dimension of any A-definable set containing a.

The following are immediate:
Exercise 5.7. (1) dim(a/A) only depends on tp(a/A).
(2) If @ € M™ then dim(a/A) < n.
(3) If o is a permutation of ay, ..., a, then dim(o(ay)...0(a,)/A) = dim(a;...a, /A).
(4) If A C B then dim(a/B) < dim(a/A).
Dually, we have:
Lemma 5.8. Let X be A-definable in M, where A is small. Then
dim(X) = max{dim(a/A) : a € X}.

Proof. <: By definition of dimension. >: Let {Y, : a < k} enumerate all A-
definable subsets of X which have smaller dimension than X. Let p(z) be the
partial type over A saying that x € X, and = ¢ Y, for each «. Then p is finitely
satisfiable: any finitely many Y, union to a set of dimension less than dim(X), so
some element of X does not belong to the union. By saturation, p is satisfiable in
X. Any realization of p has dim(a/A) = dim(X). O

Definition 5.9. Let X be A-definable. If ¢ € X and dim(a/A) = dim(X), we say
that a is generic in X over A.
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So the above lemma says that definable sets always have generic points (over
any small set defining them).

Example 5.10. Let M = (C,+, x), and let X C K? be defined by y = 22. Then
X is P-definable, and is also m-definable. Then:

o (m,7?) is generic in X over 0.

e (m,7?) is not generic in M? over ().

e (m,7?) is not generic in X over 7.

Exercise 5.11. Let X and Y be A-definable.

(1) Show that X is almost contained in Y if and only if every generic point of
X over A belongs to Y.

(2) Show that X and Y are almost equal if and only if they have the same
generic points over A.

Exercise[5.11]shows that if X is stationary and A-definable, the generic type of X
over A only depends on the almost equality class [X] (meaning that if Y € [X] is also
A-definable, Y has the same generic type over A). Thus, if [X] is a stationary almost
equality class with at least one A-definable member, there is a well-defined ‘generic
type of [X] over A’. In this way, we can define stationary types (generic types of
stationary classes), and we have a well-defined almost equality notion for stationary
types (e.g. if [X] contains an A-definable member and a B-definable member,
the generic types of [X] over A and B are almost equal). This is roughly how
model theorists generalize stationary decompositions to arbitrary stable theories
(where dimension is not defined): we give an abstract definition of stationary types,
and then consider almost equality classes of such types (using instead the term
‘parallelism’).

5.3. Algebraic Closure. A key special case of dimension is the following:

Definition 5.12. Let ¢ € M°? and A C M*4.

(1) We say that a is algebraic over A if dim(a/A) = 0 — equivalently, if a belongs
to some finite A-definable set.

(2) The algebraic closure of A, denoted acl(A), is the set of all elements of M©?
which are algebraic over A.

(3) If b is another tuple, we say that a and b are interalgebraic over A if a €
acl(Ab) and b € acl(Aa).

The notation acl(A) is a bit confusing, because it is really two notions. If A C
M*e1, we typically mean the version above. However, suppose A C M. Then it is
natural to consider acl(A) N M (the set of singletons algebraic over A), as this gives
a closure operator on subsets of M. It is most convenient to ignore this difference
and revisit it whenever things get confusing. Most of the time, though, we will try
to write acl(A) N M when we mean the second version.

Exercise 5.13. (Model-Theoretic Galois Theory)

(1) Show that if A is small, a,b € M7, and tp(a/A) = tp(b/A), there is an
automorphism of M fixing A point-wise and sending a to b. Hint: use the
uniqueness of saturated models.

(2) Conclude that for small A, the assertion that a € acl(A) is equivalent to
the assertion that a has finite orbit under the action of Aut(M/A) (auto-
morphisms fixing A point-wise).
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(3) Similarly, say that a is definable over A (denoted a € dcl(A)) if the set
{a} is A-definable. Show that for small A, a € dcl(A) is equivalent to the
assertion that a is fixed by all of Aut(M/A).

(4) Give examples to show that (2) and (3) fail if A is not small (i.e. if |[A] =
M),

(5) (Hard) On the other hand, show that (1) does hold even if A is not small
(this is a unique feature of strongly minimal theories).

Exercise 5.14. (1) Suppose M = ACF, and A C M. Show that acl(A) N M
is the (field-theoretic) algebraic closure of the field generated by A. (It may
help to use the previous exercise).

(2) Find similar characterizations of algebraic closure (inside the sort M only)
in the theories of the pure set, the integers with successor, and vector spaces.

Algebraic closure has the following basic properties:

Lemma 5.15. (1) A C acl(A) for all A.
(2) If A C B then acl(A) C acl(B).
(3) If a € acl(A) then there is a finite B C A with a € acl(B).
(4) acl(acl(4)) = acl(A).

Proof. (1), (2), and (3) are clear ((3) is because formulas are finite). We
show (4). Let a € acl(acl(A)). By (3), there is a finite B = (b1, ...,b,) C
acl(A) with a € acl(B). Let ¢(a, b, ...,b,) be a formula with finitely many
solutions — say m — and for each i let 1;(b;, A) be a formula with finitely
many solutions — say k;. Then the formula ‘there are yi,...,y, so that
M E ;(yi, A) for each i, M = ¢(x,y1, ..., yn), and |¢(M,y1, ..., yn)| < m’
is true of @ and has at most m - kg - ... - k,, solutions.

O

Note that acl(acl(A)) = acl(A) is an abstract analog of the fact that the sum or
product of two algebraic numbers is again algebraic (and the proof is similar).

5.4. Additivity and Other Properties. We want to develop some basic proper-
ties of dimension for tuples. The most important is called ‘additivity’. This is the
analog of ‘function additivity’ for definable sets. The tuple-version is much cleaner
to state.

Theorem 5.16 (Additivity). Let a,b € M and A C M. Then
dim(ab/A) = dim(a/Ab) + dim(b/A).

Proof. Let a € S,b € T where S,T are sorts. Fix definable sets witnessing all
three dimensions. More precisely, let X C S x T be A-definable with dim(X) =
dim(ab/A); let Y C S x T be A-definable with dim(Y;) = dim(a/Ab); and let
Z C T be A-definable with dim(Z) = dim(b/A). Now let W C S x T be the set of
(x,y) with (x,y) € X, (z,y) € Y, and y € Z. Then W}, C Y, is Ab-definable and
contains a, so dim(W,) = dim(a/Ab) := d, say. Let Z’ be the set of y € Z with
dim(W,) = d, and let W’ be the set of (x,y) € W with y € Z’. Then Z’ (and thus
W') are A-definable still.
Since all original dimensions were minimal, we have:
o dim(W') = dim(ab/A).
e dim(W}) = dim(W;) = dim(a/Ab) = d.
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e dim(Z’) = dim(b/A).
Now the projection W’/ — Z’ is surjective with all fibers of dimension d, so by
function additivity we have dim(W’) = d + dim(Z’). Equivalently, dim(ab/A4) =
dim(a/Ab) + dim(b/A). O

Many other properties fall out of additivity:

Exercise 5.17. Use additivity to prove the following:
(1) dim(ab/A) < dim(a/A) + dim(b/A).
(2) If b € acl(A) then dim(a/Ab) = dim(a/A).
(3) If a and b are interalgebraic over A then dim(a/A) = dim(b/A).

Many treatments of strongly minimal theories develop dimension using prege-
ometries. The idea is that for a € M™, we set dim(a/A) to be the length of a ‘basis’
of a over A: this is a minimal subtuple b of a with a € acl(Ab). Additivity is still a
crucial fact when defining dimension using bases: it first appears as the statement
that any two bases have the same length, so dimension is well-defined. This is first
proved by iterated applications of what is known as the ‘exchange lemma’. (In more
general settings, exchange and additivity are known to be equivalent, and are often
used interchangeably). Let us now state exchange and verify it using additivity:

Lemma 5.18 (Exchange Lemma). Let a,b € M, and A C M*®?. If b € acl(Aa) —
acl(A), then a € acl(Ab).

Proof. The fact that b € acl(Aa) implies dim(ab/A) < 1 (by additivity). Thus, by
additivity again, either dim(b/A) = 0 or dim(a/Ab) = 0. We are given b ¢ acl(4),
so the only option is dim(a/Ab) = 0, i.e. a € acl(Ab). O

Now let us use additivity to characterize dimension using bases.

Lemma 5.19 (Basis Characterization). Leta € M™ and A C M®?. Then dim(a/A)
is the length of any basis of a over A.

Proof. Let d = dim(a/A), and let b be a basis. Then a and b are interalgebraic over
A, so dim(b/A) = d, and thus the length of b is at least d. Now write b = (by, ..., bim).
So we have m > d, and we want that m = d.

Now use additivity to write

Each term in the sum is 0 or 1. If m > d, there must be a 0. So there is
with b; € acl(Ab;...b;—1). Then b € acl(Ab*), where b* is b with b; removed. In
particular, a € acl(Ab*), contradicting the minimality of b. O

5.5. Independence. The dimension theory for tuples allows for a good notion of
independence:

Lemma 5.20. Let a,b € M and A C M. The following are equivalent:
(1) dim(a/Ab) = dim(a/A).
(2) dim(b/Aa) = dim(b/A).
(3) dim(ab/A) = dim(a/A) + dim(b/A).
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Proof. By additivity,
dim(ab/A) = dim(a/Ab) + dim(b/A) < dim(a/A) + dim(b/A),

with equality precisely if dim(a/Ab) = dim(a/A). Similarly with a and b reversed.
O

Definition 5.21. We say that a and b are independent over A if the above condi-
tions hold.

So independence is automatically symmetric. We will not need many other
properties of independence, but we still list a couple:

Exercise 5.22. (1) If b € acl(A) then every a is independent from b over A.
(2) a is independent from itself over A if and only if a € acl(A).
(3) If a is independent from bc over A if and only if it is independent from both
b over A and c over Ab.

More important and less trivial is ‘existence of independent extensions’:

Lemma 5.23. Let a € M°? and A C B small sets. Then there is o' |= tp(a/A)
with a’ and B independent over A.

Proof. Let X be A-definable and containing a so that every definable set from
tp(a/A) almost contains X . It follows that every A-generic point of X also belongs
to every other definable set in tp(a/A). That is, every A-generic point of X realizes
tp(a/A). Now take a’ to be a generic point of X over B. O

6. CANONICAL BASES

One of the benefits of M°? (throughout model theory) is that it allows us to code
definable sets as tuples in the structure, thereby treating them as actual elements
(see below). In the strongly minimal case, we need to do something similar but
more abstract. Recall that our main goal is to give assumptions under which M
interprets an infinite group. In the end, the elements of the group we build will
be almost equality classes of permutations. Thus, roughly speaking, we need to
‘code’ almost equality classes. The tool for doing this is known as canonical bases.
Importantly, canonical bases will give us a very clear meaning of ‘how big’ a family
of almost equality classes is — and this will form the basis of the famous ‘Zilber
trichotomy’. Note that canonical bases are one of the more sophisticated ideas in
abstract stability. We only give the strongly minimal version of them, and it is
already quite non-trivial.

6.1. Warm up: Canonical Parameters. We first preview canonical bases by
coding ordinary definable sets. The term here is canonical parameters. Suppose
X is definable by ¢(z,a) for some tuple a. In general, there could be many other
tuples b so that ¢(x,b) also defines X: there is not a ‘canonical’ one. Over M9,
this can be fixed:

Definition 6.1. Let X be definable in M. A canonical parameter of X is a tuple
¢ so that (1) X is defined by a formula ¢(z,¢), and (2) for all ¢’ # ¢, ¢(x,c’) does
not define X.

Exercise 6.2. Suppose ¢ and d are both canonical parameters for X. Show that ¢
and d are interdefinable (each can be defined using the other).
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Lemma 6.3. Every definable set in M®? has a canonical parameter in M9.

Proof. Let X be defined by ¢(z,a) where a € M*¢?. Note that we may assume
a € M™ for some n (if not, let a € M™/E, and let b € M™ project to a; then
replace a with b).

Now let E be the (-definable equivalence relation on M™ where yEz if ¢(z,y)
and ¢(x, z) are equivalent, and let ¢ € M™/E be the equivalence class of a. Then
¢ is a canonical parameter. Precisely, X is defined by the formula (x,¢), where
¥ (x, z) says that for all y € M™, if y projects to z in M™/E, then ¢(z,y) holds. O

The proof even shows more: every definable set occurs in a (-definable family of
pairwise distinct sets:

Corollary 6.4. Let X be definable in M1, where X C S for some sort S. Then
there is a ()-definable family Y C S x Z so that (1) X =Y, for some z, and (2) for
all 21,20 € Z, if 21 # 22 then Y, #Y,,.

6.2. Canonical Bases. As stated above, canonical parameters allow us to code
definable sets as elements of a structure. For example, suppose (M,+,...) is a
group, and X C M is definable. Set X + X = {a+b:a,b € X}. One might want
to say that X 4+ X is ‘defined uniformly from X’ in some sense. One way to do it is
to say that if ¢ and d are canonical parameters for X an X 4+ X, then d is definable
over c.

We want to code almost equality classes, so that we can talk about them definably
in a similar way. This is similar but harder.

Definition 6.5. Let [X] be an almost equality class of stationary definable sets.
A canonical base of [X] is a tuple ¢ such that:

(1) Some member Y € [X] is definable over ¢ by a formula ¢(z, c).
(2) For any ¢’ # ¢, the set defined by ¢(x, ') is not a member of [X].

Exercise 6.6. As with canonical parameters, show that any two canonical bases
of [X] are interdefinable.

Because of this, we often treat the canonical base as a single object and call
it Cb([X]) (but this is abuse of notation). We may also write Cb(X) instead of
Cb([X]), for simplicity.

Theorem 6.7 (Canonical Bases Exist). Let [X] be an almost equality class of
stationary definable sets of dimension d > 0 in some sort S in M°?. Then [X] has
a canonical base in M©9.

Proof. The set X € [X] is definable over some tuple ¢, say X = Y; where Y C SxT
is (-definable. We may assume 7' C M™ for some n; otherwise replace it with its
preimage in M™.

Let U = M"™/FE where uEwv if Y,, and Y,, are almost equal (where by convention
we say that ) is almost equal to itself). By definability of dimension, F is -
definable, so U is a sort in M*¢9. Let ¢ € U be the equivalence class of t. We claim
that c is a canonical base of [X]. To show this, our main task is to find a c-definable
set in [X].

Let C C M™ be the set of elements of the class ¢ (i.e. ¢ viewed as a definable
set). Then let Z be the set of x € S such that x € Y,, for almost all u € C. We
claim that Z € [X], i.e. that X and Z are almost equal:
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Claim 6.8. (1) Every generic element of X over tc belongs to Z. Thus X s
almost contained in Z, and dim(Z) > d.
(2) Every generic element of Z over ct belongs to X. Thus Z is almost con-
tained in X, and so X and Z are almost equal.

Proof. (1) Suppose a € X is generic over c¢t. We want to show that a € Y,, for
almost all u € C'. It suffices to show that if u € C' is generic over cta, then
a € Y,. But in this case, u is indepdnent from a over ct (it is generic in U
over both ¢t and cta). So we also have

dim(a/ctu) = dim(a/ct) = dim(X).

Since X is almost equal to Yy, all generics of X over tu belong to Y, — thus
a €Y, as desired.

(2) Suppose a € Z is generic over ct. As above, let u € C' be generic over act,
so that @ and c¢ are independent over ct. Since a € Z, we have a € Y, and
thus

d =dim(Z) = dim(a/ct) = dim(a/ctu)
<dim(a/u) < dim(Y,) = d.

Everything above must be an equality, so dim(a/ctu) = d, and thus a is
generic in Y, over ctu. Since Y, is almost equal to X, all generics of Y,
over ctu belong to X. Thus a € X.

O

By the claim, Z € [X]. Let Z be defined by ¢(x,c). Then M€? knows that
¢(z,c) is almost equal to Y, for every v projecting to c¢. Let ¥(z,w) be ‘¢p(x,w)
and ¢(S,w) is almost equal to Y,, for every v projecting to w’. Then ¢ (z, ¢) defines
7 — while if ¢/ # ¢, then by definition ¢ (z, ¢’) belongs to a different almost equality
class. This means c is a canonical base. O

Canonical bases let us represent stationary sets as generic members of faithful
families:

Definition 6.9. Let Y C S x T be an M*°I-definable family of subsets of a sort
S, and assume dim(Y;) = d > 0 for all ¢. We say X is faithful if dim(Y; NYy) <d
whenever ¢ # t'.

Theorem 6.10 (Faithful Families Exist). Let X be a stationary definable set of
dimension d in the sort S in M®1. Let c be a canonical base of [X]. Then there is
a faithful O-definable family Y C S x T of d-dimensional subsets of S, such that ¢
is generic in T and Y, € [X].

Exercise 6.11. Prove Theorem [6.10| using Theorem and compactness.

Theorem [6.10| gives a convenient tool for measuring the ‘true size’ of a family of
definable sets (by ‘true size’, we mean we view sets up to almost equality). Namely,
the following are now equivalent for a stationary definable set X:

e X has a canonical base of dimension k.
e X is almost equal to a generic member of a k-dimensional faithful definable
family.
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Since any two canonical bases are interdefinable, the notation dim(Cb(X)) is
well-defined (it refers to dim(c) for any canonical base ¢). So we have a shorthand
for a fairly intricate notion: rather than say ‘we have a k-dimensional faithful family
of d-dimensional sets containing a generic member almost equal to X’, we can now
just say ‘dim(Cb(X)) = k. One should always retain the geometric intuition: the
dimension of a canonical base is the size of a faithful family and vice versa.

Our definition of canonical bases only applies to stationary classes. However,
with a little work, we can define the notation ‘Cb(a/A)’ for any a and A:

Exercise 6.12. Let X be A-definable of dimension d > 0.

(1) If X is stationary, then Cb([X]) is definable over A.

(2) In general, if [Y] is any stationary component of [X], then Cb([Y]) € acl(A).

(3) X can be decomposed over acl(A): that is, there are finitely many disjoint
stationary d-dimensional acl(A)-definable sets whose union is X.

Definition 6.13. Let a € M7 and A C M*®9.

(1) Set Loc(a/A) (the locus of a over A) to be the class [X], where X is any
acl(A)-definable d-dimensional stationary set containing A.
(2) Set Cb(a/A) to be the canonical base of Loc(a/A).

Exercise 6.14. (1) Prove that Loc(a/A) (and thus Cb(a/A)) are well-defined.
(2) Prove that dim(a/Cb(a/A)) = dim(a/A) for all a and A.

6.3. Families of Plane Curves. We now introduce Zilber’s Trichotomy, one of the
most influential and fruitful ideas in modern model theory. In his early investigation
of strongly minimal structures (particularly in the totally categorical case), Zilber
isolated two crucial dividing lines. The key is to look at families of plane curves.

Definition 6.15. (1) A plane curve is a one-dimensional definable set X C
M?2.
(2) A plane curve X C M? is non-trivial if both projections X — M are
finite-to-one.

Exercise 6.16. A stationary plane curve is trivial (= not non-trivial) if and only
if it is almost equal to a horizontal or vertical line.

A stationary non-trivial plane curve is a generalization of a definable bijection
M — M. It is instead a definable finite-to-finite correspondence between cofinite
subsets of M. But we still want the intuition of a family of such curves as ‘acting
on M’.

Consider all values dim(Cb(X)) where X is a stationary non-trivial plane curve.
These values encode the possible sizes of faithful families of plane curves in M. For
example:

Exercise 6.17. (1) In a pure set, every stationary non-trivial plane curve X
is almost equal to the diagonal y = z, and thus dim(Cb(X)) = 0.
(2) In an F-vector space, every stationary non-trivial plane curve X is almost
equal to the graph of an affine linear map y = cx + v (where ¢ € F and v
is a fixed vector). In this case, v is a canonical base, so dim(Cb(X)) < 1.
(3) In ACF, dim(Cb(X)) can be arbitrarily large (consider the graph of a
generic polynomial function of degree d).

Zilber (and Hrushovski) showed that these cases are exhaustive:
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Fact 6.18 (Weak Trichotomy). Let S be the set of all values dim(Ch(X)) where X
is a stationary non-trivial plane curve. Then either S = {0}, or S = {0,1}, or S is
unbounded; and if Th(M) is totally categorical, only the first two cases can occur.

We will not prove this fact — it is extremely complicated. We will develop many
of the ideas, though.

Interestingly, the proof of Fact is another case of algebraic objects arising
out of nowhere. Here is the idea. Suppose S is bounded. We get a family of plane
curves of maximal dimension, say F. Consider the ‘composite family’ F o F of
all ‘compositions’ of curves from F (this has to be carefully defined; if the curves
are functions, it is just the usual composition of functions). The composite family
looks bigger, but can’t be: there have to be a lot of redundant compositions. This
means that F looks a bit like a group acting on M. Using ideas we will develop,
one can build an actual transitive group action differing only mildly from F. Then
one uses sophisticated group theory to classify the group. If F had dimension at
least 2, then every possibility for the group ends up being an algebraic group over
a model of ACF. In particular, out of nowhere, M ends up being closely related to
a model (or rather expansion of a model) of ACF. In this case, as above, one can
build large families of plane curves, and this ultimately contradicts the assumption
that S is bounded.

The second clause (that totally categorical theories are locally modular) was
proven in a very complicated way by Zilber, and later given a simplified proof by
Hrushovski (though still a bit involved). Again, it is highly connected to algebra and
geometry: the idea is to develop analogs (in M) of statements from the intersection
theory of varieties (precisely Bezout’s Theorem). Ultimately, the intersection theory
inside M is ‘too good’ in a sense, and if one has access to large families of plane
curves, one can contradict this ‘too good Bezout’s theorem’ by building certain
‘atypical’ configurations of intersections. We sketch this argument in a separate
sequence of exercises (at the end of the exercise document).

6.4. The Zilber Trichotomy. The three cases of Fact are known as Zilber’s
Trichotomy:

Definition 6.19. Let S be as above.
(1) If S = {0}, M is trivial.
(2) If S is bounded, M is locally modular (thus S = {0,1} is called non-trivial
locally modular).
(3) if S is unbounded, M is not locally modular.
(‘Locally modular’ came from a previous equivalent definition that isn’t used as
much anymore.)

The trichotomy gives a very strong division of all strongly minimal structures into
three levels: structures of different levels have very different behaviors. Accordingly,
the levels of the trichotomy are hard to escape, in the sense that small manipulations
to a structure don’t change its level. For example:

Lemma 6.20. Let A be a (small) set of parameters, and let Ma be M in the
language naming elements of A as constants. Then M4 is trivial (resp. locally
modular) if and only if M is.

Proof. Adding parameters does not affect the collection of definable sets, so also
does not affect the collection of dimensions of faithful families of plane curves (even
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though it may change the dimensions of specific canonical bases, the maximum
values don’t change). O

In fact, more can be said. Suppose X is any A-definable strongly minimal set
in M°4. We can view X as a strongly minimal structure in its own right, naming
constants for A and then taking the induced structure on X. In this case, X will
belong to the same level as M. We leave this as an additional exercise.

In general, the trichotomy has been hugely influential in the study of stable theo-
ries (and beyond). Often, one gains a strong understanding of a well-behaved math-
ematical structure by decomposing it into strongly minimal ‘pieces’ and studying
the trichotomy levels of those pieces. This idea is at the heart of famous applica-
tions of model theory in geometry by Hrushovski (e.g. his work on the Mordell-Lang
conjecture, [3]).

In the rest of the course, we will carefully study the lower two (= locally modular)
levels of the trichotomy. Here the main results are accessible and give a clear and
complete picture. The final level (non-locally modular) is much more complicated,
and understanding it is still a major research area. The general theme of the non-
locally modular case is to show that ‘in natural settings’ (whatever that means),
one can only have models of ACF (and other things constructed from them). To
clarify, there are exotic non-locally modular strongly minimal structures having
nothing to do with ACF — they just don’t seem to occur in the wild.

6.5. Equivalences. Let us begin with some equivalent characterizations. First,
the trivial case can be characterized as follows:

Fact 6.21. M is trivial if and only if for all A C M and b € M, if b € acl(A) then
b € acl(a) for some a € A.

The proof of Fact[6.21]is not too crazy, but we don’t have time. See the additional
exercises.

Fact roughly says that there can’t be any interesting m-ary relations for
n > 3. In particular:

Exercise 6.22. Show that if (M,-,...) is an expansion of a group then M is not
trivial.

Now we give stronger characterizations of local modularity. It might seem ar-
bitrary that local modularity is defined only in the plane (i.e. why don’t we care
about the behavior of canonical bases in M™?). In fact, the plane is enough to
control everything:

Fact 6.23. Suppose M is locally modular.
(1) Let X be a stationary d-dimensional definable subset of M™. Then
dim(Ch([X])) < n —d.

(2) More generally, let Y be A-definable in M®? of dimension n, and let X be
a stationary d-dimensional definable subset of Y. Then dim(Cb([X])/A) <
n—d.

(3) More generally, for all a and A we have Cb(a/A) € acl(a).

We sketch a proof of this fact in the additional exercises.
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In the above, (3) is a neat way to package (1) and (2) into a clean statement.
The idea is the following: in the situation of e.g. (1), let ¢ be a canonical base of
X, let Y € [X] be c-definable, and let a € Y be generic over ¢. Then

dim(ac) = dim(a/c) + dim(c) = d + dim(c),
while also
dim(ac) = dim(c/a) + dim(a) < dim(c/a) + n.
So the assertion ‘c € acl(a)’ really gives d 4+ dim(c) < n, which is (1).
In more general settings, property (3) above is known as ‘1-based’ (as in, 1 point
(almost) determines the canonical base).

6.6. The Trivial Case. The general picture of totally categorical theories is com-
ing into focus: suppose Th(N) is totally categorical. Then it is prime over a totally
categorical strongly minimal theory, say our Th(M). By Zilber’s trichotomy results,
M is either trivial or non-trivial and locally modular. We will show that:

e If M is trivial, then after slight modifications it becomes a pure set.
e If M is non-trivial and locally modular, then after slight modifications it
becomes a vector space.

Here we do the first of these; the proof is a simplified preview of the second one.

Theorem 6.24. Assume M is totally categorical and trivial. Then there is a ()-
definable equivalence relation E on M with all classes finite, such that M/E is a
pure set: every definable subset of (M/E)™ is definable in the language of equality.

Proof. We let E be the relation ‘xz and y are interalgebraic’. This is usually not
definable — but it is in this case because of Rg-categoricity (there are only finitely
many formulas that could witness the interalgebraicity). In particular, it follows
that all classes are finite. For ease of notation, let us just replace M with M/E.
So from now on, we assume that no two distinct elements of M are interalgebraic.

(Something subtle happened here: we are assuming that M/E is still strongly
minimal, totally categorical, and trivial; this can be checked and we omit it).

Now for each n, we prove that every definable set X C M™ is definable from
equality. We work by induction on d := dim(X). If d = 0 then X is finite, and
everything is clear.

Now assume d > 1. We may assume X is stationary: if not, break X into
components and handle each separately. So assume X is stationary, and let A C M
be a small set such that X is A-definable. Let a = (ay, ..., a,) be generic in X over
A, and let b be a basis for a over A. Without loss of generality b = (ay, ..., aq). For
each i > d, a; € acl(A4b), and thus a; € acl(c) for some ¢ € Ab. Then one of two
things happens:

® ; € acl(@)

e a; ¢ acl(P). In this case, a; and ¢ are interalegraic, and so a; = c¢. Either

a; € Aor a; € {al, ...,ad}.

In either case, either a; agrees with a basis coordinate, or it is in acl(A). Then
we get a corresponding formula in the language of equality, say ¢(z1, ..., z,) over
acl(A), obtained by imposing no restrictions on 1, .., 24, and setting each higher
coordinate to either be one of x1,...,x4 or to be an element of acl(A) (the same as
the analogous coordinate of a). Let Y be the solution set of ¢. Then dim(Y") = d,
and Y is stationary; and moreover a generic element of X belongs to Y. It follows
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that X and Y are almost equal. Now X is a Boolean combination of Y, X — Y,
and Y — X, and each of these is definable from equality (for the latter two, this is
induction). Thus so is X. O

7. THE LocALLY MODULAR CASE

From now on, assume M is non-trivial and locally modular. Our main
goal: prove that that there is a strongly minimal definable group in M®“9.
This means there is a strongly minimal set G with a definable group operation
G? — G.

7.1. The Germ Groupoid. Let us formally introduce the objects we will use
to build a group. Recall that a groupoid is a category where every morphism is
invertible.

Definition 7.1. The germ groupoid of M is the groupoid defined as follows:

e The objects are almost equality classes of strongly minimal sets in M 9.
e For objects C, D, the morphisms C' — D are almost equality classes of
definable bijections between members of C' and D.

Exercise 7.2. Check that this is a well-defined groupoid. In particular, this in-
cludes making sense of the phrase ‘almost equality classes’ for definable bijections
between strongly minimal sets.

Note that whenever possible, we reserve X, Y etc. for definable sets, and C, D,
ete. for objects in the germ groupoid (i.e. almost equality classes).

Suppose C, D are objects. Let us say that a definable collection of morphisms
C — D is the quotient F' = H/ ~, where H is a definable collection of bijections
between members of C' and D, and ~ is the almost equality relation on H. If H is
moreover A-definable for some set A, then we say F' is A-definable. So a definable
collection of morphisms is naturally identified as a definable set in M“?, and thus
we can speak of definable subsets of F™ and so on.

We will also use dimension theory for objects and morphisms; this is done
by means of canonical bases. For example, if f : C' — D is a morphism, then
dim(f/CD) means dim(r/pq), where p, q,r are canonical bases of C, D, f, respec-
tively (note that f is also strongly minimal, so it has its own canonical base).
Similarly, we may speak of a set or tuple being e.g. ‘f-definable’. This means
‘definable over the canonical base of f’.

Local modularity gives the following:

Exercise 7.3. Let C, D be objects, and F' a definable collection of morphisms C' —
D. Then dim(F) < 1. Thus, if f : C — D is a morphism, then dim(f/CD) < 1.

We use throughout that composition of morphisms is ‘definable in families’:

Exercise 7.4. Suppose F, G, H are A-definable collections of morphisms from C
to D, D to E, and C to E, respectively. Then {(f,g,h) € F x G x H :go f =h}
is A-definable.

7.2. Summary. Our first main challenge is to find a reasonable supply of mor-
phisms in the germ groupoid: namely, we will show that there are objects C' and
D and a one-dimensional definable family of morphisms C' — D. Constructing a
family of morphisms is probably the most confusing thing we will do in this course;
let us explain the general idea.
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First, non-triviality gives us a one-dimensional family of plane curves, say {X;} C
M?, which are finite-to-finite correspondences between cofinite subsets of M. We
need to upgrade this to a family of bijections. Let us fix a generic curve X; from
the given family. Then there is a cheap way to turn X; into a bijection: first we
replace the right copy of M by Z; := the collection of all finite sets of the form
Xi(z) ={y : (z,y) € Xy} for € M. This turns X; into a surjective finite-to-one
function X; : M — Z;. Then we replace the left copy of M with Y; := M/ ~, where
~ is the equivalence relation X;(r) = X;(y) on M. So X; now gives a bijection
Y; — Z;. Moreover, this whole process is (essentially) definable in M*¢?: by uniform
finiteness, there is n so that X;(x) has size n for almost all z € M. Then up to
finitely many points, we can view Z; as a definable subset of M ("), the quotient
of M™ by permutations of {1,....,n}. Then Y; is simply M modulo a definable
equivalence relation, so it is trivially also M “?-definable. Moreover, once we know
they are definable, one can easily check that Y; and Z; are strongly minimal. Thus
[Y3] and [Z;] are objects in the germ groupoid, and [X}] determines a morphism
between them.

So out of a plane curve X; C M?, we cheaply construct a morphism [Y;] —
[Z;] for some Y; and Z;. Of course, this doesn’t really build an infinite family of
morphisms between two objects, because the objects [Y;] and [Z;] vary with ¢. Our
goal will be to construct a very specific scenario where [Y;] and [Z;] do not vary
with ¢. This will involve replacing M with another object before we start (namely
a curve in M?).

7.3. Composition Configurations. In general, we want to encode the idea of
composing two families of plane curves. Say we have stationary non-trivial plane
curves X,Y C M?. Define

Y oX :={(x,z): for some y we have (z,y) € X and (y,z) € Y}.

Then Y o X is a plane curve, but is probably not stationary. So we have something
like a multi-valued composition operation, sending [X], [Y] to the set of components
of Y o X. Now if we have two families of plane curves, say X', ), then we could try
setting ) o X to be the set of all compositions Y o X for X € X and Y € ). This
gets messy fast because compositions are not stationary. What ultimately works is
doing everything on the level of tuples. In this language, the key notions will be
certain kinds of configurations of tuples:

Definition 7.5. A non-trivial configuration in M is a triple (a,b,t) € M¢? such
that:
(1) dim(a) = dim(b) = dim(¢) = 1.
(2) dim(ab) = dim(at) = dim(bt) = 2 (i.e. any two of a,b,t are independent).
(3) Each of a,b,t is algebraic over the other two (thus dlm(abt) =2).
(4) t=

Ct(ab/t)

A non-trivial configuration is supposed to represent a one-dimensional family
of plane curves. The idea is that Loc(ab/t) is a generic member X; of a one-
dimensional family of plane curves, and (a, b) is a generic point on X;. Let us make
this precise:

Exercise 7.6. Suppose [X] is an almost equality class of stationary non-trivial
plane curves, with canonical base t satisfying dim(¢) = 1. So [X] contains some ¢-
definable member — without loss of generality X itself. Now let (a,b) € X be generic
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over t. Show that (a,b,t) is a non-trivial configuration. Conversely, if (a,b,t) is
any non-trivial configuration, then there is a stationary t-definable non-trivial plane
curve X so that (a,b) € X is generic over ¢.

Exercise 7.7. Show that if (a, b, t) is a non-trivial configuration, then so is (b, a, t).
Hint: this just says that if X is a stationary non-trivial plane curve with canonical
base ¢, then ¢ is also a canonical base for X ! = {(y,z) : (z,y) € X}.

Definition 7.8. A composition configuration consists of a triple
s = (a1, az,as,t12,t23,t13) € M,
such that:

(1) Each of (a1, as,t12) and (ag,as, ags) is a non-trivial configuration.
(2) t13 = Cb(alag/tlgtgg).
(3) dim(s) = 3.

The idea is as follows: we start with t15 and t23, defining a generic pair of plane
curves X and Y from two one-dimensional families X and ). Then we take a generic
point a; € M over t1ata3; we use t12 to generate a point as with (ag, as) € X; and we
use a3 to generate a point ag with (a2, a3) € Y. Then we think of the ‘composition’
Y o X as corresponding to Loc(ajas/t1atas). This is a stationary non-trivial plane
curve, and we call its canonical base t13.

Again, we make this precise:

Exercise 7.9. Let [X] and [Y] be almost equality classes of stationary non-trivial
plane curves, with canonical bases t12 and to3 satisfying dim(t12) = dim(te3) = 1
and dim(t12t23) = 2. Without loss of generality assume X is t1o-definable and
Y is to3-definable. Let a; € X be generic over tiotoz. Show that there are
az,a3 with (a1,a2) € X and (ag,a3) € Y, and that for any such as and as,
s = (a1, as,a3,t12,t23,t13) is a composition configuration.

A key property of composition configurations is the following. This is analogous
to the ‘cancellation laws’ in a group (if zy = xz then y = 2):

Lemma 7.10. Suppose (a1, as, as,t12,t23,t13) is a composition configuration. Then
each of t1a,ta3,t13 is algebraic over the other two.

Proof. Let [X] = Loc(ajas/t12), [Y] = Loc(azas/tes), and [Z] = Loc(aias/tiates) =
Loc(ajas/t13). We may assume X is t12-definable, and similarly for Y and Z. Then
[Z] is a component of the t15t93-definable set Y o X, thus t13 = Cb(Z) € acl(t12ta3).
Similarly, o3 € acl(t12t13) because [Y] is a component of the t15t13-definable set

ZoX ' ={(y,2): for some x we have (z,y) € X and (z,2) € Z}.

This is because (a9, a3) is generic in Y over t12t13 and belongs to Z o X!, so Y is
almost contained in Z o X 1. The fact that (az,a3) is generic is because otherwise
(ag,a3) € acl(tiat13); and then repeatedly using that each side is a non-trivial
configuration, one gets that all six points are algebraic over t1st13. So dim(s) < 2,
a contradiction. A similar argument shows that t12 € acl(tastis). O

Our main use of local modularity is the following:

Lemma 7.11. Suppose (a1, as,as, t12,ta3,t13) is a composition configuration.

(1) dim(t13) =1, and thus (a1,as,a13) is a non-trivial configuration.
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(2) In particular, (as,as,ar,tss,tis,t12) and (as,a1,as,t13,t12,t13) are also
composition configurations.

Proof. Local modularity gives dim(t;3) < 1. If dim(¢;3) = 0 then t13 € acl((}), so
tos € acl(tiot13) = acl(t12), contradicting that t12 and ta3 are independent. The
rest is clear. 0

7.4. Coordinate-wise Interalgebraicity. The following is the main technical
lemma we need about composition configurations. It is completely unmotivated,
but is about to be crucial. The idea is that we are starting to control the equiva-
lence relations we have to mod by to replace finite-to-finite correspondences with
bijections.

Lemma 7.12. Let Sq — (al, as, as, t12, t23, tlg) and Sp = (bl, bg, b3, t12, t23, tlg) both
be composition configurations. If any two of the pairs (a1,b1), (az,b2), (as,bs) are
interalgebraic (meaning a; is interalgebraic wth b;), then so is the third.

Proof. Let us assume (aq,b1) and (ag,bs) are interalgebraic, and prove the same
for (as,b3). The other cases follow after permuting (Lemma . For 7 < j, set
sij = (@i, bi,a5,b;,t:5) (the ‘457 part of the given data). We make two observations:

e First, dim(s,sp) = 3, because every point of s, is algebraic over s, (it
is enough to get a single b; and fill in from there, and we are given that
b € acl(ay)).

e Second, similarly, each dim(s;;) = 2, because it is algebraic over the non-
trivial configuration (a;, a;,t;;). Again it is enough to get a single b;, and
this is possible because ¢ and j can’t both be 3.

e Third, s,s, € acl(s13523) (and the same for other 4, j pairs, but we don’t
need them). Indeed, the only point from s,s, not among the coordinates
of S13S93 18 t12; and t12 € aCl(t13t23).

Now suppose that as and b3 are not interalgebraic. Then dim(asbs) = 2. Since
dim(s13) = dim(se3) = 2, we get $13, 823 € acl(azbs), and thus s,sp € acl(azbs).
This is a contradiction because dim(s,s,) = 3 while dim(agbs) < 2. ]

7.5. Construction of a Family. Now we can show:

Theorem 7.13. There is a one-dimensional definable family of morphisms between
two objects in the germ groupoid. In other words, there is a morphism f:C — D
so that dim(f/CD) = 1.

Proof. By non-triviality and local modularity, there is a non-trivial configuration
(a,b,t) with a,b € M, which comes from a generic member X; of a one-dimensional
family of plane curves, say {X, : v € T}. Let X, be another generic member of
the same family with u independent from tab. Put another way, ¢t and u are now
independent generics in T', and (a, b) is generic in X; over tu. It follows that there
is ¢ with (b,¢) € X,,; and then there is d with (¢,d) € X;. Let v = Cb(ac/tu) and
w = Cb(bd/tu). We now have two composition configurations:

Sieft = (a,b,¢,t,u,v), Sright = (b, ¢, d, u,t, w).
We will view X as fixed (as the new ‘M’), and u as encoding a generic-in-a-
family multivalued map in X; — X; (sending (a, b) — (¢, d)).
As previously discussed, we may now view X, as a bijection, say f, : Y, — Z,.
Precisely, let W, C M* be the set of pairs ((z,y), (z,w)) € X? with (y,2) € X,.
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View W, as a multivalued map X; — X;. Then let Z, be the collection of image
sets {(z,w) : ((z,y), (z,w)) € Wy} for (z,w) € X;; so W, gives a function (defined
almost everywhere) W, : X; — Z,. Then let Y,, be X; modulo the equivalence
relation Wy, (z,y) = Wy (y, 2).

One checks easily that Y, and Z, are strongly minimal sets, and W, gives a
bijection between cofinite subsets of Y, and Z,; we now call this f, : [Y,] — [Z.],
a morphism in the germ groupoid. The trick is to show that [Y;] and [Z,] only
depend on ¢, not u; so if we fix ¢ (as we are) and vary u, we indeed get infinitely
many maps [Yy,] — [Z.].

The trick here is Lemma Let h = W, (a,b) € Z, —so h is a finite subset of
X; containing (¢, d). Now suppose (¢/,d’) # (¢,d) is another point in h. Then by
Lemma in sjepe, ¢ and ¢ are interalgebraic; and then by Lemma in Spight,
so are d and d’. That is, any two points in h are ‘coordinate-wise interalgebraic’.
Similarly, let ¢ = W~1(h) € Y,; then any two points of g are coordinate-wise
interalgebraic (by the same argument in reverse). It follows that h is interalgebraic
with (¢, d), and g is interalgebraic with (a,b). So

dim(g/t) = dim(g/tu) = dim(h/t) = dim(h/tu) = 1.

Let G and H be one-dimensional t-definable sets containing g and h, respectively.
So g and h remain generic in G and H over tu; it follows that Y, NG and Z, N H are
infinite (as they contain g and h). So Y, and Z, are stationary components of G
and H, respectively. So, letting p := Ch(Y,,) and ¢ := Cb(Z,,), we have p, q € acl(t).
In particular,
dim(u/tpq) = 1.
So infinitely many of the curves X, from our original family will produce morphisms
fv between the same almost equality classes [Y,] and [Z,], which is basically what
we wanted to show.
Precisely, let us check the exact statement in the theorem:

Claim 7.14. Let r = Cb(f,). Then dim(r/pq) = 1.

Proof. Local modularity gives dim(r/pg) < 1. Assume dim(r/pqg) = 0. Since
p,q € acl(t), dim(r/t) = 0, i.e. r € acl(t). But dim(gh/r) = 1, so dim(gh/t) < 1,
thus by interalgebraicity dim(abed/t) < 1. So dim(abedt) < 2, so in particular
dim(abct) < 2. But u,v € acl(abc), so then dim(s;yt) < 2, contradicting that
dim(sleft) = 3. O

The theorem is now proved. ([

7.6. Construction of a Group. The hard part is done. We now have objects C'
and D, and a morphism f : C'— D with dim(f/CD) = 1. In particular:

Assumption 7.15. For the rest of this section, we fix objects C' and D, and a
one-dimensional definable family F' of morphisms C' — D.

For ease of notation, we will assume throughout that C', D, and F are
(-definable in A9,

If we replace F' by one of its stationary components, we may assume that F' is
strongly minimal. We assume this from now on.

To build a group, we need a collection of maps C — C, not C' — D. We do
that, roughly speaking, by composing the given maps from C' — D with some maps
D — C'. Let us consider options of how to do this.
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Let’s say we are in a vector space M, and C = D = [M]. Then F is the collection
of (classes of) maps {fi(x) = cx +t :t € M} for some scalar ¢ — maybe plus or
minus finitely many sporadic exceptions.

A first idea is to fix a generic ¢ € F and replace F' with the family of all
compositions f o g~! for f € M. This results in the family of translation maps
2 +— x+1t (which is what we want), but still plus or minus finitely many exceptions.
So how do we recognize and fix the exceptions?

Another idea is to instead consider Fo F 1, the family of all compositions fog™
(for all f,g € F). This will get all translations as desired (i.e. we fill all holes);
but it makes the set of ‘added’ maps even worse: each original ‘added map’ now
appears in infinitely many compositions. So we filled holes but also added a bunch
of extra stuff we have to remove.

The trick: there is a definable way to pick the genuine translations out of FoF~!:
they are the maps belonging to F'o F~! for ‘infinitely many reasons’. That is, h is a
translation if and only if there are infinitely many pairs (f, g) € F? with fog=! = h.
This is exactly what works in general too:

1

Definition 7.16. Let G be the set of morphisms C' — D which can be expressed
as a composition f o g~ for infinitely many pairs (f, g) € F>.

Note that G is 0-definable, because F' is ()-definable and composition is definable
in families. We use throughout:

Lemma 7.17. Let f,g € F. Then f and g are interdefinable over f o g '.

Proof. Clear. (]
Local modularity then gives:

Lemma 7.18. G is strongly minimal.

Proof. Let Z C F? be the set of pairs (f,g) with fog™! € G. So we have a
definable map Z — G. For each a € G, the fiber Z, has dimension 1: it is infinite
since a € G, but it also has dimension at most 1 by Lemma [7.17]

We claim that dim(Z) = 2, and thus Z is almost equal to F? (here we use that
F? is stationary, because F is). Indeed, let (f,g) € F? be generic — so dim(fg) = 2
—and let a = f o g~!. By local modularity, dim(a) < 1, so dim(fg/a) > 1. This
shows that (f,g) € Z, which shows that dim(Z) = 2.

So dim(Z) = 2, and we have a map Z — G with all fibers of dimension 1. Tt
follows that dim(G) = 1. In fact, it even follows that G is strongly minimal: if we
could split G into two infinite definable sets G; and G3, then the preimages Z¢, , Za,
would split Z into two 2-dimensional definable subsets. But Z is stationary (since
F? is), so this is a contradiction. O

Finally, we now show:
Theorem 7.19. G is a group under composition.

Proof. 1t is clear that G contains the identity, since id = f o f—1 for any f € F.
It is also clear that G is closed under inverses (since (f o g7!)™! = go f~! for
frger).

The hard part is composition. Given any morphism a : C' — C, let a5 be the
set of f € F so that a = fog™! for some g € F; then let a,;gnt be the set of g € F
so that a = f o g~! for some f € F. Then areft and apigne are definable, and thus
each is finite or cofinite in F'. The following is then clear (using Lemma :
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Claim 7.20. Let a.: C — €' be a morphism. Then the following are equivalent:
(1) a € G.
(2) aiepe is cofinite.
(3) arignt is cofinite.

Proof. Each of (2) and (3) trivially implies (1). Conversely, if (1) holds, there is
(f,g) with a = f o g~! and dim(fg/a) > 1. Since f and g are interdefinable over
a, they are both generic in F' over a. This implies (2) and (3). O

Now let a,b € G. We show that aocb € G. Let g € F' be generic over ab. Then
g € aright Nbiest, so there are f,h € F witha= fog ' and b=goh'. Then

aob=(fog )olgoh™)=foh™.

So f € (aob)ieft, and f is interdefinable with g over ab, thus is generic in F' over
ab. This shows that (a o )y is cofinite, and thus aob € G. O

Since composition is definable in families, the group operation on G is definable.
Thus, we have now shown:

Theorem 7.21. If M is non-trivial and locally modular, then in M there is a
definable strongly minimal group.

8. THE STRUCTURE OF THE GROUP

We are still assuming that M is non-trivial and locally modular, and
thus by Theorem there is a definable strongly minimal group in
Me4. We now fix such a group (G, ). For ease of notation, we assume G
and its group operation are (-definable.

Our new goal is to study the induced structure on G — that is, we want to un-
derstand the definable subsets of each G™. The result will be that G is abelian, and
every definable subset of each G™ is a Boolean combination of cosets of subgroups.
This is an approximation of ‘G is a vector space’. If we are not assuming total
categoricity, it is the best we can do.

Throughout, we use the following basic and crucial properties of strongly minimal
groups:

Exercise 8.1. (1) Let H < G be a definable subgroup. Then either H is finite,
or H=G.

(2) Let f: G — G be a definable endomorphism. Then either f is trivial, or f
is surjective with finite kernel.

8.1. Stationary Sets are Affine. First we classify stationary sets up to almost
equality. This is the main step. We need a couple preliminary facts. Note that if
H < G" is a definable subgroup, then the coset space G"/H is M¢?-definable.

Lemma 8.2. Let H < G" be a definable subgroup. Then dim(G/H)+dim(H) = n.

Proof. Each coset of H has dimension dim(H), as it is in definable bijection with H
via a translation. Now the natural projection G™ — G/H is definable, surjective,
and has all fibers of dimension dim(H). Thus

n = dim(G") = dim(G/H) + dim(H).
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Theorem 8.3. Let X C G™ be definable and stationary. Then there is a definable
subgroup H < G™ so that X s almost equal to a right coset of H.

Proof. Let T be the collection of translates of g - X of X modulo almost equality.
There is a natural transitive action of G on T by translation. Via this action, T'
is in definable bijection with the coset space G™/Stab([X]), where Stab([X]) is
the stabilizer of [X]. Note that Stab([X]) is definable: it is precisely the elements
g € G™ so that g - X is almost equal to X.

Now by the lemma above, we get dim(7") + dim(Stab([X])) = n. On the other
hand, by local modularity, dim(7T") < n — dim(X). So dim(Stab([X])) > dim(X).

Now let a € X be generic. We claim that X is almost equal to Stab(X)-a. First,
if g € Stab(X) is generic over a, then a is generic in X over g, thus g-a € X. Thus
Stab(X)-a is almost contained in X. But X is stationary and of dimension at most
that of Stab(X), so this is only possible if the two sets are almost equal. (Il

Corollary 8.4. FEvery definable subset X C G™ is a Boolean combination of right
cosets of definable subgroups.

Proof. By induction on d := dim(X). Suppose we are given X of dimension d.
We can break X into stationary components and handle each separately; thus
we assume X is stationary. Then the theorem provides a coset C' of a definable
subgroup so that X and C are almost equal. Now X is a Boolean combination of
C, X —C, and C — X, and these are all of the desired form (for the latter two, by
the inductive hypothesis). O

Note that the same holds for left cosets, since Ha = a(a~'Ha).

8.2. Few Subgroups. We now do something a bit more confusing. We want to
show that G has a ‘few subgroups’ property: for each n, there are essentially no
infinite definable families subgroups of G™. Unfortunately, this is hard to make
precise. Let us start with a simpler case:

Lemma 8.5. Suppose {f; : t € F} is a definable family of endomorphisms G — G.
Then there are only finitely many distinct endomorphisms appearing among the f.
In other words, every definable endomorphism of G is acl(D)-definable.

Proof. (Sketch) If {f;} is an infinite definable family of endomorphisms, then the
maps x — a - fi(z) (for all ¢ and all @ € G) form a two-dimensional (or higher)
family of curves in G2, contradicting local modularity. O

Already, this is a bit imprecise. How exactly is the family of maps a - fi(x)
‘two-dimensional’? Strictly speaking, local modularity bounds the sizes of faithful
families of curves (i.e. where any two have finite intersection). So we can’t really
say anything until we produce such a family. In the following two exercises, let us
sketch how to do this precisely:

Exercise 8.6. Suppose X and Y are both cosets of definable subgroups of G™. If
X and Y are almost equal, then X and Y are equal.

Exercise 8.7. Suppose {f; : t € T'} is a definable family of endomorphisms of G,
and infinitely many distinct maps occur among the f;.
(1) By modding T by an equivalence relation, show that there is such a family
which is faithful: whenever s # t the maps f; and f; agree in only finitely
many points. Conclude in this case that dim(7") > 1.
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(2) Now assume {f;} is faithful, and consider the family {g;, : (t,a) € T x G},
where g¢ o(x) = a- fi(x). Use Exerciseto show that {g;q} is still faithful.

(3) Conclude that for generic (¢,a) € T' x G, the canonical base of the graph of
gt,o has dimension at least 2, and thus we contradict local modularity.

We would like to do something general in G™. Roughly speaking, if we had an
infinite family of d-dimensional stationary subgroups of G", then the family of all
of their cosets would have dimension at least n — d + 1, and this would contradict
local modularity. Again, this is hard to make precise. In the end, the cleanest
statement that works is:

Theorem 8.8. Every stationary definable subgroup of G™ is definable over acl(().

The proof works most smoothly by exploiting the calculus of canonical parame-
ters and canonical bases. We give the details in a series of exercises:

Exercise 8.9. Suppose H < G" is a stationary definable subgroup of dimension
d. Let ¢ be a canonical parameter of H, so H is c-definable. Let a € G™ be generic
over ¢, and let ¢, be a canonical parameter of the coset a - H.

(1) Use Exercise [8.6| to show that ¢, is also a canonical base of [a - H].

(2) Show that dim(a/cc,) = d, by computing dim(ac,/c) in two ways. Con-
clude that a is generic in a - H over c¢,.

(3) Conclude that Loc(a/c,) = [a - H] and Cb(a/c,) = ¢q4, and thus by local
modularity, ¢, € acl(a).

(4) Show that c is definable over (c4,a) (hint: H = a™' - (a- H)). Conclude
that ¢ € acl(a).

(5) Finally, show that ¢ € acl(#) by computing dim(ac) in two ways. Conclude
that H is acl(())-definable.

8.3. Abelianity.
Theorem 8.10. G is abelian.

Proof. Let Inn(G) be the group of inner automorphisms of G — the maps of the
form z + aza™?! for a € G. By Lemma Inn(G) is finite. Now there is a natural
homomorphism G — Inn(G), whose kernel is the center Z(G). Since Inn(G) is
finite, the kernel must be infinite. Thus Z(G) is an infinite definable subgroup, and
so Z(G) = G, i.e. G is abelian. O

Exercise 8.11. (Very Hard) Prove that every strongly minimal group is abelian
(regardless of local modularity). A bit easier: just do it assuming there is an element
of infinite order.

8.4. The Totally Categorical Case. We now prove arguably the main theorem
of the course. Note that if H < G is a finite subgroup, then the quotient G/H is a
group (by abelianity). Moreover, G/H is M¢I-definable (because H is finite), and
is still strongly minimal. Now we will show:

Theorem 8.12. Suppose M is totally categorical. Then there is a finite subgroup
H < G so that G/H has precisely the structure of a vector space over a finite field.
Namely, one can endow G/H with an F-vector space structure for some finite field
F, so that the definable subsets of each (G/H)™ are precisely those definable in the
the language of F-vector spaces.
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Proof. Since G is abelian, let us write G additively from now on (so the identity
is 0). We may still assume G is ()-definable in M°?, because adding finitely many
constants preserves Ny-categoricity.

By Ng-categoricity, for each n, there are only finitely many (-definable subsets
of G™. Now let H be the set of algebraic elements — those elements g € G with
g € acl((). Then H is a subgroup, and is finite (there are only finitely many (-
definable finite subsets of G). We will show that G/H is precisely a vector space
over a finite field. For convenience, in the rest of the proof we will replace G with
G/H. Thus we assume the only algebraic element is 0.

Let F be the set of definable endomorphisms G — G (a priori, F is not a
definable object). Note that F' has a natural ring structure, and G is naturally a
left F-module:

e Addition in F is given pointwise, i.e. (f + g)(z) = f(z) + g(x).
e Multiplication is given by composition (so id is a multiplicative identity).
e If f € F and z € G, then scaling is given by f -z = f(z).
Note that we have not assumed F' is commutative. However, we do know two things
about F:

Claim 8.13. F' is finite.

Proof. Essentially, because by Lemma [8.5] every element of F' is definable over
acl(), and by Ng-categoricity, only finitely endomorphisms are acl((})-definable.
But this is imprecise, because acl()) includes elements of all sorts (so it could be
infinite).

To make it precise: let a € G be generic, and consider the evaluation homo-
morphism Eval, : F — G given by f — f(a). We show two things about this
homomorphism:

e Eval, is injective. Indeed, suppose Eval,(f) = 0 for some f € F. Then
a € ker(f). Since f is acl()-definable, so is ker(f). So since a is generic,
ker(f) is infinite, and is thus all of G. So f = 0.

e Eval, has finite image in G. Indeed, since each f € F is acl((})-definable,
each Eval,(f) = f(a) € acl(a). But by Rg-categoricity, acl(a) NG is finite.

By the two points above, F' is clearly finite. O

Claim 8.14. Every non-zero element of F' has an inverse. Thus, F is a division
ring.

Proof. Let f € F with f # 0. By Exercise f is surjective with finite kernel,
say N = ker(f). By Lemma f is acl(f)-definable, and thus so is N. So every
element of N is algebraic, and thus N = {0} (since we modded by the algebraic

elements).
It follows that f is an isomorphism. Then the inverse f~! is also a definable
isomorphism, and is thus a multiplicative inverse of f in F. ([l

Now it follows that F' is commutative after all: a famous theorem in algebra
(Wedderburn’s Theorem) says that every finite division ring is a field. So in fact,
F is a field, and G is naturally an F-module — equivalently an F-vector space.

We now show that the definable subsets of each G™ are precisely those definable in
the language of vector spaces. Clearly, every vector space-definable set is definable
in M®7 (since addition and scaling are). We show the converse.
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So let X C G™ be definable. We show that X is vector space-definable, by
induction on dim(X). We may break X into stationary components and handle
each one separately — so assume X is stationary and we have handled all definable
sets of dimension less than dim(X).

Claim 8.15. We may assume that X is a subgroup of G™.

Proof. By Theorem [8:3] there is a definable subgroup H < G™ so that X is almost
equal to a coset of H. Replacing X with a translation, we may assume X is almost
equal to H itself (this is allowed because translation is vector-space-definable). In
fact, we may then replace X with H: if we know H is vector space definable, then
X is a Boolean combination of H, X — H, and H — X (and the latter two can be
handled by induction). O

We have now reduced to that case that X = H is a stationary definable subgroup
of G". By Lemma [8.8 H is acl(0)-definable.

Let a = (a1,...,an) be generic in G, and let b be a basis — without loss of
generality (by,...,bq). Let m : H — G be the projection sending a to b, and N < H
the kernel of 7. Then all fibers of = have dimension dim(N), so

d =dim(H) = dim(n(H)) + dim(N) = d + dim(N),
and thus N is finite.
Claim 8.16. N is trivial.

Proof. Since H is acl())-definable, so is N. Thus every element of N is algebraic,
and so N is trivial. (]

So 7 is injective. Moreover, w(H) is a d-dimensional subgroup of G¢; by Exercise
7(H) has to be exactly G?. In other words, 7 is a group isomorphism H — G<.

We may now view H as the graph of a group isomorphism f : G — G~ (where
f(z) is the element y so that (x,y) € H). This map is given by an (n — d) x d
matrix of endomorphisms f;; of G. Namely, for ¢ <n —d and j < d, let f;; be the
map sending x € G to the ith coordinate of f(0,...,z,...,0) (where z is in the jth
position). Then each f;; is a definable endomorphism of G, so belongs to F'; and
then the whole map f is given matrix multiplication by A = {f;;}, which is then
definable over the F-vector space structure. ([
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