What is Set Theory with Urelements?

Bokai Yao Fudan Logic Seminar, May 2024

1 Urelements: What and Why

Urelements: members of sets that are not themselves sets.

Why urelements?

- (a) Set theory with absolute generality: quantify over everything.
- (b) A different mathematical theory: many equivalent statements come apart.
- (c) Philosophy of set theory: how are the axioms of set theory justified in this broader context?

$2 \quad \text{ZFCU}_{R}$

2.1 The iterative conception of set

Sets are formed stage-by-stage. The universe of sets V consists of all the stages.

The ZF set theory is commonly viewed as a standard theory for V.

2.2 Basic axioms

What is a standard theory for the set-theoretic universe which includes everything?

 $\mathscr{A}(x): x \text{ is a urelement. } Set(x): \neg \mathscr{A}(x).$

(Axiom \mathscr{A}) No urelement has members.

(Extensionality) Co-extensional sets are identical.

(Foundation) Every nonempty set has an \in -minimal element.

(Pairing) $\{x, y\}$ is a set for every x and y.

(Union) $\bigcup x$ is a set for every set x.

(Powerset) $\{y \mid y \subseteq x \land Set(y)\}$ (i.e., P(x)) is a set for every set x.

 $(\text{Separation})\{y \mid y \in x \land \varphi(y, u)\}$ is a set for every x and u.

(Infinity) An inductive set exists.

(Replacement) $\forall w, u (\forall x \in w \exists ! y \varphi(x, y, u) \rightarrow \exists v \forall x \in w \exists y \in v \varphi(x, y, u))$

(AC) Every set is well-orderable.

Definition 1.

 $ZFU_R = Axiom \mathscr{A} + Extensionality + Foundation + Pairing + Union + Powerset + Infinity + Separation + Replacement.$ $ZFCU_R = ZFU_R + AC.$

2.3 The iterative conception with urelements

Definition 2. For every set $A \subseteq \mathscr{A}$,

$$\begin{split} V_0(A) &= A; \\ V_{\alpha+1}(A) &= P(V_{\alpha}(A)) \cup V_{\alpha}(A); \\ V_{\gamma}(A) &= \bigcup_{\alpha < \gamma} V_{\alpha}(A), \text{ where } \gamma \text{ is a limit;} \\ V(A) &= \bigcup_{\alpha \in Ord} V_{\alpha}(A). \end{split}$$

ZFU_R proves that U(i.e., $\{x : x = x\}) = \bigcup_{A \subset \mathscr{A}} V(A)$.

2.4 Collection and reflection

(Collection) $\forall w, u (\forall x \in w \exists y \varphi(x, y, u) \to \exists v \forall x \in w \exists y \in v \varphi(x, y, u)).$

(RP) For every x there is a transitive set t extending x such that for every $v_1, ..., v_n \in t$, $\varphi(v_1, ..., v_n) \leftrightarrow \varphi^t(v_1, ..., v_n)$.

(RP⁻) If $\varphi(v_1, ..., v_n)$, then there is a transitive set t containing $v_1, ..., v_n$ such that $\varphi^t(v_1, ..., v_n)$.

 $RP \rightarrow (RP^- \land Collection)$. \mathscr{A} is a set $\rightarrow RP$.

2.5 Urelement axioms

Definition 3. Let $A, B \subseteq \mathscr{A}$.

- 1. x is realized by A if x and A are equinumerous $(x \sim A)$.
- 2. *B* duplicates *A* if *B* and *A* are disjoint and $A \sim B$.
- 3. *B* is a *tail* of *A* if *B* is disjoint from *A* and every $C \subseteq \mathscr{A}$ disjoint from *A* injects into *B*.

(Plenitude) Every initial ordinal is realized.

(Closure) The supremum of a set of realized cardinals is realized.

(Duplication) Every set of urelements has a duplicate.

(Tail) Every set of urelements has a tail.

Plenitude \rightarrow Closure \wedge $\neg Tail.$ Assuming AC, Plenitude \rightarrow Duplication.

2.6 Interpreting U in V

Definition 4. Let V be a model of ZF and X be a class of V. Let $\overline{\mathscr{A}} = \{0\} \times X$.

$$V\llbracket X\rrbracket := \mathscr{A} \cup \{\bar{x} \in V : \exists x(\bar{x} = \langle 1, x \rangle \land x \subseteq V\llbracket X\rrbracket)\}.$$

For every $\bar{x}, \bar{y} \in V[X], \bar{x} \in \bar{y}$ if and only if $\exists y(\bar{y} = \langle 1, y \rangle \land \bar{x} \in y)$.

Theorem 5.

- 1. $V[X] \models \operatorname{ZFU}_{\mathrm{R}} + \operatorname{RP}$.
- 2. $V[X] \models AC$ if and only if $V \models AC$.
- 3. $V[[Ord]] \models$ Plenitude.

3 A hierarchy in $ZFCU_R$

Definition 6. For every x, ker(x) is the set of urelements in the transitive closure of $\{x\}$.

For every $x, x \in V(A)$ if and only if $ker(x) \subseteq A$.

Definition 7. If π is a permutation of some $A \subseteq \mathscr{A}$, then the \in -extension of π is the class function such that

$$\pi x = \begin{cases} \pi x & \text{if } x \in A \\ x & \text{if } x \in \mathscr{A} - A \\ \{\pi y : y \in x\} & \text{otherwise} \end{cases}$$

 π is an automorphism of U. π point-wise fixes x if π point-wise fixes ker(x).

Definition 8. Homogeneity holds over A, if whenever $B \cup C \subseteq \mathscr{A}$ is disjoint from A and $B \sim C$, there is an automorphism π such that $\pi B = C$ while point-wise fixing A.

Lemma 9 (ZFCU_R). Every $A \subseteq \mathscr{A}$ can be extended to some D over which homogeneity holds.

Theorem 10 (ZFCU_R). The following implication diagram holds and is complete.

Corollary 10.1 (ZFCU_R). The following are equivalent.

- 1. RP
- 2. RP⁻
- 3. Collection
- 4. Plenitude \lor Tail

Definition 11 (Small Kernel Model). A (definable) class \mathscr{I} of sets of urelements is an \mathscr{A} -ideal if

- 1. $\mathscr{A} \notin \mathscr{I};$
- 2. if $A, B \in \mathscr{I}$, then $A \cup B \in \mathscr{I}$;
- 3. if $A \in \mathscr{I}$ and $B \subseteq A$, then $B \in \mathscr{I}$; and
- 4. for every $a \in \mathscr{A}$, $\{a\} \in \mathscr{I}$.

$$U^{\mathscr{I}} := \{ x : ker(x) \in \mathscr{I} \}.$$

Theorem 12 (ZFU_R).

- 1. $U^{\mathscr{I}} \models \operatorname{ZFU}_{\mathrm{R}} + "\mathscr{A}$ is a proper class".
- 2. $U^{\mathscr{I}} \models AC$ if $U \models AC$.

Theorem 13. Over $ZFCU_R$,

- 1. Duplication \rightarrow Closure.
- 2. Closure \land Duplication \nrightarrow Plenitude.
- 3. Collection \nrightarrow Duplication.

$4 \ ZFU_R$

What kind of hierarchy do the axioms form without AC?

Definition 14 (Permutation Model). Let A be a set of urelements and \mathcal{G} be a group of permutations of A. For every x, $sym(x) = \{\pi \in \mathcal{G} : \pi x = x\}$; $fix(x) = \{\pi \in \mathcal{G} : \pi y = y \text{ for all } y \in x\}$ if x is a set. An ideal I on A is \mathcal{G} -norma if I contains contains every urelement singleton and for every $E \in I$ and $\pi \in \mathcal{G}, \pi E \in I$. x is symmetric (w.r.t. I and \mathcal{G}) if $fix(E) \subseteq sym(x)$ for some $E \in I$ (E is said to be a support of x).

 $W_{(\mathcal{G},I)} := \{x : x \text{ is hereditarily symmetric}\}.$

Theorem 15.

- 1. $W_{(\mathcal{G},I)} \models \operatorname{ZFU}_{\mathrm{R}}$.
- 2. $W_{(\mathcal{G},I)} \models$ Collection if $U \models$ Collection.

Theorem 16. Over ZFU_R , Plenitude \rightarrow (Duplication \lor Collection).

This motivates a stronger version of Plenitude:

(Plenitude⁺) Every set is realized.

Lemma 17 (ZFU_R). Plenitude⁺ \rightarrow Duplication.

Corollary 17.1. Over ZFU_R , Plenitude \rightarrow Plenitude⁺.

Open Question 18. Does ZFU_R prove any of the following?

- 1. Plenitude⁺ \rightarrow Collection
- 2. Tail \rightarrow Collection
- 3. Collection $\rightarrow \mathrm{RP}^-$
- 4. $\operatorname{RP}^- \rightarrow \operatorname{Collection}$

5 Philosophical Questions

Is the iterative conception robust enough?

What justifies Collection?

If Collection \rightarrow RP⁻ over ZFU_R, what justifies RP⁻?

If $\mathbb{RP}^- \twoheadrightarrow \mathbb{RP}$ over $\mathbb{ZFU}_{\mathbb{R}}$, are there two conceptions of reflection?