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Abstract

The subject of this tutorial is the Ultrapower Axiom...

1 Ultrapowers of models of set theory

Tarski set the stage for modern large cardinal theory by posing the following questions:

• Is the least inaccessible cardinal less than the least weakly compact cardinal?

• Is the least weakly compact cardinal less than the least measurable cardinal?

• Is the least measurable cardinal less than the least strongly compact cardinal?

Recall that an uncountable cardinal κ is:

• inaccessible if it is regular and for all λ < κ, 2λ < κ.

• weakly compact if every tree T ⊆ 2<κ containing sequences of arbitrary length
below κ has a branch of length κ.1

• measurable if there is a κ-complete non-principal ultrafilter on κ.

• strongly compact if every κ-satisfiable theory in the infinitary logic Lκ,ω is satis-
fiable.

We have deliberately chosen these definitions to emphasize the diverse subjects in
which large cardinals arise; e.g., cardinal arithmetic, combinatorics, measure theory,
and model theory. Note also that all these properties hold of the cardinal ℵ0, except
that ℵ0 is countable.

The modern approach to Tarski’s questions involves unifying these disparate con-
cepts into the framework of ultrapowers of models of set theory.

For an example of this approach, let us prove that the least measurable cardinal
is greater than the least weakly compact cardinal. Here is the idea. Let U be a κ-
complete non-principal ultrafilter on κ. Let MU be the ultrapower of the universe
of sets (V,∈) by U , i.e., MU = V κ/U , and let jU : V → MU denote the canonical
elementary embedding. (More details on this construction are provided below.)

• The structure MU turns out to be well-founded, which means it is isomorphic to
a proper class transitive model of ZFC.

• Identifying MU with this inner model, the κ-completeness of U implies that the
embedding jU fixes every element of Vκ.

1Here 2<κ denotes the set of {0, 1}-valued sequences of length less than κ.
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• The non-principality of U implies jU sends κ to an ordinal strictly above κ.

How does this help compare the least measurable cardinal with the least weakly
compact cardinal? Fix a tree T ⊆ 2<κ containing sequences of arbitrary length below
κ. Then jU (T ) is a subtree of 2<j(κ) containing sequences of arbitrary length below
jU (κ). In particular, there is some t ∈ jU (T ) of length exactly κ. For α < κ, we have
t ↾ α ∈ Vκ, and so

jU (t ↾ α) = t ↾ α ∈ jU (T )

By the elementarity of jU , it follows that t ↾ α ∈ T . Thus t is a branch of T of length
κ. It follows that κ is weakly compact, but moreover, κ is weakly compact in M . This
is because 2κ ⊆ M . Therefore M satisfies that jU (κ) is larger than the least weakly
compact cardinal. It follows by elementarity that κ is larger than the least weakly
compact cardinal (in V ).

Let us now present the details of the ultrapower construction. Suppose U is an
ultrafilter on a set X. Then MU denotes the usual model-theoretic ultrapower of the
universe of set theory V , viewed as a structure (V,∈) in the language of set theory.
This is the quotient V X/U of the class V X of all functions on X under the equivalence
relation =U on V X defined by

f =U g ⇐⇒ {x ∈ X : f(x) = g(x)} ∈ U

Moreover MU is a structure in the language of set theory when equipped with the
binary relation ∈U defined by

[f ]U ∈U [g]U ⇐⇒ {x ∈ X : f(x) ∈ g(x)} ∈ U

Here [f ]U denotes the equivalence class in V X/U of the function f ∈ V X . (Check that
∈U is well-defined in the sense that it is independent of the choice of f and g.)

One can define an elementary embedding jU : V → MU by

jU (a) = [ca]U

where ca : X → V is the constant function with value a. The map jU is an elementary
embedding : if φ(v1, . . . , vn) is a formula in the language of set theory and a1, . . . , an ∈
V , then

V ⊨ φ(a1, . . . , an) ⇐⇒ MU ⊨ φ(jU (a1), . . . , jU (an))

This is a consequence of  Loś’s theorem, the “fundamental theorem of ultrapowers”:

Theorem 1.1 ( Loś). For any f1, . . . , fn ∈ V X ,

MU ⊨ φ([f1]U , . . . , [fn]U ) ⇐⇒ {x ∈ X : V ⊨ φ(f1(x), . . . , fn(x))} ∈ U

Exercise 1. Prove  Loś’s theorem. (Note that it is technically a theorem scheme.)

An ultrafilter U is κ-complete if U is closed under intersections of size less than κ;
that is, for all σ ⊆ U with |σ| < κ,

⋂
σ ∈ U . Thus every ultrafilter is ℵ0-complete, and

every principal ultrafilter is κ-complete for all κ. A nonprincipal ultrafilter on ω is never
ℵ1-complete, for the same reason that finite sets do not carry nonprincipal ultrafilters.
More generally, if U is a nonprincipal ultrafilter on a set X, the completeness of U is
the cardinal

κU = sup{κ ≤ |X| : U is κ-complete}
Thus κU is the largest cardinal κ such that U is κ-complete or equivalently, the least
cardinal κ such that U is not κ+-complete.

Exercise 2. The structure (MU ,∈U ) is well-founded if and only if U is ℵ1-complete,
or in other words closed under countable intersections.
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By  Loś’s theorem, MU is extensional, so (MU ,∈U ) is well-founded, then the Mostowski
collapsing lemma yields a unique isomorphism from (MU ,∈U ) to (N,∈) where N is a
transitive proper class. A transitive proper class N such that (N,∈) ⊨ ZF is called an
inner model.

If U is ℵ1-complete, we will identify MU with the inner model to which it is iso-
morphic, so [f ]U will for us denote an element of N . The statement of the following
exercise is an example of this identification in practice:

Exercise 3. If U is an ℵ1-complete nonprincipal ultrafilter, then κU is the least car-
dinal κ such that jU (κ) ̸= κ.

If j : Q → M is an elementary embedding between transitive classes, the critical
point of j is the least ordinal κ such that j(κ) > κ.

Exercise 4 (Scott). Show that an uncountable cardinal κ is measurable if and only
if it is the critical point of an elementary embedding from the universe of sets into an
inner model.

If you are struggling with the converse direction, see Section 3.
Here is another example of the utility of the transitive collapse:

Exercise 5. Show that if U is a κ-complete nonprincipal ultrafilter on κ, then 2κ <
jU (κ) < (2κ)+.

Exercise 6. Show that the theory ZFC + a weakly compact does not imply the
existence of a measurable cardinal.

The proof is identical to the proof that ZFC does not imply the existence of an
inaccessible cardinal.

Exercise 7. Prove in detail that if κ is measurable, then the set of weakly compact
cardinals less than κ is unbounded.

2 Exercises on weakly compact cardinals

The exercises in this subsection answer one of Tarski’s questions by showing that the
least weakly compact cardinal is a limit of inaccessible cardinals.

Suppose X is a set. An algebra of subsets of X is a family A ⊆ P (X) that contains
X and is closed under intersections and complements. An ultrafilter on A is a subset
U ⊆ A obeying the ultrafilter axioms, or if you prefer, the preimage of 1 under a
homomorphism h : A → {0, 1}, where {0, 1} is endowed with operations of intersection
and complement in the natural way. An ultrafilter U on A is κ-complete if for every
σ ⊆ U with |σ| < κ,

⋂
σ ̸= ∅. (Note that we cannot require

⋂
σ ∈ U since we are not

assuming that A is closed under infinite intersections.)

Exercise 8. A cardinal κ is weakly compact if and only if for every algebra A of
subsets of κ with |A| = κ, there is a κ-complete nonprincipal ultrafilter on A.

The forwards direction, which is all we need to answer Tarski’s question, is a
straightforward combinatorial proof involving the following tree T . Let A = {Aα :
α < κ} be an algebra of subsets of κ. Then T is the tree of all s ∈ 2<κ such that for
some β > |s|, β ∈

⋂
α∈s Aα.

The converse can be shown by repeating the proof that measurable cardinals are
weakly compact, which requires generalizing the ultrapower construction to smaller
algebras of sets. Suppose Q is a transitive model of ZFC− = ZFC − Powerset.2 If
X ∈ Q, a family U of subsets of X is an Q-ultrafilter on X if U is an ultrafilter on the

2In formulating this theory, one should be careful to use the collection schema rather than the replacement
schema.
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algebra of sets P (X) ∩Q. The ultrapower of Q by U , denoted by MQ
U , is the quotient

of QX ∩Q, the class of functions f : X → Q with f ∈ Q, under the equivalence relation
=U defined by

f =U g ⇐⇒ {x ∈ X : f(x) = g(x)} ∈ U

Thus we consider the usual model-theoretic ultrapower except that only functions that
belong to the model M are used. We turn MQ

U into a structure in the language of set
theory by equipping it with the relation ∈U defined by

[f ] ∈U [g] ⇐⇒ {x ∈ X : f(x) ∈ g(x)} ∈ U

Exercise 9. State and prove  Loś’s theorem for MQ
U .

Exercise 10. Show that κ is weakly compact if and only if for every model Q ⊨ ZFC−

such that |Q| = κ, there is a transitive model M and an elementary embedding j :
Q → M with critical point κ.

Exercise 11. Show that every measurable cardinal is an inaccessible cardinal and a
limit of inaccessible cardinals.

The easiest way to do this is to use the characterization of measurable cardinals as
critical points of elementary embeddings j : V → M .

Exercise 12. Show that every weakly compact cardinal is an inaccessible cardinal and
a limit of inaccessible cardinals.

The easiest way to do this is to generalize the solution to the previous exercise to
smaller models of ZFC−.

Exercise 13. Conclude that ZFC + a proper class of inaccessible cardinals does not
imply the existence of a weakly compact cardinal.

3 Derived ultrafilters

If Q and M are models of ZFC− and j : Q → M is an elementary embedding, then for
each X ∈ Q and a ∈ j(X), one obtains an associated Q-ultrafilter on X called the Q-
ultrafilter derived from j using a. This is the ultrafilter U consisting of all A ∈ P (X)∩Q
such that a ∈ j(A).

Exercise 14. There is a unique elementary embedding k : MQ
U → M such that

k ◦ jU = j and k([id]U ) = a.

Hint: define k([f ]U ) = j(f)(a) and use  Loś’s theorem.
An elementary embedding j : Q → M is an ultrapower embedding if there is some

X ∈ Q and a ∈ j(X) such that every element of M is definable in M from parameters
in j[Q] ∪ {a}.

Exercise 15. Show that j : Q → M is an ultrapower embedding if and only if there
is an ultrafilter U ∈ Q and an isomorphism k : MQ

U → M such that k ◦ jU = j.

Thus there is a correspondence between ℵ1-complete ultrafilters U on X and pairs
(j, a) such that j : V → M is elementary and a ∈ j(X) witnesses that j is an ultrapower
embedding.

In particular, an ultrafilter U on X is determined by the ultrapower embedding jU
and the point [id]U .

The diagonal intersection of a sequence ⟨Aα⟩α<κ of subsets of κ is the set

△α<κAα = {β < κ : ∀α < β β ∈ Aα}

A filter on κ is normal if it is closed under diagonal intersections.
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We remind you of the key example of a normal filter: if κ is regular, then the
closed unbounded filter Cκ on κ is a κ-complete normal filter. Recall that C ⊆ κ is
closed if it is closed in the order topology on κ, or, more concretely, if for all α < κ,
sup(C ∩ α) ∈ C. For any ordinal κ, Cκ denotes the family of all subsets of κ that
contain a closed unbounded subset of κ.

Exercise 16. Assume cf(κ) ≥ ℵ1. Show that Cκ is cf(κ)-complete and weakly normal
in the sense that Cκ is closed under decreasing diagonal intersections.

If F is a filter on X, a set S is F -positive if it intersects every set A ∈ F . The
collection of F -positive subsets of X is denoted by F+. A function f on a set of ordinals
S is regressive if for all α ∈ S, f(α) < α.

Exercise 17. Prove that a filter F on κ is normal if and only if it satisfies Fodor’s
lemma: if f : S → κ is a regressive function on an F -positive set S, then there is an
F -positive set T ⊆ S on which f is constant.

Exercise 18. Show that a κ-complete ultrafilter on κ is normal if and only if [id]U = κ.

Combined with the derived ultrafilter construction, this yields a clearer view of the
objects associated with measurability:

Exercise 19 (Scott). Show that κ is measurable if and only if there is a κ-complete
nonprincipal normal ultrafilter on κ.

Going forward, we will use the term normal ultrafilter on κ to abbreviate the clum-
sier phrase “κ-complete nonprincipal normal ultrafilter on κ.”

Exercise 20. Show that if U is a normal ultrafilter on κ, then the set of weakly
compact cardinals less than κ belongs to U .

This shows that a measurable cardinal is not only larger than the first weakly
compact cardinal, but moreover is the limit of a “large set” of weakly compact cardinals.

4 Exercises on strong compactness

Tarski’s question on strongly compact cardinals is much more subtle than the other
questions.

Exercise 21. Show that every strongly compact cardinal is measurable.

Here is a hint. First, assume that κ is a regular cardinal. For each α < κ, let Tα

be the Lκ,ω-theory of the structure (P (κ), α,∈) with parameters from P (κ). Let

T∗ = lim
α→κ

Tα =
⋃
β<κ

⋂
α∈(β,κ)

Tα

Use the regularity of κ to prove that T∗ is κ-satisfiable, and show that any model of
T∗ gives rise to a κ-complete ultrafilter on κ.

To remove the assumption that κ is regular, show by a similar argument that if κ
were singular and strongly compact, then κ+ would be measurable, contradicting that
measurable cardinals are regular.

Exercise 22. Show that an uncountable cardinal κ is strongly compact if and only if
every κ-complete ultrafilter on an algebra A of subsets of a set X can be extended to
a κ-complete ultrafilter on X.3

3The exercise highlights an issue with the standard terminology for ultrafilters: an ultrafilter on an
algebra A is a certain kind of subset of A, whereas an ultrafilter on a set X is a subset of P (X), more
specifically, an ultrafilter on the algebra P (X). This causes ambiguity when we say something like “an
ultrafilter on P (X),” if we do not specify whether we view P (X) as an algebra or as a set. Such ambiguities
are usually easily resolved in context, but some authors prefer to reserve the term “ultrafilter on A” for
ultrafilters on algebras, and “ultrafilter over X” for ultrafilters on the algebra P (X).
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Another way to state this is that every κ-complete filter (on any set) can be extended
to a κ-complete ultrafilter.

Solovay introduced the concept of a supercompact cardinal in an attempt to answer
Tarski’s question.

Definition 4.1. A cardinal κ is λ-supercompact if there is an inner model M and
an elementary embedding j : V → M with critical point κ such that j(κ) > λ and
every A ⊆ M with |A| ≤ λ belongs to M . The cardinal κ is supercompact if it is
λ-supercompact for all λ.

Exercise 23. Show that every measurable cardinal κ is κ-supercompact.

Suppose Y is a family of subsets of X such that
⋃

Y = X. An ultrafilter U on the
set Y is fine if for every x ∈ X, {σ ∈ Y : x ∈ σ} belongs to U .

If ⟨Ax⟩x∈X is a sequence of subsets of Y , its diagonal intersection is the set

△x∈XAx = {σ ∈ Y : ∀x ∈ σ σ ∈ Ax}

The ultrafilter U is normal if it is closed under diagonal intersections.

Exercise 24. Show that κ is λ-supercompact if and only if there is a κ-complete
normal fine ultrafilter on Pκ(λ), where Pκ(λ) denotes the set of all σ ⊆ λ such that
|σ| < κ.

Definition 4.2. A cardinal κ is λ-strongly compact if there is a κ-complete fine ultra-
filter on Pκ(λ).

Exercise 25. Show that κ is λ-strongly compact if and only if there is an elementary
embedding j : V → M with critical point κ such that every set A ⊆ M with |A| ≤ λ
is included in a set B ∈ M with |B|M < j(κ).

Exercise 26. Show that κ is strongly compact if and only if κ is λ-strongly compact
for all cardinals λ.

Solovay conjectured that every strongly compact cardinal is supercompact, which
if true would have settled Tarski’s question positively:

Exercise 27. Show that if κ is 2κ-supercompact, then κ is larger than the least
measurable cardinal.

But in fact, such a simple answer is not possible:

Theorem 4.3 (Magidor). If it is consistent that there is a strongly compact cardinal,
then it is consistent that the least measurable cardinal is the least strongly compact
cardinal.

On the other hand, if it is consistent that there is a supercompact cardinal, then it
is consistent that the least strongly compact is the least supercompact cardinal.

We will return to this problem in the context of the Ultrapower Axiom (Proposi-
tion 12.2 and Theorem 13.3).

5 Scott’s theorem

The constructible universe L is an inner model discovered by Gödel in the 1940s in
the course of his proof of the consistency of the Axiom of Choice and the Generalized
Continuum Hypothesis. The construction plays a major role in modern set theory.

The inner model L is built up by recursively closing under the operations required
to satisfy the ZFC axioms. For this reason, L turns out to be the minimum inner model
of ZF. If M is a transitive set, let def(M) denote the set of all subsets of M that are
definable over (M,∈) from parameters. The constructible hierarchy is the sequence of
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transitive sets Lα defined by transfinite recursion for all ordinals α by setting L0 = ∅,
Lα+1 = def(Lα), and for limit ordinals λ by Lλ =

⋃
α<λ Lα.

The constructible universe is the class L =
⋃

Lα. Gödel proved that L is an inner
model that satisfies the Axiom of Choice and the Generalized Continuum Hypothesis.
Since he proved this in ZF alone, he was able to demonstrate that if ZF is consistent,
so is ZFC + GCH.

The Axiom of Constructibility states that every set belongs to L, so the universe of
sets V is equal to the constructible universe L. Thus the Axiom of Constructibility is
often abbreviated by V = L.

The Axiom of Constructibility is true in L and so it is consistent with ZFC. When
Gödel first demonstrated this, it was an open question whether V = L was independent
of ZFC. Gödel conjectured that it was, and this was later established by Cohen. Several
years earlier, however, Scott proved the independence of V = L from ZFC assuming
the consistency of measurable cardinals.

Theorem 5.1 (Scott). If there is a measurable cardinal, then V ̸= L.

Proof. Assume towards a contradiction that V = L. Let κ be the smallest measurable
cardinal. Let j : V → M be an elementary embedding with critical point κ from the
universe of sets V into an inner model M . Since V = L and L is the minimum inner
model of ZF, M = L = V . Therefore M satisfies that κ is the smallest measurable
cardinal. But since j is an elementary embedding, M satisfies that j(κ) is the smallest
measurable cardinal. But by the definition of a critical point, j(κ) ̸= κ!

Corollary 5.2. If ZFC is consistent with a measurable cardinal, then ZFC does not
prove V = L.

While the constructible universe contains no measurable cardinals, it does contain
some large cardinals. For example, every inaccessible cardinal is inaccessible in L by
a simple absoluteness argument. (Inaccessibility is Π1 expressible in the Lévy hierar-
chy.) The following is a significantly more subtle example of the absoluteness of large
cardinals to the constructible universe:

Exercise 28. Show that if κ is weakly compact, then κ is weakly compact in L.

Let’s also include this quote from Gödel:

The proposition A added as a new axiom seems to give a natural completion
of the axioms of set theory, in so far as it determines the vague notion of
an arbitrary infinite set in a definite way. In this connection it is important
that the consistency-proof for A does not break down if stronger axioms
of infinity (e.g., the existence of inaccessible numbers) are adjoined to T .
Hence the consistency of A seems to be absolute in some sense, although
it is not possible in the present state of affairs to give a precise meaning to
this phrase.

Here Gödel denotes by A the hypothesis V = L and by T the class theory NBG, but
you might as well think about ZFC instead.

6 Minimal models of measurability

Scott’s theorem raises the question: are measurable cardinals consistent with the Axiom
of Choice and the Generalized Continuum Hypothesis, assuming measurable cardinals
are consistent at all? More vaguely, is there an extension of ZFC + a measurable cardi-
nal that naturally completes this theory in the sense that the Axiom of Constructibility
naturally completes ZFC?
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The inner model L[U ] was devised to answer these questions. If A is a set, the
inner model L[A] denotes the class of all sets constructible relative to A, the smallest
inner model M such that A ∩ M ∈ M . The existence of this model is proved by
defining the constructible hierarchy relative to A, which is exactly like the constructible
hierarchy except that the def operation is replaced with the operation defA which maps
a transitive set M to the set of all subsets of M definable from parameters over the
structure (M,∈, A ∩ M). Thus L0[A] = ∅, Lα+1[A] = defA(Lα[A]), and for limit
ordinals λ, Lλ[A] =

⋃
α<λ Lα[A]. Finally, L[A] =

⋃
α∈Ord Lα[A].

The inner model L[U ] is just the special case where A = U for some normal ultra-
filter U on κ.

Exercise 29. Prove in ZF that if κ is measurable and W is a κ-complete nonprincipal
ultrafilter on κ, then κ is measurable in L[W ]. Conclude that ZF plus a measurable
cardinal is equiconsistent with ZFC plus a measurable cardinal.4

We will show that the inner model L[U ] is canonical in the sense that it does not
depend on the choice of U . In fact, let us prove something stronger. We say a pair
(M,U) is a minimal model with a measurable cardinal if M is a transitive model of
ZFC−, U is an element of M , M satisfies that U is a normal ultrafilter on κ for some
κ ∈ OrdM , and M ⊨ V = L[U ].

Exercise 30. If (M,U) is a minimal model with a measurable cardinal, then M
satisfies that κU is the unique measurable cardinal.

Hint: By generalizing Scott’s theorem, one can show that if M ⊨ V = L[A] where
A ∈ V M

α , then there are no measurable cardinals above α in M . This easily shows that
if (M,U) is a minimal model with a measurable cardinal, then there are no measurable
cardinals in M above κU . The proof that there are no measurable cardinals below κU

in M is a bit trickier. The following fact is useful here: if D is an ℵ1-complete ultrafilter
on λ and U is a normal ultrafilter on κ > λ, then jD(U) = U ∩MD. Another (harder)
proof of this exercise can be obtained by considering the following main theorem of
this section.

Theorem 6.1 (Kunen). If (M,U) and (N,W ) are minimal inner models with mea-
surable cardinals and κU ≤ κW , then N is a definable inner model of M . Moreover,
there is an elementary embedding from M to N that is definable over M (using κW as
a parameter).

In particular, this shows that if κU = κW , then M = N and U = W . In any case,
(M,U) and (N,W ) have the same first-order theory.

The general technique from which this theorem follows is the method of comparison
by iterated ultrapowers. If M is a model of ZFC− and M satisfies that U ∈ M is an
ℵ1-complete ultrafilter, the iterated ultrapower of M by U is the linear directed system

⟨Ultα(M,U), jξα : ξ ≤ α ∈ Ord⟩

defined by recursively taking ultrapowers by U and its images:

• Ult0(M,U) = (M,U).

• jαα = id for all ordinals α.

• Uα = j0α(U).

• For ξ ≤ α, jξα+1 = j
Ultα(M,U)
Uα

◦ jξα.

• Ultα+1(M,U) = (M
Ultα(M,U)
Uα

, Uα+1).

4Note that ZF does not prove that every measurable cardinal κ carries a κ-complete nonprincipal normal
ultrafilter, yet the exercise shows that there is an inner model where such an ultrafilter exists!
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• For λ a limit, Ultλ(M,U) = lim⟨Ultα(M,U), jξα⟩ξ≤α<λ,

• For λ a limit and ξ < λ, jξλ : Ultξ(M,U) → Ultλ(M,U) is the direct limit map.

If Ultα(M,U) is well-founded, we identify it with its transitive collapse. We say (M,U)
is iterable if for all α ∈ Ord, Ultα(M,U) is well-founded.

Theorem 6.2 (Kunen). If M is an inner model of ZFC and M satisfies that U ∈ M
is an ℵ1-complete ultrafilter, then (M,U) is iterable.

Exercise 31. Prove Kunen’s iterability theorem.

Hint: consider the least ordinal α such that Ultα(M,U) is illfounded, and note
that α is a limit ordinal. Let η be the least ordinal such that j0α(η) is illfounded.
Fix ν < j0α(η) such that ν is illfounded. Find ξ < α such that ν ∈ ran(jξα). Show
that j0ξ(η) is the least ordinal β such that jξα(β) is illfounded, and use ν̄ = j−1

ξα (ν) to
contradict the minimality of j0ξ(η).

Exercise 32. Suppose M is an iterable model of ZFC− and M satisfies that U ∈ M
is a κ-complete ultrafilter on κ. Let κξ = κUξ . Show that the class {κξ : ξ ∈ Ord}
is closed under suprema. Use this to show that if δ > 2κ is a regular cardinal, then
j0δ(κ) = δ.

Hint: for the second part, use Exercise 5.
The following is Kunen’s key lemma, showing that every normal measure “looks

like” a restriction of the closed unbounded filter:

Lemma 6.3. Suppose (M,U) is an iterable model with a measurable cardinal κ and
δ > 2κ is a regular cardinal. If (Mδ, Uδ) = Ultδ(M,U), then Uδ = Cδ ∩ Mδ where Cδ

denotes the closed unbounded filter on δ.

Sketch. For ξ < δ, let κξ = κUξ . For A ⊆ δ, we have A ∈ Uδ if and only if j−1
ξδ [A] ∈ Uξ

for all sufficiently large ξ < δ, or equivalently κξ ∈ j−1
ξ+1δ[A], or equivalently, κξ ∈ A.

So A ∈ Uδ if and only if for some ξ < δ, {κν : ν ∈ [ξ, δ)} ⊆ A.
By Exercise 32, {κν : ν < δ} is a closed unbounded subset of δ. It follows that Uδ

is contained in Cδ ∩Mδ. Since Uδ is an Mδ-ultrafilter, it is maximal among Mδ-filters,
and this implies Uδ = Cδ ∩Mδ.

The proof yields:

Exercise 33 (Comparison lemma). Suppose (M,U) and (N,W ) are iterable min-
imal models with measurable cardinals. Show that for all some ordinal α, either
Ultα(M,U) ∈ Ultα(N,W ), Ultα(N,W ) ∈ Ultα(M,U), or Ultα(M,U) = Ultα(M,W ).

Conclude that if (M,U) and (N,W ) are minimal inner models with measurable
cardinals, then for all sufficiently large ordinals α, Ultα(M,U) = Ultα(N,W )

We now use the comparison lemma to establish Kunen’s theorem.

Exercise 34. Suppose (M,U) is a minimal inner model with a measurable cardinal.
Suppose H is a proper class elementary substructure of (M,U) such that κU ⊆ H.
Then the transitive collapse of (H,U ∩H) is (M,U).

Exercise 35. If (M,U) and (N,W ) are minimal inner models with measurable cardi-
nals and

⟨Ultα(M, U), jξα : ξ ≤ α ∈ Ord⟩
⟨Ultα(N,W ), iξα : ξ ≤ α ∈ Ord⟩

are their iterated ultrapowers. Suppose α is large enough that Ultα(M,U) = Ultα(N,W ).
Then ran(j0α) ∩ ran(i0α) is a proper class elementary substructure of Ultα(M,U).

We can now prove Kunen’s theorem.
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Proof of Theorem 6.1. Let us use the notation of Exercise 35. Let

H = ran(j0α) ∩ ran(i0α)

Let HM = j−1
0α [H] and let πM : HM → M be the transitive collapse. Let HN be the

class of all sets definable in N with parameters in i−1
0α [H] ∪ κW , and let πN : HN → N

be the transitive collapse. We define an elementary embedding k : M → N by setting

k = πN ◦ i−1
0α ◦ j0α ◦ π−1

M

Note that every element of N is definable in N from parameters in ran(k) ∪ κW .
Moreover, we have the following characterization of k on subsets of κU :

Exercise 36. For all A ⊆ κU , k(A) = j0α(A) ∩ κW .

It follows that k = j0ξ where ξ is the least ordinal such that j0ξ(κU ) ≥ κW .
To see this, define a map e : N → Ultξ(M,U) by e(k(f)(ν)) = j0ξ(f)(ν) whenever
f : κ → M is in M and ν < κW . Then check that e is well-defined and elementary,
and e ◦ k = j0ξ. Since every element of Ultξ(M,U) is definable in Ultξ(M,U) from
parameters in ran(j0ξ) ∪ {κUβ : β < ξ} ⊆ ran(e), the embedding e is surjective. It
follows that e is the identity, which implies k = j0ξ, as desired.

The argument sketched at the end of the proof of Theorem 6.1 is related to the
theory of extenders. Suppose M and N are transitive models of ZFC and j : M → N
is an elementary embedding. If ν ∈ Ord∩N and κ ∈ Ord∩M is the least ordinal such
that j(κ) ≥ ν, the extender of length ν derived from j is the function E : P (κ)∩M → N
defined by E(A) = j(A) ∩ ν. We say j is ν-generated if every element of N is of the
form j(f)(α) for some f : κ → M in M and some α < ν.

Exercise 37. If M and N are inner models and j0 : M → N0 and j1 : M → N1 are
ν-generated elementary embeddings and their derived extenders of length ν are equal,
then N0 = N1 and j0 = j1.

Exercise 38. Suppose (M,U) is a minimal inner model with a measurable cardinal.
Suppose j : M → N is an elementary embedding with critical point κU and j is
j(κU )-generated. Then for some ordinal ξ, (N, j(U)) = Ultξ(M,U) and j = j0ξ.

Exercise 39. Suppose M is an inner model and M satisfies that for some κ, there is a
κ-complete ultrafilter W on κ such that M = L[W ]. Then there is a normal ultrafilter
U ∈ N such that (M,U) is a minimal model with a measurable cardinal.

Exercise 40. Show that any minimal inner model with a measurable cardinal satisfies
the generalized continuum hypothesis.

Hint: the proof that for λ ≥ κU , M ⊨ 2λ = λ+ is the same as the proof in L.
For λ < κU , the proof appeals to Exercise 33. Fix θ > 2κ such that (H(θ) ∩ M,U)
is a minimal model with a measurable cardinal. For each A ⊆ λ, let HA be the set
of definable elements of (H(θ) ∩ M,U), allowing parameters in λ ∪ {A}. Let MA be
the transitive collapse of HA, and note that MA is a minimal inner model with a
measurable cardinal. For A,B ⊆ λ, set A ⪯ B if A ∈ MB . Using Exercise 33, show
that in M , (P (λ),⪯) is a linear preorder each of whose initial segments has cardinality
at most λ. Conclude that M satisfies 2λ = λ+.

7 The comparison lemma

Inner model theory is the subfield of set theory concerned with the construction and
analysis of inner models generalizing L and L[U ]. Mostly the field is concerned with
inner models containing large cardinals far beyond a measurable. The goal is to build
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models of large cardinal hypotheses that are canonical in the same sense that L is
canonical: e.g., all natural set theoretic statements can be settled in the models.

Current inner model theory provides a deep analysis of canonical models with many
Woodin cardinals [?, ?], with many applications to higher descriptive set theory and
the theory of the Axiom of Determinacy [?, ?, ?].

Beyond the level of Woodin cardinals, there are proposals [?, ?] for canonical models
containing cardinals κ that are κ+n-strongly compact for any number n < ω.5 It is open
whether it is possible to construct such models, but assuming the models exist, one
can develop their theories at roughly the same level of detail as the smaller canonical
models.6 At the level of a cardinal κ that is κ+ω-strongly compact, not even such
conditional results are known, and there are hints that the inner models at this level
look significantly different from the models known today.

The one constant in inner model theory, from a measurable cardinal onwards, is the
comparison lemma (Exercise 33). For more complicated models, this typically asserts:
any two canonical models M and N have iterated ultrapowers M∗ and N∗ such that
either M∗ ∈ N∗, N∗ ∈ M∗, or M∗ = N∗. The idea is that the existence of such
a process shows that the models are determined solely by their position in the large
cardinal hierarchy, certifying that the models really are canonical.

The question of constructing canonical models containing strongly compact cardi-
nals has been open since th 1960s. Given the difficulties involved, it seems reasonable
to doubt that strongly compact cardinals are compatible with the comparison method-
ology that succeeds at the level of Woodin cardinals. The Ultrapower Axiom was
originally formulated to as a precise way to probe this skepticism.

8 The Ultrapower Axiom

The Ultrapower Axiom (UA) is a structural principle in set theory that governs the
theory of countably complete ultrafilters. (See Definition 8.1.) The principle is true in
every known canonical model of set theory, and in this way it resembles the classical
combinatorial principles ♢ and □. The purpose of UA, is quite different from these
other principles. The idea is that UA must hold in any model that is subject to
any form of the Comparison Lemma, and as a consequence, by studying UA in the
context of large cardinals beyond the current canonical models, one can get a glimpse
of models beyond the reach of current inner model theory. Moreover, if one can refute
UA from some large cardinal hypothesis, one can conclude that this large cardinal has
no canonical inner model, at least as the term is currently conceived.

Recall the notion of an ultrapower embedding from Exercise 15.

Definition 8.1. The Ultrapower Axiom (UA) is the assertion that for any ultrapower
embeddings j0 : V → M0 and j1 : V → M1, there exist ultrapower embeddings
k0 : M0 → N and k1 : M1 → N , definable over M0 and M1 respectively, such that
k0 ◦ j0 = k1 ◦ j1.

Exercise 41. UA holds if and only if for any ℵ1-complete ultrafilters U0 and U1, the
following objects exist:

• A ℵ1-complete ultrafilter W0 ∈ MU0

• A ℵ1-complete ultrafilter W1 ∈ MU1

such that M
MU0
W0

= M
MU1
W1

and j
MU0
W0

◦ jU0 = j
MU1
W1

◦ jU1 .

5This means that every κ-complete filter on a set of size κ+n extends to a κ-complete ultrafilter.
6More precisely, the constructions and their analysis can be carried out assuming iterability hypotheses

which concern the well-foundedness of certain more complicated iterated ultrapowers of the universe of sets.
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It is often useful to view an ultrafilter U on a set X as a generalized quantifier over
X. If P is a unary predicate on X, we write UxP (x) to mean that the set of all x such
that P (x) belongs to U .

The following exercise reformulates UA in entirely combinatorial terms.

Exercise 42. Show that the following are equivalent:

• UA

• For any ℵ1-complete ultrafilters U on X and W on Y , there exist ℵ1-complete
ultrafilters ⟨Wx⟩x∈X and ⟨Uy⟩y∈Y such that for any binary relation A ⊆ X × Y ,

UxWxy A(x, y) ⇐⇒ WyUyxA(x, y)

Exercise 43. Suppose j0 : M → N and j1 : M → N are elementary embeddings that
are definable from parameters over M . Then j0 ↾ Ord = j1 ↾ Ord.

Proposition 8.2. If (M,U) is a minimal model of measurability, then M satisfies
UA.

Proof. Suppose U0 and U1 are ℵ1-complete ultrafilters of M . Let j0 : M → M0 and
j1 : M → M1 be their respective ultrapowers. Let i0 : M0 → P and i1 : M1 → P
be the iterated ultrapowers coming from Exercise 33. We have i0(j0(U)) = i1(j1(U))
i0 ◦ j0 ↾ Ord = i1 ◦ j1 ↾ Ord. Since every element of M is definable in M from
parameters in Ord ∪ {U}, it follows that i0 ◦ j0 = i1 ◦ j1. Finally, we must replace
i0 and i1 with ultrapower embeddings, rather than iterated ultrapowers. Let H =
HullM (i0[M0]∪ i1[M1]). Let N be the transitive collapse e : N → H. Let k0 = e−1 ◦ i0
and let k1 = e−1 ◦ i1.

Exercise 44. Show that k0 and k1 are definable ultrapower embeddings.

Hint: every element of N is definable in N from parameters in k0[N ]∪{k1([id]U1)}.

9 The linearity of the Mitchell order

Suppose U and W are κ-complete ultrafilters on κ. Then U lies below W in the Mitchell
order, denoted U ◁W , if U belongs to the ultrapower MW of the universe by W .

Exercise 45 (Mitchell). The Mitchell order is a well-founded partial order.

Hint: just show transitiveity and show well-foundedness. For the latter, show that
if U ◁W then jU (κ) < jW (κ). This is related to Exercise 5.

The rank of the Mitchell order restricted to normal ultrafilters on κ is denoted by
o(κ).

Exercise 46. • o(κ) ≤ (2κ)+.

• If o(κ) > 1, then κ is a limit of measurable cardinals.

Theorem 9.1. Assuming UA, the Mitchell order well-orders the set of normal ultra-
filters on any measurable cardinal.

Proof. Suppose U0 and U1 are normal ultrafilters on κ and j0 : V → M0 and j1 : V →
M1 are their respective ultrapower embeddings. Let k0 : M0 → N and k1 : M1 → N
witness UA.

Case 1. k0(κ) = k1(κ).

Exercise 47. Show that in this case U0 = U1.

Case 2. k0(κ) < k1(κ).
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Let D be the ultrafilter on κ derived from k1 using k0(κ).

Exercise 48. Show that D = U0 and conclude that U0 ◁ U1.

Case 3. k0(κ) > k1(κ).

Similarly to the previous case, U1 ◁ U0.

10 The Ketonen order

The proof of the previous theorem suggests the following partial order on ultrafilters.
If U0 and U1 are ℵ1-complete ultrafilters on an ordinal κ, then U0 precedes U1 in the
Ketonen order, denoted U0 <k U1, if there are elementary embeddings k0 : M0 → N
and k1 : M1 → N such that k0 ◦ j0 = k1 ◦ j1, k1 is a definable ultrapower embedding
of M1, and k0([id]U0) < k1([id]U1).

Lemma 10.1. The Ketonen order is transitive.

Proof. Suppose U0 <k U1 <k U2. Let ji : V → Mi be the ultrapower associated to
Ui. Let k0 : M0 → N and k1 : M1 → N witness U0 <k U1. Let i1 : M1 → P and
i2 : M2 → P witness U1 <k U2.

Exercise 49. Show that i1 ◦ k0 : M0 → i1(N) and i1(k1) ◦ i2 : M2 → i1(N) witness
U0 <k U2.

Hint: draw the commutative diagram. Another proof follows from Exercise 55.

Exercise 50. Show that if U0 and U1 are normal ultrafilters, then U0 <k U1 if and
only if U0 ◁ U1.

Exercise 51. U0 <k U1 if and only if there is a sequence ⟨Uα : α < κ⟩ of ℵ1-complete
ultrafilters on κ such that for all A ⊆ κ, A ∈ U if and only if Wα (A ∩ α ∈ Uα).

Note that almost all of the ultrafilters Uα must concentrate on α.
For every set X and every cardinal ν, let βν(X) denote the ν-complete ultrafilters

on X.

Exercise 52. Show that if κ0 ≤ κ1, then (βℵ1(κ0), <k) is isomorphic to an initial
segment of (βℵ1(κ1), <k).

Exercise 53. Show that the Ketonen order is strict.

Hint: assume towards a contradiction that U <k U , fix ⟨Uα⟩α<κ witnessing this,
and build a set A ⊆ κ by recursion such that Uα (α ∈ A ⇐⇒ A /∈ Uα).

Exercise 54. Suppose U is an ultrafilter, i, k : MU → N are elementary embeddings,
and i is a definable ultrapower embedding of MU . Show that i([id]U ) ≤ k([id]U ).

Challenge: show that if M and N are inner models, i, k : M → N are elementary
embeddings, and i is definable over M , then for all α ∈ Ord, i(α) ≤ k(α).

Theorem 10.2. The Ketonen order is well-founded.

We use the following fact:

Exercise 55. Suppose j : V → M is an elementary embedding and U0 <k U1. If
U∗

1 ∈ j(βℵ1(κ)) is such that U1 = j−1[U∗
1 ], then there is some U∗

0 ∈ j(βℵ1(κ)) with
U∗

0 <k U∗
1 such that U0 = j−1[U∗

0 ].

Proof of Theorem 10.2. Suppose that for all ordinals α < κ, the Ketonen order on
βℵ1(α) is well-founded. We will show that the same holds for κ. Fix U ∈ βℵ1(κ), and
we will show that the Ketonen order is well-founded below U . Let S be a nonempty
set of Ketonen predecessors of U . Let j : V → M be the ultrapower associated to U
and let α = [id]U . Let

B = {U ∈ j(βℵ1(κ)) : α ∈ U}

13



By Exercise 52, (B, <M
k ) is isomorphic to (βℵ1(α), <k)

M , and hence (B, <M
k ) is well-

founded. Consider the set S∗ = {W ∗ ∈ B : j−1[W ∗] ∈ S}. Let W ∗ be a <M
k -minimal

element of S∗. Let W = j−1[W ∗]. Then by Exercise 55, W is a <k-minimal element
of S, as desired.

Exercise 56. Assume UA.

• Show that the Ketonen order is linear: for any ultrafilters U0 and U1 on δ, either
U0 <k U1, U1 <k U0, or U0 = U1.

• Show that in the definition of the Ketonen order, one can take both embeddings
to be definable ultrapower embeddings.

Theorem 10.3. The following are equivalent:

• The Ultrapower Axiom holds.

• The Ketonen order is linear.

11 Irreducible ultrafilters

If U and W are ℵ1-complete ultrafilters, U is below W in the Rudin-Froĺık order,
denoted U ≤RF W , if there is a definable ultrapower embedding i : MU → MW such
that i ◦ jU = jW . We write U <RF W if U ≤RF W but W ̸≤RF U . A nonprincipal
ℵ1-complete ultrafilter W is irreducible if for every U <RF W is principal.

Proposition 11.1. The following are equivalent:

• U ≤RF W and W ≤RF U .

• MU = MW and jU = jW .

Proof. Let i : MU → MW and k : MW → MU be definable ultrapower embeddings
such that i ◦ jU = jW and k ◦ jW = jU . By the uniqueness of definable embeddings,
i ◦ k ↾ Ord and k ◦ i ↾ Ord are the identity. Therefore both these maps are the identity,
and hence i and k are the identity. It follows that MU = MW and jU = jW .

In the situation of the previous proposition, we say U and W are equivalent, denoted
U ≡ W .

Exercise 57. If U ≤RF W , then there is a unique definable ultrapower embedding
i : MU → MW such that i ◦ jU = jW .

Lemma 11.2. If κ is the least measurable cardinal, then every irreducible ultrafilter
on κ is equivalent to the unique normal ultrafilter on κ.

If W is an ultrafilter on X and U ≤RF W , we let tU (W ) denote the unique ultrafilter
W ∗ ∈ MU such that MMU

W∗ = MW , jMU
W∗ ◦ jU = jW , and [id]MU

W∗ = [id]W .

Lemma 11.3. If W is an ℵ1-complete ultrafilter on an ordinal κ and U ≤RF W , then
tU (W ) is <MU

k -minimal among ℵ1-complete ultrafilters W ∗ on jU (κ) in MU such that
j−1
U [W ∗] = W .

Proof. Suppose W ∗ is an ℵ1-complete ultrafilter on jU (κ) in MU such that j−1
U [W ∗] =

W . Suppose k : MMU
W∗ → N is an elementary embedding and i : MW → N is a

definable ultrapower embedding such that k ◦ jMU
W∗ = i ◦ jMU

tU (W ). We must show

that k([id]W∗) ≥ i([id]tU (W )). Let e : MW → MW∗ be the factor embedding, with
e([id]W ) = [id]W∗ . Then k([id]W∗) = k(e([id]W )) ≥ i([id]tU (W )). The final inequality
comes from Exercise 54.

Proposition 11.4. If W is an ℵ1-complete ultrafilter and U ≤RF W is nonprincipal,
then tU (W ) ̸= jU (W ).
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Proof. Suppose U ≤RF W and tU (W ) = jU (W ). Then jMU
jU (W ) ◦ jU = jW and

[id]MU
jU (W ) = [id]W . But jMU

jU (W ) ◦ jU = jU ◦ jW and [id]MU
jU (W ) = jU ([id]W ). It follows

that jU is the identity on jW [V ] ∪ {[id]W }. Since every element of MW is definable
from parameters in jW [V ] ∪ {[id]W }, we have that jU ↾ MW is the identity. Therefore
jU has no critical point, which implies U is principal.

Theorem 11.5 (UA). For any ultrafilter W , there is no infinite increasing sequence
U0 <RF U1 <RF Un <RF · · · of predecessors of W in the Rudin-Froĺık order.

Proof. Without loss of generality, we may assume that W is an ultrafilter on an ordinal
κ. Let Mn be the ultrapower of V by Un. Let inn+1 : Mn → Mn+1 witness Un ≤RF

Un+1 and let kn∞ : Mn → MW witness that Un ≤RF W . Note that inn+1 is the
ultrapower embedding associated to Zn = tUn(Un+1), and so jZn ◦ jUn = jUn+1 .

Let Wn = tUn(W ). Then

Wn+1 = tUn+1(W ) = tZn(tUn(W )) = tZn(Wn)

Applying Lemma 11.3 and Proposition 11.4 in Mn, we have that Wn+1 <k inn+1(Wn)
in Mn+1. Let W∞

n = kn∞(Wn). Then for all n < ω, W∞
n+1 <k W∞

n . This contradicts
that the Ketonen order of MW is well-founded.

Corollary 11.6 (UA). Every ultrapower embedding j : V → M can be decomposed as
a finite iterated ultrapower

V
i0−→ M1

i1−→ M2
i2−→ . . .

in−1−→ Mn = M

such that in−1 ◦ · · · ◦ i2 ◦ i1 ◦ i0 = j and for all k < n, ik is the ultrapower associated
to an irreducible ultrafilter of Mk.

12 Strongly compact cardinals

An ultrafilter U on a set X is uniform if every set in U has the same cardinality as
X. A cardinal λ is Fréchet if it carries an ℵ1-complete uniform ultrafilter. For each
Fréchet cardinal λ, assuming UA, there is a Ketonen minimum uniform ultrafilter on
λ, which we denote by Kλ.

An ultrafilter on a regular cardinal is weakly normal if it is closed under decreasing
diagonal intersections. Note that U on λ is weakly normal if and only if [id]U =
sup jU [λ].

Exercise 58. If λ is a regular cardinal, and U is a Ketonen minimal uniform ultrafilter
on λ, then U is weakly normal and concentrates on the set of ordinals α < λ such that
cf(α) is not Fréchet.

Hint: show that any Ketonen minimal ultrafilter on λ is weakly normal.

Exercise 59. Show that if k : M → N is an ultrapower embedding and e : N → N ′

is an elementary embedding such that e ◦ k is a definable ultrapower embedding, then
k is a definable ultrapower embedding.

Theorem 12.1 (UA). Suppose λ is a regular Fréchet cardinal and let j : V → M be
the ultrapower associated with Kλ. Suppose k : M → N is an ultrapower embedding
that is continuous at sup j[λ]. Then k is definable over M .

Proof. Apply the Ultrapower Axiom to the ultrapower embeddings j and k ◦ j. We
obtain definable ultrapower embeddings ℓ : M → P and i : N → P such that ℓ ◦ j =
i ◦ k ◦ j.
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Exercise 60. Show that ℓ(sup j[λ]) = i ◦ k(sup j[λ]).

Since every element of M is definable in M from parameters in j[V ] ∪ {sup j[λ]},
ℓ = i ◦ k. Therefore k is definable over M by Exercise 58

Proposition 12.2 (UA). The least strongly compact cardinal is larger than the least
measurable cardinal.

Proof. Let κ be the least strongly compact cardinal. Let U = Kκ+ . Note that κU ≤ κ.
Let D be a normal ultrafilter on κU . Then jD ↾ MU is definable over MU . Therefore
D ∈ MU . Therefore κU is measurable in MU . It follows that MU satisfies that jU (κU )
is larger than the least measurable cardinal, and hence κU is larger than the least
measurable cardinal.

Exercise 61. Following the notation of the previous proposition, show that the Mitchell
order on κU has rank greater than 2κU .

13 Further results

Theorem 13.1 (UA). If κ is strongly compact, there is a set A ⊆ κ such that every
set is definable in (V,∈) from A and ordinal parameters.

In particular, there is a definable class well-order of the universe of sets.
This uses the following facts:

Exercise 62 (UA). Every ℵ1-complete ultrafilter on an ordinal is definable from an
ordinal.

Exercise 63. If κ is strongly compact, then there is a set A ⊆ κ such that every set
is definable in (V,∈) from A and a κ-complete ultrafilter on an ordinal.

Hint: Assume κ is strongly compact. We will need the concept of a κ-independent
family of sets. If X is a set, a family F of subsets of X is κ-independent if for any
disjoint subfamilies σ, τ ⊆ F ,

⋂
A∈σ A ∩

⋂
A∈τ (X \A) is nonempty.

• Show that if F is a κ-independent family of subsets of an ordinal η and |F | = λ,
then every subset of λ is definable from F and a κ-complete ultrafilter on η.

• Show that for any λ ≥ κ, there is a κ-independent family F of subsets of

Pκ(λ) = {A ⊆ λ : |A| < κ}

such that |F | = λ.

• Show that if κ is strongly compact and S ⊆ κ is such that Vκ ⊆ L[S], then for
any λ, there is a κ-complete ultrafilter U and a well-order of Pκ(λ) definable from
jU (S), U , and λ.

• Conclude that for every A ⊆ λ can be defined using S along with two κ-complete
ultrafilters on ordinals.

• Finish by showing that any pair of κ-complete ultrafilters on ordinals is definable
from a single one.

We mention two more results that we will not have time to cover. Both of them can
be proved using the method of independent families.

Theorem 13.2 (UA). If κ is strongly compact, then for all λ ≥ κ, 2λ = λ+.

Theorem 13.3 (UA). If κ is strongly compact, either κ is supercompact or κ is a limit
of supercompacts.
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