
Formalization of ZF set theory and modal logic in
Lean

Shuhao Song

October 18, 2024

Shuhao Song Formalization of ZF set theory and modal logic in LeanOctober 18, 2024 1 / 13

Abstract

My graduate thesis focuses on the formalization of ZF set theory,
particularly concerning large cardinals beyond choice, such as
Reinhardt and Berkeley cardinals. I will discuss some details
about my formalization plan.

Inspired by Zhang Zhiqing, I completed the formalization of
Gödel’s ontological proof in Lean. Using a trick with typeclass
synthesizing, Kripke’s semantics can be easily formalized in Lean,
so that all pre-existing tactics can be used. Some modification to
the typeclass synthesizing process in Lean were necessary to
complete this formalization, and I will present these in my talk.

Shuhao Song Formalization of ZF set theory and modal logic in LeanOctober 18, 2024 2 / 13

Models of ZFC in Lean
In Lean we can define an inductive type
inductive PSet : Type (u + 1)
| mk (α : Type u) (A : α → PSet) : PSet

This means, for any type α and a family of pre-set A : α Ñ PSet, we can
collect them to construct a new pre-set, and every pre-set is constructed
in this way. We define the membership relation as x ∈ mk α A iff x is
in the image of A.
Pre-sets are not exactly sets: different α and A can give the same set (in
set-theoretic sense). For example, α = t1u, A(1) = H and
α = t1, 2u, A(1) = A(2) = H builds same set, as tHu = tH,Hu.
So we need to take a quotient in Lean. We define the extensionality
relation recursively:
def Equiv : PSet → PSet → Prop
| ⟨_, A⟩, ⟨_, B⟩ =>
(∀ a, ∃ b, Equiv (A a) (B b)) ∧ (∀ b, ∃ a, Equiv (A a) (B b))

Then define ZFSet to be the quotient of type PSet under the equivalence
relation Equiv.
def ZFSet : Type (u + 1) := Quotient PSet.setoid.{u}

Shuhao Song Formalization of ZF set theory and modal logic in LeanOctober 18, 2024 3 / 13

Choiceless ZFSet

With axiom of choice, we can prove ZFSet is a model of second-order
ZFC easily. Here, “second-order ZFC” means the separation and
replacement axiom is quantified over all subsets of ZFSet and all
functions ZFSet Ñ ZFSet:

@S@xDy(z P y Ø z P x^ S(x)) (Sep)
@ f@xDy(z P y Ø Dw(w P x^ f (w) = z)) (Rep)

We need to use the axiom of choice in the proof of replacement axiom.
The article1 gave another solution to make ZFSet a model of
second-order ZF without choice. They added some axioms to PSet:
axiom γ : PSet → PSet
axiom γ_ext : ∀ x y, PSet.Equiv x y → γ x = γ y
axiom γ_equiv : ∀ x, PSet.Equiv (γ x) x

1Dominik Kirst and Gert Smolka. “Large model constructions for second-order ZF in dependent type
theory”. In: Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and
Proofs. CPP 2018. Los Angeles, CA, USA: Association for Computing Machinery, 2018, pp. 228–239.
ISBN: 9781450355865.

Shuhao Song Formalization of ZF set theory and modal logic in LeanOctober 18, 2024 4 / 13

Reflection Argument

The ZFSet is only one model of ZF. So is it enoughly representative? If
we proved some theorems of ZFSet, then would it be true in other
models of ZF? We can solve this problem using reflection in set theory.
Firstly, ZFSet is a model of second-order ZF, and intuitionistically, we
can interpret types in Coq or Lean as sets, α → β as the set of
functions from α to β. So by Zermelo’s categoricity theorem, 〈ZFSet, P〉
is isomorphic to certain Vκ for some (strongly, the same below)
inaccessible cardinal κ. Note that the categoricity theorem is already
formalized in Coq2. Moreover, inaccessibility is a subtle notion without
choice, and here we refer to ν-inaccessibility in the literature3.

2Dominik Kirst and Gert Smolka. “Categoricity Results and Large Model Constructions for
Second-Order ZF in Dependent Type Theory”. In: Journal of Automated Reasoning 63.2 (2019),
pp. 415–438. ISSN: 1573-0670.

3Andreas Blass, Ioanna M. Dimitriou, and Benedikt Löwe. “Inaccessible cardinals without the axiom of
choice”. In: Fundamenta Mathematicae 194 (2003), pp. 179–189.

Shuhao Song Formalization of ZF set theory and modal logic in LeanOctober 18, 2024 5 / 13

Reflection Argument

Assuming we have proven certain first-order sentence ϕ in 〈ZFSet, P〉.
Let V be the universe (or model-theoretically, a certain model of ZF),
we can prove that if V satisfies “Ord is Mahlo”, then V satisfies ϕ. So,
by Gödel’s completeness theorem, we have proven ϕ in ZF + Ord is
Mahlo.
In detail, given a proper class R, we can prove that the ordinals κ with
〈Vκ, P, RXVκ〉 ăn 〈V, P, R〉 forms a closed unbounded proper class,
where ăn means Σn-elementary embedding. So if Ord is Mahlo, which
means the class of inaccessible cardinals intersects with every club
class, there should exists one κ such that Vκ reflects V. So if ϕ is true
in V, it must be true in some Vκ, then we interpret the type-theoretic
universe Type 0, ¨ ¨ ¨ , Type n, ¨ ¨ ¨ as Vκ, Vκ1 , Vκ2 , ¨ ¨ ¨ , where κ ă κ1 ă ¨ ¨ ¨

are inaccessible cardinals, so we can prove ϕ is true in Vκ using
set-interpretation of type theory, leading a contradiction.
Note that the reflection argument fails in CZF and IZF.4

4Reflection principle for intuitionistic Zermelo–Fraenkel? https://mathoverflow.net/questions/319179
/reflection-principle-for-intuitionistic-zermelo-fraenkel.

Shuhao Song Formalization of ZF set theory and modal logic in LeanOctober 18, 2024 6 / 13

https://mathoverflow.net/questions/319179/reflection-principle-for-intuitionistic-zermelo-fraenkel
https://mathoverflow.net/questions/319179/reflection-principle-for-intuitionistic-zermelo-fraenkel

Types and Sets

What is the difference of Type and Vκ?
Adding the following axioms can make Type behaves more similar to
sets in ZF set theory.
universe u
axiom typeMk : ∀ {α}, (α → Type u) → Type u
def ExtEq {α β} (f : α → Type u) (g : β → Type u) :=
(∀ x : α, ∃ y : β, f x = g y) ∧ ∀ y : β, ∃ x : α, f x = g y

axiom type_ext : ∀ {α β} (f : α → Type u) (g : β → Type u),
ExtEq f g ↔ typeMk f = typeMk g

axiom type_rec : ∀ {p : Type u → Prop}
(_ : ∀ {α} {f : α → Type u}, (∀ x, p (f x)) → p (typeMk f))
(x : Type u), p x

Shuhao Song Formalization of ZF set theory and modal logic in LeanOctober 18, 2024 7 / 13

Definite Description

With axioms of ZF, we can prove the existence of certain set, but we
can’t write down the term for the set. For example, we can prove the
proposition Dx@y(y R x), but we can’t get a term H : ZFSet. So we
need a new axiom in type theory for this. It is called “definite
description”: if you can use certain property to uniquely specify one
object, then you can obtain the object. In Lean we write
axiom definiteDescription :
{α : Type*} → Nonempty α → Subsingleton α → α

A type α in Lean is called subsingleton if all elements in α are equal,
that is, @ x y : α, x = y. So, a nonempty subsingleton type can only
have exactly one element, and we can obtain this element using axiom
definiteDescription. Note that without the assumption
Subsingleton α, the axiom become the choice: you postulated a
choice function VκztHu.

Shuhao Song Formalization of ZF set theory and modal logic in LeanOctober 18, 2024 8 / 13

Formalizing Kripke’s frame

We formalize objects in model logic using “type with world”. For
example, the truth of proposition may dependent on the world, so we
use World → Prop instead of Prop.
The world can be automatically deduced from context: when we write
P x Ñ 2(Q x^3(R x)), it means “for every world w, if P(x) is true
at w, then for any w Ñ w1, Q(x) is true and there exists w1 Ñ w2 such
that R(x) is true at w2”.
In our formalization, we can directly write the proposition
P x Ñ 2(Q x^3(R x)) “as-is” in Lean, and Lean can automatically
introduce the three worlds w, w1, w2, and know P(x) is at w, Q(x) and
R(x) is at w1 and w2 correspondingly. So how can we achieve this? We
use implicit lambda feature to automatically introduce variables, and
use typeclass synthesize to make P, Q, R know which world are they in.

Shuhao Song Formalization of ZF set theory and modal logic in LeanOctober 18, 2024 9 / 13

Formalizing Necessary and Possible modality

The “elaborate” step turns a syntax object to an expression in Lean kernel,
which is a semantical object. When we write 2@x, P x, the elaborator knows
@x, P x is a Prop and 2 needs a &Prop, where we use symbol &α to denote
[w : World] → α. 2 is just a notation for definition Necessary.
def Necessary (p : &Prop) := ∀ w', Accessible w w' → p@.w'
def Possible (p : &Prop) := ∃ w', Accessible w w' ∧ p@.w'
notation "□" p:50 => Necessary p
notation "◇" p:50 => Possible p

Because [w : World] is an implicit parameter (it’s a typeclass, which can be
automatically deduced from the environment), it would be automatically
introduced to unificate the type &Prop and Prop. But we also need to deduce
the world from context, this is done using typeclass synthesizing. The type
World is a type class, and every object of World in the current proof context
is an instance of it. The later introduced instance (world) gets higher priority,
so P x ∧ ☐ Q x will use w1 (introduced in ☐) instead w as the “current”
world, which agrees with our common understanding.

Shuhao Song Formalization of ZF set theory and modal logic in LeanOctober 18, 2024 10 / 13

Modification to Lean

We modified the typeclass synthesizing process to make this possible.
When elaborating ◇∃ x, P x, the type of x must be deduced; it
should be Object. But in Lean, the type of x will be deduced as
x : @?m.49388 P w✝ firstly, which means, the type of x may depends
on P and newly introduced world w✝ in 3. Here,
?m.49388 : {P : Property} → [w : World] → Sort ?u.49374

is a “metavariable”, which means an unknown term. So the problem
occurs: it should be fun P w => Object w, so @?m.49388 P w✝ will
be the correct type Object w✝, but w is in the parameter of function,
and in Lean, if an instance is at the position of function parameter it
will be ignored in the typeclass resolution. We modified the Lean
source code to consider this case.

Shuhao Song Formalization of ZF set theory and modal logic in LeanOctober 18, 2024 11 / 13

Proof of existence of God

Some literature5,6 defined the type of formulas and models, and a
satisfication relation:
forces_form : ∀ {A : Type} (M : model A), form → A → Prop

This method is suitable to prove meta-properties (such as completeness
and soundness), but it could be hard to prove inner theorems, as you
have to translate between the satisfication of formula and its
semantical expansion. For example, you need to translate between
forces_form M (form.and p q) w and
forces_form M p w ∧ forces_form M q w. Maybe it can be done
with automatically @[simp] attribute. Our method make us able to
reuse many pre-existing tactics in Lean to reason in modal logic, which
makes our proof easier (only half a day).

5Bruno Bentzen. “A Henkin-Style Completeness Proof for the Modal Logic S5”. In: Logic and
Argumentation: 4th International Conference, CLAR 2021, Hangzhou, China, October 20–22, 2021,
Proceedings. Hangzhou, China: Springer-Verlag, 2021, pp. 459–467. ISBN: 978-3-030-89390-3.

6Huayu Guo, Dongheng Chen, and Bruno Bentzen. Verified completeness in Henkin-style for
intuitionistic propositional logic. 2023. arXiv: 2310.01916 [cs.LO].

Shuhao Song Formalization of ZF set theory and modal logic in LeanOctober 18, 2024 12 / 13

https://arxiv.org/abs/2310.01916

Proof of existence of God
Example code (uses lots of Lean tactic)
theorem essential_God : ∀ {x}, God x → Essential God x := by
intro x hx
refine ⟨hx, fun Q hQ => ?_⟩
have pos_Q : □Positive Q := by
apply positive_necessary
by_contra h
rw [← positive_or_not] at h
exact hx h hQ

revert pos_Q
apply necessary_mp
exact fun w' _ pos y hy => hy pos

An example of term-style proof, may be harder to read than tactic-style
proof above.
theorem God_exists : □∃x, God x :=
possible_necessary_imp <|
possible_mp
(necessarize necessarily_exists_God)
(positive_possible_exists positive_God)

Shuhao Song Formalization of ZF set theory and modal logic in LeanOctober 18, 2024 13 / 13

