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Simple permitting

Theorem 1
For any noncomputable c.e. set C there is a simple set A ≤T C.

Let {Cs}s∈ω be a computable enumeration of C. We construct a coinfinite c.e. set A to satisfy for
all e the following requirement:

Re : |We| = ∞ ⇒
(
We ∩ A , ∅ or , C ≡T ∅

)
.

Construction:
▶ Let A0 = ∅.
▶ At stage s + 1, given As find the least e such that

We,s ∩ As = ∅ and ∃x > 2e
(
x ∈ We,s ∧Cs+1 ↾ x , Cs ↾ x

)
.

Then choose the least such e and enumerate the least corresponding x into A. If there is no
such e go to stage s + 2.

Verification:
▶ Ā is infinite.
▶ A ≤T C.
▶ |We| = ∞ ⇒ We ∩ A , ∅.
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Typical permitting construction

Permitting is a basic technique for constructing a c.e. set B which is Turing reducible to a given
c.e. set A.

▶ We want to construct a c.e. set B Turing below a given c.e. set A such that B has certain
properties which (in part) can be ensured by meeting positive requirements Re(e ≥ 0) of
the following type:

▶ In order to meet Re it suffices to pick a follower x (becoming a witness for the fact that Re
will be met). The follower may become “realized” at some stage. In this case the follower
(or a certain greater number) has to be enumerated into B.

▶ In the presence of permitting, once x is realized we wait that A permits x to enter B (and, if
so, we put x into B). While waiting, we iterate the attack on Re with a new follower x′ > x
(and so on).
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Multiple permitting

▶ Simple permitting is achieved by enumerating a new number x into B at a stage s + 1 only
if (for a given enumeration of A) a number ≤ x (or, more generally, ≤ f (x) for some
computable function f ) enters A at stage s + 1.

▶ More involved positive requirements or settings require stronger forms of permitting in
order to perform the construction below a given c.e. set A.

▶ Multiple permitting is the case where any follower x of a requirement Re is associated with
an entourage of ≤ f (x) numbers (f is a computable function) all of which need permitting
after becoming realized.

▶ It was discussed by Downey, Jockusch and Stob in 1990 (DJS1990) where it is argued that
the sets and degrees giving this type of permitting are the array noncomputable (a.n.c.) sets
and their degrees, respectively.



4/13

Array noncomputablity - definition and basic properties

▶ A sequence F = {Fn}n∈ω of finite sets is a very strong array (v.s.a.) if the following hold.
1 There is a computable function f such that f (n) is the canonical index of Fn;
2
⋃

n∈ω Fn = N;
3 Fn ∩ Fm = ∅ for n , m;
4 0 < |Fn | < |Fn+1 | for all n ∈ ω.

▶ A c.e. set A is F -a.n.c. if it is F -similar to any c.e. set V , i.e.,

∃∞ n
(
A∩ Fn = V ∩ Fn

)
▶ A c.e. set A is a.n.c. if it is F -a.n.c. for some v.s.a. F .
▶ A c.e. degree a is array noncomputable if it contains a a.n.c. c.e. set.

Theorem 2 (DJS1990)

Let d be an array noncomputable c.e. degree and let F be a very strong array. There is a c.e.
set D ∈ d such that D is F -a.n.c.
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Standard multiple permitting constrcution by a.n.c. sets

▶ If (the entourage of) a follower x has to be permitted up to f (x) times then we choose a
v.s.a. F of intervals Fn such that |Fn| ≥ f (min Fn) and choose the numbers x = min Fn as
followers.

▶ Then, whenever a member xm of the entourage of x needs permitting, we enumerate the
corresponding element ym of Fn into a trigger set V .

▶ While waiting, we iterate the attack on Re with a new follower x′ > x in almost all interval
Fn.

▶ For any n such that A and V agree on Fn, the number ym has to enter A later thereby giving
the required permitting.
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c.e. ℓ-properties

Definition 3
Let ℓ be a strictly increasing computable function. A property P is a c.e. ℓ-property if there are
uniformly c.e. sets {Ba}a≥0 with Ba ⊆ [a, a + ℓ(a)] such that for any set C

∃∞ a(C ∩ [a, a + ℓ(a)] = Ba) ⇒ C ∈ P. (1)

Lemma 4
Let ℓ be a strictly increasing computable function, let P be a c.e. ℓ-property, let F = {Fn}n∈ω be
a v.s.a.i. dominating ℓ, and let A be an F -a.n.c. set. Then A ∈ P.

▶ Let B =
⋃

n≥0 Bmin Fn . Then B is c.e.
▶ Since A is an F -a.n.c. set, for infinitely many n,

A∩ [min Fn, min Fn + l(min Fn)] = B∩ [min Fn, min Fn + l(min Fn)] = Bmin Fn .
▶ Thus A ∈ P.

Lemma 5
Let ℓ be a strictly increasing computable function and let d be an array non-computable c.e.
degree. There is a c.e. set A ∈ d such that A ∈ P for all c.e. ℓ-properties P.
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Modular approach for a.n.c. degrees

▶ In a typical wait-and-see or finite injury priority construction of a c.e. set A we ensure that
A has a desired property P by meeting an infinite list Re of requirements.

▶ For a fixed strictly increasing computable (length) function ℓ, we assign a c.e. ℓ-property
Pe to each requirement Re such that any set A ∈ Pe meets requirement Re.

▶ By Lemma 4, for any v.s.a.i. F dominating ℓ, any F -a.n.c. set A has property Pe.
▶ By Lemma 5 any c.e. a.n.c. Turing degree contains a c.e. set with property P.

Modular approach for a.n.c. degrees

In order to show that the construction of a c.e. set with a certain property P can be adapted to
show that sets with this property exist in all a.n.c. c.e. degrees, it suffices to analyze the
individual requirements forcing P in isolation and to show that any requirement corresponds to
a c.e. ℓ-property where the function ℓ does not depend on the requirement.

(We show an example using this approach later.)
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Array noncomputability for left-c.e. reals - a failure attempt

Theorem 6
Given any left-c.e. real α < 1, there exists a left-c.e. real β < 2 such that

∀n ∃i ∈ {0, 1} (α(2n + i) , β(2n + i)).

To construct β, for s > 0, let βs = αs +
∑s

i=1 2−2s, i.e.,

βs = αs + 0. 0101 . . . 01︸       ︷︷       ︸
s times 01

.

Thus for all i ≤ s,

number(βs ↾ [2i − 2, 2i)) − number(αs ↾ [2i − 2, 2i)) ≡ 1 or 2 (mod 4).

Corollary 7

Suppose {Fn}n∈N is a very strong array of interval. Given any left-c.e. real α, there exists a
left-c.e. real β such that ∀i (α ↾ Fi , β ↾ Fi).
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Array noncomputability for locally l.c.e. sets

Let F = {Fn}n≥0 be a very strong array of intervals.
▶ A left-c.e. approximation {αs}s≥0 is F -compatible if αs ↾ Fn ≤lex αs+1 ↾ Fn for all n, s ≥ 0

and αs(x) ≤ αs+1(x) for all s ≥ 0 and x <
⋃

n≥0 Fn.
▶ A real α is F -compatibly left-c.e. (F -l.c.e. for short) if it has a F -compatible left-c.e.

approximation.

▶ An F -l.c.e. real α is F -l.c.e.-a.n.c. if it is F -similar to any F -l.c.e. real β, i.e.,

∃∞n (α ↾ Fn = β ↾ Fn).

Theorem 8
Let d be an array noncomputable c.e. degree and let F be a very strong array of intervals.
There is a left-c.e. real α ∈ d such that α is F -l.c.e.-a.n.c.
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l.c.e. ℓ-property

Definition 9
Let ℓ be a strictly increasing computable function. A property P is an l.c.e. ℓ-property if there
are uniformly left-c.e. reals {βa}a∈ω with βa ⊆ [a, a + ℓ(a)] such that for any real γ

∃∞ a (γ ↾ [a, a + ℓ(a)] = βa) ⇒ γ ∈ P. (2)

Lemma 10
Let ℓ be a strictly increasing computable function, let P be a l.c.e. ℓ-property, let F = {Fn}n∈ω
be a v.s.a.i. dominating ℓ, and let α be an F -l.c.e.-a.n.c. real. Then α ∈ P.

Lemma 11
Let ℓ be a strictly increasing computable function and let d be an array non-computable c.e.
degree. There is a left-c.e. real α ∈ d such that α ∈ P for all l.c.e. ℓ-properties P.
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Example:

Theorem 12 (Merkle & F.)

Let g : N 7→N be a computable nondecreasing function such that
∑

n 2−g(n) = ∞. Every array
noncomputable c.e. degree d contains a left-c.e. real that is not (id+g)-bounded Turing
reducible to any left-c.e. Martin-Löf random real.

Lemma 13 (Merkle & F.)

Let g : N 7→N be a computable nondecreasing function such that
∑

n 2−g(n) = ∞. There is a
strictly increasing computable function ℓ such that the following hold. For any pair 〈Φ, γ〉,
where Φ is a Turing functional with use function bounded by id + g and γ is a left-c.e. real in
[0, 1), uniformly in 〈Φ, γ〉 and in all a ∈N, there are a left-c.e. real αa ⊆ [a, a + ℓ(a)] and a
c.e. set Ea of strings with µ(Ea) < 2−a such that

∃ x ∈ [a, a + ℓ(a)] αa(x) , Φγ(x) or γ ∈ [Ea]. (3)
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Example: (continued)

Lemma 14
Let g : N 7→N be a computable nondecreasing slow-growing function. There is a strictly
increasing computable function ℓ such that, for any pair 〈Φ, γ〉, where Φ is a Turing functional
with use function bounded by id+g and γ is a left-c.e. real in [0, 1], the property

PΦ,γ = {α : α , Φγ or γ is not random}

is an almost-c.e. ℓ-property.

Proof.

▶ Let ℓ be the function as given by Lemma 13. Then for any pair 〈Φ, γ〉, there are {αa}a≥0
and {Ea}a≥0 as stated in Lemma 13.

▶ Given any left-c.e. real α̃, suppose ∃∞a such that (α̃ ↾ [a, a + ℓ(a)] = αa).
▶ Suppose α̃ = Φγ. Then it suffices to show that γ is not random.
▶ By (3), it follows that ∃∞a such that γ ∈ [Ea].
▶ Let Ue =

⋃
a>e[Ea]. Then γ ∈ Ue for all e ≥ 0.

▶ On the other hand, Ue are uniformly c.e., and µ(Ue) ≤
∑

a>e µ(Ea) <
∑

a>e 2−a ≤ 2−e.
▶ Thus, {Ue}e∈ω is a Martin-Löf test containing γ.

□
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Example: (continued)

Theorem 12
Let g : N 7→N be a computable nondecreasing function such that

∑
n 2−g(n) = ∞. Every array

noncomputable c.e. degree d contains a left-c.e. real that is not (id+g)-bounded Turing
reducible to any left-c.e. Martin-Löf random real.

Proof.

▶ Let {Φi, γi}i∈ω be an effective enumeration of all pairs of a Turing functional with use
function bounded by id+g and a left-c.e. real in the unit interval.

▶ By Lemme 14, there is a strictly increasing computable function ℓ such that, for all i the
properties Pi = {α : α , Φγi

i or γi is not random} are almost-c.e. ℓ-properties.
▶ By Lemma 11, there is a left-c.e. real α ∈ d such that α ∈ Pi for all i, which implies it is

not (id+g)-bounded Turing reducible to any left-c.e. Martin-Löf random real.

□
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