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Background Motivating Question

When can we say two proofs really use different methods?

E.g., Halmos: nonstandard methods are just a matter of taste, no new
mathematical insights.
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Background Motivating Question

When can we say two proofs really use different methods?

E.g., Halmos: nonstandard methods are just a matter of taste, no new
mathematical insights.

Classic philosophical references

e Dawson (2006) Why do mathematicians re-prove theorems?

o Later turned into a book: Dawson (2015) Why Prove it Again?:
Alternative Proofs in Mathematical Practice
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My goal with this work

© To survey and classify proofs using metamathematical methods in
DST (we will focus on this)

@ To determine about whether these really use different methods than
classical proofs (won't do much of this today, but nice to think about)
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How do these proofs work

Basic Tools
@ Forcing
@ Solovay-type characterizations
@ Complexity calculation
@ Borel codes

o Absoluteness
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Complexity in second-order arithmetic

Definition
A formula A(x) is X1 iff A(x) is equivalent to a formula of the form
JyVnR(x,y, n), where R is a computable relation, y ranges over {subset of

naturals, reals, functions from naturals to naturals, etc}, and n ranges over
naturals. It's M} iff its negation is X1
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Complexity in second-order arithmetic

Definition

A formula A(x) is &1 iff A(x) is equivalent to a formula of the form
JyVnR(x,y, n), where R is a computable relation, y ranges over {subset of
naturals, reals, functions from naturals to naturals, etc}, and n ranges over
naturals. It's M} iff its negation is 1.

Example (Luzin, 1927)

Consider the space (w ~ {0})“. This is the space of sequences of positive
integers. Define a subset A of the space as follows:

A(x) < Jng < m < mp < ...x(n;) divides x(nj41)

In other words, x € A iff there is some increasing y € (w ~ {0})“ such that
for all i € w, we have x(y(i)) divides x(y(i +1)). This is £1, because the
relation “y(m) > y(m+ 1) A x(y(n)) | x(y(n+ 1))", with free variables
(x,y, m,n), is computable.
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Complexity in second-order arithmetic

Definition

A formula A(x) is £} iff A(x) is equivalent to a formula of the form
JyVnR(x,y, n), where R is a computable relation, y ranges over {subset of
naturals, reals, functions from naturals to naturals, etc}, and n ranges over
naturals. It's M} iff its negation is X1

Example (Well-founded trees)

The set of f € 2 coding well-founded trees or well-orderings is M}: “f
codes a tree and every attempt g to trace a infinite descending path in f
fails”.
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Fact
A ¥1 sentence is true if and only if a particular tree is ill-founded. J
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Fact

A ¥1 sentence is true if and only if a particular tree is ill-founded.

Well-foundedness is A; (in the language of set theory):

R is well-founded on X <> (VY C X)(Y has a minimal element)
< (3f : Ord — X)(f is order-preserving with respect to R)
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Fact

A Y1 sentence is true if and only if a particular tree is ill-founded.

Corollary (Mostowski Absolutenesss)

¥1 and M} are absolute between transitive models of enough set theory.
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A challenge to the structuralist...

Corollary (Mostowski Absolutenesss) J

¥1 and M} are absolute between transitive models of enough set theory.
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A challenge to the structuralist...

Corollary (Mostowski Absolutenesss)

¥1 and M} are absolute between transitive models of enough set theory.

A philosophical question

This above follows from having a A; characterization of well-foundedness.
The ¥ part depends crucially the ability to express the notion of an ordinal
in a Ag way. This relies on having the von Neumann definition of an
ordinal. But in principle (according to the structuralist) it shouldn't matter
what the ordinals really are. So here's a challenge: can a structuralist
recover the mathematical content in Mostowski Absoluteness?
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A warmup

Theorem

There are incomparable Turing degrees.

Proof.
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A warmup

Theorem

There are incomparable Turing degrees.

Proof.

First observe that total comparability of Turing degrees implies the
continuum hypothesis:
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A warmup

Theorem

There are incomparable Turing degrees.

Proof.

(R, <7) would be a linear order with only countable
initial segments. This makes |R| = w;.
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A warmup

Theorem

There are incomparable Turing degrees.

Proof.

Now force to get =CH. In V[G] we have incomparable reals.
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A warmup

Theorem

There are incomparable Turing degrees.

Proof.

But “there
exists x,y € Rst. x €7 y Ay £ x" is 1, and so it is absolute and
holds in V too. Ol

v
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A warmup

Theorem

There are incomparable Turing degrees.

Proof.

But “there
exists x,y € Rst. x €7 y Ay £1 x" is £}, and so it is absolute and
holds in V too. [l

v
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How to prove something is true by proving it is consistent

Reference: Kunen (2013). IV.5. The metamathematics of forcing

The ctm method
© Take a large enough Hy <1000 V and a countable M < Hjy.
@ Force over M to get M[G].
© Use absoluteness between M and M[G] to show that a statement is
true in M.
@ And use elementarity to go all the way back to V.
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How to prove something is true by proving it is consistent

Reference: Kunen (2013). IV.5. The metamathematics of forcing

The syntactic method
@ Define a relation IF*.
@ Show that the relation satisfies all logical rules.
© For each formula ¢(X) known to be absolute, show:
Q for every p and all sets 3: p IF* ©(3) iff 1 IF* ©(3) iff (3).
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How to prove something is true by proving it is consistent

Reference: Kunen (2013). IV.5. The metamathematics of forcing

The Boolean-valued method (“the naturalist account”)

For any complete Boolean algebre B, there is a definable elementary
embedding j : (V,€) < (V, &), such that there is in V a V-generic filter G
for j(B). So we have: V < V C VI[G].

Then prove that absolute statements are still absolute across V C V[G]
(which might not be transitive).
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How to prove something is true by proving it is consistent

Reference: Kunen (2013). IV.5. The metamathematics of forcing

The ctm method
@ Take a large enough Hy <1000 V and a countable M < Hy.
@ Force over M to get M[G].

© Use absoluteness between M and M[G] to show that a statement is
true in M.

@ And use elementarity to go all the way back to V.

We adopt the ctm method for simplicity.
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Incomparable Turing degrees, proof 2

Proof 2.

Force to add two mutually generic Cohen reals ¢, d. Obviously ¢, d are
Turing-incomparable, because otherwise (say) ¢ <t d would imply that
¢ € V|[d], contradicting mutual genericity. And so the extension has
incomparable Turing degrees. Again, this is absolute to models of set
theory, and so it holds to begin with.

]
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Computability relative to large sets

Definition (Topological notion of largeness)

@ A set A C R is nowhere dense iff it's not dense in any open interval.
Equivalently, (cl(A))° =0
@ A is meager iff it is a countable union of nowhere dense sets.

@ A is comeager iff its complement is meager.
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Computability relative to large sets

Definition (Topological notion of largeness)

@ A set A C R is nowhere dense iff it's not dense in any open interval.
Equivalently, (cl(A))° =0
@ A is meager iff it is a countable union of nowhere dense sets.

@ A is comeager iff its complement is meager.

Measure-Category Duality

meager :: measure zero

comeager :: full measure (measure 1 in the case of [0, 1] or Cantor space)
Property of Baire :: Lebesgue measurable

non-meager Borel :: positive measure

Reference: Oxtoby, Measure and Category
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Computability relative to large sets

Theorem

If x is computable relative to a comeager set of reals (i.e., its Turing cone
{y | x <1 y} is comeager), then it is computable.

Proof of Lemma.
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Computability relative to large sets

Lemma (Blass)

Let M be a countable transitive model of enough of ZFC, and let
x € MNR and ¢ a Cohen real over M. If x <1 ¢, then x is computable.

Proof of Lemma.
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Computability relative to large sets

Lemma (Blass)

Let M be a countable transitive model of enough of ZFC, and let
x € MNR and ¢ a Cohen real over M. If x <1 ¢, then x is computable.

Proof of Lemma.

If x is computed by the Turing program ®¢, then this fact also holds true
in M[c], and so by the forcing theorem this is forced by some condition p.
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Computability relative to large sets

Lemma (Blass) |

Let M be a countable transitive model of enough of ZFC, and let
x € MNR and ¢ a Cohen real over M. If x <1 ¢, then x is computable.

Proof of Lemma. |
If x is computed by the Turing program ®¢, then this fact also holds true

e
in M[c], and so by the forcing theorem this is forced by some condition p.

That is,

p I the &th Turing program in the oracle ¢ computes X
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Computability relative to large sets

Lemma (Blass)

Let M be a countable transitive model of enough of ZFC, and let
x € MNR and ¢ a Cohen real over M. If x <1 ¢, then x is computable.

Proof of Lemma.

For any i € w we compute x(i) as follows: run ®2(/) for all the s
extending p.
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As soon as any of these computations halt, the output will be the correct
value of x(7).
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This is because: if sg, 51 are two different nodes extending p and
O0(j/) =0# 1 = (i), then we can build two different filters Gy and G;
containing sp, s1 respectively.
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Now M[Gp] and M[Gi] will both think x is computed by ®¢ (since both
filters contain p.)

34 /86



(Note that they will interpret ¢ differently; but that
doesn’t matter.) So M[Gp] thinks that x(/) = 0 and M[Gi] thinks x(i) = 1.
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But whatever x(7) is, this is an absolute fact about x € M, so it should be
answered in the same way by all transitive models extending M.
Contradiction!
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Computability relative to large sets

Theorem

If x is computable relative to a comeager set of reals (i.e., its Turing cone
{y | x <1 y} is comeager), then it is computable.

Lemma (Blass) |

Let M be a countable transitive model of enough of ZFC, and let x be a
real in M and c a Cohen real over M. If x is computable relative to c, then
X is computable.

Fact (Solovay characterization of genericity) |

Let M be a transitive model of enough set theory. Then c is Cohen-generic
over M iff it is not in any meager F, set coded in M. (Recall: every Borel
B set has a Borel code cg. The property of being a Borel code is }.)

Fact

When M is a ctm, the set of reals Cohen over M is comeager. e



Computability relative to large sets

Theorem

If x is computable relative to a comeager set of reals (i.e., its Turing cone
{y | x <1 y} is comeager), then it is computable.

Lemma (Blass)

Let M be a countable transitive model of enough of ZFC, and let x be a
real in M and c a Cohen real over M. If x is computable relative to c, then
X is computable.

Proof of Theorem.

Let x be a real whose Turing cone is comeager. Let M > x be a ctm of
enough set theory. Since the comeager sets form a filter, every comeager
set must contain Cohen reals over M, and so x is computable from a
Cohen real. By Blass's lemma, it is computable. Ol
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More absoluteness...

Definition

A sentence is X3 if it is equivalent to Ix®, where ® is M1. It is N3 iff its
negation is 1.
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More absoluteness...

Definition

A sentence is X3 if it is equivalent to Ix®, where ® is M}. It is M} iff its
negation is 1.

Equivalently, ¢ is &3 iff it is equivalent to a ¥ sentence over H(wy).
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More absoluteness...

Definition

A sentence is X3 if it is equivalent to Ix®, where ® is M}. It is M} iff its
negation is 1.

Equivalently, ¢ is &3 iff it is equivalent to a ¥ sentence over H(wy).

Theorem (Shoenfield Absoluteness)

Y1 and N} are absolute across models with the same countable ordinals.

Very sketchy proof.

Via a Suslin representation, truth of X3 is again reduced to the
well-foundedness of certain trees. Ol
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Mycielski's Perfect Set Theorem

Theorem

Let R C X? be a Borel equivalence relation on a Polish space X, such that
each equivalence class is meager. Then there exists a perfect set of
pairwise inequivalent elements.
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Mycielski's Perfect Set Theorem

Theorem

Let R C X? be a Borel equivalence relation on a Polish space X, such that
each equivalence class is meager. Then there exists a perfect set of
pairwise inequivalent elements.

Corollary
R injects into R/Q, R/ Tur, etc...
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Proof:

Force to add a perfect set of mutually generic Cohen reals.

In the extension, the perfect set of Cohen reals are all Vitali-inequivalent.
But “There is a perfect tree whose branches are pairwise Vitali-inequivalent”
is 3. By Shoenfield absoluteness this holds to begin with.
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Special Case of R/Q

Proof:
Force to add a perfect set of mutually generic Cohen reals.
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Special Case of R/Q

Proof:
Force to add a perfect set of mutually generic Cohen reals.
In the extension, the perfect set of Cohen reals are all Vitali-inequivalent.
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Special Case of R/Q

Proof:

Force to add a perfect set of mutually generic Cohen reals.

In the extension, the perfect set of Cohen reals are all Vitali-inequivalent.
But “There is a perfect tree whose branches are pairwise Vitali-inequivalent”
is 3. By Shoenfield absoluteness this holds to begin with.
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Proof of The General Case of Mycielski's Theorem

Force to add a perfect set of mutually generic Cohen reals.
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Proof of The General Case of Mycielski’'s Theorem

In any extension, the interpretation of the Borel code of R is still an
equivalence relation with meager equivalence classes.
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Proof of The General Case of Mycielski's Theorem

Why? Because being an equivalence relation is a M} property, and the
equivalence classes being meager is equivalent to the relation itself being a
meager subset of X2, which is a X3 property about cg.
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Proof of The General Case of Mycielski's Theorem

Why? Because being an equivalence relation is a M} property, and the
equivalence classes being meager is equivalent to the relation itself being a
meager subset of X2, which is a X3 property about cg.

Fact (Kuratowski-Ulam Theorem)

If R C X? has the property of Baire and each section R, is meager, and R
is a meager subset of X?

Fact

“Meager(R)" < Jclosed sets C1, Ca, ... each nowhere dense, such that
R CU; G.
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Proof of The General Case of Mycielski's Theorem

Why? Because being an equivalence relation is a M} property, and the
equivalence classes being meager is equivalent to the relation itself being a
meager subset of X2, which is a X3 property about cg.

Fact (Kuratowski-Ulam Theorem)

If R C X? has the property of Baire and each section R, is meager, and R
is a meager subset of X?

Fact

“Meager(R)" < Jclosed sets C1, Ca, ... each nowhere dense, such that
R CU; G.
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Proof continued

Now consider an arbitrary Cohen real ¢ in that perfect set.
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Proof continued

Already in the intermediate extension V|[c], the equivalence class [c]g is

meager. Also [c]g C F for an F, meager set F, by the usual properties of
Baire category.

54 /86



Proof continued

Since F is coded in V[c], any Cohen real over V|[c] will not be F, by
Solovay's characterization of Cohen-genericity.
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Proof continued

This includes all Cohen reals on that perfect tree added by the forcing (by
mutual genericity). Therefore, any two such Cohen reals are
R-inequivalent, and there is a perfect set of them.
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Proof continued

Finally, the statement that there is a perfect tree, any two branches of
which are R-inequivalent, is £3 in the code of R and hence absolute to V.
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More applications in Borel equivalence relations

Theorem

There is no Borel function F : 2* — 2“ such that xEpy < F(x) = F(y),
where Eqg is the equivalence relation of being different in only finitely many
places.
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More applications in Borel equivalence relations

Theorem

There is no Borel function F : 2* — 2“ such that xEpy < F(x) = F(y),
where Eqg is the equivalence relation of being different in only finitely many
places.

In the language of Borel equivalence relations: Ey £g=. (=<p Eg follows
from Mycielski above.)
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Proof.

Suppose towards a contradiction that F is a Borel reduction
(xEoy < F(x) = F(y)). and let b be its Borel code

60. g{ﬂ
!




Proof.

Now force to add a Cohen real c. In V|c]|, the function F* coded by bg
still has the same properties as in the assumption of the theorem, by
Mi-absoluteness.

]



Proof.

But now in V[c], the image w = F*(c) of the Cohen real under this map
remains the same regardless finite changes to ¢, which implies the value of
w is already decided by the weakest condition. (For each n, 11 w(n) =0
or1lIFw(n)=1)

]



Proof.

Why? Suppose not, then pick two incomparable conditions s, t of equal
length such that s IF w(n) =0, tI- w(n) = 1. For any Cohen real
extending s, the same tail extending t is another Cohen real. But these two
Cohen reals will be mapped to different images, contradicting that F maps
finitely-different reals to the same real.

]



Proof.

So w is already in the ground model, and so its pre-image F~1(w) will
contain a real that differs from a Cohen real in only finitely many places.
But this is impossible, as the Cohen real is generic over the ground

model. 64;‘86



Theorem (Sierpinski 1917, the first result of Borel non-reducibility)

There is no Borel function F : R — R such that
x—y€Q& F(x) = F(y).
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Theorem (Sierpinski 1917, the first result of Borel non-reducibility)

There is no Borel function F : R — R such that
x—yeQ& F(x)=F(y).

Soit maintenant # un nombre réel donné. Designons par F(z) ’en-
semble de tous les nombres #+r, r étant un nombre rationnel quelconque:
on voit sans peine que ce sera un ensemble dénombrable et que nous
aurons toujours E(z) = E(s') pour x—a' rationnel et E(z) # F(z') pour
x—x" irrationnel.

A tout nombre réel donné x correspondra donc¢ un nombre réel
¢(x) = f[E(w)], et il suit des propriétés de K(z) et f(¥) que nous aurons
@(2) = @(2’) pour z— 2’ rationnel et ¢(z) # ¢(2’) pour #— 2’ irrationnel.

Or, je dis que toute fonction ¢(x) jouissant de cette propriété est non
mesurable (1).
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Theorem (Sierpinski 1917, the first result of Borel non-reducibility)

There is no Borel function F : R — R such that
x—y€eQ& F(x)=F(y).

Same proof as before, except we prove that 1 decides all the rational
intervals of w = F*(c).
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One more application in Borel equivalence relations

Theorem (Friedman-Stanley jump of =)

There is no uniform Borel diagonalizer. That is, there is no Borel function
F : RN — R, such that for all g € RY, and all n € w, we have
F(f) # f(n); and that ifran f =rang, then F(f) = F(g).
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One more application in Borel equivalence relations

Theorem (Friedman-Stanley jump of =)

There is no uniform Borel diagonalizer. That is, there is no Borel function
F : RN — R, such that for all g € RY, and all n € w, we have
F(f) # f(n),; and that ifranf =ran g, then F(f) = F(g).

In words: Cantor’s diagonalization cannot be performed in a Borel way that
respects permutations of the given sequece. Or in slightly imprecise words,

there's no Borel way to diagonalize out of any given countable set of reals

(because ran(f) = ran(g) means f and g enumerate the same set).
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One more application in Borel equivalence relations

Theorem (Friedman-Stanley jump of =)

There is no uniform Borel diagonalizer. That is, there is no Borel function
F : RN — R, such that for all g € RN, and all n € w, we have
F(f) # f(n); and that ifran f =rang, then F(f) = F(g).

Proof. |

Suppose towards a contradiction that there is such a Borel map F. Forcing
with Col(w, R) to make the ground model reals countable, let f and g be
mutually generic. In V[f][g], the re-interpreted map F* still satisfies the
assumption by absoluteness. But since f and g enumerate the same set of
reals (i.e., the ground model reals), we have that F*(f) = F*(g), which
implies that z := F*(f) = F*(g) belongs to both V[f] and V[g]. By
Solovay's lemma on intersection of extensions from mutual generics, we
obtain that z € V, which is a contradiction since F is suppose to
diagonalize out of the ground model reals. Ol
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One more application in Borel equivalence relations

Theorem |

There is no uniform Borel diagonalizer. That is, there is no Borel function
F : RN — R, such that for all g € RY, and all n € w, we have
F(f) # f(n), and that ifranf =ran g, then F(f) = F(g).

Proof. |

Suppose towards a contradiction that there is such a Borel map F. Forcing
with Col(w, R) to make the ground model reals countable, let f and g be
mutually generic. In V[f][g], the re-interpreted map F* still satisfies the
assumption by absoluteness. But since f and g enumerate the same set of
reals (i.e., the ground model reals), we have that F*(f) = F*(g), which
implies that z := F*(f) = F*(g) belongs to both V[f] and V|[g]. A lemma
by Solovay says V[f] N V[g] = V, so we obtain that z € V, which is a
contradiction since F is suppose to diagonalize out of the ground model
reals. Ol
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One more application in Borel equivalence relations

Theorem

There is no uniform Borel diagonalizer. That is, there is no Borel function
F : RN — R, such that for all g € RY, and all n € w, we have
F(f) # f(n); and that ifranf =ran g, then F(f) = F(g).

Remark

The non-forcing proof uses Baire category theorem, but with RY, where

undertildeR is the reals with discrete topology. This is somewhat artificial
and unnatural.
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Theorem
IfACR is X1, then A is measurable.

Proof.

For notational simplicity, we work with the Boolean-value approach to
forcing. Force with the (separative quotient of) B/Null.
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Theorem
IfACR is X1, then A is measurable.

Proof.

Suppose A := {x € R | ¢(x,a)}, where ¢ is ¥} and a € R. Let X be a G;
such that its equivalence class [X] in the random forcing algebra is equal to
the Boolean value [p(#,3)]. (X can be assumed to be G5 because of
general properties of Lebesgue measure.)
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Proof continued

Claim: u(XAA) = 0. (This is just the equivalent formulation of the
measurability of A.)
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Proof continued

Claim: u(XAA) = 0. (This is just the equivalent formulation of the
measurability of A.)

To see the claim, assume towards a contradiction that, say, B = A~ X has

positive outer measure (the case where X . A has positive outer measure is
similar).
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Proof continued

Claim: u(XAA) = 0. (This is just the equivalent formulation of the
measurability of A.)

Then there is a real r € B random over some countable elementary
submodel M of some V|, large enough (so that it reflects the relevant facts
and that V; F [R \ X] IF —¢(F, 8)), with a, A, X € M. Notice that [B] is a
stronger condition than [R \ X].
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Proof continued

Claim: u(XAA) = 0. (This is just the equivalent formulation of the
measurability of A.)

Now, letting N be the transitive collapse of M, we have N[r] F ¢(r, a),
since r € A by assumption and Y1 formulas are absolute between V' and
N[r]. But this last fact contradicts that M E [B] I —¢(F, &), because with
r € B we would also have N[r] E —p(r, a).

78 /86



Theorem

Let WO be the set of reals coding well-orderings. Let A C 2% be a choice
set from the following partition on WO:

xEy < x,y code well-orderings of the same ordertype

Then A is measurable. In fact A has measure zero.

Metamathematical Proof, Fenstad-Normann 1972.
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Theorem

Let WO be the set of reals coding well-orderings. Let A C 2% be a choice
set from the following partition on WO:

xEy < x,y code well-orderings of the same ordertype

Then A is measurable. In fact A has measure zero.

Metamathematical Proof, Fenstad-Normann 1972.

Let M be an arbitrary countable transitive model of (enough of) ZFC. So
A= Wp U Wy, where Wy codes the ordinals in M and W; codes those not
in M.
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Theorem |

Let WO be the set of reals coding well-orderings. Let A C 2% be a choice
set from the following partition on WO:

xEy < x,y code well-orderings of the same ordertype

Then A is measurable. In fact A has measure zero.

Metamathematical Proof, Fenstad-Normann 1972.

Now, W is a countable set of reals, and hence has measure zero.
Next we show W; can be covered by a countable union of measure zero
sets, which implies that A has measure zero.
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Theorem

Let WO be the set of reals coding well-orderings. Let A C 2% be a choice
set from the following partition on WO:

xEy < x,y code well-orderings of the same ordertype

Then A is measurable. In fact A has measure zero.

Metamathematical Proof, Fenstad-Normann 1972.

Consider random forcing over M. We claim that any real r € W; will be
non-random over M.
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Theorem

Let WO be the set of reals coding well-orderings. Let A C 2% be a choice
set from the following partition on WO:

xEy < x,y code well-orderings of the same ordertype

Then A is measurable. In fact A has measure zero.

Metamathematical Proof, Fenstad-Normann 1972.

If it were, then M[r] is a generic extension of M,
which would have the same ordinals as M, and hence the ordinal coded by
ris in M, contradicting that r € Wj.

J
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Metamathematical proof, continued.

Now since each r € W fails to be random over M, by Solovay's
characterization of random-genericity, r belongs to a measure zero Gy set
coded in M. But there can be only countably many such sets, so W is
covered by a countable union of measure zero sets. Ol
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Classical Proof, Luzin & Sierpinski 1918. |

This proof was originally phrased in the theory of sieves and constituents.
First notice that WO = |J,,_,,, Pa, where P, is the (Borel) set of reals
coding well-ordering of type a. Second, since WO is M3, it is measurable.
And by usual properties of Lebesgue measure, WO =J .. N U M,, where
N has measure zero and each M, is closed.

By Z%—boundedness, each M, is bounded in WO. Write o, as the least
upper bound of (the ordinals coded in) M,. Note that this implies that for
all 8> oy, we have M, N Ps = (). In other words, M, = U, .., Mn N Pa.
But now observe that, since P, N A only has a single element, M, N A is at
most countable and hence measure zero. Therefore,

new

A=ANWO
= JAnnuAnM,)

new
This writes A as a countable union of measure zero sets, and hence A has
measure zero. D/
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3 philosophical questions

@ Are the metamathematical proofs really different from the classical
proofs?

@ For proofs crucially using absoluteness, can a structuralist ("l don't
care what ordinals really are") recover the mathematical content?

© Some proofs make substantial use of countable transitive models. Can
a non-ctm understanding of forcing recover the same results?
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