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Background Motivating Question

When can we say two proofs really use different methods?
E.g., Halmos: nonstandard methods are just a matter of taste, no new
mathematical insights.

Classic philosophical references
Dawson (2006) Why do mathematicians re-prove theorems?
Later turned into a book: Dawson (2015) Why Prove it Again?:
Alternative Proofs in Mathematical Practice
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My goal with this work

1 To survey and classify proofs using metamathematical methods in
DST (we will focus on this)

2 To determine about whether these really use different methods than
classical proofs (won’t do much of this today, but nice to think about)
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How do these proofs work

Basic Tools
Forcing
Solovay-type characterizations
Complexity calculation
Borel codes
Absoluteness
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Complexity in second-order arithmetic

Definition
A formula A(x) is Σ1

1 iff A(x) is equivalent to a formula of the form
∃y∀nR(x , y , n), where R is a computable relation, y ranges over {subset of
naturals, reals, functions from naturals to naturals, etc}, and n ranges over
naturals. It’s Π1

1 iff its negation is Σ1
1.
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Definition
A formula A(x) is Σ1

1 iff A(x) is equivalent to a formula of the form
∃y∀nR(x , y , n), where R is a computable relation, y ranges over {subset of
naturals, reals, functions from naturals to naturals, etc}, and n ranges over
naturals. It’s Π1

1 iff its negation is Σ1
1.

Example (Luzin, 1927)
Consider the space (ω ∖ {0})ω. This is the space of sequences of positive
integers. Define a subset A of the space as follows:

A(x) ⇔ ∃n0 < n1 < n2 < ...x(ni ) divides x(ni+1)

In other words, x ∈ A iff there is some increasing y ∈ (ω ∖ {0})ω such that
for all i ∈ ω, we have x(y(i)) divides x(y(i + 1)). This is Σ1

1, because the
relation “y(m) > y(m + 1) ∧ x(y(n)) | x(y(n + 1))”, with free variables
(x , y ,m, n), is computable.
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Complexity in second-order arithmetic

Definition
A formula A(x) is Σ1

1 iff A(x) is equivalent to a formula of the form
∃y∀nR(x , y , n), where R is a computable relation, y ranges over {subset of
naturals, reals, functions from naturals to naturals, etc}, and n ranges over
naturals. It’s Π1

1 iff its negation is Σ1
1.

Example (Well-founded trees)

The set of f ∈ 2ω coding well-founded trees or well-orderings is Π1
1: “f

codes a tree and every attempt g to trace a infinite descending path in f
fails”.
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Fact
A Σ1

1 sentence is true if and only if a particular tree is ill-founded.
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Fact
A Σ1

1 sentence is true if and only if a particular tree is ill-founded.

Well-foundedness is ∆1 (in the language of set theory):

R is well-founded on X ↔ (∀Y ⊆ X )(Y has a minimal element)
↔ (∃f : Ord → X )(f is order-preserving with respect to R)
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Fact
A Σ1

1 sentence is true if and only if a particular tree is ill-founded.

Corollary (Mostowski Absolutenesss)

Σ1
1 and Π1

1 are absolute between transitive models of enough set theory.
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A challenge to the structuralist...

Corollary (Mostowski Absolutenesss)

Σ1
1 and Π1

1 are absolute between transitive models of enough set theory.

A philosophical question
This above follows from having a ∆1 characterization of well-foundedness.
The Σ1 part depends crucially the ability to express the notion of an ordinal
in a ∆0 way. This relies on having the von Neumann definition of an
ordinal. But in principle (according to the structuralist) it shouldn’t matter
what the ordinals really are. So here’s a challenge: can a structuralist
recover the mathematical content in Mostowski Absoluteness?
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A warmup

Theorem
There are incomparable Turing degrees.

Proof.
First observe that total comparability of Turing degrees implies the
continuum hypothesis: (R,≤T ) would be a linear order with only countable
initial segments. This makes |R| = ω1.
Now force to get ¬CH. In V [G ] we have incomparable reals. But “there
exists x , y ∈ R s.t. x ̸≤T y ∧ y ̸≤T x” is Σ1

1, and so it is absolute and
holds in V too.

14 / 86



A warmup

Theorem
There are incomparable Turing degrees.

Proof.
First observe that total comparability of Turing degrees implies the
continuum hypothesis: (R,≤T ) would be a linear order with only countable
initial segments. This makes |R| = ω1.
Now force to get ¬CH. In V [G ] we have incomparable reals. But “there
exists x , y ∈ R s.t. x ̸≤T y ∧ y ̸≤T x” is Σ1

1, and so it is absolute and
holds in V too.

15 / 86



A warmup

Theorem
There are incomparable Turing degrees.

Proof.
First observe that total comparability of Turing degrees implies the
continuum hypothesis: (R,≤T ) would be a linear order with only countable
initial segments. This makes |R| = ω1.
Now force to get ¬CH. In V [G ] we have incomparable reals. But “there
exists x , y ∈ R s.t. x ̸≤T y ∧ y ̸≤T x” is Σ1

1, and so it is absolute and
holds in V too.

16 / 86



A warmup

Theorem
There are incomparable Turing degrees.

Proof.
First observe that total comparability of Turing degrees implies the
continuum hypothesis: (R,≤T ) would be a linear order with only countable
initial segments. This makes |R| = ω1.
Now force to get ¬CH. In V [G ] we have incomparable reals. But “there
exists x , y ∈ R s.t. x ̸≤T y ∧ y ̸≤T x” is Σ1

1, and so it is absolute and
holds in V too.

17 / 86



A warmup

Theorem
There are incomparable Turing degrees.

Proof.
First observe that total comparability of Turing degrees implies the
continuum hypothesis: (R,≤T ) would be a linear order with only countable
initial segments. This makes |R| = ω1.
Now force to get ¬CH. In V [G ] we have incomparable reals. But “there
exists x , y ∈ R s.t. x ̸≤T y ∧ y ̸≤T x” is Σ1

1, and so it is absolute and
holds in V too.

18 / 86



A warmup

Theorem
There are incomparable Turing degrees.

Proof.
First observe that total comparability of Turing degrees implies the
continuum hypothesis: (R,≤T ) would be a linear order with only countable
initial segments. This makes |R| = ω1.
Now force to get ¬CH. In V [G ] we have incomparable reals. But “there
exists x , y ∈ R s.t. x ̸≤T y ∧ y ̸≤T x” is Σ1

1, and so it is absolute and
holds in V too.

19 / 86



How to prove something is true by proving it is consistent

Reference: Kunen (2013). IV.5. The metamathematics of forcing

The ctm method
1 Take a large enough Hθ ≺1000 V and a countable M ≺ Hθ.
2 Force over M to get M[G ].
3 Use absoluteness between M and M[G ] to show that a statement is

true in M.
4 And use elementarity to go all the way back to V .
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How to prove something is true by proving it is consistent

Reference: Kunen (2013). IV.5. The metamathematics of forcing

The syntactic method
1 Define a relation ⊩∗.
2 Show that the relation satisfies all logical rules.
3 For each formula φ(x⃗) known to be absolute, show:
4 for every p and all sets a⃗: p ⊩∗ φ(⃗a) iff 1 ⊩∗ φ(⃗ǎ) iff φ(⃗a).
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How to prove something is true by proving it is consistent

Reference: Kunen (2013). IV.5. The metamathematics of forcing

The Boolean-valued method (“the naturalist account”)
For any complete Boolean algebre B, there is a definable elementary
embedding j : (V ,∈) ⪯ (V̄ , ∈̄), such that there is in V a V̄ -generic filter G
for j(B). So we have: V ⪯ V̄ ⊆ V̄ [G ].
Then prove that absolute statements are still absolute across V̄ ⊆ V̄ [G ]
(which might not be transitive).
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How to prove something is true by proving it is consistent

Reference: Kunen (2013). IV.5. The metamathematics of forcing

The ctm method
1 Take a large enough Hθ ≺1000 V and a countable M ≺ Hθ.
2 Force over M to get M[G ].
3 Use absoluteness between M and M[G ] to show that a statement is

true in M.
4 And use elementarity to go all the way back to V .

We adopt the ctm method for simplicity.
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Incomparable Turing degrees, proof 2

Proof 2.
Force to add two mutually generic Cohen reals c, d . Obviously c , d are
Turing-incomparable, because otherwise (say) c ≤T d would imply that
c ∈ V [d ], contradicting mutual genericity. And so the extension has
incomparable Turing degrees. Again, this is absolute to models of set
theory, and so it holds to begin with.
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Computability relative to large sets

Definition (Topological notion of largeness)
A set A ⊆ R is nowhere dense iff it’s not dense in any open interval.
Equivalently, (cl(A))o = ∅
A is meager iff it is a countable union of nowhere dense sets.
A is comeager iff its complement is meager.

Measure-Category Duality
meager :: measure zero
comeager :: full measure (measure 1 in the case of [0, 1] or Cantor space)
Property of Baire :: Lebesgue measurable
non-meager Borel :: positive measure
Reference: Oxtoby, Measure and Category

25 / 86



Computability relative to large sets

Definition (Topological notion of largeness)
A set A ⊆ R is nowhere dense iff it’s not dense in any open interval.
Equivalently, (cl(A))o = ∅
A is meager iff it is a countable union of nowhere dense sets.
A is comeager iff its complement is meager.

Measure-Category Duality
meager :: measure zero
comeager :: full measure (measure 1 in the case of [0, 1] or Cantor space)
Property of Baire :: Lebesgue measurable
non-meager Borel :: positive measure
Reference: Oxtoby, Measure and Category

26 / 86



Computability relative to large sets

Theorem
If x is computable relative to a comeager set of reals (i.e., its Turing cone
{y | x ≤T y} is comeager), then it is computable.

Lemma (Blass)
Let M be a countable transitive model of enough of ZFC, and let
x ∈ M ∩ R and c a Cohen real over M. If x ≤T c , then x is computable.

Proof of Lemma.
If x is computed by the Turing program Φc

e , then this fact also holds true
in M[c], and so by the forcing theorem this is forced by some condition p.
That is,

p ⊩ the ěth Turing program in the oracle ċ computes x̌

For any i ∈ ω we compute x(i) as follows: run Φs
e(i) for all the s

extending p. 27 / 86
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As soon as any of these computations halt, the output will be the correct
value of x(i).
This is because: if s0, s1 are two different nodes extending p and
Φs0
e (i) = 0 ̸= 1 = Φs1

e (i), then we can build two different filters G0 and G1
containing s0, s1 respectively.
Now M[G0] and M[G1] will both think x is computed by Φc

e (since both
filters contain p.) (Note that they will interpret c differently; but that
doesn’t matter.) So M[G0] thinks that x(i) = 0 and M[G1] thinks x(i) = 1.
But whatever x(i) is, this is an absolute fact about x ∈ M, so it should be
answered in the same way by all transitive models extending M.
Contradiction!
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Computability relative to large sets

Theorem
If x is computable relative to a comeager set of reals (i.e., its Turing cone
{y | x ≤T y} is comeager), then it is computable.

Lemma (Blass)
Let M be a countable transitive model of enough of ZFC, and let x be a
real in M and c a Cohen real over M. If x is computable relative to c , then
x is computable.

Fact (Solovay characterization of genericity)
Let M be a transitive model of enough set theory. Then c is Cohen-generic
over M iff it is not in any meager Fσ set coded in M. (Recall: every Borel
B set has a Borel code cB . The property of being a Borel code is Π1

1.)

Fact
When M is a ctm, the set of reals Cohen over M is comeager.
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Computability relative to large sets

Theorem
If x is computable relative to a comeager set of reals (i.e., its Turing cone
{y | x ≤T y} is comeager), then it is computable.

Lemma (Blass)
Let M be a countable transitive model of enough of ZFC, and let x be a
real in M and c a Cohen real over M. If x is computable relative to c , then
x is computable.

Proof of Theorem.
Let x be a real whose Turing cone is comeager. Let M ∋ x be a ctm of
enough set theory. Since the comeager sets form a filter, every comeager
set must contain Cohen reals over M, and so x is computable from a
Cohen real. By Blass’s lemma, it is computable.
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More absoluteness...

Definition
A sentence is Σ1

2 if it is equivalent to ∃xΦ, where Φ is Π1
1. It is Π1

2 iff its
negation is Σ1

2.

Equivalently, φ is Σ1
2 iff it is equivalent to a Σ1 sentence over H(ω1).

Theorem (Shoenfield Absoluteness)

Σ1
2 and Π1

2 are absolute across models with the same countable ordinals.

Very sketchy proof.
Via a Suslin representation, truth of Σ1

2 is again reduced to the
well-foundedness of certain trees.
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Mycielski’s Perfect Set Theorem

Theorem
Let R ⊆ X 2 be a Borel equivalence relation on a Polish space X , such that
each equivalence class is meager. Then there exists a perfect set of
pairwise inequivalent elements.

Corollary
R injects into R/Q, R/Tur , etc...
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Special Case of R/Q

Proof:
Force to add a perfect set of mutually generic Cohen reals.
In the extension, the perfect set of Cohen reals are all Vitali-inequivalent.
But “There is a perfect tree whose branches are pairwise Vitali-inequivalent”
is Σ1

2. By Shoenfield absoluteness this holds to begin with.
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Proof of The General Case of Mycielski’s Theorem

Force to add a perfect set of mutually generic Cohen reals.
In any extension, the interpretation of the Borel code of R is still an
equivalence relation with meager equivalence classes.
Why? Because being an equivalence relation is a Π1

1 property, and the
equivalence classes being meager is equivalent to the relation itself being a
meager subset of X 2, which is a Σ1

2 property about cR .

Fact (Kuratowski-Ulam Theorem)

If R ⊆ X 2 has the property of Baire and each section Rx is meager, and R
is a meager subset of X 2

Fact
“Meager(R)” ⇔ ∃closed sets C1,C2, ... each nowhere dense, such that
R ⊆

⋃
i Ci .
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Proof continued

Now consider an arbitrary Cohen real c in that perfect set.
Already in the intermediate extension V [c], the equivalence class [c]R is
meager. Also [c]R ⊆ F for an Fσ meager set F , by the usual properties of
Baire category.
Since F is coded in V [c], any Cohen real over V [c] will not be F , by
Solovay’s characterization of Cohen-genericity.
This includes all Cohen reals on that perfect tree added by the forcing (by
mutual genericity). Therefore, any two such Cohen reals are
R-inequivalent, and there is a perfect set of them.
Finally, the statement that there is a perfect tree, any two branches of
which are R-inequivalent, is Σ1

2 in the code of R and hence absolute to V .
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This includes all Cohen reals on that perfect tree added by the forcing (by
mutual genericity). Therefore, any two such Cohen reals are
R-inequivalent, and there is a perfect set of them.
Finally, the statement that there is a perfect tree, any two branches of
which are R-inequivalent, is Σ1

2 in the code of R and hence absolute to V .
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More applications in Borel equivalence relations

Theorem
There is no Borel function F : 2ω → 2ω such that xE0y ⇔ F (x) = F (y),
where E0 is the equivalence relation of being different in only finitely many
places.

In the language of Borel equivalence relations: E0 ̸≤B=. (=≤B E0 follows
from Mycielski above.)
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Proof.
Suppose towards a contradiction that F is a Borel reduction
(xE0y ⇔ F (x) = F (y)). and let bF be its Borel code
Now force to add a Cohen real c . In V [c], the function F ∗ coded by bF
still has the same properties as in the assumption of the theorem, by
Π1

1-absoluteness.
But now in V [c], the image w = F ∗(c) of the Cohen real under this map
remains the same regardless finite changes to c , which implies the value of
w is already decided by the weakest condition. (For each n, 1 ⊩ w(n) = 0
or 1 ⊩ w(n) = 1)
Why? Suppose not, then pick two incomparable conditions s, t of equal
length such that s ⊩ w(n) = 0, t ⊩ w(n) = 1. For any Cohen real
extending s, the same tail extending t is another Cohen real. But these two
Cohen reals will be mapped to different images, contradicting that F maps
finitely-different reals to the same real.
So w is already in the ground model, and so its pre-image F−1(w) will
contain a real that differs from a Cohen real in only finitely many places.
But this is impossible, as the Cohen real is generic over the ground
model.
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Theorem (Sierpiński 1917, the first result of Borel non-reducibility)
There is no Borel function F : R → R such that
x − y ∈ Q ⇔ F (x) = F (y).
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Theorem (Sierpiński 1917, the first result of Borel non-reducibility)
There is no Borel function F : R → R such that
x − y ∈ Q ⇔ F (x) = F (y).

Same proof as before, except we prove that 1 decides all the rational
intervals of w = F ∗(c).
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One more application in Borel equivalence relations

Theorem (Friedman-Stanley jump of =)
There is no uniform Borel diagonalizer. That is, there is no Borel function
F : RN → R, such that for all g ∈ RN, and all n ∈ ω, we have
F (f ) ̸= f (n); and that if ran f = ran g , then F (f ) = F (g).
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Theorem (Friedman-Stanley jump of =)
There is no uniform Borel diagonalizer. That is, there is no Borel function
F : RN → R, such that for all g ∈ RN, and all n ∈ ω, we have
F (f ) ̸= f (n); and that if ran f = ran g , then F (f ) = F (g).

In words: Cantor’s diagonalization cannot be performed in a Borel way that
respects permutations of the given sequece. Or in slightly imprecise words,
there’s no Borel way to diagonalize out of any given countable set of reals
(because ran(f ) = ran(g) means f and g enumerate the same set).
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Theorem (Friedman-Stanley jump of =)
There is no uniform Borel diagonalizer. That is, there is no Borel function
F : RN → R, such that for all g ∈ RN, and all n ∈ ω, we have
F (f ) ̸= f (n); and that if ran f = ran g , then F (f ) = F (g).

Proof.
Suppose towards a contradiction that there is such a Borel map F . Forcing
with Col(ω,R) to make the ground model reals countable, let f and g be
mutually generic. In V [f ][g ], the re-interpreted map F ∗ still satisfies the
assumption by absoluteness. But since f and g enumerate the same set of
reals (i.e., the ground model reals), we have that F ∗(f ) = F ∗(g), which
implies that z := F ∗(f ) = F ∗(g) belongs to both V [f ] and V [g ]. By
Solovay’s lemma on intersection of extensions from mutual generics, we
obtain that z ∈ V , which is a contradiction since F is suppose to
diagonalize out of the ground model reals.
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There is no uniform Borel diagonalizer. That is, there is no Borel function
F : RN → R, such that for all g ∈ RN, and all n ∈ ω, we have
F (f ) ̸= f (n); and that if ran f = ran g , then F (f ) = F (g).

Proof.
Suppose towards a contradiction that there is such a Borel map F . Forcing
with Col(ω,R) to make the ground model reals countable, let f and g be
mutually generic. In V [f ][g ], the re-interpreted map F ∗ still satisfies the
assumption by absoluteness. But since f and g enumerate the same set of
reals (i.e., the ground model reals), we have that F ∗(f ) = F ∗(g), which
implies that z := F ∗(f ) = F ∗(g) belongs to both V [f ] and V [g ]. A lemma
by Solovay says V [f ] ∩ V [g ] = V , so we obtain that z ∈ V , which is a
contradiction since F is suppose to diagonalize out of the ground model
reals.
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One more application in Borel equivalence relations

Theorem
There is no uniform Borel diagonalizer. That is, there is no Borel function
F : RN → R, such that for all g ∈ RN, and all n ∈ ω, we have
F (f ) ̸= f (n); and that if ran f = ran g , then F (f ) = F (g).

Remark
The non-forcing proof uses Baire category theorem, but with R˜N, where
undertildeR is the reals with discrete topology. This is somewhat artificial
and unnatural.
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Theorem
If A ⊆ R is Σ˜1

1, then A is measurable.

Proof.
For notational simplicity, we work with the Boolean-value approach to
forcing. Force with the (separative quotient of) B/Null.
Suppose A := {x ∈ R | φ(x , a)}, where φ is Σ1

1 and a ∈ R. Let X be a Gδ

such that its equivalence class [X ] in the random forcing algebra is equal to
the Boolean value Jφ(ṙ , ǎ)K. (X can be assumed to be Gδ because of
general properties of Lebesgue measure.)
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the Boolean value Jφ(ṙ , ǎ)K. (X can be assumed to be Gδ because of
general properties of Lebesgue measure.)

74 / 86



Proof continued

Claim: µ(X△A) = 0. (This is just the equivalent formulation of the
measurability of A.)
To see the claim, assume towards a contradiction that, say, B = A∖ X has
positive outer measure (the case where X ∖A has positive outer measure is
similar).
Then there is a real r ∈ B random over some countable elementary
submodel M of some Vκ large enough (so that it reflects the relevant facts
and that Vκ ⊨ [R∖ X ] ⊩ ¬φ(ṙ , ǎ)), with a,A,X ∈ M. Notice that [B] is a
stronger condition than [R∖ X ].
Now, letting N be the transitive collapse of M, we have N[r ] ⊨ φ(r , a),
since r ∈ A by assumption and Σ1

1 formulas are absolute between V and
N[r ]. But this last fact contradicts that M ⊨ [B] ⊩ ¬φ(ṙ , ǎ), because with
r ∈ B we would also have N[r ] ⊨ ¬φ(r , a).
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Theorem
Let WO be the set of reals coding well-orderings. Let A ⊆ 2ω be a choice
set from the following partition on WO:

xEy ⇔ x , y code well-orderings of the same ordertype

Then A is measurable. In fact A has measure zero.

Metamathematical Proof, Fenstad-Normann 1972.
Let M be an arbitrary countable transitive model of (enough of) ZFC. So
A = W0 ∪W1, where W0 codes the ordinals in M and W1 codes those not
in M. Now, W0 is a countable set of reals, and hence has measure zero.
Next we show W1 can be covered by a countable union of measure zero
sets, which implies that A has measure zero.
Consider random forcing over M. We claim that any real r ∈ W1 will be
non-random over M. If it were, then M[r ] is a generic extension of M,
which would have the same ordinals as M, and hence the ordinal coded by
r is in M, contradicting that r ∈ W1.
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Metamathematical proof, continued.
Now since each r ∈ W1 fails to be random over M, by Solovay’s
characterization of random-genericity, r belongs to a measure zero Gδ set
coded in M. But there can be only countably many such sets, so W1 is
covered by a countable union of measure zero sets.
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Classical Proof, Luzin & Sierpiński 1918.
This proof was originally phrased in the theory of sieves and constituents.
First notice that WO =

⋃
α<ω1

Pα, where Pα is the (Borel) set of reals
coding well-ordering of type α. Second, since WO is Π1

1, it is measurable.
And by usual properties of Lebesgue measure, WO =

⋃
n∈ω N ∪Mn, where

N has measure zero and each Mn is closed.
By Σ1

1-boundedness, each Mn is bounded in WO. Write αn as the least
upper bound of (the ordinals coded in) Mn. Note that this implies that for
all β > αn, we have Mn ∩ Pβ = ∅. In other words, Mn =

⋃
α<αn

Mn ∩ Pα.
But now observe that, since Pα ∩ A only has a single element, Mn ∩ A is at
most countable and hence measure zero. Therefore,

A = A ∩WO

=
⋃
n∈ω

(A ∩ N) ∪ (A ∩Mn)

This writes A as a countable union of measure zero sets, and hence A has
measure zero.

85 / 86



3 philosophical questions

1 Are the metamathematical proofs really different from the classical
proofs?

2 For proofs crucially using absoluteness, can a structuralist (“I don’t
care what ordinals really are”) recover the mathematical content?

3 Some proofs make substantial use of countable transitive models. Can
a non-ctm understanding of forcing recover the same results?
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