Variants of the Pigeonhole Principle in Fragments of Arithmetic

Wang Wei

Sun Yat-sen University

2024/4/27, Fudan University

Models of Arithmetic

Models of (first order Peano) Arithmetic are structures like $(\mathbb{N}, 0,1,+, \times,<)$ satisfying certain axioms.

Like groups/rings/fields/vector spaces etc., models of arithmetic are just some abstract mathematical structures.

But from logicians' perspectives, these structures are interesting

- allow formalization of metamathematics, so that we can study metamathematics in mathamtical ways;
- related to axiomatic theory of truth (e.g., works of Halbach, Fujimoto, Parsons);
- connected to other areas in mathematical logic, like computability theory and reverse mathematics;

Standard and Non-standard Models (of Arithmetic)

($\mathbb{N}, 0,1,+, \times,<$) is called the standard model (of arithmetic). All other models (of arithmetic) are called non-standard models.

Non-standard models could look very wierd. A particularly wierd-looking kind of models are κ-like (κ is a cardinal) models, which are $(M, 0,1,+, \times,<)$ s.t.

- $|M|$ (the size of M) is κ;
- $|\{b \in M: b<a\}|<\kappa$ for all $a \in M$.

Axiomatizing κ-like Models

Let $\mathcal{M}=(M, 0,1,+, \times,<)$ be a model. For $a, b \in M$, let

$$
[a, b]=\{c \in M: a \leq c \leq b\} .
$$

Theorem (Richard Kaye, 1995)

Let $\mathcal{M}=(M, 0,1,+, \times,<)$ be a model.
(1) \mathcal{M} is κ like, iff its maximal second order expansion satisfies CARD_{2}, which states that there is no 1-1 map sending M into $[0, a]$ for any $a \in M$.
(2) \mathcal{M} is κ like for some limit cardinal κ, iff its maximal second order expansion satisfies GPHP_{2}, which states that for any $a \in M$ there is $b \in M$ s.t. there is no 1-1 map sending $[0, b]$ into $[0, a]$.

More Details about Arithmetic

The usual first-order axiomatization of arithmetic is called PA (for Peano Arithmetic), which includes infinitely many 'axioms'.

Theorem (Paris and Kirby, 1978)
PA is not finitely axiomatizible, i.e., PA is not equivalent to any finite set of (first-order) 'axioms'.

The First-Order Part of GPHP 2

Let GPHP be the first-order part of GPHP_{2} which consists of infinitely many axioms.

Theorem (Richard Kaye, 1997)
PA is not equivalent to any finite set of axioms plus GPHP.

To prove the theorem above, Kaye constructs κ-like models with κ being singular. This may seem very interesting, because 'moderately' large infinity is involved in solving some 'elementary' problem of arithmetic.

Fragments

Sometimes, PA and GPHP are too powerful for subtle questions. So we need refinement.

- Σ_{n}-induction $\left(I \Sigma_{n}\right)$ is mathematical induction restricted to Σ_{n}-definable sets.
- Σ_{n}-bounding $\left(B \Sigma_{n}\right)$: Suppose that $R(x, y)$ is a Σ_{n}-definable binary relation and ($M, 0,1,+, \times,<$) is a model. Then every $a \in M$ corresponds to some $b \in M$, s.t., if for every $c<a$ there is d with $R(c, d)$ holds, then for every $c<a$ there is $d<b$ with $R(c, d)$ holds.
- Σ_{n} - PHP: There is no Σ_{n}-definable 1-1 map $[0, b+1] \rightarrow[0, b]$.
- Σ_{n} - CARD ($\Sigma_{n}-$ GPHP) is CARD (resp. GPHP) restricted to Σ_{n}-definable maps.

Relations between Fragments

```
Theorem
Over \(\mathrm{PA}^{-}+I \Sigma_{1}\),
    - (Paris and Kirby, 1978) \(I \Sigma_{n+1}\) implies \(B \Sigma_{n+1}\)
        \(\left(I \Sigma_{n+1} \vdash B \Sigma_{n+1}\right)\) and \(B \Sigma_{n+1} \vdash I \Sigma_{n}\).
    - (Dimitracopoulos and Paris, 1986) \(B \Sigma_{n+1}\) is equivalent to
        \(\Sigma_{n+1}\) - PHP;
    - (Kaye, 1995) \(I \Sigma_{n} \nvdash \Sigma_{n+1}-\) CARD for \(n>0\).
    - (Kaye, 1997) \(B \Sigma_{n}+\operatorname{GPHP} \nvdash I \Sigma_{n}\) for \(n>0\).
```


Quetion (Kaye, 1995)

Does CARD imply GPHP over $\mathrm{PA}^{-}\left(+I \Sigma_{1}\right)$?

This is a question that I am going to address later.

A Fragment of CARD in Reverse Math

$\Sigma_{2}-$ CARD has proved useful in reverse mathematics. E.g.,

Theorem

(1) (Seetapun and Slaman, 1995) $\mathrm{RCA}_{0}+\mathrm{RT}_{2}^{2} \vdash \Sigma_{2}-\mathrm{CARD}$.
(2) (Conidis and Slaman, 2013) $\mathrm{RCA}_{0}+\mathrm{RRT}_{2}^{2} \vdash \Sigma_{2}-$ CARD.

So, neither $R T_{2}^{2}$ nor $R R T_{2}^{2}$ is arithmetically conservative over RCA_{0}.

$\Sigma_{n}-$ GPHP vs. $\Sigma_{n}-$ CARD

Theorem (WW)

$$
\mathrm{PA}^{-}+I \Sigma_{n}+\Sigma_{n+1}-\mathrm{CARD} \nvdash \Sigma_{n+1}-\mathrm{GPHP} .
$$

$\Sigma_{n}-$ GPHP vs. $\Sigma_{n}-$ CARD: A Lemma

Lemma

Let M be a model of $\mathrm{PA}^{-}+I \Sigma_{n}$ for some $n>0$. Suppose that

- There exists a Σ_{n+1}^{M}-injection from M into some $a \in M$;
- $N=M[c]$ for some $c<a \in M$;
- and N is a Σ_{n+1}-elementary cofinal extension of M.

Then there also exists a Σ_{n+1}^{N}-injection from N into a.

$\Sigma_{n}-$ GPHP vs. $\Sigma_{n}-$ CARD: The Model

Let $M \models \mathrm{PA}^{-}+I \Sigma_{n}+\neg C \Sigma_{n+1}$ be countable. Fix $a \in M$ and a Σ_{n+1}^{M}-definable 1-1 map $f: M \rightarrow[0, a]$. Also fix $\left(b_{k}: k \in \mathbb{N}\right)$ cofinal in M.

$\Sigma_{n}-$ GPHP vs. $\Sigma_{n}-$ CARD: The Model

Let $M \models \mathrm{PA}^{-}+I \Sigma_{n}+\neg C \Sigma_{n+1}$ be countable. Fix $a \in M$ and a Σ_{n+1}^{M}-definable 1-1 map $f: M \rightarrow[0, a]$. Also fix $\left(b_{k}: k \in \mathbb{N}\right)$ cofinal in M.

We build a sequence $\left(M_{k}: k \in \mathbb{N}\right)$ s.t.
(1) $M_{0}=M$;
(2) $M_{k+1}=M_{k}\left[c_{k}\right]$ is a Σ_{n+1}-elementary cofinal extension of M_{k};
(3) $\left[0, b_{k}\right]^{M_{k}}=\left[0, b_{k}\right]^{M_{k+1}}$;
(4) For each k, there is a Σ_{n+1}-definable 1-1 map $f_{k}: M_{k} \rightarrow[0, a]$;
(5) If $\varphi(x, y)$ is a $\Sigma_{n+1}^{M_{k}}$-formula defining a 1-1 map $M_{k} \rightarrow[0, a]$ then there is $j>k$ s.t. $M_{j} \models \forall y \neg \varphi\left(d_{j}, y\right)$ for some $d_{j} \in M_{j}$.

Let $N=\bigcup_{k \in \mathbb{N}} M_{k}$.
Then $N \models \mathrm{PA}^{-}+I \Sigma_{n}+\Sigma_{n}-\mathrm{CARD}+\neg \Sigma_{n}-\mathrm{GPHP}$.

