Possibilities and Actuality

Yifeng Ding, joint work with Wesley Holliday 2024/04/27

Stupid; just look around!

Stupid; just look around!

Sure..., but are there any other possible world?

Stupid; just look around!

Sure..., but are there any other possible world?

This question is reasonable since modern philosophy is littered with 'possible-world' talks.

The set-theoretical formal semantics of 'possibly' using a set W of 'worlds' and a relation R on W of 'accessibility' is hugely successful.

The set-theoretical formal semantics of 'possibly' using a set W of 'worlds' and a relation R on W of 'accessibility' is hugely successful.

" 'Possibly φ ' is true if and only if there is a possible world w' in/on/at which φ is true."

The set-theoretical formal semantics of 'possibly' using a set W of 'worlds' and a relation R on W of 'accessibility' is hugely successful.

" 'Possibly φ' is true if and only if there is a possible world w' in/on/at which arphi is true." $\mathcal{M}, w \models \Diamond arphi \Leftrightarrow \exists w' \in R(w), \mathcal{M}, w' \models arphi$

The set-theoretical formal semantics of 'possibly' using a set W of 'worlds' and a relation R on W of 'accessibility' is hugely successful.

" 'Possibly φ ' is true if and only if there is a possible world w' in/on/at which φ is true."

$$\mathcal{M},w\models\Diamondarphi\Leftrightarrow\exists w'\in R(w),\mathcal{M},w'\modelsarphi$$

Oftentimes, we simply accept the most successful theories so that their existential sentences are merged into our ordinary language and becomes meaningful and true.

The set-theoretical formal semantics of 'possibly' using a set W of 'worlds' and a relation R on W of 'accessibility' is hugely successful.

" 'Possibly φ ' is true if and only if there is a possible world w' in/on/at which φ is true."

$$\mathcal{M},w\models\Diamondarphi\Leftrightarrow\exists w'\in R(w),\mathcal{M},w'\modelsarphi$$

Oftentimes, we simply accept the most successful theories so that their existential sentences are merged into our ordinary language and becomes meaningful and true.

'Possible worlds semantics' is a little different.

We want to be less commital on what could count as possible worlds and focus on a consequence of 'possible worlds semantics' taken literally.

We want to be less commital on what could count as possible worlds and focus on a consequence of 'possible worlds semantics' taken literally.

Thesis

'World propositions are possible and maximally specific propositions.'

We want to be less commital on what could count as possible worlds and focus on a consequence of 'possible worlds semantics' taken literally.

Thesis

'World propositions are possible and maximally specific propositions.'

'Whatever is possible is possible is entailed by a world proposition.'

We want to be less commital on what could count as possible worlds and focus on a consequence of 'possible worlds semantics' taken literally.

Thesis

'World propositions are possible and maximally specific propositions.'

'Whatever is possible is possible is entailed by a world proposition.'

$$egin{aligned} W(arphi) &:= \Diamond arphi \wedge orall r(\Box(arphi o r) \lor \Box(arphi o
eg r)) \ (ext{WP}) \ orall p(\Diamond p o \exists q(W(q) \land \Box(q o p))) \end{aligned}$$

On the other hand, if we accept (WP) in a minimal theory where we can quantify over propositions, we can use world propositions to *interpret* worlds.

On the other hand, if we accept (WP) in a minimal theory where we can quantify over propositions, we can use world propositions to *interpret* worlds.

Our goal:

• present a argument for (WP);

On the other hand, if we accept (WP) in a minimal theory where we can quantify over propositions, we can use world propositions to *interpret* worlds.

Our goal:

- present a argument for (WP);
- point out where we don't like it;

On the other hand, if we accept (WP) in a minimal theory where we can quantify over propositions, we can use world propositions to *interpret* worlds.

Our goal:

- present a argument for (WP);
- point out where we don't like it;
- present a formal model in which (WP) is false but also supports a reasonable theory.

• First, argue for $\Box \exists p(p \land W(p))$.

- First, argue for $\Box \exists p(p \land W(p))$.
- Then, use logic in the so called S5II.

- First, argue for $\Box \exists p(p \land W(p))$.
- Then, use logic in the so called $\ensuremath{\mathsf{S5\Pi}}$.

To argue for $\Box \exists p(p \land W(p))$, we use plural quantification over propositions. One naïve way to understand it is:

- First, argue for $\Box \exists p(p \land W(p))$.
- Then, use logic in the so called $\mbox{S5}\Pi.$

To argue for $\Box \exists p(p \land W(p))$, we use plural quantification over propositions. One naïve way to understand it is:

• Certainly the actual world exists. From Humberstone's *From Worlds to Possibilities*:

but surely you acknowledge that the acutal world, at least, is a fully determinate possibility: it punctiformity is not open to question...

- First, argue for $\Box \exists p(p \land W(p))$.
- Then, use logic in the so called $\mbox{S5}\Pi.$

To argue for $\Box \exists p(p \land W(p))$, we use plural quantification over propositions. One naïve way to understand it is:

• Certainly the actual world exists. From Humberstone's *From Worlds to Possibilities*:

but surely you acknowledge that the acutal world, at least, is a fully determinate possibility: it punctiformity is not open to question...

• Then this is a necessary truth as we gave it a logical argument.

• Let A be the true propositions: $\forall p(A(p) \leftrightarrow p)$. (Plural comprehension)

- Let A be the true propositions: $\forall p(A(p) \leftrightarrow p)$. (Plural comprehension)
- Then trivially $orall p(A(p) o p)_{\otimes}$ and $orall p(A(p) \vee A(\neg p))$.

- Let A be the true propositions: $\forall p(A(p) \leftrightarrow p)$. (Plural comprehension)
- Then trivially $orall p(A(p) o p)_{\otimes}$ and $orall p(A(p) \vee A(\neg p))$.
- $(A(p) o \Box A(p)) \wedge (A(\neg p) o \Box A(\neg p))$ (Necessary Plural membership)

- Let A be the true propositions: $\forall p(A(p) \leftrightarrow p)$. (Plural comprehension)
- Then trivially $\underline{\forall p(A(p) \rightarrow p)}_{\otimes}$ and $\forall p(A(p) \lor A(\neg p))$.
- $(A(p) o \Box A(p)) \wedge (A(\neg p) o \Box A(\neg p))$ (Necessary Plural membership)
- $\Box(A(p) \to (@ \to p)) \land \Box(A(\neg p) \to (@ \to \neg p))$ (Quantificational Logic)

- Let A be the true propositions: $\forall p(A(p) \leftrightarrow p)$. (Plural comprehension)
- Then trivially $\underline{\forall p(A(p) \rightarrow p)}_{@}$ and $\forall p(A(p) \lor A(\neg p))$.
- $(A(p) o \Box A(p)) \wedge (A(\neg p) o \Box A(\neg p))$ (Necessary Plural membership)
- $\Box(A(p) \to (@ \to p)) \land \Box(A(\neg p) \to (@ \to \neg p))$ (Quantificational Logic)
- $\bullet \ \forall r(\Box(@\rightarrow r) \lor \Box(@\rightarrow \neg r))$

- Let A be the true propositions: $\forall p(A(p) \leftrightarrow p)$. (Plural comprehension)
- Then trivially $\underline{\forall p(A(p) \rightarrow p)}_{@}$ and $\forall p(A(p) \lor A(\neg p))$.
- $(A(p) o \Box A(p)) \wedge (A(\neg p) o \Box A(\neg p))$ (Necessary Plural membership)
- $\Box(A(p) \to (@ \to p)) \land \Box(A(\neg p) \to (@ \to \neg p))$ (Quantificational Logic)
- $\bullet \hspace{0.1 cm} \forall r(\Box(@\rightarrow r) \lor \Box(@\rightarrow \neg r))$
- $@ \rightarrow \Diamond @$, so $\Diamond @$

- Let A be the true propositions: $\forall p(A(p) \leftrightarrow p)$. (Plural comprehension)
- Then trivially $\underline{\forall p(A(p) \rightarrow p)}_{\otimes}$ and $\forall p(A(p) \lor A(\neg p))$.
- $(A(p) o \Box A(p)) \wedge (A(\neg p) o \Box A(\neg p))$ (Necessary Plural membership)
- $\Box(A(p) \to (@ \to p)) \land \Box(A(\neg p) \to (@ \to \neg p))$ (Quantificational Logic)
- $\bullet \ \forall r(\Box(@\rightarrow r) \lor \Box(@\rightarrow \neg r))$
- $@
 ightarrow \Diamond @$, so $\Diamond @$
- $\exists p(p \land W(p))$, since @ is a witness.

- Let A be the true propositions: $\forall p(A(p) \leftrightarrow p)$. (Plural comprehension)
- Then trivially $\underline{orall p(A(p)
 ightarrow p)}_{@}$ and $orall p(A(p) \lor A(\neg p))$.
- $(A(p) o \Box A(p)) \wedge (A(\neg p) o \Box A(\neg p))$ (Necessary Plural membership)
- $\Box(A(p) \to (@ \to p)) \land \Box(A(\neg p) \to (@ \to \neg p))$ (Quantificational Logic)
- $\bullet \ \forall r(\Box(@\rightarrow r) \lor \Box(@\rightarrow \neg r))$
- $@ \rightarrow \Diamond @$, so $\Diamond @$
- $\exists p(p \land W(p))$, since @ is a witness.

Since the above is an argument from logic, the conclusion can be necessitated, and we get $\Box \exists p(p \land W(p))$.

• $\Box \exists p(p \land W(p))$

- $\Box \exists p(p \land W(p))$
- $\Diamond r
 ightarrow \Diamond (r \land \exists q(q \land W(q)))$

 $(\Box is normal)$

- $\Box \exists p(p \land W(p))$
- $\Diamond r
 ightarrow \Diamond (r \land \exists q(q \land W(q)))$
- $\Diamond r
 ightarrow \Diamond \exists q (r \land q \land W(q))$

(□ is normal) (quantificational reasoning)

- $\Box \exists p(p \land W(p))$
- $\Diamond r
 ightarrow \Diamond (r \land \exists q(q \land W(q)))$
- $\Diamond r
 ightarrow \Diamond \exists q (r \land q \land W(q))$
- $\Diamond r
 ightarrow \Diamond \exists q (q \land W(q) \land \Box (q
 ightarrow r))$

 $(\Box \text{ is normal})$ (quantificational reasoning) (By definition of W(q))

- $\Box \exists p(p \land W(p))$
- $\Diamond r
 ightarrow \Diamond (r \land \exists q(q \land W(q)))$
- $\Diamond r
 ightarrow \Diamond \exists q (r \land q \land W(q))$
- $\Diamond r
 ightarrow \Diamond \exists q (q \land W(q) \land \Box (q
 ightarrow r))$
- $\Diamond r
 ightarrow \exists q \Diamond (q \land W(q) \land \Box (q
 ightarrow r))$

(□ is normal) (quantificational reasoning) (By definition of W(q)) (Barcan)

- $\Box \exists p(p \land W(p))$
- $\Diamond r
 ightarrow \Diamond (r \land \exists q(q \land W(q)))$
- $\Diamond r
 ightarrow \Diamond \exists q (r \land q \land W(q))$
- $\Diamond r
 ightarrow \Diamond \exists q (q \land W(q) \land \Box (q
 ightarrow r))$
- $\Diamond r
 ightarrow \exists q \Diamond (q \land W(q) \land \Box (q
 ightarrow r))$
- $\Diamond r
 ightarrow \exists q (\Diamond q \land W(q) \land \Box(q
 ightarrow r))$

(□ is normal) (quantificational reasoning) (By definition of W(q)) (Barcan) (□ is S5)

- $\Box \exists p(p \land W(p))$
- $\Diamond r
 ightarrow \Diamond (r \land \exists q(q \land W(q)))$
- $\Diamond r
 ightarrow \Diamond \exists q (r \land q \land W(q))$
- $\Diamond r
 ightarrow \Diamond \exists q (q \land W(q) \land \Box (q
 ightarrow r))$
- $\Diamond r
 ightarrow \exists q \Diamond (q \land W(q) \land \Box (q
 ightarrow r))$
- $\Diamond r o \exists q (\Diamond q \land W(q) \land \Box(q \to r))$

Our take: reject (Barcan).

(□ is normal) (quantificational reasoning) (By definition of W(q)) (Barcan) (□ is S5)

- $\Box \exists p(p \land W(p))$
- $\Diamond r
 ightarrow \Diamond (r \land \exists q(q \land W(q)))$
- $\Diamond r
 ightarrow \Diamond \exists q (r \land q \land W(q))$
- $\Diamond r
 ightarrow \Diamond \exists q (q \land W(q) \land \Box (q
 ightarrow r))$
- $\Diamond r
 ightarrow \exists q \Diamond (q \land W(q) \land \Box (q
 ightarrow r))$
- $\Diamond r o \exists q (\Diamond q \land W(q) \land \Box(q \to r))$

Our take: reject (Barcan).

Consequence: embrace (Free Logic) and (Propositional Contingentism).

(□ is normal) (quantificational reasoning) (By definition of W(q)) (Barcan) (□ is S5) Thesis: all mere possibilities are under-specified and open to further developments. Then only way to fill-in all details and finish the development is by making it actual. Thesis: all mere possibilities are under-specified and open to further developments. Then only way to fill-in all details and finish the development is by making it actual.

The only fully developed dream is reality.

Thesis: all mere possibilities are under-specified and open to further developments. Then only way to fill-in all details and finish the development is by making it actual.

The only fully developed dream is reality.

There is no defense, but there is a cool model.

An S5 Π^-_{free} + (WP $_{\Diamond}$) model

Draw the full binary tree.

An S5 Π^-_{free} + (WP $_{\Diamond}$) model

Draw the full binary tree. Draw the maximal chains.

Draw the full binary tree. Draw the maximal chains. Each chain w is a 'virtual world',

• $\forall r(\Diamond r \rightarrow \Diamond \exists q(\Box W(q) \land \Box(q \rightarrow r)))$ is valid;

- $\forall r(\Diamond r \rightarrow \Diamond \exists q(\Box W(q) \land \Box(q \rightarrow r)))$ is valid;
- $\forall r(\Diamond r \rightarrow \exists q(W(q) \land \Box(q \rightarrow r))) \text{ is invalid. } \forall p(W(p) \rightarrow p) \text{ is valid.}$

- $\forall r(\Diamond r \rightarrow \Diamond \exists q(\Box W(q) \land \Box(q \rightarrow r)))$ is valid;
- $\forall r(\Diamond r \rightarrow \exists q(W(q) \land \Box(q \rightarrow r))) \text{ is invalid. } \forall p(W(p) \rightarrow p) \text{ is valid.}$
- If we allow plural variables, then not all formulas express existing propositions. But otherwise yes.

Thanks!