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Sure..., but are there any other possible world?

This question is reasonable since modern philosophy is littered with
‘possible-world’ talks.
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Oftentimes, we simply accept the most successful theories so that their
existential sentences are merged into our ordinary language and becomes
meaningful and true.

‘Possible worlds semantics’ is a little different.
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We want to try some deductive arguments.

We want to be less commital on what could count as possible worlds and focus
ona of ‘possible worlds semantics’ taken literally.

Thesis
‘World propositions are possible and maximally specific propositions.

‘Whatever is possible is possible is entailed by a world proposition.

W(p):=0p AVr(O(p — ) VO(p — )
(WP) Vp(Op — J¢(W(q) AD(g — p)))
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Possible worlds and world propositions

In a reasonably strong theory where we can quantify over both possible worlds
and propositions, from Vp(0p « Jw(w = p)) and Vp(Up + Yw(w = p)), we can
derive (WP).

On the other hand, if we accept (WP) in a minimal theory where we can quantify

over propositions, we can use world propositions to interpret worlds.

Our goal:

- present a argument for (WP);
« point out where we don't like it;

- present a formal model in which (WP) is false but also supports a
reasonable theory.
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The argument has two parts:

- First, argue for O3p(p A W(p)).
+ Then, use logic in the so called S5II.

To argue for OJ3p(p A W(p)), we use plural quantification over propositions. One
naive way to understand it is:

- Certainly the actual world exists. From Humberstone’s From Worlds to
Possibilities:

but surely you acknowledge that the acutal world, at least, is a fully
determinate possibility: it punctiformity is not open to question...

« Then this is a necessary truth as we gave it a logical argument.
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Formally, with plural variables, to argue for O3p(p A W (p)):

- Let A be the true propositions: Vp(A(p) + p). (Plural comprehension)
* Then trivially Vp(4(p) — p), and Vp(A(p) v A(—p)).

 (A(p) — UA(p)) A (A(—p) — DA(-p)) (Necessary Plural membership)
« O(A(p) — (@ — p)) AD(A(—p) — (@ — —p)) (Quantificational Logic)
- Vr(O(@ — ) vO(@ — 7))

« @ — 0Q,so 00O

- dp(p A W(p)), since @ is a witness.

Since the above is an argument from logic, the conclusion can be necessitated,
and we get O3p(p A W(p)).
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The argument

The rest of the argument is as follows:

» O3p(p A W(p))

« Or — O(r A Jg(g AW (q))) (O is normal)
« Or — OJg(r Ag AW (q)) (quantificational reasoning)
« Or — OJg(g AW (g) AO(g — 7)) (By definition of W (q))
« Or — 3q0(g AW (g) AO(qg — 7)) (Barcan)
« Or — J9(Og AW (q) AO(qg — 7)) (O is S5)

Our take: reject (Barcan).

Consequence: embrace (Free Logic) and (Propositional Contingentism).
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developments. Then only way to fill-in all details and finish the development is
by making it actual.

The only fully developed dream is reality.

There is no defense, but there is a cool model.
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An S5T1;.. + (WP,) model

Draw the full binary tree. Draw the maximal chains. Each chain w is a ‘virtual

world’, at which the existing propositions are those generated by finite cylindric
sets and the singleton {w}.

« Vr(Or — 03g(OW (q) AO(q — 7))) is valid;
« Vr(Or — Ig(W(q) AO(g — r))) is invalid. Vp(W (p) — p) is valid.

- If we allow plural variables, then not all formulas express existing
propositions. But otherwise yes.



Thanks!



