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The construction of sheaf topos is probably the central construction in topos theory.
We begin by looking at sheaf topos on a topological space, and then we move on to more
abstract constructions like sheaf topos on a site.

There are two equivalent! characterizations of a sheaf on a topological space, both im-
portant in their own right. The equivalence itself also has some non-trivial consequences,
like the construction of sheafification.

We fix some notations. XY, Z--- will be some topological spaces. O(X) will be the
poset of opens of space X, ordered by inclusion. O(X) will always be seen as a small
category. U, V., W ... will always denote some opens. In a space X, if we have an open
U and a family of opens {U;};c; indexed by some set I such that U = U,c; U;, we say
{U;}ier is an open cover of U, or {U;}ier covers U, or U <1 {U;}ier.? We will often omit
the index set [ and just write {U;}. We write U;; for U; N Uj.

1 Sheaf as a Functor
Definition 1.1
A presheaf P over a topological space X is a presheaf over category O(X), i.e. a con-

travariant functor P : O(X)°P — Set.

For a presheaf P and an open U, an element s € P(U) is called a section of P over U.

IThey are equivalent in a strict categorical sense, as we will see later: there will be two equivalent

categories.
2I invented this <1 notation myself while learning Grothendieck topology. For a site (C,J), if S € J(c),

I would write ¢ <1 S. For f:d — ¢ and a sieve S on ¢, if f*(S) € J(d), I would write f < S. The idea is
that S and € kinda share some similar calculus. This is by no means standard, but it really simplified

my life and I’'m proud of it :D



1 SHEAF AS A FUNCTOR

Suppose V' C U, then we have a function P(U) — P(V), called restriction along V- C U.
We let s -V denote the image of s € P(U) under P(U) — P(V), called the restriction of
z on V.3 For course, when W CV C U and s € P(U), we have s- V- W = s - W.

Fix a topological space X, We study the presheaf C' = Top(—, R), sending each open
U to the set of continuous R-valued functions on U. We have the obvious restriction
mappings. Suppose we have an open U, covered by two opens U = Uy U U;. Let Uy :=
UpNU;. Now suppose we have two sections fo € C(Uy), f1 € C(Uy), such that they match
on the intersection part:

fO : UOl = fl : UOI-

Then we can patch them together uniquely and obtain a section f € C(U), such that

f-U; = f; for i =0,1. This motivates the definition of sheaf.
Definition 1.2 (Matching Family)

Fiz a topological space X, a presheaf P, an open U and a cover U < {U;}. For each pair
i,j, we have two mappings [1; P(U;) = P(U;;):

o IL P(U;) ™ P(U;) —% P(Uy),
« [ P(U) ™ P(U) = P(Uy),
which gives rise to a pair of functions
1:[ PU,) = !_][ P(U;;).
Let Match({U;}, P) be the equalizer of the above diagram. An element Match({U;}, P) is
called a matching family of P over {U;}.

In other words, a matching family {s;} € Match({U;}, P) consists of a family of
sections {s; € P(U;)}ier, such that for each 4, j, s; - U;; = s; = Uy;.

We have a canonical function P(U) — Match({U;}, P). Given any section s € P(U),
{s-U,} is obviously a matching family, since for each ¢,j, - U; - U;; = x-Uy; = x - U; - Uj;.
Definition 1.3

Fix a presheaf P on a space X.

e P is a seperated presheaf if for any open U and any cover U < {U;}, the canonical
mapping P(U) — Match({U;}, P) is injective.

3A more standard notation is s|-, but this may get annoying as soon as V' becomes complicated, or

when you try to write down a chain of restrictions, like (s|y)|w.
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e P is a sheaf if for any U and any U < {U;}, P(U) — Match({U,}, P) is bijective.

One can even spell out the definition more explicitly, as Ravi Vakil did in his note The

Rising Sea:
o [dentity axiom. If U <{U;} and s,t € P(U) and Vi.s - U, =t - U;, then s = t.

o Gluability axiom. If U < {U;} and {s; € P(U;)} € Match({U;}, P), then there is
some s € P(U) such that Vi.s - U; = s;.

The two axioms express the condition of P(U) — Match({U;}, P) being injective/surjective.
The prototypical example of a sheaf is C' = Top(—,R). Now we look at some non-
examples. Since there are two axioms to meet, there are two flavors of presheaves that

fail to be a sheaf:

e Gluability fails, so there exists some matching family {s; € U;} that can’t be patched
together.

e Identity fails, so there exists some matching family {s; € U;} with more that one

possible patch.
Example 1.4 (Seperated presheaf of bounded functions)

Let U be an open of R. A continuous function f : U — R is bounded iff its image is
bounded in R. Consider a presheaf B : O(R)°® — Set, sending each open U to {f €
Top(U,R) | f is bounded}. B is a seperated presheaf, but not a sheaf.

Proof. 1t’s easy to see that identity axiom is met. For the failure of gluability, consider
Ig : R — R which is clearly not bounded, so 1g ¢ B(R). However, let {U;};c; be a cover
of R such that each U; has finite length, then each 1g - U; are all bounded. {1 - U;} is
then a matching family that can’t be patched together. O
The spirit of this example is that “bounded” is not a local property.
A typical example of a non-seperated presheaf is constant presheaf. We need the

following observation.

Lemma 1.5

Suppose P : O(X)°® — Set is a sheaf, then P(&) = 1, where 1 means the singleton.

Proof. The empty set &, while being an open set, has a special open cover: the empty
cover {U,}icn. Note that is not each U; being empty, but the index set being empty. (So

technically there is no such U;!)
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Trivially, there is a matching family for {U, };c4, since to construct a matching family,
we need to provide a s; € P(U;) for each 4, but there is no ¢ in this case. Although we
don’t have to do anything, we get such a matching family.

By sheaf axioms, the matching family can be patched uniquely to a section in P(2),
and each section in P(&) can be obtained this way, so P(&) has to be a singleton. [
Example 1.6 (Constant presheaf)

For every set A, we have the constant presheaf AA : O(X)°® — Set. Now let A be a set

with at least two elements, then AA is not even a seperated presheaf.

This is because AA(@) = A which is not a singleton.

Definition 1.7

Let Sep(X) be the full subcategory of Set® )™ spanned by seperated presheaves. Similarly,
let Sh(X) be the full subcategory of Set®®™ spanned by sheaves.

Now we develop a few properties of sheaf.
Proposition 1.8
If F is a sheaf on X, then a subfunctor S — F' is a subsheaf iff for every open U, every
se€ F(U), every cover U <{U;}, one has s € S(U) iff Vi.s - U; € S(Uj;).

Proof. = is obvious. To prove <, we need to show that S is itself a sheaf.

Take any open U, cover U < {U;}, matching family {s; € S(U;)}. Since S is a
subfunctor of F, each s; also belongs to F\(U;). It can be easily seen that {s; € F(U;)}
is also a matching family of F'. (This is essentially due to the naturality of morphism
S — F, so the matching condition remains.)

Since F' is a sheaf, {s;} can be patched to a s € F(U). However, for every i, s - U; =
s; € S(U;), so by assumption, s € S(U). The uniqueness of s is obvious. Thus S is a
sheaf. O

Every continuous function f : X — Y gives rise to a functor f, : Sh(X) — Sh(Y') in

an obvious way: given any sheaf F' on X, we define:

£.F:O(Y) = Set
U F(f71(U))

The sheaf f,F is called the direct image of F under f. Let’s check the sheaf condition.
Given any U <1 {U;} in O(Y) and a matching family {s; € f.F(U;) = F(f~1(U;))}. Since
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3 BASIC DEFINITIONS

71 O(Y) = O(X) preserves arbitrary union, f~'U < {f~'U;}. Then the family {s;}
can be patched uniquely to a s € F(f~'U) = f,F(U).

By definition, Sh(X) is a full subcategory of Set®®)™ . We have a fully faithful inclu-
sion functor 7, : Sh(X) — Set® )™ The central construction of sheaf theory is to show
that i, has a left adjoint ¢* : Set® )™ — Sh(X), called sheafification. The construction

involves a detour to the study of bundles.

2 Bundles

3 Basic Definitions

The following paragraphs are taken directly from 2.4 of [MM12]

For any space X, a continuous map p: Y — X is called a space over X, or a bundle
over X. The category of bundles over X is defined as the slice category Top/X, where X
is called the base space.

A cross-section of a bundle p : Y — X is a continuous map s : X — Y with ps = 1x;
that is, it’s a morphism from 1y : X — X top: Y — X in Top/X.

L2 is called the fiber of Y over z. It’s convenient

For any x € X, the inverse image p~
to think of a bundle as the indexed family of fibers p~'z, one for each point z € X, “glued
together” by the topology of Y.

If U is an open subset of the base space X of a bundle p : Y — X, then p restricts to

amap py : p_ U — U which is a bundle over U. Moreover, the square diagram

p U —— Y

/7(
s 7
pU\L g lp

U— X
with horizontal arrows the inclusions, is a pullback diagram in Top. A cross-section s of

the bundle py, also called a cross-section of the bundle p over U, is a continuous map

s : U — Y such that the composite ps is the inclusion i : U — X. Let
IU={s|s:U—=Y,ps=i:U— X}

denote the set of all such cross-sections over U.
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If U C V, one has a restriction operation I';)U — I',V, so I',(—) defines a functor
O(X)°° — Set. Since “being a cross-section” is a local property, one may check that I,

is in fact a sheaf.

Exercise 3.1
Show that for any bundle p 1 Y — X, the presheaf defined above I'y : O(X)°® — Set is a
sheaf.

Suppose we have a bundle morphism p — p’ over X, given by f:Y — Y.

Y ! Y
X

We want to show that it gives rise to a sheaf morphism I'), — I',;. Indeed, given any open

U, the component I',)U — I',U is defined as s — f o s.

f

Yy — Y’
Sl
U——X 5 X

The naturality condition is obvious, so I';U — I'yU is a sheaf morphism. So I is in fact
a functor:

I': Top/X — Sh(X)

4 Etale Bundles

There is a special kind of bundle called étale bundle.

Definition 4.1

A bundle p: E — X 1is said to be étale when p is a local homeomorphism is the following
sense: To each e € E there is an open neighbourhood V' of e such that pV is open in X

and ply is a homeomorphism V — pV.

The category of étale bundles over X is defined as the full subcategory of Top/X
spanned by étale bundles, denoted as Et(X).
Readers with some topology backgrounds might be familiar with the concept of cov-

ering space:
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Definition 4.2

1

A bundle p : E — X is a covering space if for each x € X, the fiber p~ x = E, is discrete,

and there is an open neighbourhood U of x such that p~*U is isomorphic to the product

bundle m : U x B, — U.

Every covering space is a étale space, but not the contrary, as we will see.

Now we develop some basic properties of étale bundles.
Proposition 4.3
Forp: E — X étale, both p and any sections of p are open maps (in that they carry open
sets to open sets). Through every point e € E there is at least one section s : U — E, and
the images sU of all sections form a base for the topology of E. If s,t are two sections,

the set W = {x | st = tx} of points where they are both defined and agree is open in X.

Exercise 4.4

Prove the proposition above.

There’s a construction from presheaf to étale space. Given any presheaf P on X and
a point x € X, a germ at x is an equivalence class of local sections: we take the set of
all local sections [[,cy P(U) and define an equivalence relation as follows: s € P(U) and
t € P(V) are equivalent iff there’s a smaller open W C U NV containing z, such that
s-W=t-W.

For any section s, its corresponding germ at x is denoted as s,. We will often say
“suppose we have a germ s,”, meaning s, is a germ at x that comes from some s € P(U).

The set of germs at x is called the stalk of P at x, denoted as P,.

Equivalently P, can be defined as a colimit:
P, := colim,cy P(U).

One can easily check that given a point x € X, then any presheaf morphism h : P — Q)
gives rise to a function P, — @Q),. This is essentially due to the functoriality of colimit. It
follows that P — P, is a functor Set? M) 5 Set.

To construct the bundle, we take the whole disjoint union AP:

AP=T]] P
zeX

and define p : AP — X as the function sending each germ s, to z.
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Each s € PU determines a function $ by:
$:U— AP, sx=s,, xzel.

Topologize AP by taking as a base of open sets all the image sets $(U) C AP; thus an
open set in AP is a union of images of the sections s.

Now we check the desired properties.

Proposition 4.5

p: AP — X is continuous.
Proof. Given any open U C X, then
p(U)={s;, |IVCUsePV)zeV}i=J U s(V).
VCU seP(V)
Hence p~1U is open. O

Lemma 4.6

Suppose s, t € P(U), then {x € U | s, = t,} is open.

Proof. For any x € X, s, = t, iff there exists an open neighbourhood V, C U of = such

that s-V, =t-V,,so {x € U | s, =1t,} is exactly the union of these Vs, hence open. [J
Proposition 4.7

For any local section s € PU, $: U — AP is continuous.

Proof. We only need to check that the inverse image of any basic open #(V) is open, where

t € P(V). But by definition,
STHEV)) ={z € UNV | s, =t,}.

By the lemma above, $71(£(V)) is open. O
Definition 4.8
p: AP — X is a étale bundle.

Proof. Given any s, € AP, it must come from some s € P(U) where x € U, then

sy € 5(U), and pl;w) : (U) — U has a inverse $, so it’s a homeomorphism. O
Given a presheaf morphism f : P — @), we have an obvious mapping Af : AP — AQ,

mapping any germ s, to fi(sz).

Proposition 4.9

Af is continuous.
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Proof. Given any $(U) C AQ, we need to show that (Af)~(s(U)) is open.

t, € (AN)T'3(U)) & fults) € 3(U) & fults) = s0.

Thus,
AHTGUN=U U eV (B =s)
VCU teP(V)
which is an open by Lemma 4.6. U
So A is a functor:
Az Set?®)” 5 Bt(X)

Our journey leads to an adjunction.
Theorem 4.10 (Presheaf-Bundle Adjunction)

For any space X there is a pair of adjoint functors

A :Set®®)™" = Top/X :T,AAT

Next time we will start from this adjunction and show that it restricts to an adjoint

equivalence:

Sh(X) ~ Et(X).

The sheafification functor is defined to be Set®)” & Et(X) 5 Sh(X). We will show
that it’s indeed left adjoint to i, : Sh(X) — Set?)™ and it’s left exact. We will use this

adjunction pair to show that Sh(X) is a topos.
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