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The construction of sheaf topos is probably the central construction in topos theory.

We begin by looking at sheaf topos on a topological space, and then we move on to more

abstract constructions like sheaf topos on a site.

There are two equivalent1 characterizations of a sheaf on a topological space, both im-

portant in their own right. The equivalence itself also has some non-trivial consequences,

like the construction of sheafification.

We fix some notations. X, Y, Z · · · will be some topological spaces. O(X) will be the

poset of opens of space X, ordered by inclusion. O(X) will always be seen as a small

category. U, V, W · · · will always denote some opens. In a space X, if we have an open

U and a family of opens {Ui}i∈I indexed by some set I such that U = ∪
i∈I Ui, we say

{Ui}i∈I is an open cover of U , or {Ui}i∈I covers U , or U ◁ {Ui}i∈I .2 We will often omit

the index set I and just write {Ui}. We write Uij for Ui ∩ Uj.

1 Sheaf as a Functor
Definition 1.1

A presheaf P over a topological space X is a presheaf over category O(X), i.e. a con-

travariant functor P : O(X)op → Set.

For a presheaf P and an open U , an element s ∈ P (U) is called a section of P over U .
1They are equivalent in a strict categorical sense, as we will see later: there will be two equivalent

categories.
2I invented this ◁ notation myself while learning Grothendieck topology. For a site (C, J), if S ∈ J(c),

I would write c ◁ S. For f : d → c and a sieve S on c, if f∗(S) ∈ J(d), I would write f ◁ S. The idea is

that S and ∈ kinda share some similar calculus. This is by no means standard, but it really simplified

my life and I’m proud of it :D
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1 SHEAF AS A FUNCTOR

Suppose V ⊆ U , then we have a function P (U) → P (V ), called restriction along V ⊆ U .

We let s · V denote the image of s ∈ P (U) under P (U) → P (V ), called the restriction of

x on V .3 For course, when W ⊆ V ⊆ U and s ∈ P (U), we have s · V · W = s · W .

Fix a topological space X, We study the presheaf C ∼= Top(−,R), sending each open

U to the set of continuous R-valued functions on U . We have the obvious restriction

mappings. Suppose we have an open U , covered by two opens U = U0 ∪ U1. Let U01 :=

U0 ∩U1. Now suppose we have two sections f0 ∈ C(U0), f1 ∈ C(U1), such that they match

on the intersection part:

f0 · U01 = f1 · U01.

Then we can patch them together uniquely and obtain a section f ∈ C(U), such that

f · Ui = fi for i = 0, 1. This motivates the definition of sheaf.
Definition 1.2 (Matching Family)

Fix a topological space X, a presheaf P , an open U and a cover U ◁ {Ui}. For each pair

i, j, we have two mappings ∏
i P (Ui) ⇒ P (Uij):

• ∏
i P (Ui)

πi−→ P (Ui)
− · Uij−−−−→ P (Uij),

• ∏
i P (Ui)

πj−→ P (Uj)
− · Uij−−−−→ P (Uij),

which gives rise to a pair of functions

∏
i

P (Ui) ⇒
∏
i,j

P (Uij).

Let Match({Ui}, P ) be the equalizer of the above diagram. An element Match({Ui}, P ) is

called a matching family of P over {Ui}.

In other words, a matching family {si} ∈ Match({Ui}, P ) consists of a family of

sections {si ∈ P (Ui)}i∈I , such that for each i, j, si · Uij = sj = Uij.

We have a canonical function P (U) → Match({Ui}, P ). Given any section s ∈ P (U),

{s · Ui} is obviously a matching family, since for each i, j, x · Ui · Uij = x · Uij = x · Uj · Uij.
Definition 1.3

Fix a presheaf P on a space X.

• P is a seperated presheaf if for any open U and any cover U ◁ {Ui}, the canonical

mapping P (U) → Match({Ui}, P ) is injective.
3A more standard notation is s|V , but this may get annoying as soon as V becomes complicated, or

when you try to write down a chain of restrictions, like (s|V )|W .
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1 SHEAF AS A FUNCTOR

• P is a sheaf if for any U and any U ◁ {Ui}, P (U) → Match({Ui}, P ) is bijective.

One can even spell out the definition more explicitly, as Ravi Vakil did in his note The

Rising Sea:

• Identity axiom. If U ◁ {Ui} and s, t ∈ P (U) and ∀i.s · Ui = t · Ui, then s = t.

• Gluability axiom. If U ◁ {Ui} and {si ∈ P (Ui)} ∈ Match({Ui}, P ), then there is

some s ∈ P (U) such that ∀i.s · Ui = si.

The two axioms express the condition of P (U) → Match({Ui}, P ) being injective/surjective.

The prototypical example of a sheaf is C ∼= Top(−,R). Now we look at some non-

examples. Since there are two axioms to meet, there are two flavors of presheaves that

fail to be a sheaf:

• Gluability fails, so there exists some matching family {si ∈ Ui} that can’t be patched

together.

• Identity fails, so there exists some matching family {si ∈ Ui} with more that one

possible patch.
Example 1.4 (Seperated presheaf of bounded functions)

Let U be an open of R. A continuous function f : U → R is bounded iff its image is

bounded in R. Consider a presheaf B : O(R)op → Set, sending each open U to {f ∈

Top(U,R) | f is bounded}. B is a seperated presheaf, but not a sheaf.

Proof. It’s easy to see that identity axiom is met. For the failure of gluability, consider

1R : R → R which is clearly not bounded, so 1R /∈ B(R). However, let {Ui}i∈I be a cover

of R such that each Ui has finite length, then each 1R · Ui are all bounded. {1R · Ui} is

then a matching family that can’t be patched together. □
The spirit of this example is that “bounded” is not a local property.

A typical example of a non-seperated presheaf is constant presheaf. We need the

following observation.
Lemma 1.5

Suppose P : O(X)op → Set is a sheaf, then P (∅) = 1, where 1 means the singleton.

Proof. The empty set ∅, while being an open set, has a special open cover: the empty

cover {Ui}i∈∅. Note that is not each Ui being empty, but the index set being empty. (So

technically there is no such Ui!)
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1 SHEAF AS A FUNCTOR

Trivially, there is a matching family for {Ui}i∈∅, since to construct a matching family,

we need to provide a si ∈ P (Ui) for each i, but there is no i in this case. Although we

don’t have to do anything, we get such a matching family.

By sheaf axioms, the matching family can be patched uniquely to a section in P (∅),

and each section in P (∅) can be obtained this way, so P (∅) has to be a singleton. □

Example 1.6 (Constant presheaf)

For every set A, we have the constant presheaf ∆A : O(X)op → Set. Now let A be a set

with at least two elements, then ∆A is not even a seperated presheaf.

This is because ∆A(∅) = A which is not a singleton.

Definition 1.7

Let Sep(X) be the full subcategory of SetO(X)op spanned by seperated presheaves. Similarly,

let Sh(X) be the full subcategory of SetO(X)op spanned by sheaves.

Now we develop a few properties of sheaf.

Proposition 1.8

If F is a sheaf on X, then a subfunctor S ↣ F is a subsheaf iff for every open U , every

s ∈ F (U), every cover U ◁ {Ui}, one has s ∈ S(U) iff ∀i.s · Ui ∈ S(Ui).

Proof. ⇒ is obvious. To prove ⇐, we need to show that S is itself a sheaf.

Take any open U , cover U ◁ {Ui}, matching family {si ∈ S(Ui)}. Since S is a

subfunctor of F , each si also belongs to F (Ui). It can be easily seen that {si ∈ F (Ui)}

is also a matching family of F . (This is essentially due to the naturality of morphism

S ↣ F , so the matching condition remains.)

Since F is a sheaf, {si} can be patched to a s ∈ F (U). However, for every i, s · Ui =

si ∈ S(Ui), so by assumption, s ∈ S(U). The uniqueness of s is obvious. Thus S is a

sheaf. □
Every continuous function f : X → Y gives rise to a functor f∗ : Sh(X) → Sh(Y ) in

an obvious way: given any sheaf F on X, we define:

f∗F : O(Y )op → Set

U 7→ F (f−1(U))

The sheaf f∗F is called the direct image of F under f . Let’s check the sheaf condition.

Given any U ◁ {Ui} in O(Y ) and a matching family {si ∈ f∗F (Ui) = F (f−1(Ui))}. Since
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f−1 : O(Y ) → O(X) preserves arbitrary union, f−1U ◁ {f−1Ui}. Then the family {si}

can be patched uniquely to a s ∈ F (f−1U) = f∗F (U).

By definition, Sh(X) is a full subcategory of SetO(X)op . We have a fully faithful inclu-

sion functor i∗ : Sh(X) → SetO(X)op . The central construction of sheaf theory is to show

that i∗ has a left adjoint i∗ : SetO(X)op → Sh(X), called sheafification. The construction

involves a detour to the study of bundles.

2 Bundles

3 Basic Definitions

The following paragraphs are taken directly from 2.4 of [MM12]

For any space X, a continuous map p : Y → X is called a space over X, or a bundle

over X. The category of bundles over X is defined as the slice category Top/X, where X

is called the base space.

A cross-section of a bundle p : Y → X is a continuous map s : X → Y with ps = 1X ;

that is, it’s a morphism from 1X : X → X to p : Y → X in Top/X.

For any x ∈ X, the inverse image p−1x is called the fiber of Y over x. It’s convenient

to think of a bundle as the indexed family of fibers p−1x, one for each point x ∈ X, “glued

together” by the topology of Y .

If U is an open subset of the base space X of a bundle p : Y → X, then p restricts to

a map pU : p−1U → U which is a bundle over U . Moreover, the square diagram

p−1U Y

U X

pU ps

with horizontal arrows the inclusions, is a pullback diagram in Top. A cross-section s of

the bundle pU , also called a cross-section of the bundle p over U , is a continuous map

s : U → Y such that the composite ps is the inclusion i : U → X. Let

ΓpU = {s | s : U → Y, ps = i : U → X}

denote the set of all such cross-sections over U .
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If U ⊆ V , one has a restriction operation ΓpU → ΓpV , so Γp(−) defines a functor

O(X)op → Set. Since “being a cross-section” is a local property, one may check that Γp

is in fact a sheaf.
Exercise 3.1

Show that for any bundle p : Y → X, the presheaf defined above Γp : O(X)op → Set is a

sheaf.

Suppose we have a bundle morphism p → p′ over X, given by f : Y → Y ′.

Y Y ′

X

p

f

p′

We want to show that it gives rise to a sheaf morphism Γp → Γp′ . Indeed, given any open

U , the component ΓpU → Γp′U is defined as s 7→ f ◦ s.

Y Y ′

U X X

p p′

f

1X

s

i

The naturality condition is obvious, so ΓpU → Γp′U is a sheaf morphism. So Γ is in fact

a functor :

Γ : Top/X → Sh(X)

4 Étale Bundles

There is a special kind of bundle called étale bundle.

Definition 4.1

A bundle p : E → X is said to be étale when p is a local homeomorphism is the following

sense: To each e ∈ E there is an open neighbourhood V of e such that pV is open in X

and p|V is a homeomorphism V → pV .

The category of étale bundles over X is defined as the full subcategory of Top/X

spanned by étale bundles, denoted as Et(X).

Readers with some topology backgrounds might be familiar with the concept of cov-

ering space:
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4 ÉTALE BUNDLES

Definition 4.2

A bundle p : E → X is a covering space if for each x ∈ X, the fiber p−1x = Ex is discrete,

and there is an open neighbourhood U of x such that p−1U is isomorphic to the product

bundle π : U × Ex → U .

Every covering space is a étale space, but not the contrary, as we will see.

Now we develop some basic properties of étale bundles.

Proposition 4.3

For p : E → X étale, both p and any sections of p are open maps (in that they carry open

sets to open sets). Through every point e ∈ E there is at least one section s : U → E, and

the images sU of all sections form a base for the topology of E. If s, t are two sections,

the set W = {x | sx = tx} of points where they are both defined and agree is open in X.

Exercise 4.4

Prove the proposition above.

There’s a construction from presheaf to étale space. Given any presheaf P on X and

a point x ∈ X, a germ at x is an equivalence class of local sections: we take the set of

all local sections ⨿
x∈U P (U) and define an equivalence relation as follows: s ∈ P (U) and

t ∈ P (V ) are equivalent iff there’s a smaller open W ⊆ U ∩ V containing x, such that

s · W = t · W .

For any section s, its corresponding germ at x is denoted as sx. We will often say

“suppose we have a germ sx”, meaning sx is a germ at x that comes from some s ∈ P (U).

The set of germs at x is called the stalk of P at x, denoted as Px.

Equivalently Px can be defined as a colimit:

Px := colimx∈U P (U).

One can easily check that given a point x ∈ X, then any presheaf morphism h : P → Q

gives rise to a function Px → Qx. This is essentially due to the functoriality of colimit. It

follows that P 7→ Px is a functor SetO(X)op → Set.

To construct the bundle, we take the whole disjoint union ΛP :

ΛP =
⨿

x∈X

Px

and define p : ΛP → X as the function sending each germ sx to x.
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Each s ∈ PU determines a function ṡ by:

ṡ : U → ΛP, ṡx = sx, x ∈ U.

Topologize ΛP by taking as a base of open sets all the image sets ṡ(U) ⊂ ΛP ; thus an

open set in ΛP is a union of images of the sections ṡ.

Now we check the desired properties.
Proposition 4.5

p : ΛP → X is continuous.

Proof. Given any open U ⊆ X, then

p−1(U) = {sx | ∃V ⊆ U.s ∈ P (V ), x ∈ V } =
∪

V ⊆U

∪
s∈P (V )

ṡ(V ).

Hence p−1U is open. □
Lemma 4.6

Suppose s, t ∈ P (U), then {x ∈ U | sx = tx} is open.

Proof. For any x ∈ X, sx = tx iff there exists an open neighbourhood Vx ⊆ U of x such

that s · Vx = t · Vx, so {x ∈ U | sx = tx} is exactly the union of these Vxs, hence open. □
Proposition 4.7

For any local section s ∈ PU , ṡ : U → ΛP is continuous.

Proof. We only need to check that the inverse image of any basic open ṫ(V ) is open, where

t ∈ P (V ). But by definition,

ṡ−1(ṫ(V )) = {x ∈ U ∩ V | sx = tx}.

By the lemma above, ṡ−1(ṫ(V )) is open. □
Definition 4.8

p : ΛP → X is a étale bundle.

Proof. Given any sx ∈ ΛP , it must come from some s ∈ P (U) where x ∈ U , then

sx ∈ ṡ(U), and p|ṡ(U) : ṡ(U) → U has a inverse ṡ, so it’s a homeomorphism. □
Given a presheaf morphism f : P → Q, we have an obvious mapping Λf : ΛP → ΛQ,

mapping any germ sx to fx(sx).

Proposition 4.9

Λf is continuous.
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Proof. Given any ṡ(U) ⊆ ΛQ, we need to show that (Λf)−1(ṡ(U)) is open.

tx ∈ (Λf)−1(ṡ(U)) ⇔ fx(tx) ∈ ṡ(U) ⇔ fx(tx) = sx.

Thus,

(Λf)−1(ṡ(U)) =
∪

V ⊆U

∪
t∈P (V )

ṫ ({x ∈ V | (fV (t))x = sx})

which is an open by Lemma 4.6. □
So Λ is a functor:

Λ : SetO(X)op → Et(X)

Our journey leads to an adjunction.

Theorem 4.10 (Presheaf-Bundle Adjunction)

For any space X there is a pair of adjoint functors

Λ : SetO(X)op ⇄ Top/X : Γ, Λ a Γ

.

Next time we will start from this adjunction and show that it restricts to an adjoint

equivalence:

Sh(X) ' Et(X).

The sheafification functor is defined to be SetO(X)op Λ−→ Et(X) Γ−→ Sh(X). We will show

that it’s indeed left adjoint to i∗ : Sh(X) → SetO(X)op and it’s left exact. We will use this

adjunction pair to show that Sh(X) is a topos.
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