Co-end Calculus: An Ultra Crash Course

Prepared by CanaanZhou ;)

May 11

The technique of co-end calculus is very powerful and very well blackboxed. We will introduce some of the most basic facts without proving them.

1 Definition

Fix a binary functor $F: \mathrm{C}^{\mathrm{op}} \times \mathrm{C} \rightarrow \mathrm{D}$ that is contravariant in the first parameter and covariant in the second. You can think of it as a diagram in D equipped with both left and right action of C .

Definition 1.1

The end of F is defined as the following limit.

$$
\int_{c \in \mathrm{C}} F c \multimap \prod_{c \in \mathrm{C}} F(c, c) \rightrightarrows \prod_{f: c \rightarrow d \in \mathrm{C}} F(c, d)
$$

where the component of the parallel morphisms on a morphism $f: c \rightarrow d$ is

- $\Pi_{c \in \mathrm{C}} F(c, c) \xrightarrow{\pi_{c}} F(c, c) \xrightarrow{F(c, f)} F(c, d)$,
- $\prod_{c \in \mathrm{C}} F(c, c) \xrightarrow{\pi_{d}} F(d, d) \xrightarrow{F(f, d)} F(c, d)$.

Similarly, the coend of F is defined as the following colimit.

$$
\coprod_{f: c \rightarrow d \in \mathrm{C}} F(d, c) \rightrightarrows \coprod_{c \in \mathrm{C}} F(c, c) \rightarrow \int^{c \in \mathrm{C}} F(c, c) .
$$

where the component of the parallel morphisms on a morphism $f: c \rightarrow d$ is

- $F(d, c) \xrightarrow{F(d, f)} F(d, d) \xrightarrow{i_{d}} \amalg_{c \in C} F(c, c)$,
- $F(d, c) \xrightarrow{F(f, c)} F(c, c) \xrightarrow{i_{c}} \amalg_{c \in \mathrm{C}} F(c, c)$.

The definition is summarized by nlab as:
The end of the functor picks out the universal subobject on which the left and right action coincides. Dually, the coend of F is the universal quotient of $\amalg_{c \in C} F(c, c)$ that forces the two actions of F on that object to be equal.

2 Da Rules

Since a coend is a special colimit and an end is a special limit, we immediately have:

Theorem 2.1 (Hom functor commutes with integrals)

For any functor $K: \mathrm{C}^{\mathrm{op}} \times \mathrm{C} \rightarrow \mathrm{D}$,

$$
\begin{aligned}
& \mathrm{D}\left(\int^{c \in \mathrm{C}} F(c, c), d\right) \cong \int_{c \in \mathrm{C}^{\circ \mathrm{P}}} \mathrm{D}(F(c, c), d), \\
& \mathrm{D}\left(d, \int_{c \in \mathrm{C}} F(c, c)\right) \cong \int_{c \in \mathrm{C}} \mathrm{D}(d, F(c, c)) .
\end{aligned}
$$

Theorem 2.2 (Fubini Theorem)

Given a functor $F: \mathrm{C}^{\mathrm{op}} \times \mathrm{C} \times \mathrm{E}^{\mathrm{op}} \times \mathrm{E} \rightarrow \mathrm{D}$, we have:

$$
\begin{aligned}
& \int_{c \in \mathrm{C}, e \in \mathrm{E}} F(c, c, e, e) \cong \int_{c \in \mathrm{C}} \int_{e \in \mathrm{E}} F(c, c, e, e) \cong \int_{e \in \mathrm{E}} \int_{c \in \mathrm{C}} F(c, c, e, e), \\
& \int^{c \in \mathrm{C}, e \in \mathrm{E}} F(c, c, e, e) \cong \int^{c \in \mathrm{C}} \int^{e \in \mathrm{E}} F(c, c, e, e) \cong \int^{e \in \mathrm{E}} \int^{c \in \mathrm{C}} F(c, c, e, e) .
\end{aligned}
$$

Definition 2.3 (Tensor, Cotensor)
Suppose C has all coproduct, then tensor functor \otimes : Set $\times \mathrm{C} \rightarrow \mathrm{C}$ is defined as

$$
X \otimes c:=\coprod_{x \in X} c
$$

Dually, suppose C has all product, then cotensor functor \pitchfork : Set ${ }^{\mathrm{op}} \times \mathrm{C} \rightarrow \mathrm{C}$ is defined as

$$
X \pitchfork c:=\prod_{x \in X} c
$$

Suppose C has both product and coproduct. Immediately we have:

$$
\mathrm{C}\left(X \otimes c, c^{\prime}\right) \cong \operatorname{Set}\left(X, \mathrm{C}\left(c, c^{\prime}\right)\right) \cong \mathrm{C}\left(c, X \pitchfork c^{\prime}\right)
$$

Theorem 2.4 (Natural Transformation as end)

Given functor $F, G: \mathrm{C} \rightarrow \mathrm{D}$ where C is small and D is locally small, then we have:

$$
\mathrm{D}^{\mathrm{C}}(F, G) \cong \int_{c \in \mathrm{C}} \mathrm{D}(F c, G c)
$$

Theorem 2.5 (ninja Yoneda Lemma)

For every functor $K: \mathrm{C}^{\mathrm{op}} \rightarrow$ Set, we have:

$$
K \cong \int^{c \in \mathrm{C}} K c \times \mathrm{C}(-, c) \cong \int_{c \in \operatorname{Cop}} \operatorname{Set}(\mathrm{C}(c,-), K c)
$$

Dually, for every functor $H: C \rightarrow$ Set, we have:

$$
H \cong \int^{c \in \mathrm{C}^{\mathrm{op}}} H c \times \mathrm{C}(c,-) \cong \int_{c \in \mathrm{C}} \operatorname{Set}(\mathrm{C}(-, c), H c)
$$

Proof. Let's prove the case for K to showcase the power of co-end calculus. Yoneda lemma is easy:

$$
\int_{c \in \operatorname{Cop}} \operatorname{Set}(\mathrm{C}(c, d), K c) \cong \operatorname{Set}^{\mathrm{C}^{\mathrm{op}}}(\mathrm{C}(-, d), K) \cong K c .
$$

while co Yoneda lemma is proved as follows:

$$
\begin{aligned}
\operatorname{Set}\left(\int^{c \in \mathrm{C}} K c \times \mathrm{C}(d, c), X\right) & \cong \int_{c \in \operatorname{Cop}^{\text {op }}} \operatorname{Set}(K c \times \mathrm{C}(d, c), X) \\
& \cong \int_{c \in \mathrm{C}} \operatorname{Set}(\mathrm{C}(d, c), \operatorname{Set}(K c, X)) \\
& \cong \operatorname{Set}^{\complement}(\mathrm{C}(d,-), \operatorname{Set}(K-, X)) \\
& \cong \operatorname{Set}(K d, X)
\end{aligned}
$$

thus by Yoneda,

$$
\int^{c \in \mathrm{C}} K c \times \mathrm{C}(d, c) \cong K d
$$

This formula is also called Yoneda reduction. It follows that any presheaf K is a canonical colimit of representable presheaves.

