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Recall our definition of an elementary topos:

Definition 0.1

A category E is an elementary topos (or just a topos) if it has the following properties:

• E is finitely complete and finitely cocomplete1,

• E is Cartesian closed,

• E has a subobject classifier.

Today we will study the presheaf category SetCop of a small category C. Our main

goal is to show that it is a topos.

Note that the size requirement of C is necessary for SetCop to be locally small, so

SetCop(−, Ω) ∼= Sub indeed sends any presheaf to a set, so SetCop is well-powered.

We start we the general theory, then we look at some enlightening examples.

1 The Theory

We always fix a small category C. For a morphism f : c → d ∈ C, a presheaf P and an

element x ∈ Pd, the element P (f)(x) ∈ Pc is denoted x · f . You can think of a presheaf

P as a variable set endowed with right action of C (by morphisms), and x · f is f acting

on x.
1In fact, as mentioned by Ye Lingyuan, the finitely cocompleteness condition can be derived using

other axioms. The proof however is quite advanced, so for now let’s just say it’s an axiom.
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1.1 Limits and Colimits

We have the following general theorem.

Proposition 1.1

For small category C and locally small category D, if D has all J-shaped (co)limit, then

so does DC. The (co)limit of a diagram K : J → DC can be computed object-wise: if

λ : lim K → K is a limit cone in DC, then given any c ∈ C, λc : lim K(c) → K(c) is also

a limit cone. The same goes for colimits.

lim K lim K(c)

Ki Kj Ki(c) Kj(c)

λi λj

Kα

(λi)c

(Kα)c

(λj)c

Proof. We prove the case for limit. Suppose D has all J-shaped limits, then we have an

adjunction:

D DJ
∆

lim

a

expressing the universal property of lim.

Since CAT is Cartesian closed (by the exercise below), by adjoint functor calculus, we

have:

DC (DJ)C (DC)J
∆∗

lim∗

'a

Thus, for any F : C → D and K : J → (DC),

(DC)J(∆F, K) ∼= DC(F, lim K).

And by (DJ)C ∼= (DC)J, lim K : C → D maps c ∈ C to the limit of Kc : J → D. This is

exactly the meaning of object-wise. □
Exercise 1.2

Show that CAT is a ccc.

Since Set is both complete and cocomplete, we have:

Proposition 1.3

Presheaf category SetCop is both complete and cocomplete. Limits and colimits are com-

puted object-wise.
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1.2 Cartesian Closedness

Given two presheaves P, Q, we need to figure out what their exponential QP presheaf is.

It has to satisfy the adjunction property:

SetCop(R × P, Q) ∼= SetCop(R, QP ).

Consider the case where R is representable, say R ∼= C(−, c). Applying Yoneda lemma,

we get:

SetCop(C(−, c) × P, Q) ∼= SetCop(C(−, c), QP ) ∼= QP (c).

So the definition of QP is forced by the property above. We have to define it that way.

Definition 1.4

Given two presheaves P, Q, their exponential QP is defined to be

QP (c) = SetCop(C(−, c) × P, Q).

Proposition 1.5

QP is indeed the exponential, i.e. SetCop(R × P, Q) ∼= SetCop(R, QP ).

Proof. Propositions like this is meant to be proved by the technique of co-end calculus.

SetCop(R, QP ) ∼=
∫

c∈Cop
Set(Rc, SetCop(C(−, c) × P, Q))

∼=
∫

c∈Cop
Set

(
Rc,

∫
d∈Cop

Set(C(d, c) × Pd, Qd)
)

∼=
∫

c∈Cop,d∈Cop
Set(Rc, Set(C(d, c) × Pd, Qd))

∼=
∫

c∈Cop,d∈Cop
Set(Rc × C(d, c), Set(Pd, Qd))

∼=
∫

d∈Cop
Set

(∫ c∈C
Rc × C(d, c), Set(Pd, Qd)

)
∼=
∫

d∈Cop
Set(Rd, Set(Pd, Qd))

∼=
∫

d∈Cop
Set(Rd × Pd, Qd)

∼= SetCop(R × P, Q).

□
I’m not sure what’s the intuition behind QP . Any suggestion is welcome!
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1.3 Subobject Classifier
Lemma 1.6

In a category C with all pullbacks, a morphism f : c → d is monic iff the the pullback of

f along itself is 1c : c → c, i.e. the following diagram is a pullback square.

c c

c d

1c

1c

f

f
⌟

Exercise 1.7

Prove the lemma above.

Suppose one has a mono of presheaf m : P ↣ Q, then by the lemma, the following

square is a pullback.
P P

P Q

1P

m

1P

m
⌟

thus for any c ∈ C, the following square is a pullback in Set.

Pc Pc

Pc Qc

1

mc

1

mc

⌟

again by the lemma, this implies that mc is monic in Set, thus injective.

Conversely, suppose every component of a presheaf morphism m : P → Q is injective,

then it easily follows that m itself is monic. In conclusion, the property of being monic

can be decided object-wise.

A subpresheaf of a representable presheaf S ↣ C(−, c) has the following characteri-

zation:
Definition 1.8

A sieve S on an object c is a set of morphisms into c which is downward closed: if

f : d → c ∈ S, then for any g : e → d, fg : e → c ∈ S.

Suppose we have such a sieve S. How do we get an actual subpresheaf of C(−, c)?

Well, S(d) is just morphisms in S whose source is d. Conversely, when S ↣ C(−, c) is a

subpresheaf, then the sieve is just ⨿d∈C S(d).
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A morphism f : c → d can be Yoneda embedded to f∗ : C(−, c) → C(−, d). Applying

subobject, we obtains a function (f∗)∗ : Sub(C(−, d)) → Sub(C(−, c)), sending every sieve

on d to a sieve on c by pullback:

f ∗S S

C(−, c) C(−, d)
f∗

so k : b → c ∈ f ∗S iff fk : b → d ∈ S. This deserves some emphasis:

f ∗S = {k : • → c | fk ∈ S}.

For example, when C is a poset, then a sieve on c is just a downward closed subset of

C≤c. When c ≤ d and S in a sieve on d, then its pullback along c ≤ d is just S ∩ C≤c.

Any object c has a maximal sieve tc, consisting of all the morphisms targetting at c.

Since a sieve is required to be downward closed, a sieve S on c is maximal iff the identity

morphism 1c is in S. Althought this fact is easy, it will be frequently used, so I’ll re-state

it as a lemma.
Lemma 1.9

A sieve S on c is maximal iff 1c ∈ S.

Another frequently used lemma is:

Lemma 1.10

Suppose we have a morphism f : c → d and a sieve S on d, then f ∈ S iff f ∗S = tc.

So the pullback of a sieve along a morphism that is already in the sieve will always be

maximal, and vice versa.

Exercise 1.11

Prove the lemma above.

Now suppose SetCop has a subobject classifier Ω, then we should have a natural iso-

morphism:

Sub(P ) ∼= SetCop(P, Ω).

Let P be a representable presheaf C(−, c), we get:

Sub(C(−, c)) ∼= SetCop(C(−, c), Ω) ∼= Ω(c).

We see that the definition of Ω is also forced by representable presheaves.
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Proposition 1.12

The presheaf Ω defined above is indeed the subobject classifier, and the component of

> : 1 → Ω at c, >c : 1 → Ω(c), picks out the maximal sieve tc.

So the notation of tc is somewhat justified.

Proof. Suppose we have a subpresheaf Q ↣ P . Define the characteristic morphism

χQ : P → Ω to be:

(χQ)c : P (c) → Ω(c), x 7→ {f : d → c | x · f ∈ Q(d), d ∈ C}.

One can easily check that (χQ)c(x) is always downward closed, thus a sieve on c. We have

to check that the pullback of χQ and > is Q. Fix an object c.

Qc 1

Pc Ω(c)
(χQ)c

>

First of all it’s a commutative square. To see this, take any x ∈ Qc and chase the diagram:

x Qc 1 •

x Pc Ω(c) tc(χQ)c

>

∈

∈

3

3

Since x ∈ Qc, x · 1c = x ∈ Qc, so 1c ∈ (χQ)c(x), meaning (χQ)c(x) = tc.

To see that it’s a pullback, let’s compute the actual pullback of (χQ)c and >c:

Pc ×Ω(c) 1 ∼= {x ∈ Pc | (χQ)c(x) = tc}.

But again, if (χQ)c(x) = tc, then 1c ∈ (χQ)c(x), so x · 1c = x ∈ Q(c). So the diagram is

indeed a pullback.

Conversely, suppose ϕ : P → Ω is any morphism, we form the subpresheaf [ϕ] ↣ P

by pulling back > along ϕ, so

x ∈ [ϕ](c) ⇔ ϕc(x) = tc.

The characteristic morphism of [ϕ], however, maps x ∈ Pc to:

(χ[ϕ])c(x) = {f : d → c | x · f ∈ [ϕ](d), d ∈ C}.

But according to the definition of [ϕ],

x · f ∈ [ϕ](d) ⇔ ϕd(x · f) = td.
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And by the naturality of ϕ,

x Pc Ω(c) ϕc(x)

x · f Pd Ω(d) ϕd(x · f) = f ∗ϕc(x)

ϕc

P f

ϕd

∈

∈

3

3

ϕd(x · f) = td ⇔ f ∗ϕc(x) = td ⇔ f ∈ ϕc(x).

Putting everything together we get:

f ∈ (χ[ϕ])c(x) ⇔ f ∈ ϕc(x).

meaning χϕ = ϕ. So the construction (Q ↣ P ) 7→ χQ and ϕ 7→ [ϕ] are mutually inversed,

thus Sub(P ) ∼= SetCop(P, Ω). □
We have shown that

Theorem 1.13

For any small category C, SetCop is a topos. Moreover it’s both complete and cocomplete.

2 The Examples

Depending on the nature of C, SetCop may have different understandings:

• If C looks like a certain algebraic structure whose morphisms compose in an algebraic

way, then a presheaf of C can be seen as a (variable) set with a right C-action.

Primary example: when C has only one object, it can be seen as a monoid M , and

the presheaf category is just the category of right M -sets.

• If C looks like a model of time, then a presheaf can be seen as a set through time.

Primary example: C = ωop, then a presheaf category is a mathematical universe

whose time looks like ω.

• If C looks like a category of spaces, the object are some simple spaces and morphisms

are continuous maps in some sense, then a presheaf is a generalized space. Primary

example: the category of simplicial sets Set∆op .

• There are probably something more that I don’t know. Again, any suggestion is

welcome.

We have thoroughly study Setω before. Let’s turn our attention to the first and third

intuitions.
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2.1 Monoid Actions

Fix a monoid M , regarded as a small category, then the presheaf category SetMop is the

category of right M -sets. Indeed, each presheaf is a contravariant functor

X : Mop → Set

which picks out a set X, and turn every element (morphism) in M into an endofunction

of X. Functoriality condition becomes the action condition.

Let’s compute the subobject classifier Ω. It’s the set of sieves of the unique object in

M , i.e. the set of right ideals of M .

For example, let M = (N, 0, +), then every natural number n gives you a right ideal

N≥n.

However when M is a group G, the only two right ideals of a group is the maximal

one and the empty one, because whenever an ideal S ⊆ G is non-empty, say g ∈ S, then

gg−1 = 1 ∈ S, then for any h ∈ G, 1h = h ∈ S, so S = G.

So when G is a group, the subobject classifier Ω of SetGop , the “truth value” object,

has only two elements (as a G-set), and G acts on it trivially, Ω is the binary coproduct

1 + 1. This amounts to say that SetGop is a Boolean topos, its internal logic has LEM,

while for most monoids M , the internal logic of SetMop is intuitionistic.

There’s another notion of two-valuedness, which says the terminal object 1 has only two

subobjects: the initial object and 1 itself. Although two-valuedness and Booleannes may

appear similar, they are unrelated. For example, the topos considered above Set(N,0,+)

is two-valued but not Boolean. We will encounter some examples of Boolean yet not

two-valued toposes after introducing sheaf topoese.

2.2 Generalized Spaces

There’s an important theorem I haven’t proved yet, called coYoneda lemma, which says

presheaf category SetCop is the free cocompletion of C. The proof requires a technique

of Kan extension, but I’m afraid that the note might become overwhelming, so let’s talk

about it later. However we will be using at least the intuition of coYoneda lemma here.
Definition 2.1

The simplex category ∆ is defined as follows.

• Objects: finite ordinals. [n] means the ordinal n + 1.
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2.2 Generalized Spaces 2 THE EXAMPLES

• Morphisms: order-preserving functions.

The intuition is that [n] is sort of an n-dimensional triangle. For example, [0] is a

point, [1] is a line, [2] is an actual triangle, [3] is a tetrahedron and so on. Topologists call

these things simplices. The morphisms are continuous mappings in the sense that they

map vertices to vertices and they preserve edges (order).

A presheaf X : ∆op → Set is called a simplicial set. The intuition is that X is like a

space, and X[n] should be seen as the ways of laying out the simplex [n] inside X. The

Yoneda embedding

y : ∆ → Set∆op

turns a model space [n] into a generalized space ∆(−, [n]). The Yoneda lemma says:

X[n] ∼= Set∆op(∆(−, [n]), X)

which, under our interpretation, simply says that the way of mapping [n] into X is the

same, no matter whether you treat [n] as a model space or a generalized space.

CoYoneda lemma further justifies this interpretation: a simplicial set X is canonically

some simplices put together (coprodut), then stick together along certain rules (coequal-

izer).

Another good example is the category of directed graph. Let ⇒ be the category with

two objects v, e and two non-identity morphisms v ⇒ e. Then a presheaf G consists of:

• Two sets G(e), G(v),

• Two functions G(e) ⇒ G(v).

G is exactly a directed graph: G(e) is its set of edges and G(v) is its set of vertices.

The two functions G(e) ⇒ G(v) gives you the source and the target of any edge in G.

By Yoneda embedding, the category ⇒ can be embedding into the category of directed

graphs. The graph y(v) has only one vertex and no edge. The graph y(e) has two vertices

and one edge. So we might draw the whole diagram like:
•

•

•

G(v) G(e)
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By coYoneda lemma, they are exactly the building blocks of any directed graph.

Perhaps the most interesting thing about this presheaf category is its subobject clas-

sifier. Explore it yourself!

Exercise 2.2 (Understanding the Subobject Classifier)

1. How many sieves does v have?

2. How many sieves does e have?

3. What’s the two pullback functions?

4. Draw the directed graph of Ω.

5. Take any graph you like, then take any subgraph. Compute its characteristic func-

tion. How does Ω classify the subgraph?
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