# Heyting Algebra and Subobject Classifier

Prepared by CanaanZhou;)

## April 13

## 1 Heyting Algebra

Here we quickly introduce the concept of Heyting Algebra.

### Definition 1.1 (Lattice)

A lattice  $(L, \leq, \wedge, \vee)$  is a poset with binary product  $\wedge$  and binary coproduct  $\vee$ . They are called join and meet respectively. A bounded lattice is a lattice with all finite product and finite coproduct. In particular, it has a minimum 0 and a maximum 1.

### Definition 1.2 (Heyting Algebra)

A Heyting algebra  $(A, \leq, \land, \lor, 0, 1, \Rightarrow)$  is a bounded lattice that is a ccc:

$$x \wedge y \leq z \text{ iff } x \leq y \Rightarrow z.$$

where  $\Rightarrow$  is called Heyting implication operator.

In other words,  $y \Rightarrow z$  is the largest x such that  $x \land y \leq z$ .<sup>1</sup>

A Heyting algebra is often seen as an algebraic model of *intuitionistic propositional* logic. It's just like classical propositional logic (whose algebraic model is Boolean algebra as we will see later) except that law of excluded middle (LEM)  $P \vee \neg P$ , double negation elimination (DNE)  $\neg \neg P \rightarrow P$  and everything equivalent is not available. These logical rules become algebraic rules in Heyting algebra.

#### Exercise 1.3

Fix a Heyting algebra A. Show the following equations are always valid. Can you recognize where they come from?

•  $x \Rightarrow (y \Rightarrow x) = 1.$ 

<sup>&</sup>lt;sup>1</sup>This fact is a corollary of our theorem of category of elements last week.

- $(x \Rightarrow (y \Rightarrow z)) \Rightarrow (x \Rightarrow y) \Rightarrow (x \Rightarrow z) = 1.$
- $x \wedge (x \Rightarrow y) \leq y$ .
- $(x \Rightarrow z) \land (y \Rightarrow z) \le (x \lor y) \Rightarrow z.$
- $(x \land y) \Rightarrow z = x \Rightarrow (y \Rightarrow z).$

*Hint:* A is a ccc, so you can use our  $\lambda$ -calculus system.

The prototypical example of a Heyting algebra is O(X), the poset of open sets in X, for a fixed topological space X.  $\leq = \subseteq, 0 = \emptyset, 1 = X, \land = \cap, \lor = \bigcup$ . For any opens U, V,

$$U \Rightarrow V = \bigcup \{ W \in O(X) \mid W \cap U \subseteq V \}.$$

We have a concrete and easy-to-compute example. It can also be a good counterexample against many propositions.

#### Example 1.4 (Sierpiński space)

The Sierpiński space  $\Sigma$  has two points 0, 1. Opens are  $\emptyset$ ,  $\{1\}, \Sigma$ . Thus  $O(\Sigma)$  is a Heyting algebra with three elements.

In fact, O(X) is always a *complete* Heyting algebra. It has all limits and colimits.

Suppose a lattice L has arbitrary join. It's *infinitely distributive* if the following equation always holds.

$$x \wedge \left(\bigvee_{i} y_{i}\right) = \bigvee_{i} (x \wedge y_{i}).$$

Note that for any topological space X, O(X) has arbitrary join (union) and is infinitely distributive:

$$U \land \left(\bigcup_{i} V_{i}\right) = \bigcup_{i} (U \cap V_{i})$$

since  $x \in U \land (\bigcup_i V_i)$  iff  $x \in U$  and x is in some  $V_i$  iff x is in some  $U \cap V_i$ .

#### **Proposition 1.5**

Any lattice that has arbitrary join and is infinitely distributive is a complete Heyting algebra and vice versa.

#### Proof.

 $\Leftarrow$  Suppose L is a complete Heyting algebra. We need to show that it's infinitely distributive:

$$x \wedge \left(\bigvee_{i} y_{i}\right) = \bigvee_{i} (x \wedge y_{i}).$$

This is simply because  $x \wedge -$  is left adjoint to  $x \Rightarrow -$ ,  $\bigvee_i y_i$  is the colimit of  $y_i$ , and left adjoint preserves colimits.

 $\Rightarrow$  Suppose L has arbitrary join and is infinitely distributive. Its minimum is  $\bigvee \varnothing$  since the colimit of an empty diagram is the terminal. Its maximum is  $\bigvee L$ , the join of the whole lattice. It works here because L is a poset, so it's small.

We define Heyting implication as follows.

$$x \Rightarrow y := \bigvee \{ z \mid z \land x \le y \}.$$

To see the cc property: if  $x \wedge y \leq z$ , then  $x \leq y \Rightarrow z$  by definition. For the other direction:

$$\begin{aligned} x &\leq y \Rightarrow z \\ \implies x &\leq \bigvee \{ w \mid w \land y \leq z \} \\ \implies x \land y &\leq \bigvee \{ w \land y \mid w \land y \leq z \} \leq z \end{aligned}$$

We still need to define infinite meet.

$$\bigwedge_{i} x_i := \bigvee \{ y \mid \forall i. y \le x_i \}.$$

Now we show the universal property. For each j,  $\bigwedge_i x_i \leq x_j$ , since for each y such that  $\forall i.y \leq x_i$ , it follows that  $y \leq x_j$ .

Suppose for each  $j, x < x_j$  for some fixed x. Then trivially  $x \leq \bigvee \{y \mid \forall i. y \leq x_i\}$ , since x is a member of that set.  $\Box$ 

From now on, fix a heyting algebra A.

#### Definition 1.6 (Negation)

The negation operator  $\neg: A^{\text{op}} \to A$  is defined to be  $\neg x = x \Rightarrow 0$ .

Suppose A = O(X) for a topological space X,  $U \subseteq X$  is an open set. By definition,

$$\neg U = U \Rightarrow \varnothing = \bigcup \{ V \mid U \cap V = \varnothing \}$$

This is the interior of the complement of U.

Suppose  $X = \mathbb{R}$  with standard topology. In  $O(\mathbb{R})$ , neither LEM nor DNE works.

- Suppose  $U = (-\infty, 0)$ , then  $\neg U = (0, \infty)$ , so  $U \cup \neg U \subsetneq \mathbb{R}$ .
- Suppose  $U = (-\infty, 0) \cup (0, \infty)$ , then  $\neg U = \emptyset$ ,  $\neg \neg U = \mathbb{R}$ , so  $U \subsetneq \neg \neg U$ .

However, these are valid in any A:

#### Exercise 1.7

Show the following equations are always valid.

- $x \leq \neg \neg x$ .
- $\neg \neg \neg x = \neg x$ .
- $x \wedge \neg x = 0$ .
- $\neg(x \lor y) = \neg x \land \neg y$ . *Hint: use* Exercise 1.3.
- $\neg x \lor \neg y \leq \neg (x \land y).$
- $\neg(x \land y) = x \Rightarrow (\neg y).$

So double negation operator  $\neg \neg : A \to A$  is a closure operator<sup>2</sup>, in the sense that it's a idempotent functor (on poset, so it's in fact a monad).

### Definition 1.8 (Boolean Algebra)

A Boolean algebra A is a Heyting algebra such that for any  $x \in A$ ,  $\neg \neg x = x$ .

In most textbooks, a Boolean algebra is defined to be a bounded distributive lattice with a negation operator  $\neg$  satisfying de Morgan's law and many other axioms, and Heyting implication is *defined* as  $x \Rightarrow y := \neg x \lor y$ . This is of course equivalent to our definition. However the internal logic of a topos is usually intuitionistic, and being Boolean is a very special property. Our treatment of Boolean algebra being a Heyting algebra with some special properties matches this phenomenon. Moreover, dealing with Heyting algebra provides more *intuition.*<sup>3</sup>

#### Exercise 1.9

Show that in any Boolean algebra A, the following equations always hold.

- "Definition" of Heyting implication:  $x \Rightarrow y = \neg x \lor y$ . Hint: check the adjunction property.
- LEM:  $x \lor \neg x = 1$ . Hint: if you're stuck with this, look up a bit.
- de Morgan's law: ¬(x ∧ y) = ¬x ∨ ¬y. Note that the other part of de Morgan's law has been proven to be valid in any Heyting algebra.

<sup>&</sup>lt;sup>2</sup>It has absolutely *nothing* to do with the notion of *closure* in topology! <sup>3</sup>Get it? Is it funny? No? Alright :(

 Pierce's law: ((x ⇒ y) ⇒ x) = x. Hint: Use de Morgan's law and "definition" of Heyting implication to compute directly.

#### Definition 1.10

A homomorphism  $f : A \to B$  between Heyting algebras A, B is a functor that preserves  $\land, \lor, \Rightarrow$  and in particular 0, 1. Thus we have a category of Heyting algebras HeyAlg. It has a full subcategory BoolAlg consisting of Boolean algebras.

### Lemma 1.11

For any Heyting algebra A, let B be the image of  $\neg \neg : A \to A$ , then B is a subposet of A. The two functors  $\neg \neg : A \to B$  and  $i : B \to A$  form an adjunction pair  $\neg \neg \dashv i$ .

*Proof.* After untangling all the concepts, the lemma simply says that for any  $x, y \in A$  such that  $y = \neg \neg y, x \leq y$  iff  $\neg \neg x \leq y$ .

- If  $\neg \neg x \leq y$ , then  $x \leq \neg \neg x \leq y$ .
- If  $x \leq y$ , then  $\neg \neg x \leq \neg \neg y = y$ .

If you're familiar with monad theory, the image of  $\neg \neg$  is the same as  $\{x \in A \mid \neg \neg x \leq x\}$ , the Eilenberg-Moore category of the monad  $\neg \neg$ . The adjunction then follows directly.

## Lemma 1.12

The subposet B defined above is a Boolean algebra and  $\neg \neg : A \rightarrow B$  is a Heyting algebra homomorphism.

*Proof.*  $0, 1 \in B$  and are preserved by both  $\neg\neg$  and *i*.

We prove that  $\neg \neg$  preserves  $\land$ . Since  $x \land y \leq x$ ,  $\neg \neg (x \land y) \leq x$ , same for y, so  $\neg \neg (x \land y) \leq \neg \neg x \land \neg \neg y$ .

To show  $\neg \neg x \land \neg \neg y \leq \neg \neg (x \land y)$ , we only need to show that  $(\neg \neg x) \land (\neg \neg y) \land \neg (x \land y) \leq 0$ . Indeed,

$$(\neg \neg x) \land (\neg \neg y) \land \neg (x \land y) = (\neg \neg x) \land (\neg y \Rightarrow 0) \land (x \Rightarrow \neg y)$$
$$\leq (\neg \neg x) \land (x \Rightarrow 0)$$
$$= 0.$$

Next,  $\neg \neg$  preserves  $\lor$  is simply because  $\neg \neg$  is left adjoint and  $\lor$  is colimit.

Finally we need to show that  $\neg\neg$  preserves  $\Rightarrow$ .

$$(\neg \neg x) \Rightarrow (\neg \neg y) = \neg (\neg \neg x \land \neg y).$$

We claim that  $\neg \neg x \land \neg y = \neg(x \Rightarrow y)$  and the lemma follows.

$$0 \le y \implies \neg x \le x \Rightarrow y \implies \neg (x \Rightarrow y) \le \neg \neg x,$$

$$y \wedge x \leq y \implies y \leq x \Rightarrow y \implies \neg(x \Rightarrow y) \leq \neg y.$$

Thus  $\neg(x \Rightarrow y) \leq \neg \neg x \land \neg y$ . For the other direction, note that

$$\neg \neg x \land \neg y \leq \neg (x \Rightarrow y) \Leftrightarrow \neg \neg x \land \neg y \land (x \Rightarrow y) \leq 0$$

however one can "compose"  $\neg y \land (x \Rightarrow y)$ :

$$\neg \neg x \land \neg y \land (x \Rightarrow y) \le \neg \neg x \land \neg x = 0.$$

Note that the inclusion functor  $i : B \to A$  is usually not a homomorphism, since it might not preserve join. For example, let  $A = O(\mathbb{R}), U = (-\infty, 0), V = (0, \infty)$ .  $U \cup V \neq \neg \neg (U \cup V)$ , so  $U \cup V \notin B$ . B still has a join operator  $\lor$ , it just doesn't coincide with  $\cup$  in A.

#### Proposition 1.13

Our construction of B from A above is a functor  $\neg \neg$ : HeyAlg  $\rightarrow$  BoolAlg, called Booleanization. Moreover, it's the left adjoint of the inclusion functor i: BoolAlg  $\rightarrow$  HeyAlg.<sup>4</sup>

*Proof.* To avoid confusion, for any  $A \in \mathsf{HeyAlg}$ , let's write  $A_{\neg\neg}$  for  $\neg\neg(A) \in \mathsf{BoolAlg}$ . We check the universal property of  $(A_{\neg\neg}, \neg\neg: A \to A_{\neg\neg})$ .

Suppose we have a homomorphism  $f : A \to B$ , we need to show that there uniquely exists a  $\overline{f} : A_{\neg \neg} \to B$ .



Define  $\overline{f}: A_{\neg \neg} \to B$  to be  $f \circ i$ . The diagram commutes because for any  $a \in A$ ,

$$\overline{f} \circ \neg \neg a = f(\neg \neg a) = \neg \neg f(a) = f(a).$$

<sup>&</sup>lt;sup>4</sup>I'm aware that I use  $\neg \neg \dashv i$  for both adjunction between  $A, A_{\neg \neg}$  and between HeyAlg, BoolAlg. It should be clear from context, but sorry if it causes confusion.

Now suppose there's a  $g: A_{\neg \neg} \to B$  such that the diagram commutes, meaning for every  $a \in A, g \circ \neg \neg a = f(a)$ . Since  $\neg \neg : A \to A_{\neg \neg}$  is by definition epic  $(A_{\neg \neg})$  is literally defined to be the image of  $\neg \neg$ ),  $\overline{f} \circ \neg \neg = g \circ \neg \neg$  implies  $\overline{f} = g$ .

We have met some good examples of *reflective subcategory*.

#### Definition 1.14 (Reflective Subcategory)

Suppose  $i : C \to D$  is fully faithful, so C is a full subcategory of D.

- C is a reflective subcategory if i has a left adjoint.
- Dually, C is a coreflective subcategory if i has a right adjoint.

By definition, BoolAlg is a full subcategory of HeyAlg, and we have shown that BoolAlg is in fact a reflective subcategory. For every Heyting algebra A, its Booleanization  $A_{\neg\neg}$  is a reflective subcategory of A. I've actually written a pretty in-depth note on this topic.

## 2 Subobject Classifier

## 2.1 Pullback

We need to develop some calculus about pullback. Recall the definition:

#### Definition 2.1 (Pullback)

The limit of  $a \bullet \to \bullet \leftarrow \bullet$  diagram is called a pullback.

Let's expand the definition. For simplicity, let's work in a category C with finite limits. Given two morphisms  $f : a \to c, g : b \to c$ , the pullback cone forms a commutative square:

$$\begin{array}{ccc} a \times_c b & \xrightarrow{\overline{f}} & b \\ \overline{g} & \stackrel{\neg}{\xrightarrow{}} & \stackrel{\downarrow g}{\underset{a \longrightarrow f}{\longrightarrow}} & c \end{array}$$

such that for any object d with  $h: d \to a$  and  $k: d \to b$  such that fh = gk, there is a unique  $d \to a \times_c b$  such that everything commutes.



This diagram is super important, please keep it in mind.

#### Lemma 2.2 (Pullback preserves mono)

Suppose in the diagram above  $f: a \to c$  is monic, then  $\overline{f}$  is also monic.

$$\begin{array}{ccc} a \times_c b \xrightarrow{\overline{f}} b \\ & \overline{g} & \downarrow & \downarrow g \\ & a \xrightarrow{f} c \end{array}$$

*Proof.* Suppose we have  $h, k : d \rightrightarrows a \times_c b$  such that  $\overline{f}h = \overline{f}k$ , then  $g\overline{f}h = g\overline{f}k$ . Since the square commutes,  $f\overline{g}h = f\overline{g}k$ . But since f is monic,  $\overline{g}h = \overline{g}k$ .



Then there exists a unique morphism  $d \to a \times_c b$  such that everything commutes, but both h and k meet this condition, so we must have h = k.

• Show that pullback preserves isomorphism.

Pullback of an epimorphism is not necessarily an epimorphism. However it does in **Set** as well as any topos. For counterexample you can see here.

### Lemma 2.4 (Pasting Lemma)

Suppose we have the following commutative diagram and the square on the right is a pullback square, then the one on the left is a pullback square iff the outer rectangle is.

$$\begin{array}{cccc} A & \stackrel{f_1}{\longrightarrow} & B & \stackrel{f_2}{\longrightarrow} & C \\ g_1 & & & \downarrow g_2 & & \downarrow g_3 \\ D & \stackrel{h_1}{\longrightarrow} & E & \stackrel{h_2}{\longrightarrow} & F \end{array}$$

*Proof.* Take any object U, we argue through U's generalized element.

Left square is pullback

$$\Leftrightarrow \mathsf{C}(U,A) \cong \{(b:U \to B, d:U \to D) \mid g_2 b = h_1 d\}$$
$$\Leftrightarrow \mathsf{C}(U,A) \cong \{(e:U \to E, c:U \to C, d:U \to D) \mid g_3 c = h_2 e \land e = h_1 d\}$$
$$\Leftrightarrow \mathsf{C}(U,A) \cong \{(e:U \to E, d:U \to D) \mid g_3 c = h_2 h_1 d\}$$

 $\Leftrightarrow$  Out rectangle is pullback

## 2.2 Subobject Classifier

Fix a category C and an object c. Consider the collection (usually a class) of monomorphisms targetting at c. We define an equivalence relation:  $f : a \rightarrow c$  and  $g : b \rightarrow c$  are equivalent iff there's an isomorphism  $\alpha : a \cong b$  such that the triangle commutes.



A subobject of c is an equivalence class of such monomorphisms. The collection of subobjects of c is denoted as  $\text{Sub}_{\mathsf{C}}(c)$  or simply Sub(c), when the category is clear from context.

A category is *well-powered* if for each object c, Sub(c) is small enough to be a set. All categories we care are well-powered. In fact, I don't think I've ever encountered a category that is not well-powered.

The prototypical example is again Set.

#### Example 2.5 (Subobjects in Set)

In Set, a subobject of a set X is an equivalence class of monomorphisms  $m : S \to X$ targetting at X. Each equivalence class corresponds to a subset of X, so  $\operatorname{Sub}_{\mathsf{Set}}(X) \cong \mathcal{P}(X) \cong 2^X$ .

Regard  $2 = \{\top, \bot\}^5$  as the set of *truth values* in Set, then  $2^X$  is the set of *predicates* over X, while  $\mathcal{P}(X)$ , which we *identify* as  $\operatorname{Sub}(X)$ , is the set of subsets over X. The isomorphism  $\mathcal{P}(X) \cong 2^X = \operatorname{Set}(X, 2)$  is given by identifying a subset  $S \subseteq X$  as the *characterstic function*  $\chi_S : X \to 2$  sending everything in S to  $\top$  and everything else to  $\bot$ .

In other words, the following diagram is a *pullback*:

$$\begin{array}{c} S \xrightarrow{!} 1 \\ \downarrow & \downarrow \\ X \xrightarrow{} \chi_S \end{array} \begin{array}{c} \gamma \\ \gamma \end{array}$$

which simply expresses that

$$S = \chi_S^{-1}(\top).$$

<sup>&</sup>lt;sup>5</sup>In logic,  $\top$  means true and  $\perp$  means false.

Now suppose we have a function  $f: Y \to X$  and a subset  $S \subseteq X$ . One can pull  $S \to X$  back along f:



obtaining a subset  $f^{-1}(S) \subseteq Y$ . One can view  $S \to X$  as any injection into X instead of a subset since they are categorically indistinguishable anyway. The pullback process still works because pullback preserves monomorphisms.

By pasting lemma, the outer rectangle above is also a pullback. The characteristic function  $\chi_{f^{-1}(S)}$  of  $f^{-1}(S) \rightarrow Y$  is the *composition*  $Y \xrightarrow{f} X \xrightarrow{\chi_S} 2$ . So  $\operatorname{Sub}_{\mathsf{Set}}$  is in fact a functor  $\operatorname{Sub}_{\mathsf{Set}} : \mathsf{Set}^{\operatorname{op}} \rightarrow \mathsf{Set}$ , which is *naturally isomorphic* to  $\operatorname{Set}(-, 2)$ . For any function  $f : Y \rightarrow X$ , the induced function  $f^* : \operatorname{Sub}_{\mathsf{Set}}(X) \rightarrow \operatorname{Sub}_{\mathsf{Set}}(Y)$  is given by "pulling back along f".

These observations motivate the definition of subobject classifier.

#### Definition 2.6 (Subobject Classifier)

Suppose C has all finite limits. The subobject classifier of C consists of the following data:

- A special "truth value" object  $\Omega$ ,
- A "true" monomorphism  $\top : 1 \rightarrow \Omega$ , where 1 is the terminal.
- A natural isomorphism Sub<sub>C</sub> ≅ C(−, Ω) : C<sup>op</sup> → Set given by "pulling back along ⊤".

We can finally define topos now.

## Definition 2.7 (Elementary Topos)

A category  $\mathcal{E}$  is an elementary topos, or simply topos, if:

- $\mathcal{E}$  has all finite limits and colimits.
- $\mathcal{E}$  is Cartesian closed.
- $\mathcal{E}$  has a subobject classifier  $\top : 1 \to \Omega$ .

Obviously Set is a topos as well as FinSet. Next time we will study presheaf category Set<sup>Cop</sup> in detail and prove that they are also toposes.<sup>6</sup>.

<sup>&</sup>lt;sup>6</sup>The word topos comes from ancient Greek language. The plural form should be *topoi*, but people also say *toposes*. Personally I prefer toposes.