
Heyting Algebra and Subobject Classifier

Prepared by CanaanZhou ;)

April 13

1 Heyting Algebra

Here we quickly introduce the concept of Heyting Algebra.

Definition 1.1 (Lattice)

A lattice (L,≤,∧,∨) is a poset with binary product ∧ and binary coproduct ∨. They are

called join and meet respectively. A bounded lattice is a lattice with all finite product

and finite coproduct. In particular, it has a minimum 0 and a maximum 1.

Definition 1.2 (Heyting Algebra)

A Heyting algebra (A,≤,∧,∨, 0, 1,⇒) is a bounded lattice that is a ccc:

x ∧ y ≤ z iff x ≤ y ⇒ z.

where ⇒ is called Heyting implication operator.

In other words, y ⇒ z is the largest x such that x ∧ y ≤ z.1

A Heyting algebra is often seen as an algebraic model of intuitionistic propositional

logic. It’s just like classical propositional logic (whose algebraic model is Boolean algebra

as we will see later) except that law of excluded middle (LEM) P ∨ ¬P , double negation

elimination (DNE) ¬¬P → P and everything equivalent is not available. These logical

rules become algebraic rules in Heyting algebra.
Exercise 1.3

Fix a Heyting algebra A. Show the following equations are always valid. Can you recognize

where they come from?

• x⇒ (y ⇒ x) = 1.
1This fact is a corollary of our theorem of category of elements last week.

1



1 HEYTING ALGEBRA

• (x⇒ (y ⇒ z))⇒ (x⇒ y)⇒ (x⇒ z) = 1.

• x ∧ (x⇒ y) ≤ y.

• (x⇒ z) ∧ (y ⇒ z) ≤ (x ∨ y)⇒ z.

• (x ∧ y)⇒ z = x⇒ (y ⇒ z).

Hint: A is a ccc, so you can use our λ-calculus system.

The prototypical example of a Heyting algebra is O(X), the poset of open sets in X,

for a fixed topological space X. ≤=⊆, 0 = ∅, 1 = X,∧ = ∩,∨ = ∪. For any opens U, V ,

U ⇒ V =
∪
{W ∈ O(X) | W ∩ U ⊆ V }.

We have a concrete and easy-to-compute example. It can also be a good counterex-

ample against many propositions.
Example 1.4 (Sierpiǹski space)

The Sierpiǹski space Σ has two points 0, 1. Opens are ∅, {1}, Σ. Thus O(Σ) is a Heyting

algebra with three elements.

In fact, O(X) is always a complete Heyting algebra. It has all limits and colimits.

Suppose a lattice L has arbitrary join. It’s infinitely distributive if the following

equation always holds.

x ∧
(∨

i

yi

)
=
∨
i

(x ∧ yi).

Note that for any topological space X, O(X) has arbitrary join (union) and is infinitely

distributive:

U ∧
(∪

i

Vi

)
=
∪
i

(U ∩ Vi)

since x ∈ U ∧ (∪i Vi) iff x ∈ U and x is in some Vi iff x is in some U ∩ Vi.
Proposition 1.5

Any lattice that has arbitrary join and is infinitely distributive is a complete Heyting

algebra and vice versa.

Proof.

⇐ Suppose L is a complete Heyting algebra. We need to show that it’s infinitely

distributive:

x ∧
(∨

i

yi

)
=
∨
i

(x ∧ yi).

2



1 HEYTING ALGEBRA

This is simply because x ∧ − is left adjoint to x ⇒ −, ∨i yi is the colimit of yi, and left

adjoint preserves colimits.

⇒ Suppose L has arbitrary join and is infinitely distributive. Its minimum is ∨∅

since the colimit of an empty diagram is the terminal. Its maximum is ∨L, the join of

the whole lattice. It works here because L is a poset, so it’s small.

We define Heyting implication as follows.

x⇒ y :=
∨
{z | z ∧ x ≤ y}.

To see the cc property: if x∧y ≤ z, then x ≤ y ⇒ z by definition. For the other direction:

x ≤ y ⇒ z

=⇒ x ≤
∨
{w | w ∧ y ≤ z}

=⇒ x ∧ y ≤
∨
{w ∧ y | w ∧ y ≤ z} ≤ z

We still need to define infinite meet.

∧
i

xi :=
∨
{y | ∀i.y ≤ xi}.

Now we show the universal property. For each j, ∧i xi ≤ xj, since for each y such that

∀i.y ≤ xi, it follows that y ≤ xj.

Suppose for each j, x < xj for some fixed x. Then trivially x ≤ ∨{y | ∀i.y ≤ xi},

since x is a member of that set. □
From now on, fix a heyting algebra A.

Definition 1.6 (Negation)

The negation operator ¬ : Aop → A is defined to be ¬x = x⇒ 0.

Suppose A = O(X) for a topological space X, U ⊆ X is an open set. By definition,

¬U = U ⇒ ∅ =
∪
{V | U ∩ V = ∅}

This is the interior of the complement of U .

Suppose X = R with standard topology. In O(R), neither LEM nor DNE works.

• Suppose U = (−∞, 0), then ¬U = (0,∞), so U ∪ ¬U ⊊ R.

• Suppose U = (−∞, 0) ∪ (0,∞), then ¬U = ∅, ¬¬U = R, so U ⊊ ¬¬U .

However, these are valid in any A:

3



1 HEYTING ALGEBRA

Exercise 1.7

Show the following equations are always valid.

• x ≤ ¬¬x.

• ¬¬¬x = ¬x.

• x ∧ ¬x = 0.

• ¬(x ∨ y) = ¬x ∧ ¬y. Hint: use Exercise 1.3.

• ¬x ∨ ¬y ≤ ¬(x ∧ y).

• ¬(x ∧ y) = x⇒ (¬y).

So double negation operator ¬¬ : A→ A is a closure operator2, in the sense that it’s

a idempotent functor (on poset, so it’s in fact a monad).

Definition 1.8 (Boolean Algebra)

A Boolean algebra A is a Heyting algebra such that for any x ∈ A, ¬¬x = x.

In most textbooks, a Boolean algebra is defined to be a bounded distributive lattice with

a negation operator ¬ satisfying de Morgan’s law and many other axioms, and Heyting

implication is defined as x ⇒ y := ¬x ∨ y. This is of course equivalent to our definition.

However the internal logic of a topos is usually intuitionistic, and being Boolean is a very

special property. Our treatment of Boolean algebra being a Heyting algebra with some

special properties matches this phenomenon. Moreover, dealing with Heyting algebra

provides more intuition.3

Exercise 1.9

Show that in any Boolean algebra A, the following equations always hold.

• “Definition” of Heyting implication: x ⇒ y = ¬x ∨ y. Hint: check the adjunction

property.

• LEM: x ∨ ¬x = 1. Hint: if you’re stuck with this, look up a bit.

• de Morgan’s law: ¬(x ∧ y) = ¬x ∨ ¬y. Note that the other part of de Morgan’s law

has been proven to be valid in any Heyting algebra.
2It has absolutely nothing to do with the notion of closure in topology!
3Get it? Is it funny? No? Alright :(

4



1 HEYTING ALGEBRA

• Pierce’s law: ((x ⇒ y) ⇒ x) = x. Hint: Use de Morgan’s law and “definition” of

Heyting implication to compute directly.

Definition 1.10

A homomorphism f : A → B between Heyting algebras A, B is a functor that preserves

∧,∨,⇒ and in particular 0, 1. Thus we have a category of Heyting algebras HeyAlg. It

has a full subcategory BoolAlg consisting of Boolean algebras.

Lemma 1.11

For any Heyting algebra A, let B be the image of ¬¬ : A → A, then B is a subposet of

A. The two functors ¬¬ : A→ B and i : B → A form an adjunction pair ¬¬ ⊣ i.

Proof. After untangling all the concepts, the lemma simply says that for any x, y ∈ A

such that y = ¬¬y, x ≤ y iff ¬¬x ≤ y.

• If ¬¬x ≤ y, then x ≤ ¬¬x ≤ y.

• If x ≤ y, then ¬¬x ≤ ¬¬y = y.

□
If you’re familiar with monad theory, the image of ¬¬ is the same as {x ∈ A | ¬¬x ≤

x}, the Eilenberg-Moore category of the monad ¬¬. The adjunction then follows directly.

Lemma 1.12

The subposet B defined above is a Boolean algebra and ¬¬ : A→ B is a Heyting algebra

homomorphism.

Proof. 0, 1 ∈ B and are preserved by both ¬¬ and i.

We prove that ¬¬ preserves ∧. Since x ∧ y ≤ x, ¬¬(x ∧ y) ≤ x, same for y, so

¬¬(x ∧ y) ≤ ¬¬x ∧ ¬¬y.

To show ¬¬x∧¬¬y ≤ ¬¬(x∧y), we only need to show that (¬¬x)∧(¬¬y)∧¬(x∧y) ≤

0. Indeed,

(¬¬x) ∧ (¬¬y) ∧ ¬(x ∧ y) = (¬¬x) ∧ (¬y ⇒ 0) ∧ (x⇒ ¬y)

≤ (¬¬x) ∧ (x⇒ 0)

= 0.

Next, ¬¬ preserves ∨ is simply because ¬¬ is left adjoint and ∨ is colimit.

5



1 HEYTING ALGEBRA

Finally we need to show that ¬¬ preserves ⇒.

(¬¬x)⇒ (¬¬y) = ¬(¬¬x ∧ ¬y).

We claim that ¬¬x ∧ ¬y = ¬(x⇒ y) and the lemma follows.

0 ≤ y =⇒ ¬x ≤ x⇒ y =⇒ ¬(x⇒ y) ≤ ¬¬x,

y ∧ x ≤ y =⇒ y ≤ x⇒ y =⇒ ¬(x⇒ y) ≤ ¬y.

Thus ¬(x⇒ y) ≤ ¬¬x ∧ ¬y. For the other direction, note that

¬¬x ∧ ¬y ≤ ¬(x⇒ y)⇔ ¬¬x ∧ ¬y ∧ (x⇒ y) ≤ 0

however one can “compose” ¬y ∧ (x⇒ y):

¬¬x ∧ ¬y ∧ (x⇒ y) ≤ ¬¬x ∧ ¬x = 0.

□
Note that the inclusion functor i : B → A is usually not a homomorphism, since

it might not preserve join. For example, let A = O(R), U = (−∞, 0), V = (0,∞).

U ∪ V ̸= ¬¬(U ∪ V ), so U ∪ V /∈ B. B still has a join operator ∨, it just doesn’t coincide

with ∪ in A.
Proposition 1.13

Our construction of B from A above is a functor ¬¬ : HeyAlg→ BoolAlg, called Booleaniza-

tion. Moreover, it’s the left adjoint of the inclusion functor i : BoolAlg→ HeyAlg.4

Proof. To avoid confusion, for any A ∈ HeyAlg, let’s write A¬¬ for ¬¬(A) ∈ BoolAlg. We

check the universal property of (A¬¬,¬¬ : A→ A¬¬).

Suppose we have a homomorphism f : A → B, we need to show that there uniquely

exists a f : A¬¬ → B.

A A¬¬

B

¬¬

i

f

f

⊣

Define f : A¬¬ → B to be f ◦ i. The diagram commutes because for any a ∈ A,

f ◦ ¬¬a = f(¬¬a) = ¬¬f(a) = f(a).
4I’m aware that I use ¬¬ ⊣ i for both adjunction between A, A¬¬ and between HeyAlg, BoolAlg. It

should be clear from context, but sorry if it causes confusion.

6



2 SUBOBJECT CLASSIFIER

Now suppose there’s a g : A¬¬ → B such that the diagram commutes, meaning for every

a ∈ A, g ◦ ¬¬a = f(a). Since ¬¬ : A→ A¬¬ is by definition epic (A¬¬ is literally defined

to be the image of ¬¬), f ◦ ¬¬ = g ◦ ¬¬ implies f = g. □
We have met some good examples of reflective subcategory.

Definition 1.14 (Reflective Subcategory)

Suppose i : C→ D is fully faithful, so C is a full subcategory of D.

• C is a reflective subcategory if i has a left adjoint.

• Dually, C is a coreflective subcategory if i has a right adjoint.

By definition, BoolAlg is a full subcategory of HeyAlg, and we have shown that BoolAlg

is in fact a reflective subcategory. For every Heyting algebra A, its Booleanization A¬¬ is

a reflective subcategory of A. I’ve actually written a pretty in-depth note on this topic.

2 Subobject Classifier

2.1 Pullback

We need to develop some calculus about pullback. Recall the definition:
Definition 2.1 (Pullback)

The limit of a • → • ← • diagram is called a pullback.

Let’s expand the definition. For simplicity, let’s work in a category C with finite limits.

Given two morphisms f : a→ c, g : b→ c, the pullback cone forms a commutative square:

a×c b b

a c
f

gg

f

⌟

such that for any object d with h : d → a and k : d → b such that fh = gk, there is a

unique d→ a×c b such that everything commutes.

d

a×c b b

a c

⌟

∃!

This diagram is super important, please keep it in mind.

7

https://zhuanlan.zhihu.com/p/618124458


2.1 Pullback 2 SUBOBJECT CLASSIFIER

Lemma 2.2 (Pullback preserves mono)

Suppose in the diagram above f : a→ c is monic, then f is also monic.

a×c b b

a c
f

gg

f

⌟

Proof. Suppose we have h, k : d ⇒ a×c b such that fh = fk, then gfh = gfk. Since the

square commutes, fgh = fgk. But since f is monic, gh = gk.

d

a×c b b

a c
f

gg

f

⌟

fh=fk

gh=gk

∃!,h,k

Then there exists a unique morphism d → a ×c b such that everything commutes, but

both h and k meet this condition, so we must have h = k. □
Exercise 2.3

• Show that pullback preserves isomorphism.

Pullback of an epimorphism is not necessarily an epimorphism. However it does in

Set as well as any topos. For counterexample you can see here.
Lemma 2.4 (Pasting Lemma)

Suppose we have the following commutative diagram and the square on the right is a

pullback square, then the one on the left is a pullback square iff the outer rectangle is.

A B C

D E F

f1 f2

g3g2g1

h1 h2

⌟

Proof. Take any object U , we argue through U ’s generalized element.

Left square is pullback

⇔ C(U, A) ∼= {(b : U → B, d : U → D) | g2b = h1d}

⇔ C(U, A) ∼= {(e : U → E, c : U → C, d : U → D) | g3c = h2e ∧ e = h1d}

⇔ C(U, A) ∼= {(e : U → E, d : U → D) | g3c = h2h1d}

⇔ Out rectangle is pullback

□

8

https://math.stackexchange.com/questions/1802558/examples-for-the-fact-that-a-pullback-of-an-epimorphism-is-not-necessarily-an-ep


2.2 Subobject Classifier 2 SUBOBJECT CLASSIFIER

2.2 Subobject Classifier

Fix a category C and an object c. Consider the collection (usually a class) of monomor-

phisms targetting at c. We define an equivalence relation: f : a ↣ c and g : b ↣ c are

equivalent iff there’s an isomorphism α : a ∼= b such that the triangle commutes.

a b

c
f

∼=

g

A subobject of c is an equivalence class of such monomorphisms. The collection of

subobjects of c is denoted as SubC(c) or simply Sub(c), when the category is clear from

context.

A category is well-powered if for each object c, Sub(c) is small enough to be a set.

All categories we care are well-powered. In fact, I don’t think I’ve ever encountered a

category that is not well-powered.

The prototypical example is again Set.

Example 2.5 (Subobjects in Set)

In Set, a subobject of a set X is an equivalence class of monomorphisms m : S ↣ X

targetting at X. Each equivalence class corresponds to a subset of X, so SubSet(X) ∼=

P(X) ∼= 2X .

Regard 2 = {⊤,⊥}5 as the set of truth values in Set, then 2X is the set of predicates

over X, while P(X), which we identify as Sub(X), is the set of subsets over X. The

isomorphism P(X) ∼= 2X = Set(X, 2) is given by identifying a subset S ⊆ X as the

characterstic function χS : X → 2 sending everything in S to ⊤ and everything else to ⊥.

In other words, the following diagram is a pullback:

S 1

X 2

!

⊤

χS

⌟

which simply expresses that

S = χ−1
S (⊤).

5In logic, ⊤ means true and ⊥ means false.

9



2.2 Subobject Classifier 2 SUBOBJECT CLASSIFIER

Now suppose we have a function f : Y → X and a subset S ⊆ X. One can pull

S ↣ X back along f :
f−1(S) S 1

Y X 2

!

f χS

⊤
⌟ ⌟

obtaining a subset f−1(S) ⊆ Y . One can view S ↣ X as any injection into X instead of

a subset since they are categorically indistinguishable anyway. The pullback process still

works because pullback preserves monomorphisms.

By pasting lemma, the outer rectangle above is also a pullback. The characterstic

function χf−1(S) of f−1(S) ↣ Y is the composition Y
f−→ X

χS−→ 2. So SubSet is in fact a

functor SubSet : Setop → Set, which is naturally isomorphic to Set(−, 2). For any function

f : Y → X, the induced function f ∗ : SubSet(X) → SubSet(Y ) is given by “pulling back

along f”.

These observations motivate the definition of subobject classifier.
Definition 2.6 (Subobject Classifier)

Suppose C has all finite limits. The subobject classifier of C consists of the following data:

• A special “truth value” object Ω,

• A “true” monomorphism ⊤ : 1 ↣ Ω, where 1 is the terminal.

• A natural isomorphism SubC ∼= C(−, Ω) : Cop → Set given by “pulling back along

⊤”.

We can finally define topos now.
Definition 2.7 (Elementary Topos)

A category E is an elementary topos, or simply topos, if:

• E has all finite limits and colimits.

• E is Cartesian closed.

• E has a subobject classifier ⊤ : 1→ Ω.

Obviously Set is a topos as well as FinSet. Next time we will study presheaf category

SetCop in detail and prove that they are also toposes.6.
6The word topos comes from ancient Greek language. The plural form should be topoi, but people

also say toposes. Personally I prefer toposes.

10


	Heyting Algebra
	Subobject Classifier
	Pullback
	Subobject Classifier


