Cartesian Closed Category and Simply Typed

 λ-Calculus

 λ-Calculus}

Prepared by CanaanZhou ;)

April 20

1 Cartesian Closed Category

Recall that a cartesian closed category C, or a ccc, is a category with finite products (including 0-ary product, the terminal object) and for each $c \in \mathrm{C}$, the functor $-\times c: \mathrm{C} \rightarrow \mathrm{C}$ has a right adjoint $(-)^{c}$.

Intuitively, d^{c} may be thought of as the function space from c to d.
For our purpose, we assume that every ccc C has a choice of d^{c} for any pair of objects c, d, and a choice of $\prod_{i \in I} c_{i}$ for each finitely-indexed family of object in C .

The prototypical example is Set.

Example 1.1

Set is a ccc. For every pair of sets X, Y, the set Y^{X} is simply $\operatorname{Set}(X, Y)$. We have a natural isomorphism:

$$
\operatorname{Set}(X \times Y \rightarrow Z) \cong \operatorname{Set}\left(X, Z^{Y}\right)
$$

The idea is that for each binary function $f: X \times Y \rightarrow Z$, given an element $x \in X$, one get a unary function $f(x,-)$ by inserting x to the first input of f. This is called Currying.

Aside from this example, one way to justify that d^{c} acts like the function space is by looking at the global elements. Suppose we have a $x: 1 \rightarrow d^{c}$, by ccc, x uniquely corresponds to a $1 \times c \rightarrow d$, which also unique corresponds to a $c \rightarrow d$.

Exercise 1.2

Show that for any object $c, 1 \times c \cong c$.

We now introduce the idea of generalized elements.

Definition 1.3 (Generalized Elements)

A generalized element x of an object c over another object u is a morphism $x: u \rightarrow c$.

You can think of a generalized element $x: u \rightarrow c$ as a term of c with a free variable of type u.

The point of generalized elements is that:

- Just like global elements, every morphism $f: c \rightarrow d$ now becomes a function between sets of generalized elements $f_{*}: \mathrm{C}(u, c) \rightarrow \mathrm{C}(u, d)$.
- Unlike global elements, the choice of u is usually arbitrary. By Yoneda lemma, to study any object c, it suffices to study its generalized elements over an arbitrary u.

2 Simply typed λ-calculus

WARNING! I basically wrote this part all by myself. Please be extra careful when reading!

2.1 The Syntax

We give a quick informal definition of the syntax of simply typed λ-calculus.
A type world T is a set with a binary operation $(\sigma, \tau) \mapsto(\sigma \rightarrow \tau): \mathrm{T} \times \mathrm{T} \rightarrow \mathrm{T}$, where each element $\sigma \in \mathrm{T}$ is called a type. The type $\sigma \rightarrow \tau$ is the function type from σ to τ.

For each type τ we have countably infinite variables of type τ.
An environment is a finite list $\Gamma=\left(x_{0}^{\sigma_{0}}, \cdots, x_{r-1}^{\sigma_{r-1}}\right)$, where for each $i, x_{i}^{\sigma_{i}}$ is a variable of type $\sigma_{i} .{ }^{1}$

For two environment Γ and Δ, the environment Γ, Δ is Γ and Δ concatenated.
We have a set C of constants, where each $c^{\sigma} \in C$ has an assigned type σ.
Now we define well-typed terms. They are generated by the following rules.

Constants	Variables	Permutation
$\Gamma \vdash c^{\sigma}: \sigma$	$\Gamma, x^{\sigma}, \Delta \vdash x^{\sigma}: \sigma$	$\frac{\Gamma \vdash M: \tau}{\bar{\Gamma} \vdash M: \tau} \quad[\bar{\Gamma}$ is a permutation of $\Gamma]$

[^0]λ-ABSTRACTION
$$
\frac{\Gamma, x^{\sigma}, \Delta \vdash M: \tau}{\Gamma, \Delta \vdash \lambda x^{\sigma} \cdot M: \sigma \rightarrow \tau}
$$
λ-APPLICATION
$\Gamma \vdash M: \sigma \rightarrow \tau \quad \Gamma \vdash N: \sigma$
$\Gamma \vdash M N: \tau$

For any sequent $\Gamma \vdash M: \tau$, each $x^{\sigma} \in \Gamma$ is called a free variable in M. The λ abstraction rule above bounds the free variable x^{σ}.

$$
\begin{aligned}
& \text { WEAKENING } \\
& \frac{\Gamma \vdash M: \tau}{\Gamma, \Delta \vdash M: \tau}[\Delta \text { is any environment }]
\end{aligned}
$$

Lemma 2.1 (Weakening)

Weakening is admissible.

Proof. We perform induction on the deduction of $\Gamma \vdash M: \tau$.

- If $M: \tau$ is a variable y^{τ} and the sequent is $\Gamma, y^{\tau}, \Gamma^{\prime} \vdash y^{\tau}: \tau$, then $\Gamma, y^{\tau}, \Gamma^{\prime}, \Delta \vdash y^{\tau}: \tau$ is also valid. Contant is similar.
- Suppose $\bar{\Gamma}$ is a permutation of Γ and we have deduced $\bar{\Gamma} \vdash M: \tau$ from $\Gamma \vdash M: \tau$ by the rule of permutation, then by IH , we have a deduction of $\Gamma, \Delta \vdash M: \tau$. But $\bar{\Gamma}, \Delta$ is also a permutation of Γ, Δ, thus by permutation, we can deduce $\bar{\Gamma}, \Delta \vdash M: \tau$.
- Suppose the last step is λ-abstraction, from $\Gamma, x^{\sigma}, \Gamma^{\prime} \vdash M: \tau$ to $\Gamma, \Gamma^{\prime} \vdash \lambda x^{\sigma} . M$: $\sigma \rightarrow \tau$, then adding Δ to each side of the deduction changes nothing.
- λ-application is similar.

$$
\begin{aligned}
& \text { Substitution } \\
& \frac{\Gamma, x^{\sigma}, \Gamma^{\prime} \vdash M: \tau \quad \Gamma, \Gamma^{\prime} \vdash N: \sigma}{\Gamma, \Gamma^{\prime} \vdash M\left[x^{\sigma} \mapsto N\right]: \tau}
\end{aligned}
$$

where $M\left[x^{\sigma} \mapsto N\right]$ means the term M, but every occurence of x^{σ} is substituted by N.

Lemma 2.2 (Substitution)

Substitution is admissible.

The proof of this lemma is also a inductive definition of $M\left[x^{\sigma} \mapsto N\right]$.
Proof. Again, we perform induction on the deduction of the premises.

- Suppose $M: \tau$ is a variable $y^{\tau}: \tau$ distinct from x^{σ} and the first premise is given by variable rule, then $M\left[x^{\sigma} \mapsto N\right]$ is just y^{τ}. Constant is similar.
- Suppose $M: \tau$ is x^{σ}, then $M\left[x^{\sigma} \mapsto N\right]$ is defined to be N, and by hypothesis we have a deduction of $\Gamma, \Gamma^{\prime} \vdash N: \sigma$.
- Permutation case is easy.
- Suppose the left premise is:

$$
\frac{\Sigma, y^{\mu}, \Sigma^{\prime} \vdash P: \tau}{\Sigma, \Sigma^{\prime} \vdash \lambda y^{\mu} . P: \mu \rightarrow \tau}
$$

then $x^{\sigma} \in \Sigma$ or $x^{\sigma} \in \Sigma^{\prime}$, doesn't really matter. Suppose $x^{\sigma} \in \Sigma$, say $\Sigma=\Sigma_{0}, x^{\sigma}, \Sigma_{1}$.

$$
\frac{\Sigma_{0}, x^{\sigma}, \Sigma_{1}, y^{\mu}, \Sigma^{\prime} \vdash P: \tau \quad \Sigma_{0}, \Sigma_{1}, y^{\mu}, \Sigma^{\prime} \vdash N: \sigma}{\Sigma_{0}, \Sigma_{1}, y^{\mu}, \Sigma^{\prime} \vdash P\left[x^{\sigma} \mapsto N\right]: \tau} \text { [Induction Hypothesis] }
$$

- λ-application case is also easy, where for $M: \nu \rightarrow \tau$ and $P: \nu, M P\left[x^{\sigma} \mapsto N\right]$ is defined to be $M\left[x^{\sigma} \mapsto N\right] P\left[x^{\sigma} \mapsto N\right]$.

In particular we have:

$$
\frac{\frac{\Gamma, x^{\sigma}, \Gamma^{\prime} \vdash M: \tau}{\Gamma, x^{\sigma}, y^{\sigma}, \Gamma^{\prime} \vdash M: \tau} \quad \Gamma, y^{\sigma}, \Gamma^{\prime} \vdash y^{\sigma}: \sigma}{\Gamma, y^{\sigma}, \Gamma^{\prime} \vdash M\left[x^{\sigma} \mapsto y^{\sigma}\right]: \tau}
$$

where x^{σ} and y^{σ} are two distinct variables of the same type σ.
In the above deduction we can perform λ-abstraction on both the premise and the conclusion, having two sequents:

$$
\begin{gathered}
\Gamma, \Gamma^{\prime} \vdash \lambda x^{\sigma} \cdot M: \sigma \rightarrow \tau, \\
\Gamma, \Gamma^{\prime} \vdash \lambda y^{\sigma} \cdot M\left[x^{\sigma} \mapsto y^{\sigma}\right]: \sigma \rightarrow \tau .
\end{gathered}
$$

Sequents related in this way are α-equivalent, denoted as $\lambda x^{\sigma} \cdot M \equiv{ }_{\alpha} \lambda y^{\sigma} \cdot M\left[x^{\sigma} \mapsto y^{\sigma}\right]$. Note that even though we omit the environment and the type, they should be clear from context. In literatures, some congruence conditions are often imposed on α-equivalence, for example $M \equiv{ }_{\alpha} N \Longrightarrow P M \equiv{ }_{\alpha} P N$. Here we choose to impose these conditions after definition all three kinds of "raw equivalence": α, β and η-equivalence.

Here's something important proposed by Ye Lingyuan. My definition of substitution is different from most literatures. Sometimes free/bounded variables might be confusing. Suppose our type world T has only one type σ, and $\sigma \rightarrow \sigma=\sigma .{ }^{2}$ Consider the following deduction.
$\frac{\frac{x, y \vdash x \quad x, y \vdash y}{x, y \vdash x y}}{\frac{x \vdash \lambda y \cdot x y}{\underline{y}, x \vdash \lambda y \cdot x y}} \underset{\underline{y} \vdash \lambda y \cdot \underline{y} y}{ } \quad \underline{y} \vdash \underline{y}$

If we only look at the last term $y \vdash \lambda y . y y$, we have no idea what's going on. That's the thing about our system: instead of dealing with terms, we deal with deductions. The full deduction shows that $y \vdash \lambda y$.yy in fact has two different y s. The underlined one is the one substituting x, while the normal one is the one λ-abstracted in the second step of the deduction. Since everything is defined by induction on deductions, there's no ambiguity.

Normally people only deal with terms, or more precisely, α-equivalence classes of terms. When doing substitution, they require everything to be properly α-converted so that there won't be any variables clashing. For example, when substituting y for x in $\lambda y . x y$, we have to α-convert λy.xy to, for example, $\lambda z . x z$. After substitution we get $\lambda z . y z$. I think my system is more elegant. (Feel free to disagree but come on!) No matter what you prefer, please always avoid stuff like directly substituting y for x in λy.xy.

Now, given two sequents $\Gamma, x^{\sigma}, \Gamma^{\prime} \vdash M: \tau, \Gamma, \Gamma^{\prime} \vdash N: \sigma$, we have the following deductions:

$$
\frac{\frac{\Gamma, x^{\sigma}, \Gamma^{\prime} \vdash M: \tau}{\Gamma, \Gamma^{\prime} \vdash \lambda x^{\sigma} \cdot M: \sigma \rightarrow \tau} \quad \Gamma, \Gamma^{\prime} \vdash N: \sigma}{\Gamma, \Gamma^{\prime} \vdash\left(\lambda x^{\sigma} \cdot M\right) N: \tau}
$$

[^1]And by substitution we can also deduce $\Gamma, \Gamma^{\prime} \vdash M\left[x^{\sigma} \mapsto N\right]: \tau$ directly. We say the latter sequent is a one-step β-reduction of the former. If there's a one-step β-reduction chain (of finite length) from $\Gamma \vdash M: \tau$ to $\Gamma \vdash N: \tau$, we say the latter is a β-reduction of the former, denoted as $M \rightarrow{ }_{\beta} N$.

In fact, β-reduction is the central concept in λ-calculus. This string-rewriting process captures the concept of computation. We have the following important theorem:

Theorem 2.3 (Church-Rosser Theorem)

Suppose we have terms M_{1}, M_{2}, M_{3} of the same type τ under the same environment Γ, and $M_{1} \rightarrow_{\beta} M_{2}, M_{1} \rightarrow M_{3}$. Then there is a $\Gamma \vdash M_{4}: \tau$ such that $M_{2} \rightarrow M_{4}: \tau$ and $M_{3} \rightarrow M_{4}: \tau$.

The equivalence relation generated by \rightarrow_{β} is called β-equivalence, denoted as \equiv_{β}.

$$
\begin{aligned}
& \eta \text {-CONVERSION } \\
& \frac{\Gamma \vdash M: \sigma \rightarrow \tau}{\Gamma \vdash \lambda x^{\sigma} \cdot M x^{\sigma}: \sigma \rightarrow \tau}
\end{aligned}
$$

Lemma 2.4 ($\boldsymbol{\eta}$-conversion)

η-conversion is admissible.
Proof.

$$
\frac{\frac{\Gamma \vdash M: \sigma \rightarrow \tau}{\Gamma, x^{\sigma} \vdash M: \sigma \rightarrow \tau} \quad \Gamma, x^{\sigma} \vdash x^{\sigma}: \sigma}{\frac{\Gamma, x^{\sigma} \vdash M x^{\sigma}: \tau}{\Gamma \vdash \lambda x^{\sigma} \cdot M x^{\sigma}: \sigma \rightarrow \tau}}
$$

We say $\Gamma \vdash \lambda x^{\sigma} . M x^{\sigma}: \sigma \rightarrow \tau$ is the η-conversion of $\Gamma \vdash M: \sigma \rightarrow \tau$. The equivalence relation generated by it is denoted as \equiv_{η}.

The equivalence relation generated by $\equiv_{\alpha}, \equiv_{\beta}, \equiv_{\eta}$ altogether is denoted as \equiv. We further impose that:

- $M \equiv N \Longrightarrow P M=P N$,
- $M \equiv N \Longrightarrow \lambda x^{\sigma} \cdot M=\lambda x^{\sigma} \cdot N$,
- $M \equiv N \Longrightarrow M P=N P$.

If $M \equiv N$ we say they are equivalent.

2.2 The Semantics

Now we interpret this formal language in a ccc.
Fix a ccc C. An interpretation of T to C is a function from T to the class of objects of C. So each type τ is assigned to an object of Cor simplicity let's call it $\tau . \sigma \rightarrow \tau$ is interpreted as τ^{σ}.

Each constant $c^{\sigma} \in \sigma$ is interpreted as a global element $c^{\sigma}: 1 \rightarrow \sigma \in \mathrm{C}$.
An environment $\Gamma=\left(x_{1}^{\sigma_{1}}, \cdots, x_{n}^{\sigma_{n}}\right)$ is interpreted as the product $\Gamma=\prod_{i=1}^{n} \sigma_{i}$. We now inductively define the interpretation of sequent $\Gamma \vdash M: \tau$ as a morphism $M: \Gamma \rightarrow \tau$.

- $\Gamma \vdash c^{\sigma}: \sigma$ is interpreted as the morphism $\Gamma \xrightarrow{!} 1 \xrightarrow{c^{\sigma}} \sigma$.
- $\Gamma, x^{\sigma}, \Gamma^{\prime} \vdash x^{\sigma}: \sigma$ is interpreted as the projection morphism $\pi_{\sigma}: \Gamma \times \sigma \times \Gamma^{\prime} \rightarrow \sigma$.
- Suppose $\Gamma \vdash M: \tau$ is interpreted as $M: \Gamma \rightarrow \tau$, then for $\bar{\Gamma}$ a permutation of Γ, we have a permutation map $\pi: \bar{\Gamma} \rightarrow \Gamma . \bar{\Gamma} \vdash M: \tau$ is interpreted as $\bar{\Gamma} \xrightarrow{\pi} \Gamma \xrightarrow{M} \tau$.
- Suppose $\Gamma, x^{\sigma}, \Gamma^{\prime} \vdash M: \tau$ is interpreted as $M: \Gamma \times \sigma \times \Gamma^{\prime} \rightarrow \tau$, then $\Gamma, \Gamma^{\prime} \vdash \lambda x^{\sigma} . M$: $\sigma \rightarrow \tau$ is interpreted as the transpose of $M, M^{b}: \Gamma \times \Gamma^{\prime} \rightarrow \tau^{\sigma}$.
- Suppose $\Gamma \vdash M: \sigma \rightarrow \tau$ and $\Gamma \vdash N: \sigma$ are interpreted as $M: \Gamma \rightarrow \tau^{\sigma}$ and $N: \Gamma \rightarrow \sigma$, then $\Gamma \vdash M N: \tau$ is interpreted as $\Gamma \xrightarrow{\langle M, N\rangle} \tau^{\sigma} \times \sigma \xrightarrow{\mathrm{ev}_{\tau}} \tau$, where ev is the counit of $-\times \sigma \vdash(-)^{\sigma}$.

A bit of calculations tells us:

- Suppose $\Gamma \vdash M: \tau$ is interpreted as $M: \Gamma \rightarrow \tau$, then $\Gamma, \Delta \vdash M: \tau$ is interpreted as $\Gamma \times \Delta \xrightarrow{\pi_{\Gamma}} \Gamma \xrightarrow{M} \tau$.
- Suppose $\Gamma, x^{\sigma}, \Gamma^{\prime} \vdash M: \tau$ and $\Gamma, \Gamma^{\prime} \vdash N: \sigma$ are interpreted as $M: \Gamma \times \sigma \times \Gamma^{\prime} \rightarrow \tau$ and $N: \Gamma \times \Gamma^{\prime} \rightarrow \sigma$, then $\Gamma, \Gamma^{\prime} \vdash M\left[x^{\sigma} \mapsto N\right]: \tau$ is interpreted as $\Gamma \times \Gamma^{\prime} \xrightarrow{\left\langle 1_{\Gamma}, N, 1_{\Gamma^{\prime}}\right.}$ $\Gamma \times \sigma \times \Gamma \xrightarrow{M} \tau$.
- Suppose $\Gamma \vdash M: \sigma \rightarrow \tau$ is interpreted as $M: \Gamma \rightarrow \tau^{\sigma}$, then $\Gamma \vdash \lambda x^{\sigma} . M x^{\sigma}: \sigma \rightarrow \tau$ is interpreted as M itself, which is the transposition of $\Gamma \times \sigma \xrightarrow{M \times 1_{\sigma}} \tau^{\sigma} \times \sigma \xrightarrow{\mathrm{ev}} \tau$.

Now fix two sequents $\Gamma \vdash M: \tau, \Gamma \vdash N: \tau$.

Lemma 2.5

If $M \equiv{ }_{\alpha} N$, then their interpretations are equal.

Proof. Suppose $\Gamma, x^{\sigma}, \Gamma^{\prime} \vdash M: \tau$ is interpreted as $\Gamma \times \sigma \times \Gamma^{\prime} \xrightarrow{M} \tau$, then $\Gamma, y^{\sigma}, \Gamma^{\prime} \vdash$ $M\left[x^{\sigma} \mapsto y^{\sigma}\right]: \tau$ is interpreted as the same exact thing. Essentially what happened is

$$
\left(A \times B \xrightarrow{\left\langle\pi_{A}, 1_{A \times B}\right\rangle} A \times A \times B \xrightarrow{\pi_{L, R}} A \times B\right)=1_{A \times B}
$$

where $\pi_{L, R}$ means projection on the left and the right components. This can be shown by a straightforward diagram chasing. Then of course, their λ-abstractions are interpreted as transpositions of the corresponding morphisms, which are equal.

Lemma 2.6

If $M \rightarrow_{\beta} N$, then their interpretations are equal, where \rightarrow_{β} means one-step β-reduction.

Proof. Given two sequents $\Gamma, x^{\sigma}, \Gamma^{\prime} \vdash M: \tau$ and $\Gamma, \Gamma^{\prime} \vdash N: \sigma$.

- $\Gamma, \Gamma^{\prime} \vdash\left(\lambda x^{\sigma} . M\right) N: \tau$ is interpreted as $\Gamma \times \Gamma^{\prime} \xrightarrow{\left\langle M^{b}, N\right\rangle} \tau^{\sigma} \times \sigma \xrightarrow{\mathrm{ev}_{\sigma}} \tau$.
- $\Gamma, \Gamma^{\prime} \vdash M\left[x^{\sigma} \mapsto N\right]: \tau$ is interpreted as $\Gamma \times \Gamma^{\prime} \xrightarrow{\left\langle 1_{\Gamma}, N, 1_{\Gamma^{\prime}}\right\rangle} \Gamma \times \sigma \times \Gamma^{\prime} \xrightarrow{M} \tau$.

To see that they're equal, look at the following diagram.

Thus if $M \equiv{ }_{\beta} N$, their interpretations are equal.
We have shown that it's the same for \equiv_{η}. The following theorem is the final reward for all these hardwork.

Theorem 2.7 (Soundness of the Calculus)

If $M \equiv N$, then their interpretations are equal.
For example, let's try to define the composition morphism $X^{Y} \times Y^{Z} \rightarrow X^{Z}$. If we try to do it categorically, we need to define its transposition $Z \times X^{Y} \times Y^{Z} \rightarrow X$. We may define it as:

$$
Z \times X^{Y} \times Y^{Z} \xrightarrow{\mathrm{ev}_{Y}} X^{Y} \times Y \xrightarrow{\mathrm{ev}_{X}} X
$$

But if we use our beautiful λ-calculus, this is simply

$$
f: Y \rightarrow X, g: Z \rightarrow Y \vdash \lambda z . f(g(z)): Z \rightarrow X
$$

If you think this is not a big simplification, try proving the composition morphism is associative. I don't even want to prove it categorically. But using our formal language, this is just easy calculus. Fix the environment $\Gamma=(f: Y \rightarrow X, g: Z \rightarrow Y, h: W \rightarrow Z)$, then we have:

$$
\lambda w .(\lambda z \cdot f g z)(h w) \rightarrow_{\beta} \lambda w \cdot g f h w .
$$

Our formal language has absorbed the calculus rules of ccc, so there's almost nothing to prove!

[^0]: ${ }^{1}$ In most literatures Γ are structured differently. There are mainly for choices: list, non-repetition list, unordered list (bag), unordered non-repetition list (set). After contemplating for a while, I think list is the best choice. I encourage you to form your own opinion on this issue and feel free to disagree.

[^1]: ${ }^{2}$ This is exactly untyped λ-calculus.

