
Cartesian Closed Category and Simply Typed

λ-Calculus

Prepared by CanaanZhou ;)

April 20

1 Cartesian Closed Category

Recall that a cartesian closed category C, or a ccc, is a category with finite products

(including 0-ary product, the terminal object) and for each c ∈ C, the functor −×c : C → C

has a right adjoint (−)c.

Intuitively, dc may be thought of as the function space from c to d.

For our purpose, we assume that every ccc C has a choice of dc for any pair of objects

c, d, and a choice of ∏
i∈I ci for each finitely-indexed family of object in C.

The prototypical example is Set.
Example 1.1

Set is a ccc. For every pair of sets X, Y , the set Y X is simply Set(X, Y ). We have a

natural isomorphism:

Set(X × Y → Z) ∼= Set(X, ZY ).

The idea is that for each binary function f : X ×Y → Z, given an element x ∈ X, one get

a unary function f(x, −) by inserting x to the first input of f . This is called Currying.

Aside from this example, one way to justify that dc acts like the function space is

by looking at the global elements. Suppose we have a x : 1 → dc, by ccc, x uniquely

corresponds to a 1 × c → d, which also unique corresponds to a c → d.
Exercise 1.2

Show that for any object c, 1 × c ∼= c.

We now introduce the idea of generalized elements.

1



2 SIMPLY TYPED λ-CALCULUS

Definition 1.3 (Generalized Elements)

A generalized element x of an object c over another object u is a morphism x : u → c.

You can think of a generalized element x : u → c as a term of c with a free variable of

type u.

The point of generalized elements is that:

• Just like global elements, every morphism f : c → d now becomes a function between

sets of generalized elements f∗ : C(u, c) → C(u, d).

• Unlike global elements, the choice of u is usually arbitrary. By Yoneda lemma, to

study any object c, it suffices to study its generalized elements over an arbitrary u.

2 Simply typed λ-calculus

WARNING! I basically wrote this part all by myself. Please be extra careful when

reading!

2.1 The Syntax

We give a quick informal definition of the syntax of simply typed λ-calculus.

A type world T is a set with a binary operation (σ, τ) 7→ (σ → τ) : T × T → T, where

each element σ ∈ T is called a type. The type σ → τ is the function type from σ to τ .

For each type τ we have countably infinite variables of type τ .

An environment is a finite list Γ = (xσ0
0 , · · · , x

σr−1
r−1 ), where for each i, xσi

i is a variable

of type σi.1

For two environment Γ and ∆, the environment Γ, ∆ is Γ and ∆ concatenated.

We have a set C of constants, where each cσ ∈ C has an assigned type σ.

Now we define well-typed terms. They are generated by the following rules.

Constants

Γ ` cσ : σ

Variables

Γ, xσ, ∆ ` xσ : σ

Permutation
Γ ` M : τ

Γ ` M : τ
[Γ is a permutation of Γ]

1In most literatures Γ are structured differently. There are mainly for choices: list, non-repetition list,

unordered list (bag), unordered non-repetition list (set). After contemplating for a while, I think list is

the best choice. I encourage you to form your own opinion on this issue and feel free to disagree.

2



2.1 The Syntax 2 SIMPLY TYPED λ-CALCULUS

λ-abstraction
Γ, xσ, ∆ ` M : τ

Γ, ∆ ` λxσ.M : σ → τ

λ-application
Γ ` M : σ → τ Γ ` N : σ

Γ ` MN : τ

For any sequent Γ ` M : τ , each xσ ∈ Γ is called a free variable in M . The λ-

abstraction rule above bounds the free variable xσ.

Weakening
Γ ` M : τ

Γ, ∆ ` M : τ
[∆ is any environment]

Lemma 2.1 (Weakening)

Weakening is admissible.

Proof. We perform induction on the deduction of Γ ` M : τ .

• If M : τ is a variable yτ and the sequent is Γ, yτ , Γ′ ` yτ : τ , then Γ, yτ , Γ′, ∆ ` yτ : τ

is also valid. Contant is similar.

• Suppose Γ is a permutation of Γ and we have deduced Γ ` M : τ from Γ ` M : τ by

the rule of permutation, then by IH, we have a deduction of Γ, ∆ ` M : τ . But Γ, ∆

is also a permutation of Γ, ∆, thus by permutation, we can deduce Γ, ∆ ` M : τ .

• Suppose the last step is λ-abstraction, from Γ, xσ, Γ′ ` M : τ to Γ, Γ′ ` λxσ.M :

σ → τ , then adding ∆ to each side of the deduction changes nothing.

• λ-application is similar.

□

Substitution
Γ, xσ, Γ′ ` M : τ Γ, Γ′ ` N : σ

Γ, Γ′ ` M [xσ 7→ N ] : τ

where M [xσ 7→ N ] means the term M , but every occurence of xσ is substituted by N .

Lemma 2.2 (Substitution)

Substitution is admissible.

3



2.1 The Syntax 2 SIMPLY TYPED λ-CALCULUS

The proof of this lemma is also a inductive definition of M [xσ 7→ N ].

Proof. Again, we perform induction on the deduction of the premises.

• Suppose M : τ is a variable yτ : τ distinct from xσ and the first premise is given by

variable rule, then M [xσ 7→ N ] is just yτ . Constant is similar.

• Suppose M : τ is xσ, then M [xσ 7→ N ] is defined to be N , and by hypothesis we

have a deduction of Γ, Γ′ ` N : σ.

• Permutation case is easy.

• Suppose the left premise is:

Σ, yµ, Σ′ ` P : τ

Σ, Σ′ ` λyµ.P : µ → τ

then xσ ∈ Σ or xσ ∈ Σ′, doesn’t really matter. Suppose xσ ∈ Σ, say Σ = Σ0, xσ, Σ1.

Σ0, xσ, Σ1, yµ, Σ′ ` P : τ Σ0, Σ1, yµ, Σ′ ` N : σ

Σ0, Σ1, yµ, Σ′ ` P [xσ 7→ N ] : τ
[Induction Hypothesis]

Σ0, Σ1, Σ′ ` λyµ.P [xσ 7→ N ] : µ → τ

• λ-application case is also easy, where for M : ν → τ and P : ν, MP [xσ 7→ N ] is

defined to be M [xσ 7→ N ]P [xσ 7→ N ].

□
In particular we have:

Γ, xσ, Γ′ ` M : τ

Γ, xσ, yσ, Γ′ ` M : τ
Γ, yσ, Γ′ ` yσ : σ

Γ, yσ, Γ′ ` M [xσ 7→ yσ] : τ

where xσ and yσ are two distinct variables of the same type σ.

In the above deduction we can perform λ-abstraction on both the premise and the

conclusion, having two sequents:

Γ, Γ′ ` λxσ.M : σ → τ,

Γ, Γ′ ` λyσ.M [xσ 7→ yσ] : σ → τ.

4



2.1 The Syntax 2 SIMPLY TYPED λ-CALCULUS

Sequents related in this way are α-equivalent, denoted as λxσ.M ≡α λyσ.M [xσ 7→ yσ].

Note that even though we omit the environment and the type, they should be clear from

context. In literatures, some congruence conditions are often imposed on α-equivalence,

for example M ≡α N =⇒ PM ≡α PN . Here we choose to impose these conditions after

definition all three kinds of “raw equivalence”: α, β and η-equivalence.

Here’s something important proposed by Ye Lingyuan. My definition of substitution

is different from most literatures. Sometimes free/bounded variables might be confusing.

Suppose our type world T has only one type σ, and σ → σ = σ.2 Consider the following

deduction.

x, y ` x x, y ` y

x, y ` xy

x ` λy.xy

y, x ` λy.xy
y ` y

y ` λy.yy

If we only look at the last term y ` λy.yy, we have no idea what’s going on. That’s the

thing about our system: instead of dealing with terms, we deal with deductions. The full

deduction shows that y ` λy.yy in fact has two different ys. The underlined one is the

one substituting x, while the normal one is the one λ-abstracted in the second step of the

deduction. Since everything is defined by induction on deductions, there’s no ambiguity.

Normally people only deal with terms, or more precisely, α-equivalence classes of

terms. When doing substitution, they require everything to be properly α-converted so

that there won’t be any variables clashing. For example, when substituting y for x in

λy.xy, we have to α-convert λy.xy to, for example, λz.xz. After substitution we get

λz.yz. I think my system is more elegant. (Feel free to disagree but come on!) No matter

what you prefer, please always avoid stuff like directly substituting y for x in λy.xy.

Now, given two sequents Γ, xσ, Γ′ ` M : τ , Γ, Γ′ ` N : σ, we have the following

deductions:

Γ, xσ, Γ′ ` M : τ

Γ, Γ′ ` λxσ.M : σ → τ
Γ, Γ′ ` N : σ

Γ, Γ′ ` (λxσ.M)N : τ

2This is exactly untyped λ-calculus.

5



2.1 The Syntax 2 SIMPLY TYPED λ-CALCULUS

And by substitution we can also deduce Γ, Γ′ ` M [xσ 7→ N ] : τ directly. We say the latter

sequent is a one-step β-reduction of the former. If there’s a one-step β-reduction chain

(of finite length) from Γ ` M : τ to Γ ` N : τ , we say the latter is a β-reduction of the

former, denoted as M ↠β N .

In fact, β-reduction is the central concept in λ-calculus. This string-rewriting process

captures the concept of computation. We have the following important theorem:
Theorem 2.3 (Church-Rosser Theorem)

Suppose we have terms M1, M2, M3 of the same type τ under the same environment Γ,

and M1 ↠β M2, M1 ↠ M3. Then there is a Γ ` M4 : τ such that M2 ↠ M4 : τ and

M3 ↠ M4 : τ .

The equivalence relation generated by ↠β is called β-equivalence, denoted as ≡β.

η-conversion

Γ ` M : σ → τ

Γ ` λxσ.Mxσ : σ → τ

Lemma 2.4 (η-conversion)

η-conversion is admissible.

Proof.

Γ ` M : σ → τ

Γ, xσ ` M : σ → τ
Γ, xσ ` xσ : σ

Γ, xσ ` Mxσ : τ

Γ ` λxσ.Mxσ : σ → τ

□
We say Γ ` λxσ.Mxσ : σ → τ is the η-conversion of Γ ` M : σ → τ . The equivalence

relation generated by it is denoted as ≡η.

The equivalence relation generated by ≡α, ≡β, ≡η altogether is denoted as ≡. We

further impose that:

• M ≡ N =⇒ PM = PN ,

• M ≡ N =⇒ λxσ.M = λxσ.N ,

• M ≡ N =⇒ MP = NP .

If M ≡ N we say they are equivalent.

6



2.2 The Semantics 2 SIMPLY TYPED λ-CALCULUS

2.2 The Semantics

Now we interpret this formal language in a ccc.

Fix a ccc C. An interpretation of T to C is a function from T to the class of objects

of C. So each type τ is assigned to an object of C. For simplicity let’s call it τ . σ → τ is

interpreted as τσ.

Each constant cσ ∈ σ is interpreted as a global element cσ : 1 → σ ∈ C.

An environment Γ = (xσ1
1 , · · · , xσn

n ) is interpreted as the product Γ = ∏n
i=1 σi. We

now inductively define the interpretation of sequent Γ ` M : τ as a morphism M : Γ → τ .

• Γ ` cσ : σ is interpreted as the morphism Γ !−→ 1 cσ

−→ σ.

• Γ, xσ, Γ′ ` xσ : σ is interpreted as the projection morphism πσ : Γ × σ × Γ′ → σ.

• Suppose Γ ` M : τ is interpreted as M : Γ → τ , then for Γ a permutation of Γ, we

have a permutation map π : Γ → Γ. Γ ` M : τ is interpreted as Γ π−→ Γ M−→ τ .

• Suppose Γ, xσ, Γ′ ` M : τ is interpreted as M : Γ×σ ×Γ′ → τ , then Γ, Γ′ ` λxσ.M :

σ → τ is interpreted as the transpose of M , M ♭ : Γ × Γ′ → τσ.

• Suppose Γ ` M : σ → τ and Γ ` N : σ are interpreted as M : Γ → τσ and

N : Γ → σ, then Γ ` MN : τ is interpreted as Γ 〈M,N〉−−−→ τσ × σ
evτ−−→ τ , where ev is

the counit of − × σ ` (−)σ.

A bit of calculations tells us:

• Suppose Γ ` M : τ is interpreted as M : Γ → τ , then Γ, ∆ ` M : τ is interpreted as

Γ × ∆ πΓ−→ Γ M−→ τ .

• Suppose Γ, xσ, Γ′ ` M : τ and Γ, Γ′ ` N : σ are interpreted as M : Γ × σ × Γ′ → τ

and N : Γ × Γ′ → σ, then Γ, Γ′ ` M [xσ 7→ N ] : τ is interpreted as Γ × Γ′ 〈1Γ,N,1Γ′−−−−−→

Γ × σ × Γ M−→ τ .

• Suppose Γ ` M : σ → τ is interpreted as M : Γ → τσ, then Γ ` λxσ.Mxσ : σ → τ

is interpreted as M itself, which is the transposition of Γ × σ
M×1σ−−−→ τσ × σ

evσ−−→ τ .

Γ × σ Γ

τσ × σ τ τσ τσ

M×1σ

evσ

M

1τσ

Now fix two sequents Γ ` M : τ, Γ ` N : τ .

7



2.2 The Semantics 2 SIMPLY TYPED λ-CALCULUS

Lemma 2.5

If M ≡α N , then their interpretations are equal.

Proof. Suppose Γ, xσ, Γ′ ` M : τ is interpreted as Γ × σ × Γ′ M−→ τ , then Γ, yσ, Γ′ `

M [xσ 7→ yσ] : τ is interpreted as the same exact thing. Essentially what happened is

(A × B
〈πA,1A×B〉−−−−−−→ A × A × B

πL,R−−→ A × B) = 1A×B

where πL,R means projection on the left and the right components. This can be shown by

a straightforward diagram chasing. Then of course, their λ-abstractions are interpreted

as transpositions of the corresponding morphisms, which are equal. □
Lemma 2.6

If M →β N , then their interpretations are equal, where →β means one-step β-reduction.

Proof. Given two sequents Γ, xσ, Γ′ ` M : τ and Γ, Γ′ ` N : σ.

• Γ, Γ′ ` (λxσ.M)N : τ is interpreted as Γ × Γ′ 〈M♭,N〉−−−−→ τσ × σ
evσ−−→ τ .

• Γ, Γ′ ` M [xσ 7→ N ] : τ is interpreted as Γ × Γ′ 〈1Γ,N,1Γ′ 〉−−−−−−→ Γ × σ × Γ′ M−→ τ .

To see that they’re equal, look at the following diagram.

Γ × Γ′ (Γ × σ × Γ′)σ × σ τσ × σ

Γ × σ × Γ′ Γ × σ × Γ′ τ

〈η,N〉 Mσ×1σ

evσevΓ×Γ′

M

〈1Γ,N,1Γ′ 〉

1

η

□
Thus if M ≡β N , their interpretations are equal.

We have shown that it’s the same for ≡η. The following theorem is the final reward

for all these hardwork.
Theorem 2.7 (Soundness of the Calculus)

If M ≡ N , then their interpretations are equal.

For example, let’s try to define the composition morphism XY × Y Z → XZ . If we try

to do it categorically, we need to define its transposition Z × XY × Y Z → X. We may

define it as:

Z × XY × Y Z evY−−→ XY × Y
evX−−→ X.

8



2.2 The Semantics 2 SIMPLY TYPED λ-CALCULUS

But if we use our beautiful λ-calculus, this is simply

f : Y → X, g : Z → Y ` λz.f(g(z)) : Z → X.

If you think this is not a big simplification, try proving the composition morphism is

associative. I don’t even want to prove it categorically. But using our formal language,

this is just easy calculus. Fix the environment Γ = (f : Y → X, g : Z → Y, h : W → Z),

then we have:

λw.(λz.fgz)(hw) →β λw.gfhw.

Our formal language has absorbed the calculus rules of ccc, so there’s almost nothing to

prove!

9


	Cartesian Closed Category
	Simply typed -calculus
	The Syntax
	The Semantics


