Cartesian Closed Category and Simply Typed
M-Calculus

Prepared by CanaanZhou ;)

April 20

1 Cartesian Closed Category

Recall that a cartesian closed category C, or a ccc, is a category with finite products
(including 0-ary product, the terminal object) and for each ¢ € C, the functor —xc: C — C
has a right adjoint (—)°.

Intuitively, d® may be thought of as the function space from c to d.

For our purpose, we assume that every ccc C has a choice of d° for any pair of objects
¢, d, and a choice of [];c; ¢; for each finitely-indexed family of object in C.

The prototypical example is Set.
Example 1.1
Set is a ccc. For every pair of sets X,Y, the set YX is simply Set(X,Y). We have a
natural isomorphism:

Set(X x Y — Z) = Set(X, Z").

The idea is that for each binary function f : X XY — Z, given an element x € X, one get

a unary function f(x,—) by inserting x to the first input of f. This is called Currying.

Aside from this example, one way to justify that d° acts like the function space is
by looking at the global elements. Suppose we have a x : 1 — d°, by ccc, x uniquely

corresponds to a 1 x ¢ — d, which also unique corresponds to a ¢ — d.

Exercise 1.2

Show that for any object ¢, 1 X ¢ = c.

We now introduce the idea of generalized elements.

1

2 SIMPLY TYPED A-CALCULUS

Definition 1.3 (Generalized Elements)

A generalized element x of an object ¢ over another object u is a morphism x : u — c.

You can think of a generalized element x : u — ¢ as a term of ¢ with a free variable of

type u.

The point of generalized elements is that:

e Just like global elements, every morphism f : ¢ — d now becomes a function between

sets of generalized elements f, : C(u,c) — C(u,d).

e Unlike global elements, the choice of u is usually arbitrary. By Yoneda lemma, to

study any object ¢, it suffices to study its generalized elements over an arbitrary wu.

2 Simply typed A\-calculus

WARNING! I basically wrote this part all by myself. Please be extra careful when

reading!

2.1 The Syntax

We give a quick informal definition of the syntax of simply typed A-calculus.

A type world T is a set with a binary operation (o,7) — (0 — 7): T x T — T, where
each element o € T is called a type. The type o — 7 is the function type from o to 7.

For each type 7 we have countably infinite variables of type 7.

An environment is a finite list T' = (z{°,--- ,z,"7"), where for each 7, 27’ is a variable
of type o0;.!

For two environment I' and A, the environment I', A is I' and A concatenated.

We have a set C' of constants, where each ¢ € C has an assigned type o.

Now we define well-typed terms. They are generated by the following rules.

PERMUTATION

CONSTANTS VARIABLES
'EM:7 .

' o 27, AFa2% o — [is a permutation of I'|
'-M:7

Tn most literatures I' are structured differently. There are mainly for choices: list, non-repetition list,
unordered list (bag), unordered non-repetition list (set). After contemplating for a while, I think list is

the best choice. I encourage you to form your own opinion on this issue and feel free to disagree.

2.1 The Syntax 2 SIMPLY TYPED A-CALCULUS

A-ABSTRACTION A-APPLICATION
La?, AFM: 7 '-M:0—r1 'EN:o
DLAFEX M 0 — 7T 'EMN:T

For any sequent I' = M : 7, each 27 € I is called a free variable in M. The A-

abstraction rule above bounds the free variable z°.

WEAKENING
'EM:7

[A is any environment]

LAFEM: 7

Lemma 2.1 (Weakening)

Weakening is admissible.

Proof. We perform induction on the deduction of I' - M : 7.

e If M : 7is a variable y™ and the sequent is I', y", I" - y" : 7, then ', y", IV, A F ¢y : 7

is also valid. Contant is similar.

e Suppose I is a permutation of I and we have deduced ' M : 7 from I' = M : 7 by
the rule of permutation, then by IH, we have a deduction of ', A M : 7. But I', A

is also a permutation of I', A, thus by permutation, we can deduce I', A = M : 7.

e Suppose the last step is A-abstraction, from Iz, I" = M : 7 to I', TV + \x?. M

o — 7, then adding A to each side of the deduction changes nothing.

e)\-application is similar.

SUBSTITUTION
Lo TVFM:7 IN[YFN:o

I,T'F Mz — N]: 7

where M[z? + N]| means the term M, but every occurence of x7 is substituted by N.
Lemma 2.2 (Substitution)

Substitution is admissible.

2.1 The Syntax 2 SIMPLY TYPED A-CALCULUS

The proof of this lemma is also a inductive definition of M [z — N].

Proof. Again, we perform induction on the deduction of the premises.

e Suppose M : 7 is a variable y” : 7 distinct from x and the first premise is given by

variable rule, then M[z? — N] is just 7. Constant is similar.

e Suppose M : 7 is 7, then M[z° — N] is defined to be N, and by hypothesis we
have a deduction of I', " - N : 0.

e Permutation case is easy.
e Suppose the left premise is:

Syt Y EPT

S EMAP =T

then 27 € ¥ or 27 € ¥/, doesn’t really matter. Suppose 27 € X, say ¥ = Xg, 27, ¥1.

Yo, 27, XL,y Y P T Yo, XL,y Y FN:o

[Induction Hypothesis]
Yo, 21,y Y F Pla® — N]: 7

Yo, X1, X F M Pla® — N]:p— 1

e \-application case is also easy, where for M : v — 7 and P : v, MP[z° — N] is

defined to be M[z? — N|P[z — NJ.

In particular we have:

L, TV M: 1

Ly’ T'Fy” 1o
Lo,y , VM : 7

Ly, T M[z” —y7] 7

where 27 and y? are two distinct variables of the same type o.
In the above deduction we can perform A-abstraction on both the premise and the

conclusion, having two sequents:
IVFXa®M:0— T,

DT E XNy Mz =y 0 — T

2.1 The Syntax 2 SIMPLY TYPED A-CALCULUS

Sequents related in this way are a-equivalent, denoted as A\z7.M =, \y°.M[z° — y°].
Note that even though we omit the environment and the type, they should be clear from
context. In literatures, some congruence conditions are often imposed on a-equivalence,
for example M =, N = PM =, PN. Here we choose to impose these conditions after
definition all three kinds of “raw equivalence”: «, f and n-equivalence.

Here’s something important proposed by Ye Lingyuan. My definition of substitution
is different from most literatures. Sometimes free/bounded variables might be confusing.
Suppose our type world T has only one type o, and o — 0 = ¢.? Consider the following

deduction.

T,y T, yty

x, Y xy

r = Ay.xy

<
-
<

Yy, T = Ay.xy

y = Ayyy

If we only look at the last term y - Ay.yy, we have no idea what’s going on. That’s the
thing about our system: instead of dealing with terms, we deal with deductions. The full
deduction shows that y F Ay.yy in fact has two different ys. The underlined one is the
one substituting =, while the normal one is the one A-abstracted in the second step of the
deduction. Since everything is defined by induction on deductions, there’s no ambiguity.

Normally people only deal with terms, or more precisely, a-equivalence classes of
terms. When doing substitution, they require everything to be properly a-converted so
that there won’t be any variables clashing. For example, when substituting y for z in
Ay.xy, we have to a-convert \y.ry to, for example, A\z.xz. After substitution we get
Az.yz. I think my system is more elegant. (Feel free to disagree but come on!) No matter
what you prefer, please always avoid stuff like directly substituting y for = in A\y.zy.

Now, given two sequents I',z?, IV - M : 7, ',/ = N : o, we have the following

deductions:

L2 TV M: 1

NTYFN:o
DIVFXa® M:0—T1

T FE (A M)N : 7

2This is exactly untyped A-calculus.

2.1 The Syntax 2 SIMPLY TYPED A-CALCULUS

And by substitution we can also deduce I', " = M[x7 — N] : 7 directly. We say the latter
sequent is a one-step [-reduction of the former. If there’s a one-step S-reduction chain
(of finite length) from ' - M : 7 to I' = N : 7, we say the latter is a S-reduction of the
former, denoted as M —5 N.

In fact, S-reduction is the central concept in A-calculus. This string-rewriting process

captures the concept of computation. We have the following important theorem:
Theorem 2.3 (Church-Rosser Theorem)

Suppose we have terms My, My, M3 of the same type T under the same environment I,
and My, —g My, My — Ms. Then there is a I' = My : 7 such that My — My : 7 and
Mz — My 1.

The equivalence relation generated by —»4 is called 3-equivalence, denoted as =g.

7-CONVERSION
I'tM:i0—T1

' Mx® 00— 71

Lemma 2.4 (n-conversion)
n-conversion is admissible.
Proof.

'EM:0—71

[aFa2%:0
a2 FM:0—rT1

[a b Mx? .7

'EXe? Mx® 0 —T
O
We say I' = Ax®. Mx? : ¢ — 7 is the n-conversion of I' - M : ¢ — 7. The equivalence
relation generated by it is denoted as =,,.
The equivalence relation generated by =,, =g, =, altogether is denoted as =. We

further impose that:

e M =N — PM = PN,
e M =N — M. M = \z°.N,

e M=N —= MP=NP.

If M = N we say they are equivalent.

2.2 The Semantics 2 SIMPLY TYPED MN-CALCULUS

2.2 The Semantics

Now we interpret this formal language in a ccc.

Fix a ccc C. An interpretation of T to C is a function from T to the class of objects
of C. So each type 7 is assigned to an object of C. For simplicity let’s call it 7. ¢ — 7 is
interpreted as 7°.

Each constant ¢ € o is interpreted as a global element ¢ : 1 — ¢ € C.

An environment I' = (2f',--- ,29") is interpreted as the product I' = [, 0;. We

now inductively define the interpretation of sequent I' = M : 7 as a morphism M : " — 7.

e ' ¢? : ¢ is interpreted as the morphism I’ L1950,

[, 27,1V 27 : o is interpreted as the projection morphism 7, : I' X 0 x IV — 0.

Suppose I' - M : 7 is interpreted as M : I' — 7, then for I a permutation of I', we

have a permutation map 7 : I' — I'. T = M : 7 is interpreted as I = T Mo

Suppose I', 27, IV = M : 7 is interpreted as M : I' x o x IV — 7, then I', IV = \a? .M :

o — 7 is interpreted as the transpose of M, M” : T' x I" — 7°.

Suppose ' F M : 0 — 7 and I' H N : o are interpreted as M : I' — 77 and
N :I' = o, then I' - M N : 7 is interpreted as I M 77 X 0 =5 7, where ev is

the counit of — x o - (—)°.

A bit of calculations tells us:

e Suppose I' = M : 7 is interpreted as M : I' — 7, then I', A - M : 7 is interpreted as

Ix AT M

e Suppose I' 27, I+ M : 7 and I',T" - N : ¢ are interpreted as M : ' x o x IV = 7
and N : I' x I — o, then I, " = M[27 — N] : 7 is interpreted as I' x I UMy

M
I’'xoxT — 7.

e Suppose ' M : 0 — 7 is interpreted as M : I' — 77, then I' F \a®. Mz? : 0 — 7

is interpreted as M itself, which is the transposition of I' x o Moy ro x5 Doy 1,

I'xo I
Mxlal Ml
TOXO —— T 77 —— 719
o 17-0'

Now fix two sequents ' - M : 7, ' N : 7.

7

2.2 The Semantics 2 SIMPLY TYPED MN-CALCULUS

Lemma 2.5

If M =, N, then their interpretations are equal.

Proof. Suppose I',z?, 1" = M : 7 is interpreted as I' x o x I” M, 7, then Ty, I

Mz — y°] : 7 is interpreted as the same exact thing. Essentially what happened is
(AXBMAXAXBM)AXB):leB

where 7, r means projection on the left and the right components. This can be shown by
a straightforward diagram chasing. Then of course, their A-abstractions are interpreted
as transpositions of the corresponding morphisms, which are equal. U
Lemma 2.6

If M —3 N, then their interpretations are equal, where —g means one-step B-reduction.

Proof. Given two sequents I', 2, I+ M : 7 and I', 1"+ N : 0.

b
o 'I"F (Ax?.M)N : 7 is interpreted as I' x I M 7 X 0 22 T,

(Ir,N,1pr)

o I''T"+ M[x” — NJ: 7 is interpreted as T" x T I'xoxI" 7

To see that they’re equal, look at the following diagram.

FXF/%(FXUXF/)UXO’%TJXU

<1F,N,1F/>l /77/ leVFXF/ Jeva

PXO’XF/ﬁFXUXF/TT

Thus if M =5 N, their interpretations are equal.
We have shown that it’s the same for =,. The following theorem is the final reward

for all these hardwork.

Theorem 2.7 (Soundness of the Calculus)

If M = N, then their interpretations are equal.

For example, let’s try to define the composition morphism XY x Y% — X% If we try
to do it categorically, we need to define its transposition Z x XY x YZ — X. We may
define it as:

Zx XY xY? 2 XY xy &5 X,

2.2 The Semantics 2 SIMPLY TYPED MN-CALCULUS

But if we use our beautiful A-calculus, this is simply
Y= Xg:Z=>YEFXf(9(2): Z = X.

If you think this is not a big simplification, try proving the composition morphism is
associative. I don’t even want to prove it categorically. But using our formal language,
this is just easy calculus. Fix the environment I' = (f : Y - X, g: Z > Y, h: W — Z),
then we have:

Aw.(Az.fgz)(hw) —5 Aw.g fhw.

Our formal language has absorbed the calculus rules of ccc, so there’s almost nothing to

prove!

	Cartesian Closed Category
	Simply typed -calculus
	The Syntax
	The Semantics

