Cartesian Closed Category and Simply Typed λ -Calculus

Prepared by CanaanZhou;)

April 20

1 Cartesian Closed Category

Recall that a cartesian closed category C, or a ccc, is a category with finite products (including 0-ary product, the terminal object) and for each $c \in C$, the functor $-\times c : C \to C$ has a right adjoint $(-)^c$.

Intuitively, d^c may be thought of as the *function space* from c to d.

For our purpose, we assume that every ccc C has a *choice* of d^c for any pair of objects c, d, and a *choice* of $\prod_{i \in I} c_i$ for each finitely-indexed family of object in C.

The prototypical example is Set.

Example 1.1

Set is a ccc. For every pair of sets X, Y, the set Y^X is simply Set(X, Y). We have a natural isomorphism:

$$\operatorname{Set}(X \times Y \to Z) \cong \operatorname{Set}(X, Z^Y).$$

The idea is that for each binary function $f : X \times Y \to Z$, given an element $x \in X$, one get a unary function f(x, -) by inserting x to the first input of f. This is called Currying.

Aside from this example, one way to justify that d^c acts like the function space is by looking at the global elements. Suppose we have a $x : 1 \to d^c$, by ccc, x uniquely corresponds to a $1 \times c \to d$, which also unique corresponds to a $c \to d$.

Exercise 1.2

Show that for any object $c, 1 \times c \cong c$.

We now introduce the idea of *generalized* elements.

Definition 1.3 (Generalized Elements)

A generalized element x of an object c over another object u is a morphism $x: u \to c$.

You can think of a generalized element $x : u \to c$ as a *term* of c with a *free variable* of type u.

The point of generalized elements is that:

- Just like global elements, every morphism $f : c \to d$ now becomes a function between sets of generalized elements $f_* : C(u, c) \to C(u, d)$.
- Unlike global elements, the choice of u is usually arbitrary. By Yoneda lemma, to study any object c, it suffices to study its generalized elements over an arbitrary u.

2 Simply typed λ -calculus

WARNING! I basically wrote this part all by myself. Please be extra careful when reading!

2.1 The Syntax

We give a quick informal definition of the syntax of simply typed λ -calculus.

A type world T is a set with a binary operation $(\sigma, \tau) \mapsto (\sigma \to \tau) : \mathsf{T} \times \mathsf{T} \to \mathsf{T}$, where each element $\sigma \in \mathsf{T}$ is called a type. The type $\sigma \to \tau$ is the function type from σ to τ .

For each type τ we have countably infinite variables of type τ .

An *environment* is a finite list $\Gamma = (x_0^{\sigma_0}, \cdots, x_{r-1}^{\sigma_{r-1}})$, where for each *i*, $x_i^{\sigma_i}$ is a variable of type σ_i .¹

For two environment Γ and Δ , the environment Γ , Δ is Γ and Δ concatenated.

We have a set C of constants, where each $c^{\sigma} \in C$ has an assigned type σ .

Now we define *well-typed terms*. They are generated by the following rules.

Constants	VARIABLES	Permutation	
		$\Gamma \vdash M : \tau$	_
$\Gamma \vdash c^{\sigma} : \sigma$	$\Gamma, x^{\sigma}, \Delta \vdash x^{\sigma} : \sigma$		$[\Gamma \text{ is a permutation of } \Gamma]$
		$\overline{\Gamma} \vdash M : \tau$	

¹In most literatures Γ are structured differently. There are mainly for choices: list, non-repetition list, unordered list (bag), unordered non-repetition list (set). After contemplating for a while, I think list is the best choice. I encourage you to form your own opinion on this issue and feel free to disagree.

λ -Abstraction	λ -Application			
$\Gamma, x^{\sigma}, \Delta \vdash M : \tau$	$\Gamma \vdash M: \sigma \to \tau$	$\Gamma \vdash N: \sigma$		
$\overline{\Gamma, \Delta \vdash \lambda x^{\sigma}.M : \sigma \to \tau}$	$\Gamma \vdash MN$	$\Gamma \vdash MN : \tau$		

For any sequent $\Gamma \vdash M : \tau$, each $x^{\sigma} \in \Gamma$ is called a *free variable* in M. The λ -abstraction rule above *bounds* the free variable x^{σ} .

WEAKENING

$$\frac{\Gamma \vdash M : \tau}{\Gamma, \Delta \vdash M : \tau} [\Delta \text{ is any environment}]$$

Lemma 2.1 (Weakening)

Weakening is admissible.

Proof. We perform induction on the deduction of $\Gamma \vdash M : \tau$.

- If $M : \tau$ is a variable y^{τ} and the sequent is $\Gamma, y^{\tau}, \Gamma' \vdash y^{\tau} : \tau$, then $\Gamma, y^{\tau}, \Gamma', \Delta \vdash y^{\tau} : \tau$ is also valid. Contant is similar.
- Suppose $\overline{\Gamma}$ is a permutation of Γ and we have deduced $\overline{\Gamma} \vdash M : \tau$ from $\Gamma \vdash M : \tau$ by the rule of permutation, then by IH, we have a deduction of $\Gamma, \Delta \vdash M : \tau$. But $\overline{\Gamma}, \Delta$ is also a permutation of Γ, Δ , thus by permutation, we can deduce $\overline{\Gamma}, \Delta \vdash M : \tau$.
- Suppose the last step is λ -abstraction, from $\Gamma, x^{\sigma}, \Gamma' \vdash M : \tau$ to $\Gamma, \Gamma' \vdash \lambda x^{\sigma}.M : \sigma \to \tau$, then adding Δ to each side of the deduction changes nothing.
- λ -application is similar.

 $\frac{ \begin{array}{c} \text{Substitution} \\ \\ \hline \Gamma, x^{\sigma}, \Gamma' \vdash M: \tau \quad \quad \Gamma, \Gamma' \vdash N: \sigma \\ \hline \\ \hline \Gamma, \Gamma' \vdash M[x^{\sigma} \mapsto N]: \tau \end{array} }$

where $M[x^{\sigma} \mapsto N]$ means the term M, but every occurence of x^{σ} is substituted by N. Lemma 2.2 (Substitution)

Substitution is admissible.

The proof of this lemma is also a *inductive definition* of $M[x^{\sigma} \mapsto N]$.

- *Proof.* Again, we perform induction on the deduction of the premises.
- Suppose $M : \tau$ is a variable $y^{\tau} : \tau$ distinct from x^{σ} and the first premise is given by variable rule, then $M[x^{\sigma} \mapsto N]$ is just y^{τ} . Constant is similar.
- Suppose $M : \tau$ is x^{σ} , then $M[x^{\sigma} \mapsto N]$ is defined to be N, and by hypothesis we have a deduction of $\Gamma, \Gamma' \vdash N : \sigma$.
- Permutation case is easy.
- Suppose the left premise is:

$$\frac{\Sigma, y^{\mu}, \Sigma' \vdash P : \tau}{\Sigma, \Sigma' \vdash \lambda y^{\mu} . P : \mu \to \tau}$$

then $x^{\sigma} \in \Sigma$ or $x^{\sigma} \in \Sigma'$, doesn't really matter. Suppose $x^{\sigma} \in \Sigma$, say $\Sigma = \Sigma_0, x^{\sigma}, \Sigma_1$.

$$\frac{\sum_{0, x^{\sigma}, \Sigma_{1}, y^{\mu}, \Sigma' \vdash P : \tau \qquad \Sigma_{0}, \Sigma_{1}, y^{\mu}, \Sigma' \vdash N : \sigma}{\Sigma_{0}, \Sigma_{1}, y^{\mu}, \Sigma' \vdash P[x^{\sigma} \mapsto N] : \tau}$$

$$\frac{\sum_{0, \Sigma_{1}, \Sigma' \vdash \lambda y^{\mu} \cdot P[x^{\sigma} \mapsto N] : \mu \to \tau}{\Sigma_{0}, \Sigma_{1}, \Sigma' \vdash \lambda y^{\mu} \cdot P[x^{\sigma} \mapsto N] : \mu \to \tau}$$

• λ -application case is also easy, where for $M : \nu \to \tau$ and $P : \nu$, $MP[x^{\sigma} \mapsto N]$ is defined to be $M[x^{\sigma} \mapsto N]P[x^{\sigma} \mapsto N]$.

In particular we have:

$$\frac{\Gamma, x^{\sigma}, \Gamma' \vdash M : \tau}{\Gamma, x^{\sigma}, y^{\sigma}, \Gamma' \vdash M : \tau} \qquad \Gamma, y^{\sigma}, \Gamma' \vdash y^{\sigma} : \sigma}{\Gamma, y^{\sigma}, \Gamma' \vdash M[x^{\sigma} \mapsto y^{\sigma}] : \tau}$$

where x^{σ} and y^{σ} are two distinct variables of the same type σ .

In the above deduction we can perform λ -abstraction on both the premise and the conclusion, having two sequents:

$$\Gamma, \Gamma' \vdash \lambda x^{\sigma}.M : \sigma \to \tau,$$
$$\Gamma, \Gamma' \vdash \lambda y^{\sigma}.M[x^{\sigma} \mapsto y^{\sigma}] : \sigma \to \tau.$$

Sequents related in this way are α -equivalent, denoted as $\lambda x^{\sigma}.M \equiv_{\alpha} \lambda y^{\sigma}.M[x^{\sigma} \mapsto y^{\sigma}]$. Note that even though we omit the environment and the type, they should be clear from context. In literatures, some congruence conditions are often imposed on α -equivalence, for example $M \equiv_{\alpha} N \implies PM \equiv_{\alpha} PN$. Here we choose to impose these conditions after definition all three kinds of "raw equivalence": α, β and η -equivalence.

Here's something important proposed by Ye Lingyuan. My definition of substitution is different from most literatures. Sometimes free/bounded variables might be confusing. Suppose our type world T has only one type σ , and $\sigma \to \sigma = \sigma$.² Consider the following deduction.

$$\frac{\frac{x, y \vdash x \qquad x, y \vdash y}{x, y \vdash xy}}{\frac{x, y \vdash xy}{x \vdash \lambda y.xy}} \qquad \underline{y \vdash y} \\
\frac{\underline{y}, x \vdash \lambda y.xy}{\underline{y} \vdash \lambda y.\underline{y}y}$$

If we only look at the last term $y \vdash \lambda y.yy$, we have no idea what's going on. That's the thing about our system: instead of dealing with terms, we deal with *deductions*. The full deduction shows that $y \vdash \lambda y.yy$ in fact has two *different ys*. The underlined one is the one substituting x, while the normal one is the one λ -abstracted in the second step of the deduction. Since everything is defined by induction on deductions, there's no ambiguity.

Normally people only deal with *terms*, or more precisely, α -equivalence classes of *terms*. When doing substitution, they require everything to be properly α -converted so that there won't be any variables clashing. For example, when substituting y for x in $\lambda y.xy$, we have to α -convert $\lambda y.xy$ to, for example, $\lambda z.xz$. After substitution we get $\lambda z.yz$. I think my system is more elegant. (Feel free to disagree but come on!) No matter what you prefer, please always avoid stuff like directly substituting y for x in $\lambda y.xy$.

Now, given two sequents $\Gamma, x^{\sigma}, \Gamma' \vdash M : \tau, \Gamma, \Gamma' \vdash N : \sigma$, we have the following deductions:

$$\frac{\Gamma, x^{\sigma}, \Gamma' \vdash M : \tau}{\Gamma, \Gamma' \vdash \lambda x^{\sigma}.M : \sigma \to \tau} \qquad \Gamma, \Gamma' \vdash N : \sigma}{\Gamma, \Gamma' \vdash (\lambda x^{\sigma}.M)N : \tau}$$

²This is exactly *untyped* λ -calculus.

And by substitution we can also deduce $\Gamma, \Gamma' \vdash M[x^{\sigma} \mapsto N] : \tau$ directly. We say the latter sequent is a one-step β -reduction of the former. If there's a one-step β -reduction chain (of finite length) from $\Gamma \vdash M : \tau$ to $\Gamma \vdash N : \tau$, we say the latter is a β -reduction of the former, denoted as $M \twoheadrightarrow_{\beta} N$.

In fact, β -reduction is the central concept in λ -calculus. This string-rewriting process captures the concept of *computation*. We have the following important theorem: **Theorem 2.3 (Church-Rosser Theorem)**

Suppose we have terms M_1, M_2, M_3 of the same type τ under the same environment Γ , and $M_1 \twoheadrightarrow_{\beta} M_2, M_1 \twoheadrightarrow M_3$. Then there is a $\Gamma \vdash M_4 : \tau$ such that $M_2 \twoheadrightarrow M_4 : \tau$ and $M_3 \twoheadrightarrow M_4 : \tau$.

The equivalence relation generated by $\twoheadrightarrow_{\beta}$ is called β -equivalence, denoted as \equiv_{β} .

 $\frac{\eta \text{-}\text{CONVERSION}}{\Gamma \vdash \mathcal{M} : \sigma \to \tau}$ $\frac{\Gamma \vdash \lambda x^{\sigma} . M x^{\sigma} : \sigma \to \tau}{\Gamma \vdash \lambda x^{\sigma} . M x^{\sigma} : \sigma \to \tau}$

Lemma 2.4 (η -conversion)

 η -conversion is admissible.

Proof.

$$\frac{\frac{\Gamma \vdash M : \sigma \to \tau}{\Gamma, x^{\sigma} \vdash M : \sigma \to \tau} \qquad \Gamma, x^{\sigma} \vdash x^{\sigma} : \sigma}{\frac{\Gamma, x^{\sigma} \vdash M x^{\sigma} : \tau}{\Gamma \vdash \lambda x^{\sigma}.M x^{\sigma} : \sigma \to \tau}}$$

We say $\Gamma \vdash \lambda x^{\sigma} M x^{\sigma} : \sigma \to \tau$ is the η -conversion of $\Gamma \vdash M : \sigma \to \tau$. The equivalence relation generated by it is denoted as \equiv_{η} .

The equivalence relation generated by $\equiv_{\alpha}, \equiv_{\beta}, \equiv_{\eta}$ altogether is denoted as \equiv . We further impose that:

- $M \equiv N \implies PM = PN$,
- $M \equiv N \implies \lambda x^{\sigma}.M = \lambda x^{\sigma}.N$,
- $M \equiv N \implies MP = NP$.

If $M \equiv N$ we say they are *equivalent*.

2.2 The Semantics

Now we interpret this formal language in a ccc.

Fix a ccc C. An interpretation of T to C is a function from T to the class of objects of C. So each type τ is assigned to an object of C. For simplicity let's call it τ . $\sigma \to \tau$ is interpreted as τ^{σ} .

Each constant $c^{\sigma} \in \sigma$ is interpreted as a global element $c^{\sigma} : 1 \to \sigma \in \mathsf{C}$.

An environment $\Gamma = (x_1^{\sigma_1}, \cdots, x_n^{\sigma_n})$ is interpreted as the product $\Gamma = \prod_{i=1}^n \sigma_i$. We now inductively define the interpretation of sequent $\Gamma \vdash M : \tau$ as a morphism $M : \Gamma \to \tau$.

- $\Gamma \vdash c^{\sigma} : \sigma$ is interpreted as the morphism $\Gamma \xrightarrow{!} 1 \xrightarrow{c^{\sigma}} \sigma$.
- $\Gamma, x^{\sigma}, \Gamma' \vdash x^{\sigma} : \sigma$ is interpreted as the projection morphism $\pi_{\sigma} : \Gamma \times \sigma \times \Gamma' \to \sigma$.
- Suppose $\Gamma \vdash M : \tau$ is interpreted as $M : \Gamma \to \tau$, then for $\overline{\Gamma}$ a permutation of Γ , we have a permutation map $\pi : \overline{\Gamma} \to \Gamma$. $\overline{\Gamma} \vdash M : \tau$ is interpreted as $\overline{\Gamma} \xrightarrow{\pi} \Gamma \xrightarrow{M} \tau$.
- Suppose $\Gamma, x^{\sigma}, \Gamma' \vdash M : \tau$ is interpreted as $M : \Gamma \times \sigma \times \Gamma' \to \tau$, then $\Gamma, \Gamma' \vdash \lambda x^{\sigma}.M : \sigma \to \tau$ is interpreted as the transpose of $M, M^{\flat} : \Gamma \times \Gamma' \to \tau^{\sigma}$.
- Suppose $\Gamma \vdash M : \sigma \to \tau$ and $\Gamma \vdash N : \sigma$ are interpreted as $M : \Gamma \to \tau^{\sigma}$ and $N : \Gamma \to \sigma$, then $\Gamma \vdash MN : \tau$ is interpreted as $\Gamma \xrightarrow{\langle M, N \rangle} \tau^{\sigma} \times \sigma \xrightarrow{\operatorname{ev}_{\tau}} \tau$, where ev is the counit of $\times \sigma \vdash (-)^{\sigma}$.

A bit of calculations tells us:

- Suppose $\Gamma \vdash M : \tau$ is interpreted as $M : \Gamma \to \tau$, then $\Gamma, \Delta \vdash M : \tau$ is interpreted as $\Gamma \times \Delta \xrightarrow{\pi_{\Gamma}} \Gamma \xrightarrow{M} \tau$.
- Suppose $\Gamma, x^{\sigma}, \Gamma' \vdash M : \tau$ and $\Gamma, \Gamma' \vdash N : \sigma$ are interpreted as $M : \Gamma \times \sigma \times \Gamma' \to \tau$ and $N : \Gamma \times \Gamma' \to \sigma$, then $\Gamma, \Gamma' \vdash M[x^{\sigma} \mapsto N] : \tau$ is interpreted as $\Gamma \times \Gamma' \xrightarrow{\langle 1_{\Gamma}, N, 1_{\Gamma'} \rangle} \Gamma \times \sigma \times \Gamma \xrightarrow{M} \tau$.
- Suppose $\Gamma \vdash M : \sigma \to \tau$ is interpreted as $M : \Gamma \to \tau^{\sigma}$, then $\Gamma \vdash \lambda x^{\sigma} . M x^{\sigma} : \sigma \to \tau$ is interpreted as M itself, which is the transposition of $\Gamma \times \sigma \xrightarrow{M \times 1_{\sigma}} \tau^{\sigma} \times \sigma \xrightarrow{\text{ev}_{\sigma}} \tau$.

Now fix two sequents $\Gamma \vdash M : \tau, \Gamma \vdash N : \tau$.

Lemma 2.5

If $M \equiv_{\alpha} N$, then their interpretations are equal.

Proof. Suppose $\Gamma, x^{\sigma}, \Gamma' \vdash M : \tau$ is interpreted as $\Gamma \times \sigma \times \Gamma' \xrightarrow{M} \tau$, then $\Gamma, y^{\sigma}, \Gamma' \vdash M[x^{\sigma} \mapsto y^{\sigma}] : \tau$ is interpreted as the same exact thing. Essentially what happened is

$$(A \times B \xrightarrow{\langle \pi_A, 1_{A \times B} \rangle} A \times A \times B \xrightarrow{\pi_{L,R}} A \times B) = 1_{A \times B}$$

where $\pi_{L,R}$ means projection on the left and the right components. This can be shown by a straightforward diagram chasing. Then of course, their λ -abstractions are interpreted as transpositions of the corresponding morphisms, which are equal.

Lemma 2.6

If $M \to_{\beta} N$, then their interpretations are equal, where \to_{β} means one-step β -reduction.

Proof. Given two sequents $\Gamma, x^{\sigma}, \Gamma' \vdash M : \tau$ and $\Gamma, \Gamma' \vdash N : \sigma$.

- $\Gamma, \Gamma' \vdash (\lambda x^{\sigma}.M)N : \tau$ is interpreted as $\Gamma \times \Gamma' \xrightarrow{\langle M^{\flat}, N \rangle} \tau^{\sigma} \times \sigma \xrightarrow{\operatorname{ev}_{\sigma}} \tau$.
- $\Gamma, \Gamma' \vdash M[x^{\sigma} \mapsto N] : \tau$ is interpreted as $\Gamma \times \Gamma' \xrightarrow{\langle 1_{\Gamma}, N, 1_{\Gamma'} \rangle} \Gamma \times \sigma \times \Gamma' \xrightarrow{M} \tau$.

To see that they're equal, look at the following diagram.

$$\begin{array}{c} \Gamma \times \Gamma' \xrightarrow{\langle \eta, N \rangle} (\Gamma \times \sigma \times \Gamma')^{\sigma} \times \sigma \xrightarrow{M^{\sigma} \times 1_{\sigma}} \tau^{\sigma} \times \sigma \\ \downarrow^{\langle 1_{\Gamma}, N, 1_{\Gamma'} \rangle} \downarrow & & \downarrow^{ev_{\Gamma \times \Gamma'}} & \downarrow^{ev_{\sigma}} \\ \Gamma \times \sigma \times \Gamma' \xrightarrow{1} \Gamma \times \sigma \times \Gamma' \xrightarrow{M} \tau \end{array}$$

Thus if $M \equiv_{\beta} N$, their interpretations are equal.

We have shown that it's the same for \equiv_{η} . The following theorem is the final reward for all these hardwork.

Theorem 2.7 (Soundness of the Calculus)

If $M \equiv N$, then their interpretations are equal.

For example, let's try to define the *composition* morphism $X^Y \times Y^Z \to X^Z$. If we try to do it categorically, we need to define its transposition $Z \times X^Y \times Y^Z \to X$. We may define it as:

$$Z \times X^Y \times Y^Z \xrightarrow{\operatorname{ev}_Y} X^Y \times Y \xrightarrow{\operatorname{ev}_X} X.$$

But if we use our beautiful λ -calculus, this is simply

$$f: Y \to X, g: Z \to Y \vdash \lambda z. f(g(z)): Z \to X.$$

If you think this is not a big simplification, try proving the composition morphism is associative. I don't even want to prove it categorically. But using our formal language, this is just easy calculus. Fix the environment $\Gamma = (f : Y \to X, g : Z \to Y, h : W \to Z)$, then we have:

$$\lambda w.(\lambda z.fgz)(hw) \rightarrow_{\beta} \lambda w.gfhw.$$

Our formal language has absorbed the calculus rules of ccc, so there's almost nothing to prove!