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Our goal today is to learn the concept of adjunction. In order to that, we need to

develop a better understanding of universal property1 first.

1 Universal Property

Recall that Yoneda lemma says for any category C, we have an isomorphism

Fc ∼= SetCop(C(−, c), F )

natural in both c ∈ C and F : Cop → Set. Explicitly,

• Given any α : C(−, c) → F , we have αc : C(c, c) → Fc, thus αc(1c) ∈ Fc.

• Given any u ∈ Fc, there’s only one α : C(−, c) → F such that αc(1c) = u ∈ Fc.

Now suppose we have a presheaf F : Cop → Set, we want to know if it is representable,

that is, if there exists a c ∈ C and a natural isomorphism α : C(−, c) ∼= F .

Here’s the rough idea. We consider every natural transformation α : C(−, c) → F .

Each one may be seen as an approximation of F with a Hom-functor. We look for the

best approximation. The following definition is just this idea made precise.

Definition 1.1

Suppose we have a functor F : C → D and an object d ∈ D, the category of F over d,

F/d, is defined as follows.

• Objects: an object consists of an object a ∈ C and a morphism α : Fa → d ∈ D.
1Xu Yiqi reminded me that there’s a precise definition of universal property. Credit to him! <3
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1 UNIVERSAL PROPERTY

• Morphisms: a morphism f : (a, h) → (b, k) ∈ F/d is a morphism f : a → b such

that the following triangle commutes.

Fa Fb

d
h

F f

k

In most cases, F : C → D is the inclusion functor of subcategory. So the terminal

object of F/d is the best approximation of d in C.
Example 1.2

Take your favourite irrational number, for example π. Let i : Q → R denote the canon-

ical inclusion, regarded as a functor. The category i/π is equivalent (in this case even

isomorphic) to Q≤π, containing every rational number below π. It has no terminal object

(maximum). However, let j : Z → R denote the inclusion from integers to R. The cate-

gory j/π ∼= Z≤π has a terminal object: the number 3. This is the best approximation of π

with integers from below.

Example 1.3 (Slice Category)

When C = D and F is the identity functor, F/d is simply denoted as C/d (or D/d

of course), called slice category. It’s easy to show that it always has a terminal object

1d : d → d. Here’s my favourite example of slice category.

• Take the three-element set C = {r, g, b}.2 The category Set/C is the category of

C-colored sets. The morphisms are color-preserving functions.

For our purpose, we need to compute y/F , where y : C → SetCop is Yoneda embedding

y(c) := C(−, c).

• Objects: an object c ∈ C and a natural transformation α : C(−, c) → F .

• Morphisms: f : (c, α) → (d, β) is a morphism f : c → d such that the following

triangle commutes.

C(−, c) C(−, d)

F

α

f∗

β

However by Yoneda lemma, every α : C(−, c) → F can be seen as a α ∈ Fc, and the

above triangle translates to Ff : Fd → Fc maps β ∈ Fd to α.
2C stands for colors and r, g, b stands for red, green, blue respectively.
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Exercise 1.4

Show that under the Yoneda isomorphism Fc ∼= SetCop(C(−, c), F ), for any α : C(−, c) →

F and β : C(−, d) → F , β ◦ f∗ = α (i.e. the above triangle commutes) is equivalent to

(Ff)(β) = α.

So y/F is equivalent to the following category.

Definition 1.5 (Category of Elements: Contravariant Case)

The category of elements
∫

F for a contravariant Set-valued functor F : Cop → Set (a

presheaf on C) is defined as follows.

• Objects: an object (c, x) consists of an object c ∈ C and an element x ∈ Fc.

• Morphisms: a morphism f : (c, x) → (d, y) is a morphism f : c → d ∈ C such that

(Ff)(y) = x.

Thus for a presheaf F on C, y/F ∼=
∫

F .

Dualizing everything we get:

Definition 1.6 (Category of Elements: Covariant Case)

The category of elements
∫

F for a covariant Set-valued functor F : C → Set is defined as

follows.

• Objects: (c, x) consists of c ∈ C and x ∈ Fc.

• Morphisms: f : (c, x) → (d, y) is f : c → d ∈ C such that (Ff)(x) = y.

Proposition 1.7

• For F : C → Set,
∫

F ' y/F , where y : C → (SetC)op is the contravariant Yoneda

embedding.

• For F : Cop → Set,
∫

F ' y/F , where y : Cop → SetC is the covariant Yoneda

embedding.

Theorem 1.8

Covariant Set-valued functor F : C → Set is representable iff
∫

F has an initial. Dually,

contravariant Set-valued functor F : Cop → Set is representable iff
∫

F has a terminal.

Proof. Let’s prove the covariant case.

⇒ Suppose F is representable. We may let F be a Hom-functor C(c, −). Then∫
C(c, −) is just the slice category c/C, so it has an initial 1c : c → c.
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⇐ Suppose
∫

F has an initial (c, u), we show that u : C(c, −) → F is an isomorphism.

Fix any d ∈ C, we need to prove ud : C(c, d) → Fd is a bijection. But given any v ∈ Fd,

by the initiality of (c, u), there exists a unique f : c → d such that Ff(u) = v ∈ Fd,

which is exactly ud(f) ∈ F (d), by Yoneda. Thus ud is a bijection for every d ∈ C, so u is

a natural isomorphism. □
The universal property of an object c ∈ C is characterized by a functor F : C → Set

(or F : Cop → Set) and a natural isomorphism u : C(c, −) ∼= F (or u : C(−, c) ∼= F ),

that is, what functor it represents and how it represents that. By the theorem above,

u : C(c, −) ∼= F is just a u ∈ Fc such that (c, u) ∈
∫

F is initial (or dually, terminal).

2 Adjoint Functors

At the very beginning of nlab page adjoint functor, it says:

The concept of adjoint functors is a key conpect in category theory, if not

the key concept.

Let’s begin by one simple example.

2.1 Free Vector Space

Let VectR be the category of real vector spaces and linear mappings. We have two functors

in opposite directions:

• the free functor F : Set → VectR, sending any set X to the space ⊕x∈X R,

• the forgetful functor U : VectR → Set sending any space V to its underlying set.

We now study the property of the composition of F and U , the endofunctors UF :

Set → Set, FU : VectR → VectR.

Given a set X, UFX is the underlying set of ⊕x∈X R. The elements are finite R-

linear combinations of X. Note that we have a canonical embedding X → UFX, sending

each x ∈ X to 1 · x, regareded as a really simple linear combination. Let’s denote it

ηX : X → UFX. You can easily check that as X goes through Set, η forms a natural

transformation η : 1Set → UF .
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2.1 Free Vector Space 2 ADJOINT FUNCTORS

The set UFX has a universal property. Suppose we have a vector space V and a

function f : X → UV . We want to extend f to a f : FX → V . By “extend” we mean

the following triangle commutes.

UFX

X UV
f

ηX
Uf

which means when retricting f along ηX , f agrees with f .

The mapping f has only one choice. Given ∑i∈I rixi ∈ UFX, where I is some finite

set, ri ∈ R, xi ∈ X, since f is linear,

f

(∑
i∈I

rixi

)
=
∑
i∈I

rif(xi).

But since f agrees with f when restricting along ηX , for any i ∈ I,

f(xi) = f(xi).

Putting everything together we get:

f

(∑
i∈I

rixi

)
=
∑
i∈I

rif(xi).

We can treat the formula above as a definition for f . Note that for any i ∈ I, f(xi) ∈ UV .

Since I is finite and V is closed under finite linear combination, ∑i∈I rif(xi) ∈ UV .
Exercise 2.1

Show that had we defined F : Set → VectR to be F (X) = ∏
x∈X R, the X-index direct

product (rather than direct sum) of R, an f : X → UV might not admit an extension

f : UFX → UV . Hint: let V be ⊕x∈X R.

Everything so far has been taught in first-year linear algebra course: any linear map-

ping f : V → X is determined by its value on the basis of V .

Let’s rephrase the above universal property in the language of category of elements:

(FX, ηX) is the initial in
∫

Set(X, U−), meaning FX represents Set(X, U−) via ηX :

VectR(FX, −) ∼= Set(X, U−)

where the image of 1F X : FX → FX under VectR(FX, FX) → Set(X, UFX) is ηX .

It can be easily shown that for any fixed V , the above natural isomorphism VectR(FX, V ) ∼=

Set(X, UV ) is natural in X too.
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Exercise 2.2

Show the claim above.

For any vector space V , the vector space FUV also has a univeral property. The

elements in FUV are linear combinations of elements in V . Here’s an example.

4(v) + 5(−7u + 2w) ∈ FUV.

So the base vectors of FUV are vectors in V . It might seem monstrously huge at the

first glance, since the dimension of FUV is the cardinality of UV ! Here’s an easier way

to comprehend FUV : vectors in it are like formal linear combinations of vectors in V ,

waiting to be evaluated.

You give the above vector in FUV to your friend and he will happily evaluate it to:

4(v) + 5(−7u + 2w) = 4v − 35u + 10w ∈ V.

So we have a canonical evaluation linear mapping ϵV : FUV → V . It has a dual universal

property: fix a set X and a f : FX → V , then it uniquely determines a X → UV such

that the following triangle commutes.

FUV

FX V

ϵV

f

F f

In other words, (UV, ϵV ) is the terminal in
∫

VectR(F−, V ), so we have a natural isomor-

phism for any fixed V :

VectR(F−, V ) ∼= Set(−, UV )

where the preimage of 1UV : UV → UV is ϵV .

A mutual functorial universal property is expressed by F and U . They are a pair of

adjoint functors.

2.2 Adjoint Functors: The Definitions

The notion of adjoint functor, or adjunction pair, has at least three equivalent definitions.

Fix categories C, D and functors F : C → D and G : D → C. We now define the

relation F a G, meaning F is the left adjoint of G, and G is the right adjoint of F .
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2.2 Adjoint Functors: The Definitions 2 ADJOINT FUNCTORS

Definition 2.3 (1.Adjunction via Hom-functor)

F a G iff there is an isomorphism natural in both c ∈ C, d ∈ D:

D(Fc, d) ∼= C(c, Gd).

If f : Fc → d ∈ D and g : c → Gd ∈ C corresponds under this isomorphism, they are

called the adjunct (by nLab) or the transposition (by Riehl) of each other. Here I adopt

the notation from Riehl and denote f ♯ : Fc → d in D(Fc, d), it corresponds to f ♭c → Gd.

In the example above we have seen that VectR(FX, V ) ∼= Set(X, UV ), thus F a U ,

“free is left adjoint to forgetful”.3

We present a very useful lemma.

Lemma 2.4 (Transposition of Commutative Squares)

Suppose D(Fc, d) ∼= C(c, Gd) natural in c, d. Then left square commutes iff right square

commutes.
Fc d c Gd

Fc′ d′ c′ Gd′

f♯

k

g♯

F h

f♭

Gk

g♭

h

Proof. The following cube commutes.

D(Fc, d) C(c, Gd)

D(Fc′, d) C(c′, Gd)

D(Fc, d′) C(c, Gd′)

D(Fc′, d′) C(c′, Gd′)

∼=

(Gk)∗

∼=

k∗

(F h)∗
h∗

∼=

h∗

(Gk)∗

k∗

(F h)∗

∼=

It might seem scary, but the good thing about diagram chasing is that we can check the

whole cube commutes by checking every side commutes. Left and right sides are obvious

while the four sides in the middle commutes by the naturality of D(Fc, d) ∼= C(c, Gd).

Now suppose the left square commutes, so f ♯ ∈ D(Fc, d) and g♯ ∈ D(Fc′, d′) are

mapped by k∗ and (Fh)∗ to the same thing. A simple diagram chasing shows that their
3There are countless examples of free-forgetful adjunction in algebra, just think about free group, free

Abelian group, free R-module. . . I don’t know if there’s an ultimate abstraction of it, but free-forgetful

adjunction appears in the theory of algebra over a monad, which is pretty widely applicable. See here.
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2.2 Adjoint Functors: The Definitions 2 ADJOINT FUNCTORS

transposition are mapped to the same thing in C(c, Gd′), hence the right square commutes.

The converse is equally easy. □

Definition 2.5 (2.Adjunction via Unit and Counit)

F a G if there is two natural transformations:

η : 1C → GF, ϵ : FG → 1D

such that the following two diagram of functors commutes. This condition is called triangle

identity.
G GFG F FGF

G F

ηG

Gϵ
1G

F η

1F

ϵF

In the example above, the two triangle identities say:

• For any vector space V and any v ∈ V (perhaps I should say v ∈ UV , you get the

point), the formal linear combination (v) ∈ UFUV is evaluated to v itself.

• For any set X and formal finite linear combination ∑i rixi, the linear combination∑
i ri(xi) ∈ FUFX, where each (xi) is now regarded as a linear combination itself,

is evaluated to ∑i rixi.

Definition 2.6 (3.Adjunction via Universal Morphism)

F a G iff there is a natural transformation η : 1C → GF such that for any c ∈ C, (Fc, ηc)

is the initial in c/G.

In the example above, for any X ∈ Set, there is such a universal ηc : X → UFc,

regarding each x ∈ X as a formal linear combination (x) ∈ UF .

Theorem 2.7

The three definitions are equivalent.

Proof. We prove 1 =⇒ 2 =⇒ 3 =⇒ 1.

1 =⇒ 2. Suppose D(Fc, d) ∼= C(c, Gd). Let ηc : c → GFc be the image of 1F c, and

ϵ : FGd → d be the preimage of 1Gd. The naturality of η comes from transpositions.

Fc Fc c GFc

Fc′ Fc′ c′ GFc′

F fF f f GF f

ηc

ηc′
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2.3 Properties of Adjoint Functors 2 ADJOINT FUNCTORS

ϵ is similar.

Triangle identities also come from transpositions.

FG FG G GFG

FG 1D G G

F F 1C GF

FGF F GF GF

1F G

ϵ

ϵ

1F G 1G

1G

ηG

Gϵ

1F

1F

ϵF

F η η

η

1GF

1GF

2 =⇒ 3. We need to show (Fc, ηc) is initial in c/G, which is
∫

C(c, G−). We only

need to show that C(Fc, −) ∼= C(c, G−).

• Given any f ♯ : Fc → d. Let f ♭ : c → Gd be c
ϵc−→ GFc

Gf♯

−−→ Gd.

• Given any f ♭ : c → Gd. Let f ♯ : Fc → d be Fc
F f♭

−−→ FGd
ϵd−→ d.

It’s easy to show that they are mutually inverse by the naturality of η and ϵ and triangle

identities. The naturality of C(Fc, −) ∼= C(c, G−) also follows easily.

3 =⇒ 1. According to 3, for every fixed c, D(Fc, −) ∼= C(c, G−). Fix any d ∈ D, the

fact that D(Fc, d) ∼= C(c, Gd) can be proven by a diagram chasing. You need to use ηc

to compute f ♯ 7→ f ♭ : D(Fc, d) → C(c, Gd). The definition is exactly the same as above.

Apply the naturality of η and we’re done. □

2.3 Properties of Adjoint Functors

Since the notion of adjoint functor expresses some funtorial universal property, we would

expect it to be unique. Indeed,

Proposition 2.8 (Uniqueness)

If F a G and F a G′, then G ∼= G′. Dually, if F a G and F ′ a G, then F ∼= F ′.

Proof. Suppose F a G and F a G′, then C(−, Gd) ∼= D(F−, d) ∼= C(−, G′d), both natural

in d, thus C(−, Gd) ∼= C(−, G′d). By Yoneda, G ∼= G′. The case for F is dual.

Adjunction pairs can be composed in the following sense.
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2.3 Properties of Adjoint Functors 2 ADJOINT FUNCTORS

Proposition 2.9 (Composition)

Suppose we have the following diagram:

C D E
F H

KG

a a

then HF a GK.

Proof. E(HFc, e) ∼= D(Fc, Ke) ∼= C(c, GKe). □
Proposition 2.10

Given an adjunction F a G. Post-composition with F and G defines a pair of adjoint

functors

CJ DJ

G∗

F∗

a

for any small J, and pre-composition with F and G also defines an adjunction

EC ED

F ∗

G∗

a

for any locally small E.

Proof. We prove the case for post-composition using definition 2. Let the unit be η :

1CJ → (GF )∗, counit be ϵ : (FG)∗ → 1DJ . Triangle identity of F∗ a G∗ comes from

triangle identity of F a G. □
The following property about the interplay between adjoint functors and (co)limits is

super important. We will be using it for like a thousand times in the future.

Theorem 2.11 (LAPC)

Left adjoints preserve colimits.

Proof. Suppose F a G, K : J → C is a diagram with colimit λ : K → colim K. The magic

step in the list of isomorphisms below is ∆Gd ∼= G∗(∆d) : J → C.

D(F colim K, d) ∼= C(colim K, Gd) ∼= CJ(K, ∆Gd) ∼= CJ(K, G∗∆d) ∼= DJ(FK, ∆d) ∼= D(colim FK, d).

Apply Yoneda we get F colim K ∼= colim FK. □
Similarly,

Theorem 2.12 (RAPL)

Right adjoints preserve limits.

Now we can define the notion of cartesian closed category.
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Definition 2.13 (Cartesian Closed Category)

A category C is a cartesian closed category (abbreviated as ccc), if:

• C has finite products (that is, binary products and terminal),

• For each c ∈ C, the functor c × − : C → C has a right adjoint (−)c : C → C.

For example, Set is a ccc:

Set(X × Y, Z) ∼= (X, ZY )

where ZY is just Set(Y, Z). This process of turning a binary function to a unary higher-

order functional is called Currying in computer science. We will study ccc in greater

depth by introducing the formal language of simply typed λ-calculus next week.
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