
Equivalence of Categories, Limit and Colimit

Prepared by CanaanZhou ;)

March 30

1 Equivalence of Categories

Equivalence is the notion expressing two categories being the same.

Definition 1.1 (Equivalence of Categories)

An equivalence between two categories C, D consists of:

• A pair of functors in opposite directions F : C→ D, G : D→ C.

• Two natural transformations η : 1C ∼= GF, ϵ : FG ∼= 1D.

If there exists an equivalence between C, D, then C, D are equivalent, denoted as C ' D.

We also say F is an equivalence, or F witnesses the equivalence between C and D.

Here’s a toy model of equivalence. Let C be the singleton category 1, D be the preorder

with as many objects as you like, but all of them are isomorphic. F : C→ D picks out an

object in D, while G : D → C sends everything to the unique object. You can figure out

η and ϵ yourself.

Non-trivial examples of equivalences will gradually appear later. One of the most

important example in topos theory is the equivalence of category of sheaves and category

of étale bundle on a given topological space X:

Sh(X) ' Et(X)

meaning the concept of sheaf and étale bundle are actually describing the same thing,

even though they seem drastically different.

We introduce a simple criterion for equivalence.

1



1 EQUIVALENCE OF CATEGORIES

Definition 1.2

A functor F : C → D is essentially surjective if for every d ∈ D, there exists c ∈ C such

that F (c) ∼= d.

Here, “essentially” means that we don’t require strict equality F (c) = d, we only need

isomorphism.

Exercise 1.3

Show that if F : C→ D is an equivalence, then F is fully faithful and essentially surjective.

Proposition 1.4

Assuming the axiom of choice (for class probably), if F : C → D is fully faithful and

essentially surjective, then F is an equivalence.

Proof.

• Stage 1. Construct the inverse G.

Given any d ∈ D. Since F is essentially surjective, there exists c ∈ C such that

F (c) ∼= d, but we need AC to pick out such a c for every d ∈ D. Let G(d) be this c.

Given any g : d→ d′ ∈ D. Since F is fully faithful, C(G(d), G(d′)) ∼= D(F (G(d)), F (G(d′))).

But according to the definition of G on objects, F (G(d)) ∼= d and F (G(d′)) ∼= d′. Again,

pick out two such isomorphisms ϵd : F (G(d)) ∼= d, ϵd′ : F (G(d′)) ∼= d′, a simple diagram

chase shows that D(F (G(d)), F (G(d′))) ∼= D(d, d′). Let G(g) : G(d)→ G(d′) be the image

of g under

D(d, d′) ∼= D(F (G(d)), F (G(d′))) ∼= C(G(d), G(d′)).

One can easily verify the functoriality of G.

• Stage 2. Construct η : 1C ∼= GF and ϵ : FG ∼= 1D.

We have constructed ϵ already, so let’s focus on η.

Let c ∈ C. We need to construct an isomorphism ηc : c → GF (c). But since F is

fully faithful, C(c, GF (c)) ∼= D(F (c), FGF (c)) 3 ϵ−1
F (c). Let ηc : c → GF (c) be the image

of ϵ−1
F (c) under this bijection. Again, since F is fully faithful, ηc is an isomorphism.

• Stage 3. Verify the naturality of η and ϵ.

2



1 EQUIVALENCE OF CATEGORIES

First we consider ϵ. We’ve mentioned that D(FG(d), FG(d′)) ∼= D(d, d′). This is done

as follows.
FG(d) FG(d′)

d d′

ϵ−1
d

F G(g)

ϵd′

g

Reverse ϵ−1
d to ϵd and we’re done.

Now we prove the naturality of η. Given f : c→ c′, we need to show that the diagram

on the left commutes.

c c′ F (c) F (c′)

GF (c) GF (c′) FGF (c) FGF (c′)

f

ηc′

GF (f)

ηc

F (f)

F (ηc′ )=ϵ−1
F (c′)

F GF (f)

F (ηc)=ϵ−1
F (c)

But since F is fully faithful, we can apply F to that diagram and show that the result

diagram (on the right) commutes. This is simply because ϵ is natural. □
The proof may seem long, but this theorem is really just a fancy version of “a bijective

function is invertible”. Let’s summarize the result again, just to emphasize.
Theorem 1.5

Assuming AC. A functor F : C→ D is an equivalence iff F is fully faithful and essentially

surjective.

Whenever a functor F : C → D is fully faithful, we can regard it as an inclusion

functor of full subcategory. We can ask if F is essentially surjective or not. If it is, then it

witnesses C ' D. If not, well, it really is (in some sense) the inclusion functor of a proper

subcategory.
Discussion 1.6 (Equivalence vs. Isomorphism)

What’s the difference between equivalence and isomorphism of categories?

The notion of isomorphism between categories is just isomorphism in CAT. Let’s spell

out the definition. For any pair of categories C, D, C ∼= D if there’s a pair of functors

F : C→ D, G : D→ C, such that:

1C = GF, FG = 1D.

But talking about equality between functors is against the philosophy of category theory.

It’s more natural1, and as it turned out, more useful to talk about functors being naturally

isomorphic.
1No pun intended, but the notion of natural transformation really is natural.

3



1 EQUIVALENCE OF CATEGORIES

The key difference is that objects may be isomorphic but not equal. Sometimes we

wish isomorphic objects are always equal, this property is called being skeletal.

Definition 1.7 (Skeletal)

A category C is skeletal if for any c, d ∈ C, c ∼= d implies c = d.

Proposition 1.8

If C ' D and C, D are both skeletal, then C ∼= D.

Proof. Suppose (F, G, η, ϵ) witness C ' D. Each component of η : 1C ∼= GF is an

isomorphism ηc : c ∼= GFc. But since C is skeletal, c = GFc. Thus 1C = GF . The same

goes for FG = 1D. □
Given any category C, if we can pick out one object from any isomorphism class and

take the full subcategory spanned by them, then it’s like we have forced C to be skeletal.

To be precise:

Proposition 1.9 (Skeleton)

Assuming AC. Every category C is equivalent to a skeletal category sk(C), unique up to

isomorphism. Actually, if C ' D, then sk(C) ∼= sk(D).

Proof. AC allows us to pick out a single object from any isomorphism class of objects in

C. Take the full subcategory sk(C) spanned by them. The canonical inclusion functor

sk(C) → C is fully faithful (since it’s the full subcategory) and essentially surjective (by

definition). Clearly sk(C) is skeletal.

If C ' D, then compose the equivalence:

sk(C) ' C ' D ' sk(D)

we get sk(C) ' sk(C), which implies sk(C) ∼= sk(C). □
The choice involved in the proof can often be explicitly constructed. In this case, the

construction of skeleton often serves to make the category more concrete.

For example, in linear algebra, every n-dimensional real vector space V is isomorphic

to Rn. Let’s define Mat to be the category whose objects are standart Euclidean spaces

Rn, morphisms are linear functions between them, which can be written down as matrices.

Then Mat ∼= sk(Vectfin
R ). The functor Vectfin

R → Mat converts any abstract linear algebra

argument to concrete matrices computaion.

4



2 LIMIT AND COLIMIT

In set theory, every well-ordered set X has a order type o(X), which is an ordinal.

Every order-preserving function between well-ordered sets f : X → Y induces an order-

preserving function between their order types o(f) : o(X) → o(Y ). This functor o is an

equivalence between the category of well-ordered sets WO and the category of ordinals

Ord, and Ord ∼= sk(WO).

2 Limit and Colimit

Limit and colimit are a kind of universal construction. We give the definition first, then

we discuss the intuition.

2.1 The definition
Definition 2.1 (Diagram)

Fix a small category J, a category C, a functor K : J → C. The triple (C, J, K), or just

K, is a J-shaped diagram in C. J is called the index category of K.

For example, a pair of sets (X, Y ) can be seen as a J-shaped diagram in Set, where J

is the discrete category with two objects. A sequence

K(0)→ K(1)→ K(2)→ · · ·

is a (N,≤)-shaped diagram in Set.

Definition 2.2 (Constant functor)

For any category J, C, any object c ∈ C, we have a constant functor ∆c : J→ C, sending

every object in J to c, every morphism to 1c.

Definition 2.3 (Cone, Cocone)

Fix a diagram K : J→ C.

• A cone over K consists of an object c ∈ C (the summit), and a natural transforma-

tion λ : ∆c→ K (the legs).

• Dually, a cocone under K consists of an object c ∈ C, (the nadir), and a natural

transformation λ : K → ∆c (the legs).

5



2.1 The definition 2 LIMIT AND COLIMIT

Here are some pictures of cones and cocones.

Cones: • •

• • • • • · · ·

Cocones: • • • • • · · ·

• •

Note that since we require that all the legs form a natural transformation, every

triangle on the right commutes.

Definition 2.4 (Morphism between cones and cocones)

Fix a diagram K : J → C and two cones λ : ∆c → K, µ : ∆d → K. A morphism

f : (c, λ) → (d, µ) is a morphism f : c → d ∈ C such that it commutes with every leg.

Morphisms between cocones are dual.

Let Cone(−, K) := CJ(∆−, K), Cone(K,−) := CJ(K, ∆−). Intuitively, Cone(c, K) is

the set of all the cones over K with summit c, Cone(K, c) is similar.

Let
∫

Cone(−, K) be the category of all cones over K, and
∫

Cone(K,−) be the cate-

gory of all cocones under K. The notation stands for category of elements but you don’t

have to know that.

Finally we can define limit and colimit.

Definition 2.5 (Limit, Colimit as Terminal, Initial)

• The limit cone over K is the terminal object of
∫

Cone(−, K). The summit is called

the limit of K, denoted as lim K.

• Dually, the colimit cone under K is the initial object of
∫

Cone(K,−). The nadir

is called the colimit, of K, denoted as colim K.

An equivalent, and probably better definition is this.

Definition 2.6 (Limit, Colimit as Representing Objects)

• A diagram K : J → C has limit iff Cone(−, K) is representable. The representing

object is lim K.

• Dually, it has colimit iff Cone(K,−) is representable. The representing object is

colim K.

6

https://ncatlab.org/nlab/show/category+of+elements


2.1 The definition 2 LIMIT AND COLIMIT

Personally I think the terminal-initial definition is easier to imagine, but the representing-

objects definition proves to be more useful. The equivalence of these two definitions a

special case of Proposition 2.4.8 in [Rie16]. You may also verify it yourself.

Intuitively, the limit cone λ : lim K → K is like the best cone, because it can do

the job of any other cone. If I have a limit cone λ : lim K → K in my hand, you may

give me any cone µ : d → K whatsoever, but in my eyes your cone is just a morphism

d→ lim K to my cone.2 The same goes for colimit. That’s why people call them universal

constructions.3

Fun fact: category theory community haven’t quite agreed on the terminology yet.

Some may call limit inverse limit or projective limit, they may also call colimit directed

limit or inductive limit.

For certain index category J, (co)limits of J-shaped diagrams have fixed names. Three

of them are particularly important.

Fix a category C.

Let 2 be the discrete category with two objects.
Definition 2.7 ((Co)product)

A (co)product in C is the (co)limit of a 2-shaped diagram.

Let ⇒ be the category that looks just like that.
Definition 2.8 ((Co)equalizer)

A (co)equalizer in C is the (co)limit of a ⇒-shaped diagram.

Let →← be the category that looks like • → • ← •, ←→ be (→←)op.

Definition 2.9 (Pullback, Pushout)

• A pullback in C is the limit of a →←-shaped diagram.

• A pushout in C is the colimit of a ←→-shaped diagram.

Terminal and initial are special cases of (co)limit.
Exercise 2.10

Fix a category C with initial 0 and terminal 1. Suppose J is the empty category, so there

is exactly one functor K : J→ C. Show that lim K ∼= 1, colim K ∼= 0.
2This intuition fits both definitions. Pause a second and think about this.
3In fact, one might define the universal property of an object c ∈ C as certain Set-valued functor

it represents. Universal objects are very common in mathematics. In fact, I believe that behind every

construction there’s some universal property that truly captures the spirit of that construction.

7



2.2 Limit in Set 2 LIMIT AND COLIMIT

Exercise 2.11 (When J has initial or terminal)

• Suppose J has an initial j. Show that for any diagram K : J→ C, lim K ∼= K(j).

• Dually, suppose J has a terminal k. Show that for any diagram K : J → C,

colim K ∼= K(k).

Hint: for limit case, the initiality of j gives you the limit cone.

This is why we never talk about stuff like ω-shaped limit, they are trivial, while ω-

shaped colimit can be highly interesting.

To understand what (co)limit does, we first focus on (co)limits in Set.

2.2 Limit in Set
Idea 2.12 (How do you know what’s the (co)limit of a diagram?)

There are two ideas in general.

1. You guess. But you can guess in a smart way. In this section we will see that in

many cases, the universal property of certain object on global elements determines

that object completely.

2. You can construct the (co)limit of a complicated diagram by putting together (co)limits

of some smaller diagrams. We will learn that in the next section.

A 2-shaped diagram in Set is just a pair of sets X, Y . The product of them is an

universal object X ×Y equipped two projections πX : X ×Y → X and πY : X ×Y → Y .

To see what X × Y is, let’s apply the category theory philosophy. We probe it by

global elements. That is, we ask the question what is a global element e : 1→ X × Y .

One such element gives rise to a pair of elements πX(e) : 1 → X and πY (e) : 1 → Y .

Moreover, given any pair of such element (x : 1 → X, y : 1 → Y ), there is a unique

element 〈x, y〉 : 1→ X × Y such that πX〈x, y〉 = x and πY 〈x, y〉 = y.

Since we are in the category Set, we may identify a global element x : 1 → X with

an actual element x ∈ X. So the set X × Y contains exactly elements of this form

〈x ∈ X, y ∈ Y 〉. That is, if X × Y exists, it has to be the Cartesian product of X and Y .

Indeed, one may easily verify that the Cartesian satisfies the universal property.

Let’s investigate equalizer with this idea. A ⇒-shaped diagram in Set is a parallel

pair of functions f, g : X ⇒ Y , suppose E is the equalizer with e : E → X, such that

fe = ge (by definition of cone).

8



2.2 Limit in Set 2 LIMIT AND COLIMIT

A global element in E is precisely a global element x : 1 → X, such that fx = gx.

Thus E has to be the set {x ∈ X | f(x) = g(x)}. It’s easy to check that this set indeed

satisfies the universal property of equalizer.

Exercise 2.13 (Pullback in Set)

Study pullback with global element:

• Given a diagram X
f−→ Z

g←− Y ∈ Set. Show that the pullback of this diagram X×Z Y

is the set {(x, y) ∈ X × Y | f(x) = g(x)}.

• Suppose Y is a subset of Z and g is the inclusion function of subset. Show that

X ×Z Y is f−1(Y ) = {x ∈ X | f(x) ∈ Y }. This is called the pullback of subset Y

along f . Conclude that pullback preserves monomorphism.

• Suppose even further that Y is a singleton set {z}, where z ∈ Z. Conclude that

X×Z Y is f−1(z). This is called the fiber of f at z. This is the reason why pullback

is also called fiber product

Let’s reflect on this idea for a second.
Idea 2.14 (What we have done)

Our idea can be expressed like this.

• In Set, every object X (a set) is made up of all the global elements Set(1, X) in it.

• If the limit lim K of a cone K were to exist, then by universal property, a global

element of lim K is just a cone µ : 1→ K.

• So lim K ∼= Cone(1, K) is the only possibility.

In fact, one may use global element to show that Set has all limit.

Definition 2.15 (Completeness)

• Fix a small category J. A category C is J-(co)complete, if for any J-shaped diagram

K : J→ C, lim K (colim K) exists.

• A category C is (co)complete, if it’s J-(co)complete for any small category J.

• A category C is finitely (co)complete if it’s J-(co)complete for any finite4 J.
4A small category is finite if its set of morphisms is finite.

9



2.2 Limit in Set 2 LIMIT AND COLIMIT

Now, suppose K : J → Set is diagram in Set. If lim K exists, then it represents

Cone(−, K). Idea 2.13 can be expressed via the following isomorphism.

lim K ∼= Set(1, lim K) ∼= Cone(1, K).

Just like before, we now define lim K to be Cone(1, K).

Lemma 2.16 (Reality Check)

Cone(1, K) has the required universal property of limit.

Proof. We define the cone λ : Cone(1, K) → K. For each j ∈ J, λj : Cone(1, K) → Kj

sends a cone µ : 1→ K to its component at j, µj ∈ Kj.

Claim 1. λ is a cone.

For each f : j → k → J, we need to show that the following triangle commutes.

Cone(1, K)

Kj Kk

λj

Kf

λk

That is to say, for each cone µ : 1→ K, we have:

µ

µj µk

λj

Kf

λk

This is simply because µ : 1→ K is a cone. So λ is a cone.

Claim 2. λ is the limit cone.

Consider a cone ζ : X → K. We need to show that ζ factors uniquely through λ along

a function f : X → Cone(1, K).

X

Cone(1, K)

Kj Kk

λj

Kf

λk

ζj ζk

r

Suppose x ∈ X. If r(x) : 1 → K exists, it has to be such a cone that r(x)j = ζj. We

take it as the definition of r(x). It other words,

Cone(1, K) has all the possible cones over K. ζ : X → K is X-many cones

put together. The function r picks out the cone r(x) for every x ∈ X.

10



2.3 Limit in Set again 2 LIMIT AND COLIMIT

Clearly r is unique. □
Corollary 2.17

Set is complete.

In fact, Set is also cocomplete, but the method above doesn’t work for colimit. We

now introduce a more general method of proving (co)completeness.

2.3 Limit in Set again

Let’s compute some limit in Set and find some patterns.
Example 2.18 (Arbitrary Product)

Suppose we have a family of sets {Aj}j∈J , indexed by J . J can be any set, even empty.

Regard J as a discrete category, then {Aj} is a J-shaped diagram in Set. The limit of

it is the cartesian product: ∏
j∈J

Aj = {(aj ∈ Aj)j∈J}.

Note that when J = ∅, a J-shaped diagram is an empty diagram, then ∏
j∈J Aj is the

terminal object 1.

We will often use terminologies like these:

• “C has binary product” means C has all 2-shaped limits.

• “C has finite product” means C has all J-shaped limits for every finite set J .

• “C has arbitrary product” means C has all J-shaped limits for every set J .
Exercise 2.19 (Finite product from binary and terminal)

Show that C has finite product iff C has binary product and terminal.

Example 2.20

Elements of the limit of a diagram F : ωop → Set are cones:

1

· · · F (3) F (2) F (1) F (0)

··· x3 x2 x1 x0

f32 f21 f10

The data of such a cone is given by a tuple of elements (xn ∈ F (n))n∈ω making each

triangle commutes. Thus, we see that

lim F =
{

(xn)n∈ω ∈
∏
n∈ω

F (n) | fn,n−1(xn) = xn−1

}
.

11



2.3 Limit in Set again 2 LIMIT AND COLIMIT

Example 2.21

The pullback of B
f−→ A

g−→ C is

B ×A C = {(b, c) ∈ B × C | f(b) = g(c)}.

A pattern has occurred. To construct the limit of a diagram in Set, it seems like you need

to take the (probably infinite) product of every set in the diagram, then take the subset

of the elements that satisfy the cone condition. The latter is done via equalizer.

C

B A
f

g

How to construct the pullback?

B × C A

B C

g

f

First you take the product to form a (non-commutative) square,

B ×A C ⊆ B × C C

B A

g

f

then you take the subset so that the diagram commutes,

B ×A C B × C A
(b,c)7→f(b)

(b,c)7→g(c)

which is done by taking equalizer.

In fact, every limit in Set can be constructed in this way.
Theorem 2.22 (Limit via product and equalizer)

For any diagram K : J→ Set, there is an equalizer diagram:

limJ K
∏

j∈J Kj
∏

f∈mor J K(cod f)
c

d

where for any (µj)j∈J ∈
∏

j∈J Kj, (c(µj))f = K(f)(µdom f ) and (d(µj))f = µcod f .

Proof. By the characterization of equalizer,

(µj) ∈ lim
J

K ⇔ ∀f : k → l ∈ J.K(f)(µk) = µl.

Identifying an element of a set (for example µk ∈ Kk) as a global element (µk : 1→ Kk),

(µj) ∈ limJ K simply expresses that µ is a cone µ : 1 → K. So limJ K = Cone(1, K) is

the equalizer of the diagram. □

12



3 TOWARDS COMPLETENESS

3 Towards Completeness

3.1 (Co)products and (co)equalizers

Now we aim to generalize the previous theorem to any category. The idea is to use Yoneda

embedding.

Definition 3.1

For any class of diagrams K : J→ C in C, a functor F : C→ D

• preserves these limits, if for any such diagram K with a limit cone λ : lim K → K,

Fλ : F lim K → FK is also a limit cone, so F lim K ∼= lim FK;

• reflects these limits, if for any such diagram K and any cone λ : c → K in C,

whenever Fλ : Fc→ FK is a limit cone in D, λ is already a limit cone in C;

• more rarely, creates these limits, if for any such diagram K, the mere existence of

a limit cone µ : d → FK in D implies that there is a limit cone λ : c → K in C,

and F reflects these limits.

Again, everything is dual for colimit.

The following exercise shows just how strong a condition “F creates limit” is.

Exercise 3.2

If F : C → D creates limits for some class of diagrams in C and D has limits for those

diagrams, then C admits those limits and F preserves them.

To me, it’s mind-blowing to just think about constructing limits in a category C by

studying a functor F : C→ D mapping out of C.

Exercise 3.3

Show that a fully faithful functor F : C→ D reflects every limit and colimit that exists.

Now we study the property of Hom-functors. Fix a category C, an object X, and a

diagram F : J→ C. We have a J-shaped diagram in Set:

C(X, F−) := J F−→ C C(X,−)−−−−→ Set.

We know that lim C(X, F−) ∼= Cone(1, C(X, F−)). An element µ ∈ Cone(1, C(X, F−)) is

just a family of functions µj : X → Fj, subjected to some compatibility conditions. Every

13



3.1 (Co)products and (co)equalizers 3 TOWARDS COMPLETENESS

non-identity morphism f : j → k ∈ J imposes that the following triangle commutes.

X

Fj Fk

µj

F f

µk

So µ is precisely a cone Cone(X, F ).

lim
J

C(X, F−) ∼= Cone(X, F ) ∼= C(X, lim F ).

We have proved the following theorem.

Theorem 3.4

For any diagram F : J→ C whose limit exists, there is a natural isomorphism

C(X, lim
J

F ) ∼= lim
J

C(X, F−).

In other words, covariant Hom-functors preserve every limit that exists.

Dualizing the argument, by considering the diagram

C(F−, X) := Jop F−→ Cop C(−,X)−−−−→ Set.

We get limJop C(F−, X) ∼= Cone(F, X) ∼= C(colim F, X).

Theorem 3.5

For any diagram F : J→ C whose colimit exists, there is a natural isomorphism

C(colimJ F, X) ∼= lim
Jop

C(F−, X).

In other words, contravariant Hom-functors send every colimit that exists to limit in Set.

We can finally prove the final completeness theorem.

Theorem 3.6

The colimit of any diagram F : J→ C may be expressed as a coequalizer of a pair of maps

between coproducts.

⨿
f∈mor J F (dom f) ⨿

j∈J Fj colimJ F
d

c

Dually, the limit of any diagram may be expressed as an equalizer of a pair of maps

between products.

14



3.1 (Co)products and (co)equalizers 3 TOWARDS COMPLETENESS

Proof. We prove the case for colimit. Suppose coequalizers and coproducts exist in C.

Consider a diagram F : J→ C. Construct the following diagram.

C
⨿

j∈J Fj
⨿

f∈mor J F (dom f)
c

d

where d = 〈ik : Fk → ⨿
j∈J Fj〉f :k→l, c = 〈Fk

F f−→ Fl
il−→ ⨿

j∈J Fj〉f :k→l. Our aim is to

show that C defines a colimit of F .

Apply Yoneda embedding to the diagram. For any object X ∈ C, we get the equalizer

diagram (by the properties of Hom-functors on (co)limit):

C(C, X) ∏
j∈Jop(Fj, X) ∏

f∈mor Jop(F (cod f), X)
c

d

where

(c〈φj : Fj → X〉j∈Jop)f :k→l∈J = φk : Fk → X,

(d〈φj : Fj → X〉j∈Jop)f :k→l∈J = Fk
F f−→ Fl

φl−→ X.

This equalizer defines the limit of the diagram:

lim
Jop

C(F−, X) ∼= C(C, X).

These isomorphisms are natural in X, so C(C,−) is the limit of the Jop-shaped diagram of

C(Fj,−). Since Yoneda embedding is fully faithful, it reflects limits, so C ∼= limJop Fj ∼=

colimJ Fj. □
Note that the proof makes use of (mor J)-sized product.

Corollary 3.7

For any category C,

• if C has equalizers and arbitrary products, then C is complete;

• if C has equalizers and finite products , then C is finitely complete.

• In particular, if C has equalizers, terminal, and binary products, then C is finitely

complete.

Colimit is similar.

Now let’s use these theorems to prove the cocompleteness of Set.

15



3.2 Colimit in Set REFERENCES

3.2 Colimit in Set

It’s easy to check that in Set, the coproduct of X, Y is the disjoint union X + Y . The

coproduct of a family of sets {Xj}j∈J is the disjoint union of everything ⨿
j∈J Xj.

The coequalizer of f, g : X ⇒ Y is Y/ ∼, where ∼ is the following equivalence relation:

y1 ∼ y2 ⇔ ∃x ∈ X.f(x) = y1 ∧ g(x) = y2.

The picture becomes intuitive when you let both f, g be injective. In this case, the

coequalizer is two copies of Y glued along f, g. Here’s a simple yet illustrative example.

Example 3.8 (Glueing the interval)

Working in the category Top of topological spaces and continuous functions. Let ∗ be the

singleton, [0, 1] be the unit interval in R. There are two functions 0, 1 : ∗⇒ [0, 1], picking

out 0 and 1 respectively. The coequalizer of them can be thought of as a circle S1.

Thus, colimit in Set (or other similar categories) can be thought of as putting a bunch

of sets together (taking the coproduct), and then glueing them along certain rules (taking

the coequalizer).

Corollary 3.9

Set is cocomplete.

The first axiom of topos states that a topos has to be finitely complete and finitely

cocomplete. It does not require arbitrary (co)completeness. For example, the category of

finite sets FinSet is a topos, but it’s neither complete nor cocomplete.

References

[Rie16] Emily Riehl. Category theory in context. Aurora: Modern Math Originals. Dover,

2016.

16


	Equivalence of Categories
	Limit and Colimit
	The definition
	Limit in Set
	Limit in Set again

	Towards Completeness
	(Co)products and (co)equalizers
	Colimit in Set


