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There have been many recent applications of nonstandard
analysis to Ramsey type problems in combinatorial number theory.
One of the characteristics of these new applications is the use of
multiple levels of infinities. We will first construct nonstandard
universes with multiple levels of infinities and then solve some
combinatorial problems in these nonstandard universes.

Our first goal in this subsection is to construct a sequence of
nonstandard universes and two types of correspondent elementary
embeddings satisfying some nice properties.
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Proposition (4.1)

There exists a sequence of nonstandard universes

V0 = V ≺ V1 ≺ V2 ≺ · · · Vn ≺ · · ·

and elementary embeddings

im,n : Vn → Vn+1

for all 0 ≤ m ≤ n in N such that
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Szemerédi’s Theorem

Proposition (4.1)

1 N0 := N and Nn+1 := in,n(Nn) ⊇ in,n[Nn] = Nn is an
end-extension of Nn, i.e., every number in Nn+1 \ Nn is
greater than any number in Nn, for n = 0, 1, . . .;

2 im,n[Nk \ Nk−1] ⊆ Nk+1 \ Nk for k = m + 1,m + 2, . . . , n;

3 im,n(x) = x for every x ∈ Nm and im,n �Vk = im,k for
m ≤ k ≤ n;

4 im,n �Vk : (Vk ;Rk−l+1,Rk−l)→ (Vk+1;Rk−l+2,Rk+1−l) is an
elementary embedding where (Vk ;Rk−l+1,Rk−l) and
(Vk+1;Rk−l+2,Rk+1−1) represent the models Vk and Vk+1

augmented by unary relations Rk+1−l ,Rk−l 6∈ Vk and
Rk−l+2,Rk+1−l 6∈ Vk , respectively, for m ≤ k ≤ n and
2 ≤ l ≤ k −m;
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Recall that the ultrafilter F is fixed after Definition 1.6. Let
V0 := V, F0 := F , V1 := ∗V be the ultrapower of V0 modulo F0,
and i0,0 := ∗ be the elementary embedding from V0 to V1

constructed in Definition 1.21. Note that F0 ∈ V0.

Let F1 := i0,0(F0) ∈ V1. By the transfer principle we have that
F1 satisfies Parts 1 – 4 of Definition 1.6 for any A,B ∈ V1 with
X = N1 := i0,0(N0) and co-finite is replaced by co-hyperfinite in
V1. We call F1 a V1–internal non-principal ultrafilter on N1.
Notice that i0,0(P(N0)) = V1 ∩P(N1) and

i0,0(P<N0(N0)) = V1 ∩P<N1(N1)

:= {A ⊆ N1 | A ∈ V1 ∧ ∃N ∈ N1(A ⊆ [N])}.
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If an ∈–formula ϕ is coded by a finite sequence of numbers in
N0, then i0,0(ϕ) = ϕ.

Without loss of generality we can identify i0,0[V0] with V0 so
that V0 is an elementary submodel of V1.

Let F ′0 := F0 and N′0 := N0. We use ′ to indicate the different
location where F0 and N0 are used. To form an ultrapower of V1

modulo F ′0, we obtain an elementary extension

V2 := (V
N′0
1 /F ′0, ∗∈) = VN

′
0

1 /F ′0 =
(
VN0

0 /F0

)N′0
/F ′0 (1)

and associated elementary embedding i0,1 : V1 → V2 as we did in
Definition 1.8 and Corollary 1.10.
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By applying Mostowski collapsing map again we can assume
that ∗∈ is the real membership relation ∈ and N1 ⊆ N2 := i0,1(N1).
Note that N1 and i0,1[N1] are not the same even after Mostowski

collapsing. Let’s call VN
′
0

1 /F ′0 the external ultrapower of V1 modulo
F ′0.

If N1 had been identified with i0,1[N1], then N2 won’t be an
end-extension of N1. Therefore, we should look at V2 from a
different angle.
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Definition (4.2)

The V1-internal ultrapower of V1 modulo F1 is the model with
the base set VN1

1 ∩ V1 := {[f ]F1 | f ∈ VN1
1 and f ∈ V1}, where

f ∼F1 g iff {n ∈ N1 | f (n) = g(n)} ∈ F1 and

[f ]F1 := {g ∈ VN1
1 ∩ V1 | f ∼F1 g},

and the membership relation ∈2 defined by

[f ]F1 ∈2 [g ]F1 iff {n ∈ N1 | f (n) ∈ g(n)} ∈ F1.

The map i1,1 : V1 → (VN1
1 ∩ V1)/F1 with i1,1(c) = [φc ]F1 is the

elementary embedding from V1 to (VN1
1 ∩ V1)/F1 associated with

the V1-internal ultrapower of V1 modulo the V1-internal ultrafilter
F1.
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By applying Mostowski collapsing map again we can assume
that ∈2 is ∈. An element a ∈ V2 is called V2-internal. An element
a ∈ V2 is called V1-internal if a ∈ i1,1[V1].

Note that the V1-internal ultrapower of V1 modulo F1 is really
the same as the external ultrapower of V1 modulo F ′0. Indeed, we
can make two-step ultrapower process in two different order.

In the external ultrapower of V1 modulo F ′0 we view the
ultrapower modulo F0 to get V1 first and the ultrapower of V1

modulo F ′0 the second. If we view the two-step ultrapower process
by taking the ultrapower modulo F ′0 first, N0 and F0 in V0 become
N1 and F1, respectively, and VN0

0 because the collection VN1
1 ∩ V1

of all V1-internal functions from N1 to V1. Hence, the process of
taking ultrapower of V0 modulo F0 is lifted into V1 to become the
V1-internal ultrapower of V1 modulo F1 to complete the second
step.
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Symbolically, we have

V2 =
(
VN0

0 /F0

)N′0
/F ′0 = (VN1

1 ∩ V1)/F1 (2)

= ((VN
′
0

0 /F ′0)N
N′0
0 /F0 ∩ (VN

′
0

0 /F ′0))/(FN′0
0 /F ′0).

Roughly speaking, (2) shows that one can change the order of
ultrapower of V0 construction steps first modulo F0 and then
modulo F ′0 to the order that first modulo F ′0 and then modulo
F1 = i0,0(F0).

By applying the transfer principle to the statement that every
bounded function from N0 to N0 is equivalent, modulo F0, to a
constant function, we have that every bounded V1-internal function
from N1 to N1 is equivalent, modulo F1, to a constant function.
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Szemerédi’s Theorem

Symbolically, we have

V2 =
(
VN0

0 /F0

)N′0
/F ′0 = (VN1

1 ∩ V1)/F1 (2)

= ((VN
′
0

0 /F ′0)N
N′0
0 /F0 ∩ (VN

′
0

0 /F ′0))/(FN′0
0 /F ′0).

Roughly speaking, (2) shows that one can change the order of
ultrapower of V0 construction steps first modulo F0 and then
modulo F ′0 to the order that first modulo F ′0 and then modulo
F1 = i0,0(F0).

By applying the transfer principle to the statement that every
bounded function from N0 to N0 is equivalent, modulo F0, to a
constant function, we have that every bounded V1-internal function
from N1 to N1 is equivalent, modulo F1, to a constant function.

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Multiple Levels of Infinities and Ramsey’s Theorem
Multidimensional van der Waerden’s Theorem
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So, if [f ]F1 ∈ N2 and f (n) ≤ m ∈ N1 for every n ∈ N1, then f is
equivalent, modulo F1, to [φc ]F1 for some c ∈ N1, which implies
[f ]F1 ∈ N1.

Thus, N2 := i1,1(N1) ⊇ i1,1[N1] = N1 is an end-extension of N1.
Note that i0,1 �N0 = i1,1 �N0 = i0,0. If V2 is considered as the

external ultrapower of V1, then N1 can be identified as NN′0
0 /F ′0.

It is easy to check that the elementary embeddings i0,0, i0,1, i1,1
satisfy Proposition 4.1 except Part 4, which is irrelevant.

In fact, V2 can be viewed as one-step ultrapower of V0 modulo
the tensor product of F0 and F ′0 where

F0 ⊗F ′0 := {A ⊆ N0 × N′0 |
{n′ ∈ N′0 | {n ∈ N0 | (n, n′) ∈ A} ∈ F0} ∈ F ′0}

is a non-principle ultrafilter on N0 × N′0.
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This indicates that V2 is countably saturated and elements in V2

can be represented by the equivalence class, modulo F0 ⊗F ′0, of
functions f : N0 × N′0 → V0.

Now consider a three-step ultrapower construction. Let
F ′′0 := F0, N′′0 := N0, and F2 := i1,1(F1) ∈ V2. Then

V3 = ((VN0
0 /F0)N

′
0/F ′0)N

′′
0 /F ′′0 = VN

′′
0

2 /F ′′0 (3)

= ((VN1
1 ∩ V1)/F1)N

′
1 ∩ V1)/F ′1 = (VN

′
1

2 ∩ V1)/F ′1 (4)

= ((VN1
1 ∩ V1)/F1)N

′
1 ∩ V1)/F ′1 = (VN2

2 ∩ V2)/F2. (5)
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The ultrapower in (3) results in the associated elementary
embedding i0,2 : V2 → V3. The ultrapower in (4) results in the
associated elementary embedding i1,2 : V2 → V3. And the
ultrapower in (5) results in the associated elementary embedding
i2,2 : V2 → V3.

After applying Mostowski collapsing map we can again assume
that N3 := i2,2(N2) ⊇ N2 = i2,2[N2] and N3 is an end-extension of
N2. We can also assume that V2 ⊆ V3 via i2,2. It is also easy to
check that i0,2 �V1 = i0,1 and i0,2 �V0 = i0,0. Similarly, we have
i1,2 �V1 = i1,1. Note that Part 4 in Proposition 4.1 follows from the
fact that (V3;R2,R1) is the ultrapower of (V2;R1,R0) modulo F ′0.
Hence, i0,2 is an elementary embedding from (V2;R1,R0) to
(V3;R2,R1).

The validity of the remaining properties in Proposition 4.1 for
im,2 with m = 0, 1, 2 is left for the reader to check.
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In general, we can use the same idea to iterate the ultrapower
construction. Given 0 ≤ m ≤ n, if we iterate the ultrapower
construction m times internally followed by iterating ultrapower
construction n −m times within Vm “externally” we obtain the
elementary embedding im,n : Vn → Vn+1. These im,n’s satisfy the
four parts in Proposition 4.1.

The second gaol of this subsection is to present a probably the
simplest proof of Ramsey’s Theorem as a testing case for working
within a nonstandard universe such as Vn. In the remaining part of
this subsection let [X ]k∗ := {S ⊆ X | |S | = k} for any set X and
k ∈ N0. A coloring of a set Y with r colors is a function
c : Y → [r ]. A set Z ⊆ Y is monochromatic (with respect to c) if
c �Z is a constant function.
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Theorem (4.3, Ramsey’s Theorem)

Let k , r ∈ N0. If c : [N0]k∗ → [r ] is a coloring of [N0]k∗ with at most
r colors, then there exists an infinite set H ⊆ N0 such that [H]k∗ is
monochromatic.

Proof: Work within Vk . Let x1 = [IdN0 ]F0 ∈ N1 \ N0 and
xj+1 := i0,k−1(xj) for j = 1, 2, . . . , k − 1. Then
x = {x1, x2, . . . , xr} ∈ [Nk ]k∗ . Note that xj is the equivalence class
represented by the identity map IdNj−1

: Nj−1 → Nj−1.
For convenience we denote still c for the extension of c from

[Nj ]
k
∗ to [r ] in Vj . Let c(x) = c0.

We construct a sequence A = {a0 < a1 < · · · } ⊆ N0 inductively
such that c � [A ∪ x ]k∗ ≡ c0.

Suppose that Am := {a0, . . . , am−1} has been found that
c � [Am ∪ x ]k∗ ≡ c0.
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Note that the sentence

∃y ∈ N1 (y > am−1 and

c � [Am ∪ {y} ∪ {i0,k−1(x1), . . . , i0,k−1(xk−1)}]k∗ ≡ c0)

is true in (Vk ;R1) where y is witnessed by x1. Hence,

∃y ∈ N0 (y > am−1 and (6)

c � [Am ∪ {y} ∪ {x1, . . . , xk−1}]k∗ ≡ c0)

is true in (Vk−1;R0) by Part 4 of Proposition 4.1.

Let y = am ∈ N0 be the witness of the truth of (6) in Vk−1 and
Am+1 = Am ∪ {am}. It suffices to show the following claim.

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Multiple Levels of Infinities and Ramsey’s Theorem
Multidimensional van der Waerden’s Theorem
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Claim: c � [Am+1 ∪ x ]k∗ ≡ c0.

Proof of Claim: Let b = {b1 < b2 < · · · < bk} ∈ [Am+1 ∪ x ]k∗ . We
show that c(b) = c0.

If bk < xk , then c(b) = c0 by (6). If b1 = x1, then
c(b) = c(x) = c0. So, we can assume that b1 ∈ N0 and bk = xk .

Let p = max{j ∈ 1 + [k] | xj 6∈ b}. Then p < k , bp = xj ′ for
some 1 ≤ j ′ < p or bp ∈ N0, and bj = xj for j = p + 1, . . . , k.

Let p′ := 0 if bp ∈ N0 or p′ = j ′ if bp = xj ′ for some
1 ≤ j ′ ≤ p − 1. Note that ip′,k−1(bj) = bj for j ≤ p. Note also
that ip′,k−1(xj−1) = i0,k−1(xj−1) = bj for j = p + 1, . . . , k because
ip′,k−1(xj−1) is an equivalence class represented by IdNj−1

.

So, i−1
p′,k−1(b) ∈ [Am+1 ∪ {x1, . . . , xk−1}]k∗ and hence,

c(i−1
p′,k−1(b)) = c0.

By the transfer principle for ip′,k−1 we have c(b) = c0. This
completes the proof of the claim as well as the theorem. 2
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The multidimensional van der Waerden’s Theorem is also called
Gallai’s Theorem. Fix a dimension s and let
[n]s = {(x1, x2, . . . , xs) | xj ∈ [n] for j = 1, 2, . . . , s}. A
homothetic copy of [n]s is a set of the form

HC~a,d ,n := ~a + d [n]s = {~a + d~x | ~x ∈ [n]s}

for some ~a ∈ Ns and d ∈ N, d > 0. The subscript n in HC~a,d ,n will
be omitted after it is fixed.

Theorem (4.4, T. Gallai)

Given any positive r , n ∈ N0, one can find an N ∈ N0 such that for
every coloring c : [N]s → [r ] there exists ~a, d such that
HC~a,d ,n ⊆ [N]s and c �HC~a,d ,n ≡ c0 for some c0 ∈ [r ].

The proof of Theorem 4.4 in this subsection is inspired by the
proof of the one-dimensional version in Khinchin’s book “Three
Pearls in Number Theory”.
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Proof: Fix n ∈ N0. Let � be the lexicographical order of HC~a,d .
For each 0 ≤ l < ns let HC~a,d(l) denote the l-th element of HC~a,d
under �. Note that HC~a,d(0) = ~a.

Let ϕm(r ,N) be the following first-order sentence:

∀c : [N]s → [r ] ∃HC~a,d ⊆ [N]s ∃c0 ∈ [r ](
c(HC~a,d(l)) = c0 for l = 0, 1, . . . ,m

)
. (7)

It suffices to prove the following claim.

Claim 1: Let 0 ≤ m < ns . For every r ∈ N0 there exists an
N ∈ N0 such that ϕm(r ,N) is true in V0.

Note that the claim when m = ns − 1 is Theorem 4.4. It suffices
to prove the claim by induction on m ≤ ns − 1. Call HC~a,d in (7)
monochromatic up to m with respect to c .
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Szemerédi’s Theorem

Proof of Claim 1: The case for m = 0 is trivial.
Assume that the claim is true for m − 1. We prove that the

claim is true for m < ns .
Given r ∈ N0, the task now is to find N ∈ N0 such that

ϕm(r ,N) is true in V0.
Work within Vr+1. Choose any Nr ∈ Nr+1 \ Nr . It suffices to

prove that ϕm(r , 2Nr ) is true in Vr by the transfer principle.
Fix c : [2Nr ]s → [r ]. It suffices to find a HC~a,d ⊆ [2Nr ]s which is

monochromatic up to m with respect to c .
Choose any Nj ∈ Nj+1 \ Nj for j = 0, 1, . . . , r − 1. Since Nj+1 is

an end-extension of Nj , the number r (2Nj−1)s is infinitely smaller
than Nj . Note also that Nj + Nj−1 + · · ·+ N0 < Nj+1.

For any ~x , ~y ∈ [Nr ]s we say that ~x and ~y have the same
2Nj -type if for any ~z ∈ [2Nj ]

s we have c(~x + ~z) = c(~y + ~z), i.e.,
the color patterns of ~x + [2Nj ]

s and ~y + [2Nj ]
s with respect to c

are the same.
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Szemerédi’s Theorem

Proof of Claim 1: The case for m = 0 is trivial.
Assume that the claim is true for m − 1. We prove that the

claim is true for m < ns .
Given r ∈ N0, the task now is to find N ∈ N0 such that

ϕm(r ,N) is true in V0.
Work within Vr+1. Choose any Nr ∈ Nr+1 \ Nr . It suffices to

prove that ϕm(r , 2Nr ) is true in Vr by the transfer principle.
Fix c : [2Nr ]s → [r ]. It suffices to find a HC~a,d ⊆ [2Nr ]s which is

monochromatic up to m with respect to c .
Choose any Nj ∈ Nj+1 \ Nj for j = 0, 1, . . . , r − 1. Since Nj+1 is

an end-extension of Nj , the number r (2Nj−1)s is infinitely smaller
than Nj . Note also that Nj + Nj−1 + · · ·+ N0 < Nj+1.

For any ~x , ~y ∈ [Nr ]s we say that ~x and ~y have the same
2Nj -type if for any ~z ∈ [2Nj ]

s we have c(~x + ~z) = c(~y + ~z), i.e.,
the color patterns of ~x + [2Nj ]

s and ~y + [2Nj ]
s with respect to c

are the same.

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Multiple Levels of Infinities and Ramsey’s Theorem
Multidimensional van der Waerden’s Theorem
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prove that ϕm(r , 2Nr ) is true in Vr by the transfer principle.
Fix c : [2Nr ]s → [r ]. It suffices to find a HC~a,d ⊆ [2Nr ]s which is

monochromatic up to m with respect to c .
Choose any Nj ∈ Nj+1 \ Nj for j = 0, 1, . . . , r − 1. Since Nj+1 is

an end-extension of Nj , the number r (2Nj−1)s is infinitely smaller
than Nj . Note also that Nj + Nj−1 + · · ·+ N0 < Nj+1.

For any ~x , ~y ∈ [Nr ]s we say that ~x and ~y have the same
2Nj -type if for any ~z ∈ [2Nj ]

s we have c(~x + ~z) = c(~y + ~z), i.e.,
the color patterns of ~x + [2Nj ]

s and ~y + [2Nj ]
s with respect to c

are the same.
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Since the first-order sentence

(∀r ′ ∈ N0) (∀N ∈ N1 \ N0)ϕm−1(r ′,N)

is true in (V1;N0), the sentence

(∀r ′ ∈ Nj) (∀N ∈ Nj+1 \ Nj)ϕm−1(r ′,N)

is true in (Vj+1;Nj) for j = 1, 2, . . . , r by Part 4 of Proposition 4.1.
In particular, ϕm−1(r (2Nj−1)s ,Nj) is true in Vj+1 for

j = 1, 2, . . . , r .
Since the number of different 2Nj−1-types is at most r (2Nj−1)s ,

for any ~b + [Nj ]
s we can find HC~aj ,dj ⊆ ~b + [Nj ]

s such that HC~aj ,dj
is monochromatic up to m − 1 with respect to 2Nj−1-types, i.e.,
HC~aj ,dj (l) for l = 0, 1, . . . ,m − 1 have the same 2Nj−1-type.
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So, we can now find a sequence of homothetic copies of [n]s

HC~ar ,dr ,HC~ar−1,dr−1
, . . . ,HC~a0,d0

such that

HC~ar ,dr ⊆ [Nr ]s is monochromatic up to m− 1 with respect to
2Nr−1-types;

HC~ar−1,dr−1
⊆ [Nr−1]s such that HC~ar ,dr (0) + HC~ar−1,dr−1

is
monochromatic up to m − 1 with respect to 2Nr−2-types.
Note that HC~ar ,dr (l) + HC~ar−1,dr−1

(l ′) for 0 ≤ l , l ′ ≤ m − 1
have the same 2Nr−2-type;

HC~ar−2,dr−2
⊆ [Nr−2]s such that

HC~ar ,dr (0) + HC~ar−1,dr−1
(0) + HC~ar−2,dr−2

is monochromatic up
to m − 1 with respect to 2Nr−3-types. Note that
HC~ar ,dr (l) + HC~ar−1,dr−1

(l ′) + HC~ar−2,dr−2
(l ′′) for

0 ≤ l , l ′, l ′′ ≤ m − 1 have the same 2Nr−3-type;
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Szemerédi’s Theorem

. . . . . .;

HC~a1,d1
⊆ [N1]s such that

r∑
j=2

HC~aj ,dj (0) + HC~a1,d1
is

monochromatic up to m − 1 with respect to 2N0-types. Note

that
r∑

j=2

HC~aj ,dj (lj) + HC~a1,d1
(l1) for 0 ≤ l1, l2, . . . , lr ≤ m − 1

have the same 2N0-type;

HC~a0,d0
⊆ [N0]s such that

r∑
j=1

HC~aj ,dj (0) + HC~a0,d0
is

monochromatic up to m − 1 with respect to coloring c . Note

that
r∑

j=1

HC~aj ,dj (lj) + HC~a0,d0
(l0) for 0 ≤ l0, l1, . . . , lr ≤ m − 1

have the same c-value.
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Let HC~a,d ⊕ HC~a′,d ′ := HC~a+~a′,d+d ′ . Clearly, for any l < ns we
have

(HC~a,d ⊕ HC~a′,d ′)(l) = HC~a,d(l) + HC~a′,d ′(l).

For each j = 0, 1, . . . , r let

~yj := HC~ar ,dr (0)+· · ·+HC~aj ,dj (0)+HC~aj−1,dj−1
(m)+· · ·+HC~a0,d0

(m).

Since there are r + 1 many yj ’s and r colors, there must exist
0 ≤ j1 < j2 ≤ r such that c(~yj1) = c(~yj2). Let

D := HC~ar ,dr (0) + · · ·+ HC~aj2 ,dj2 (0) (8)

+HC~aj2−1,dj2−1
⊕ · · · ⊕ HC~aj1 ,dj1

+HC~aj1−1,dj1−1
(m) + · · ·+ HC~a0,d0

(m).

Then D is a homothetic copy of [n]s .
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Claim 2: The homothetic copy D of [n]s in (8) is monochromatic
up to m − 1 with respect to c .

Claim 1 follows from Claim 2 because D(0) = ~yj1 and
D(m) = ~yj2 have the same c–value and hence, the homothetic
copy D of [n]s is monochromatic up to m with respect to c.

Proof of Claim 2: By the construction of HC~aj ,dj we have that

r∑
j=j2

HC~aj ,dj (0) +

j2−1∑
j=j1

HC~aj ,dj (l)

for 0 ≤ l ≤ m − 1 have the same 2Nj1−1-type. Note that

~b :=

j1−1∑
j=0

HC~aj ,dj (m) ∈ [2Nj1−1]s .
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Hence,

D(l) := HC~ar ,dr (0) + · · ·+ HC~aj2 ,dj2 (0)

+HC~aj2−1,dj2−1
(l) + · · ·+ HC~aj1 ,dj1 (l) + ~b

for l = 0, 1, . . . ,m − 1 have the same c–value. This completes the
proof. 2
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Szemerédi’s Theorem is the center of attention in additive
combinatorics for many years which has attracted many prominent
mathematicians.

Theorem (4.5, E. Szemerédi, 1975)

If D ⊆ N has a positive upper density, then D contains a k–term
arithmetic progression for every k ∈ N.

Szemerédi’s Theorem confirms a conjecture of P. Erdős and P.
Turán made in 1936, which implies van der Waerden’s Theorem.

Nonstandard versions of Furstenberg’s ergodic proof and
Gowers’s harmonic proof of Szemerédi’s Theorem have been tried
by T. Tao. In August 2017, Tao gave a series of lectures to explain
Szemerédi’s original combinatorial proof and hope to simplify it so
that the proof can be better understood. He believed that
Szemerédi’s combinatorial method should have a greater impact on
combinatorics.
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If D ⊆ N has a positive upper density, then D contains a k–term
arithmetic progression for every k ∈ N.
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Szemerédi’s Theorem

During these lectures Tao challenged the audience to produce a
nonstandard proof of Szemerédi’s Theorem which is noticeably
simpler and more transparent than Szemerédi’s original proof.
However, in his later blog post, Tao commented that “in fact there
are now signs that perhaps nonstandard analysis is not the optimal
framework in which to place this argument.” We disagree. To
meet Tao’s challenge we showed that with the help of a
nonstandard universe with three levels of infinities, Szemerédi’s
original argument can be made simpler and more transparent.

The main simplification in the following proof comparing to the
standard proof of Szemerédi–Tao is that a Tower of Hanoi type
induction is replaced by a straightforward induction, which makes
Szemerédi’s idea more transparent.

To achieve this, V3 (see Proposition 4.1) is used which supply
three levels of infinities, plus various elementary embeddings from
Vj to Vj ′ for some 0 ≤ j < j ′ ≤ 3.
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In this subsection we will do the following:

1 Assume a weak regularity lemma and derive a nonstandard
form of mixing lemma;

2 Prove Theorem 4.5 for k = 3;

3 Prove Theorem 4.5 for k = 4,

4 Prove Theorem 4.5 for any k.

The reason to present the proof for k = 3 and k = 4 is to show
how the level of difficulties arises.

Let’s fix some notation. The Greek letters α, β, γ, ε, etc. will
represent standard real numbers unless otherwise specified. All
unspecified sets mentioned are either standard or Vj -internal for
j = 1, 2, or 3. If m, n ∈ N3, we write m� n if m ∈ Nj and
n ∈ Nj ′ \ Nj ′−1 for some 0 ≤ j < j ′ ≤ 3. For example, 1� n
means that n is hyperfinite.
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Szemerédi’s Theorem

In this subsection we will do the following:

1 Assume a weak regularity lemma and derive a nonstandard
form of mixing lemma;

2 Prove Theorem 4.5 for k = 3;

3 Prove Theorem 4.5 for k = 4,

4 Prove Theorem 4.5 for any k.

The reason to present the proof for k = 3 and k = 4 is to show
how the level of difficulties arises.

Let’s fix some notation. The Greek letters α, β, γ, ε, etc. will
represent standard real numbers unless otherwise specified. All
unspecified sets mentioned are either standard or Vj -internal for
j = 1, 2, or 3. If m, n ∈ N3, we write m� n if m ∈ Nj and
n ∈ Nj ′ \ Nj ′−1 for some 0 ≤ j < j ′ ≤ 3. For example, 1� n
means that n is hyperfinite.

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Multiple Levels of Infinities and Ramsey’s Theorem
Multidimensional van der Waerden’s Theorem
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The words “arithmetic progression” will be abbreviated to “a.p.”
The length of an a.p. p, denoted by |p|, is the number of the terms
in p. A finite a.p., often with length k , will be denoted by p, q, r ,
etc. and an a.p. of hyperfinite length will be denoted by P,Q,R,
etc. If P (or p) is an a.p., the l-th term of P is denoted by P(l) for
any 1 ≤ l ≤ |P|. By k-term a.p. or just k-a.p. we mean an a.p.
with length k . If both p and q are k-a.p., let r := p ⊕ q be the
k-a.p. such that r(l) = p(l) + q(l) for 1 ≤ l ≤ k.

The following standard lemma is a consequence of Szemerédi’s
Regularity Lemma. The proof of the lemma can be found in the
appendix section of Tao’s paper.
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Lemma (4.6, Weak Regularity Lemma)

Let U,W be finite sets, let ε > 0, and for each w ∈W , let Ew

be a subset of U. Then there exists a partition
U = U1 ∪ U2 ∪ · · · ∪ Unε for some nε ∈ N0, and real numbers
0 ≤ cu,w ≤ 1 in R0 for u ∈ [nε] and w ∈W such that for any set
F ⊆ U, one has∣∣∣∣∣|F ∩ Ew | −

nε∑
u=1

cu,w |F ∩ Uu|

∣∣∣∣∣ ≤ ε|U|
for all but ε|W | values of w ∈W .

For the mixing lemma we introduce some notion for slightly
broader sense of Loeb measure, as well as strong upper Banach
density in Vj .
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Definition (4.7)

Let 0 ≤ j < j ′ ≤ 3. For any two numbers r , r ′ ∈ Rj ′ we write
r ≈j r ′ if |r − r ′| < 1/n for every n ∈ Nj . If r ∈ ns j(Rj ′) where
nsj(Rj ′) is the set of all near standard elements when considering
Vj as the “standard” universe, denote stj(r) for the unique number
α ∈ Rj such that r ≈j α. For any bounded set A ⊆ Nj ′ and
n ∈ Nj ′ denote

δn(A) :=
|A|
n
∈ Rj ′ and µjn(A) := stj(δn(A)).

Notice that δn is a Vj ′-internal function while µjn are often
external functions but definable in (Vj ′ ;Rj), i.e.,

µjn(A) = α iff ∀n ∈ Nj ′ ∩ Rj

(
|δH(A)− α| < 1

n

)
.
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If A ⊆ Ω and |Ω| = H, then µH(A) coincides with the Loeb
measure of A in Ω.

Definition (4.8)

Let 0 ≤ j < j ′ ≤ 3 and A ⊆ Nj ′ with |A| ∈ Nj ′ \ Nj the strong
upper Banach density SD j(A) of A in Vj is defined by

SD j(A) := supj

{
µj|P|(A ∩ P) | |P| ∈ Nj ′ \ Nj

}
. (9)

The letter P above always represents an a.p. and supj represents
the least upper bound in Rj ∪ {±∞} of a subset of Rj in Vj . If
S ⊆ Nj ′ has SD j(S) = η ∈ Rj and A ⊆ Nj ′ , the strong upper

Banach density SD j
S of A relative to S is defined by

SD j
S(A) := supj

{
µj|P|(A ∩ P) | (10)

|P| ∈ Nj ′ \ Nj , and µj|P|(S ∩ P) = η
}
.
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Proposition (4.9)

Let 0 ≤ j < j ′ ≤ 3. Given A ⊆ S ⊆ Nj ′ with |A| ∈ Nj ′ \ Nj and
α, η ∈ Rj with 0 ≤ α ≤ η ≤ 1. Then the following are true:

1 SD j(S) ≥ η iff there exists a P with |P| ∈ Nj ′ \ Nj and

µj|P|(S ∩ P) ≥ η;

2 If SD j(S) = η, then there exists a P with |P| ∈ Nj ′ \ Nj such

that µj|P|(S ∩ P) = SD j(S ∩ P) = η;

3 Suppose SD j(S) = η. Then SD j
S(A) ≥ α iff there exists a P

with |P| ∈ Nj ′ \ Nj , µ
j
|P|(S ∩ P) = η, and µj|P|(A ∩ P) ≥ α;

4 Suppose SD j(S) = η. If SD j
S(A) = α, then there exists a P

with |P| ∈ Nj ′ \ Nj such that µj|P|(S ∩ P) = η and

µj|P|(A ∩ P) = SD j
S∩P(A ∩ P) = α.
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The uniformity of A ∈ [N] when µN(A) = SD(A) will be useful.

Lemma (4.10)

Let 0 ≤ j < j ′ ≤ 3. Given N,H ∈ Nj ′ \ Nj , H ≤ N/2, and

C ⊆ [N] with µjN(C ) = SD j(C ) = α ∈ Rj , for each n ∈ Nj ′ let

Dn,H,C :=

{
x ∈ [N − H] | |δH(C ∩ (x + [H]))− α| < 1

n

}
. (11)

Then there exists a J ∈ Nj ′ \ Nj such that µjN−H(DJ,H,C ) = 1.

Notice that Dn,H,C ⊆ Dn′,H,C if n ≥ n′.
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Suppose 0 ≤ j < j ′ ≤ 3, N ≥ H � 1 in Nj ′ , U ⊆ [N],
A ⊆ S ⊆ [N], 0 ≤ α ≤ η ≤ 1, and x ∈ [N]. For each n ∈ Nj let
ξ(x , α, η,A, S ,U,H, n) be the following internal statement:

|δH(x + [H]) ∩ U)− 1| < 1/n,

|δH((x + [H]) ∩ S)− η| < 1/n, and

|δH((x + [H]) ∩ A)− α| < 1/n.

(12)

The statement ξ(x , α, η,A,S ,U,H, n) infers that the densities
of A,S ,U in the interval x + [H] go to α, η, 1, respectively, as
n→∞ in Nj . The statement ξ will be referred a few times later.
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The following lemma is the application of Lemma 4.10 to the
sets U, S ,A simultaneously.

Lemma (4.11)

Let 0 ≤ j < j ′ ≤ 3. Let N ∈ Nj ′ \Nj , U ⊆ [N], and A ⊆ S ⊆ [N]

be such that µjN(U) = 1, µjN(S) = SD(S) = η, and

µjN(A) = SD j
S(A) = α for some η, α ∈ Rj . For any n, h ∈ Nj ′ let

Gn,h := {x ∈ [N − h] | Vj ′ |= ξ(x , α, η,A,S ,U, h, n)}. (13)

(a) For each H ∈ Nj ′ \ Nj with H ≤ N/2 there exists a

J ∈ Nj ′ \ Nj such that µjN−H(GJ,H) = 1;

(b) For each n ∈ Nj , there is an hn ∈ Nj with hn > n such that
δN(Gn,hn) > 1− 1/n.
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We often write st for st0, µn for µ0
n, and SD for SD0. One can

derive a so-called mixing lemma from Weak Regularity Lemma.

Lemma (4.12, Mixing Lemma)

Let N ∈ Nj ′ \ N0, A ⊆ S ⊆ [N], 1� H ≤ N/2, and
R ⊆ [N − H] be an a.p. with |R| � 1 such that

µN(S) = SD(S) = η > 0, µN(A) = SDS(A) = α > 0, (14)

µH((x + [H]) ∩ S) = η, and µH((x + [H]) ∩ A) = α (15)

for every x ∈ R. Then the following are true.

(i) For any set E ⊆ [H] with µH(E ) > 0, there is an x ∈ R such
that

µH(A ∩ (x + E )) ≥ αµH(E );
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Lemma (4.12, Mixing Lemma)

(ii) Let m� 1 be such that the van der Waerden number
Γ (3m,m) ≤ |R|. For any internal partition {Un | n ∈ [m]} of
[H] there exists an m–a.p. P ⊆ R, a set I ⊆ [m] with
µH(UI ) = 1 where UI =

⋃
{Un | n ∈ I}, and an infinitesimal

ε > 0 such that

|δH(A ∩ (x + Un))− αδH(Un)| ≤ εδH(Un)

for all n ∈ I and all x ∈ P;

(iii) Given an internal collection of sets {Ew ⊆ [H] | w ∈W } with
|W | � 1 and µH(Ew ) > 0 for every w ∈W , there exists an
x ∈ R and T ⊆W such that µ|W |(T ) = 1 and

µH(A ∩ (x + Ew )) = αµH(Ew )

for every w ∈ T .
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Szemeredi’s Theorem for k = 3

Theorem (4.13, K. F. Roth, 1953)

If U ⊆ N and SD(U) > 0, then U contains nontrivial 3-term
arithmetic progressions.

Proof: We work within V1. The elementary embedding i0,0 is
represented by ∗ for notational convenience.

Let α = SD(U). Then α > 0. Let P ⊆ N1 be an a.p. with
|P| � 1 and µ|P|(

∗U ∩ P) = α. Without loss of generality we can
assume that P = [N] ∪ {0}. Let A := ∗U ∩ [N]. It suffices to find
a 3-a.p. in A.

Let H = bN/6c and S = [N − H]. Notice that
{0} ∪ (H + [H]) ∪ (2H + 2[H]) ⊆ S .
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For each t ∈ [H] let

Qt = {q ⊆ [H] | q is a 3–a.p., q(1) ∈ A ∩ [H], and q(3) = t}

and Et = {q(2) | q ∈ Qt}.

Notice that µH(Et) = α/2 > 0 because p(1)− t must be even
and the density of A in an a.p. of difference 2 and length
≥ bN/16c is also α. By (iii) of Mixing Lemma, there is an l ∈ [H]
and T ⊆ [H] with µH(T ) = 1 such that

µH(A ∩ (H + l + Et)) = α2/2

for all t ∈ T . Since 2H + 2l ∈ S and µH(T ) = 1, we have

µH(A ∩ (2H + 2l + T )) = α > 0.
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≥ bN/16c is also α. By (iii) of Mixing Lemma, there is an l ∈ [H]
and T ⊆ [H] with µH(T ) = 1 such that

µH(A ∩ (H + l + Et)) = α2/2

for all t ∈ T . Since 2H + 2l ∈ S and µH(T ) = 1, we have

µH(A ∩ (2H + 2l + T )) = α > 0.
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Let t0 ∈ T be such that 2H + 2l + t0 ∈ A ∩ (2H + 2l + T ).

Let p0 = {0,H + l , 2H + 2l} and q0 ∈ Qt0 with

H + l + q0(2) ∈ A ∩ (H + l + Et0).

Then p0 ⊕ q0 is an 3–a.p. Clearly,

p0(3) + q0(3) = 2H + 2l + t0 ∈ (2H + 2l + T ) ∩ A ⊆ A,

p0(2) + q0(2) ∈ (H + l + Et0) ∩ A ⊆ A, and

p0(1) + q0(1) = q(1) ∈ A by the definition of Et0 .

Note that there are at least α2H/2 many 3-a.p. q’s in Qt0 with
p0 ⊕ q ⊆ A. 2
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Szemerédi’s Theorem

Let t0 ∈ T be such that 2H + 2l + t0 ∈ A ∩ (2H + 2l + T ).

Let p0 = {0,H + l , 2H + 2l} and q0 ∈ Qt0 with

H + l + q0(2) ∈ A ∩ (H + l + Et0).

Then p0 ⊕ q0 is an 3–a.p. Clearly,

p0(3) + q0(3) = 2H + 2l + t0 ∈ (2H + 2l + T ) ∩ A ⊆ A,

p0(2) + q0(2) ∈ (H + l + Et0) ∩ A ⊆ A, and

p0(1) + q0(1) = q(1) ∈ A by the definition of Et0 .

Note that there are at least α2H/2 many 3-a.p. q’s in Qt0 with
p0 ⊕ q ⊆ A. 2

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Multiple Levels of Infinities and Ramsey’s Theorem
Multidimensional van der Waerden’s Theorem
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Szemeredi’s Theorem for k = 4

We again work in V1. If one wants to count the number of
4-a.p.’s such that all but the third (or second) term of the a.p. are
in a set A, then the same idea of the proof of Roth’s Theorem can
be used to prove the following lemma.

Lemma (4.14)

Let N � 1, A ⊆ [N] be such that µN(A) = SD(A) = α > 0, and
H = bN/8c. There exists an interval x0 + [H] ⊆ [N], a set
T ⊆ x0 + [H] with µH(T ) = 1, and

Pt := {p ⊆ [N] | p is a 4–a.p., p(1), p(2) ∈ A, and p(4) = t}

such that µH(Pt) = α2/3 for each t ∈ T .
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The reason why the number of 4-a.p.’s in A is ≥ α2H/3 instead
of α2H/2 as in Theorem 3.10 is that for a 4-a.p. p with p(4) = t
fixed, p(4)− p(1) should be a multiple of 3 in order to guarantee
that p(2) and p(3) are integers.

Lemma (4.15)

Let N � 1, B, Sγ ⊆ [N] be such that B ⊆ Sγ ,

µN(Sγ) = SD(Sγ) = γ > 11/12,

and µN(B) = SDSγ (B) = β > 0.

There exists an interval x0 + [bN/24c] ⊆ [N] and a set
T ⊆ x0 + [bN/24c] with µN/24(T ) ≥ 1− 12(1− γ), and a
collection of 4-a.p.’s {pt | t ∈ T} such that pt(1), pt(2) ∈ B,
pt(3), pt(4) ∈ Sγ , and pt(3) = t for each t ∈ T .
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Proof Let H := [N/8]. Notice that µH(Sγ ∩ (x + [H])) = γ and
µH(B ∩ (x + [H])) = β for every x ∈ [N − H]. Let Q be the
collection of all 4–a.p.’s in [H]. For each w ∈ [bH/3c, b2H/3c] let

Q3
w := {q ∈ Q | q(1) ∈ B and q(3) = w}

and E 3
w := {q(2) | q ∈ Q3

w}.

We have that µH(E 3
w ) = β/2. For each w ′ ∈ [H] let

Ri
w ′ := {q ∈ Q | q(1) ∈ B and q(i) = w ′}

and F i
w ′ := {q(2) | q ∈ Ri

w ′}

for i = 3, 4. Clearly, µH(F i
w ′) ≤ β.
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Szemerédi’s Theorem

Proof Let H := [N/8]. Notice that µH(Sγ ∩ (x + [H])) = γ and
µH(B ∩ (x + [H])) = β for every x ∈ [N − H]. Let Q be the
collection of all 4–a.p.’s in [H]. For each w ∈ [bH/3c, b2H/3c] let

Q3
w := {q ∈ Q | q(1) ∈ B and q(3) = w}

and E 3
w := {q(2) | q ∈ Q3

w}.

We have that µH(E 3
w ) = β/2. For each w ′ ∈ [H] let

Ri
w ′ := {q ∈ Q | q(1) ∈ B and q(i) = w ′}

and F i
w ′ := {q(2) | q ∈ Ri

w ′}

for i = 3, 4. Clearly, µH(F i
w ′) ≤ β.

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Multiple Levels of Infinities and Ramsey’s Theorem
Multidimensional van der Waerden’s Theorem

Szemerédi’s Theorem

Proof Let H := [N/8]. Notice that µH(Sγ ∩ (x + [H])) = γ and
µH(B ∩ (x + [H])) = β for every x ∈ [N − H]. Let Q be the
collection of all 4–a.p.’s in [H]. For each w ∈ [bH/3c, b2H/3c] let

Q3
w := {q ∈ Q | q(1) ∈ B and q(3) = w}

and E 3
w := {q(2) | q ∈ Q3

w}.

We have that µH(E 3
w ) = β/2. For each w ′ ∈ [H] let

Ri
w ′ := {q ∈ Q | q(1) ∈ B and q(i) = w ′}

and F i
w ′ := {q(2) | q ∈ Ri

w ′}

for i = 3, 4. Clearly, µH(F i
w ′) ≤ β.

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Multiple Levels of Infinities and Ramsey’s Theorem
Multidimensional van der Waerden’s Theorem
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By (iii) of Mixing Lemma, there is an l ∈ [H],
W3 ⊆ [bH/3c, b2H/3c] with µH(W3) = 1/3, and W i ⊆ [H] with
µH(W i ) = 1 such that

µH(B ∩ (H + l + E 3
w )) =

β2

2
and µH(B ∩ (H + l + F i

w ′)) ≤ β2

for all w ∈W3 and w ′ ∈W i for i = 3 or 4. Clearly,
µH(((i − 1)H + (i − 1)l + W i ) ∩ Sγ) = γ for i = 3 or 4.

Let T 3 := 2H + 2l + W3. For each t = 2H + 2l + w ∈ T 3 let

Pt := {p is a 4–a.p. in [N] |
p(1) ∈ B ∩ [H], p(2) ∈ B ∩ (H + l + E 3

w ), p(3) = t}

and P :=
⋃
i∈T 3

Pt .
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Notice that µH(Pt) = µH(B ∩ (2H + 2l + E 3
w )) = β2/2 for each

t = 2H + 2l + w ∈ T 3.
A 4–a.p. p ∈ P is called good if

p(i) ∈ Sγ ∩ ((i − 1)H + (i − 1)l + [H]) for i = 3, 4. Let Pg be the
collection of all good 4–a.p.’s in P. A 4–a.p. p ∈ P is bad if it is
not good. Let Pb := P r Pg . Let T 3

g := {p(3) | p ∈ Pg}. Then

T 3
g ⊆ Sγ . We show that µH(T 3

g ) ≥ 1

3
− 4(1− γ).

Note that Pb ⊆
⋃

i=3,4{p ∈ P | p(1) ∈ B ∩ [H], p(2) ∈
B ∩ (h + l + [H]), p(i) 6∈ Sγ}. Hence

|Pb| ≤
4∑

i=3

∑
w ′∈[H]r(Sγ−(i−1)H−(i−1)l)

|F i
w ′ |

≤
4∑

i=3

 ∑
w ′∈[H]rW i

|F i
w ′ |+

∑
w ′∈W ir(Sγ−(i−1)H−(i−1)l)

|F i
w ′ |

 .
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 1

H2

∑
t∈T 3

|Pt |

−
st

 1

H2

4∑
i=3

 ∑
w ′∈[H]rW i

|F i
w ′ |+

∑
w ′∈W ir(Sγ−(i−1)H−(i−1)l)

|F i
w ′ |


Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Multiple Levels of Infinities and Ramsey’s Theorem
Multidimensional van der Waerden’s Theorem
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≥ µH(T 3) · β
2

2
− 2(1− γ) · β2 =

(
1

3
− 4(1− γ)

)
· β

2

2
,

which implies µH(T 3
g ) ≥ 1

3
− 4(1− γ). Hence

µN/24(T 3
g ) ≥ 1− 12(1− γ) because H = bN/8c. Now the lemma

is proven if we set x0 := 2H + 2l + bH/3c, T := T 3
g , and choose

one pt ∈ Pg such that Pt(3) = t for each t ∈ T . 2

Remark (4.16)

The argument for showing µN/24(T 3
g ) > 1− 12(1− γ) is already

in the papers of Szemerédi and Tao.
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Theorem (4.17, E. Szemerédi, 1969)

If U ⊆ N0 and SD(U) > 0, then U contains nontrivial 4-term
arithmetic progressions.

Proof Let N � 1 and A ⊆ [N] be such that
µN(A) = SD(A) = α > 0. Same as in the beginning of the proof
of Roth’s Theorem, it suffices to find a 4–a.p. in A. For each
n, j ∈ N0 let

Sj ,n := {x ∈ [N − n] | µn((x + [n]) ∩ A) ≥ α− 1/j}.

Then lim
n→∞

µN−n(Sj ,n) = 1 by Lemma 4.11. So, for all sufficiently

large n ∈ N0 we have that γj ,n := SD(Sj ,n) > 11/12. Let Rj ,n be
an a.p. in [N] with difference d and |Rj ,n| � 1 such that
µ|Rj,n|(Rj ,n ∩ Sj ,n) = γj ,n. For each τ ⊆ [n] let

Bτ, n := {x ∈ [Rj ,n] | A ∩ (x + [n]) = x + τ}.
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Then there is a τj such that µ|Rj,n|(Bj ,n) = βj , n > 0 because n is
finite where Bj ,n := Bτj ,n.

Let Pj ,n ⊆ Rj ,n be an a.p. of difference d ′ = dm for some
positive integer m with |Pj ,n| = N ′ � 1, µN′(Pj ,n ∩ Sj ,n) = γj ,n,
and µN′(Pj ,n ∩ Bj ,n) = βj ,n.

Let ϕ : Pj ,n → [N ′] be the affine map
ϕ(x) = (x −min Pj ,n)/d ′ + 1. Applying Lemma 4.15 to [N ′] for
S ′ = ϕ((Sj ,n) ∩ Pj ,n), and B ′ = ϕ(Bj ,n ∩ Pj ,n), and then pulling
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Szemerédi’s Theorem

By countable saturation we can find fixed hyperfinite integer H
and then J such that γ := γJ,H ≈ 1, P := PJ,H with |P| � 1,
S := Sγ , B := BJ,H ⊆ S , T := TJ,H , and PJ,H = {pt | t ∈ T}
such that pt(1),Pt(2) ∈ B, pt(3), pt(4) ∈ S , and pt(3) = t for
each t ∈ T .

Notice that µN−H(S) = 1, T ⊆ x0 + d ′ [b|P|/24c],
µ|P|/24(T ) = 1, γ ≈ 1, x , y ∈ B implies
((x + [H]) ∩ A)− x = ((y + [H]) ∩ A)− y , and x ∈ S implies
µH((x + [H]) ∩ A) = α. It may be the case that µ|P|(B) = 0. But
the existence of the collection PJ,H = {px | x ∈ T} is guaranteed
by countable saturation.

Since µN/24(T ) = 1, we can find an a.p. of P ′ ⊆ T of difference
d ′ with |P ′| � 1. Let P ′ := {pt ∈ PJ,H | t ∈ P ′}. Notice that for
each pt ∈ P ′ we have that pt(1), pt(2) ∈ B, pt(3) = t ∈ S , and
pt(4) ∈ S .
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Let τ0 := ((x + [H])∩A)− x for some x ∈ B. Then µH(τ0) = α
because B ⊆ S . By Lemma 4.14 with N being replaced by H, A
being replaced by τ , we can find x0 + [bH/8c] ⊆ [H],
TQ ⊆ x0 + [bH/8c] with µH(TQ) = 1/8,

Qw := {q ⊆ [H] | q(1), q(2) ∈ τ0, and p(4) = w},

and Ew = {q(3) | q ∈ Qw} such that µH(Ew ) = α2/24 for each
w ∈ TQ .

By (iii) of Mixing Lemma there is an x ′ ∈ P ′ and T ′Q ⊆ TQ with
µH(T ′Q) = 1/8 such that µH((x ′ + Ew ) ∩ A) = αµH(Ew ) = α3/24
for each w ∈ T ′Q .
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Fix px ′ ∈ P ′.

Since px ′(4) ∈ S , we have that µH((px ′(4) + T ′Q) ∩ A) = α/8.

Hence there is a w ∈ T ′Q such that px ′(4) + w ∈ A.

Let qw ∈ Qw . Then px ′(4) + qw (4) = px ′(4) + w ∈ A.

Notice that px ′(3) + qw (3) ∈ (x + Ew ) ∩ A ⊆ A. Notice also
that px ′(1), px ′(2) ∈ B imply A ∩ (px ′(i) + [bH/8c]) = px ′(i) + τ0

for i = 1, 2.

Hence px ′(i) + qw (i) ∈ px ′(i) + τ0 ⊆ A for i = 1, 2. Therefore,
px ′ ⊕ qw is a nontrivial 4–a.p. in A. 2
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Szemerédi’s Theorem for all k ≥ 5

Szemerédi’s Theorem is an easy consequence of Lemma 4.18,
denoted by L(m) for all m ∈ [k].

For an integer n ≥ 2k + 1 define an interval Cn ⊆ [n] by

Cn :=

[⌈
kn

2k + 1

⌉
,

⌊
(k + 1)n

2k + 1

⌋]
. (16)

The set Cn is the subinterval of [n] in the middle of [n] with the
length bn/(2k + 1)c ± ι for ι = 0 or 1. If n� 1, then
µn(Cn) = 1/(2k + 1). For notational convenience we denote

D := 3k3 and η0 := 1− 1

D
. (17)

�: Fix a K ∈ N1 \ N0. The number K is the length of an interval
which will play an important role in Lemma 3.15. Keeping K
unchanged is one of the advantages from nonstandard analysis,
which is unavailable in the standard setting.

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Multiple Levels of Infinities and Ramsey’s Theorem
Multidimensional van der Waerden’s Theorem
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Szemerédi’s Theorem for all k ≥ 5
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If p is a k-a.p. and A is a set, we denote p ⊕ A for the sequence
{p(l) + A | 1 ≤ l ≤ k}. If p, q are k-a.p.’s and A be a set, we
denote p v q ⊕ A for the statement that p(l) ∈ q(l) + A for
1 ≤ l ≤ k .

Lemma (4.18, L(m))

Given any α > 0, η > η0, any N ∈ N2 \N1, and any A ⊆ S ⊆ [N]
and U ⊆ [N] with

µN(U) = 1, µN(S) = SD(S) = η,

and µN(A) = SDS(A) = α, (18)

the following are true:
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Lemma (4.18)

L1(m)(α, η,N,A,S ,U,K ): There exists a k–a.p. ~x ⊆ U with
~x ⊕ [K ] ⊆ [N] satisfying the statement
(∀n ∈ N0) ξ(~x(l), α, η,A, S ,U,K , n) for l ∈ 1 + [k], and there
exist Tl ⊆ CK with µ|CK |(Tl) = 1 where CK is defined in (16)
and Vl ⊆ [K ] with µK (Vl) = 1 for every l ≥ m, and
collections of k–a.p.’s

P :=
⋃
{Pl ,t | t ∈ Tl and l ≥ m} and

Q :=
⋃
{Ql ,v | v ∈ Vl and l ≥ m} such that

Pl ,t ⊆ {p v (~x ⊕ [K ]) ∩ U |
∀l ′ < m (p(l ′) ∈ A) and p(l) = ~x(l) + t}

satisfying µK (Pl ,t) = αm−1/k for all l ≥ m and t ∈ Tl , and
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Lemma (4.18)

Ql ,v = {q v ~x ⊕ [K ] |
∀l ′ < m (q(l ′) ∈ A) and q(l) = ~x(l) + v}

satisfying µK (Ql ,v ) ≤ αm−1 for all l ≥ m and v ∈ Vl .

L2(m)(α, η,N,A,S ,K ): There exist a set W0 ⊆ S of
min{K , b1/D(1− η)c}–consecutive integers where D is
defined in (17) and a collection of k–a.p.’s
R = {rw | w ∈W0} such that for each w ∈W0 we have
rw (l) ∈ A for l < m, rw (l) ∈ S for l > m, and rw (m) = w.

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Multiple Levels of Infinities and Ramsey’s Theorem
Multidimensional van der Waerden’s Theorem
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Remark (4.19)

(a) L2(m) is an internal statement in V2. Both L1(m) and L2(m)
depend on K . Since K is fixed throughout whole proof, it, as
a parameter, may be omitted in some expressions.

(b) If H � 1 and T ⊆ [H] with µH(T ) > 1− ε, then T contains
b1/εc consecutive integers because otherwise we have
µH(T ) ≤ (b1/εc − 1)/b1/εc
= 1− 1/b1/εc ≤ 1− 1/(1/ε) = 1− ε.

(c) The purpose of defining CK is that if t ∈ CK , then the
number of k–a.p.’s p v ~x ⊕ [K ] with p(l) = ~x(l) + t is
guaranteed to be at least K/(k − 1).

(f) It is important to notice that in L1(m) we have Pl ,t ⊆ . . . but
Ql ,v = . . ..
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Szemerédi’s Theorem

Remark (4.19)

(a) L2(m) is an internal statement in V2. Both L1(m) and L2(m)
depend on K . Since K is fixed throughout whole proof, it, as
a parameter, may be omitted in some expressions.

(b) If H � 1 and T ⊆ [H] with µH(T ) > 1− ε, then T contains
b1/εc consecutive integers because otherwise we have
µH(T ) ≤ (b1/εc − 1)/b1/εc
= 1− 1/b1/εc ≤ 1− 1/(1/ε) = 1− ε.

(c) The purpose of defining CK is that if t ∈ CK , then the
number of k–a.p.’s p v ~x ⊕ [K ] with p(l) = ~x(l) + t is
guaranteed to be at least K/(k − 1).

(f) It is important to notice that in L1(m) we have Pl ,t ⊆ . . . but
Ql ,v = . . ..

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Multiple Levels of Infinities and Ramsey’s Theorem
Multidimensional van der Waerden’s Theorem
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The following lemma is a generalization of Lemma 4.15.

Lemma (4.20)

L1(m)(α, η,N,A,S ,U) implies L2(m)(α, η,N,A,S) for
any α, η,N,A, S ,U satisfying the conditions of Lemma 4.18.

Sketch Proof of Lemma 4.18 We prove L(m) by induction on m.
By Lemmas 4.20 it suffices to prove L1(m).

For L(1), given any α > 0, η > η0, N ∈ N2 \ N1, A, S , and U
satisfying the conditions of the lemma, by Lemma 4.11 (b) we can
find a k–a.p. ~x ⊆ [N] such that

(∀n ∈ N0) ξ(~x(l), α, η,A,S ,U,K , n)

is true for l ∈ 1 + [k].

For each l ∈ 1 + [k] let Tl = CK ∩ U and Vl = [K ].
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For each l ∈ 1 + [k], t ∈ Tl , and v ∈ Vl let

Pl ,t := {p v (~x ⊕ [K ]) ∩ U | p(l) = ~x(l) + t}

Ql ,v := {q v (~x ⊕ [K ]) | q(l) = ~x(l) + v}.

Clearly, we have µK (Pl ,t) ≥ 1/(k − 1) > 1/k . By some pruning
we can assume that µK (Pl ,t) = 1/k . It is trivial that µK (Ql ,v ) ≤ 1
and q ∈ Ql ,v iff q(l) = ~x(l) + v for each q v ~x ⊕ [K ]. This
completes the proof of L1(1)(α, η,N,A,S ,U). L2(1)(α, η,N,A,S)
follows from Lemma 4.20.

Assume L(m − 1) is true for some 2 ≤ m ≤ k.
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We now prove L(m). Given any α > 0 and η > η0, fix
N ∈ N2 \ N1, U ⊆ [N], and A ⊆ S ⊆ [N] satisfying the conditions
of the lemma.

For each n ∈ N1 \ N0, by Lemma 4.11 (b), there is an hn > n in
N1 and Gn,hn ⊆ [N] such that dn := δN−hn(Gn,hn) > 1− 1/n.

Notice that dn ≈1 µ
1
N−hn(Gn,hn) > η0 because n� 1 and

µN−hn(Gn,hn)) = 1. Let η1
n := µ1

N−hn(Gn,hn) and fix an n ∈ N1 \N0.

Claim 1 The following internal statement θ(n,A,N) is true:
∃W ⊆ [N] ∃R (W is an a.p. ∧ |W | ≥

min{K , b1/2D(1− dn)c} ∧ R = {rw | w ∈W } is a collection of
k–a.p.’s such that

∀w ∈W ((∀l ≥ m) (rw (l) ∈ Gn,hn) ∧ (rw (m − 1) = w)

∧ (∀l , l ′ ≤ m − 2)((A ∩ (rw (l) + [hn]))− rw (l)

= (A ∩ (rw (l ′) + [hn]))− rw (l ′))).
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The proof of Claim 1 is done in V3.

Claim 2 There exists a J ∈ N2 \ N1 such that the θ(J,A,N) is
true, i.e., ∃W ⊆ [N] ∃R (W is an a.p. ∧ |W | ≥
min{K , b1/2D(1− dJ)c} ∧ R = {rw | w ∈W } is a collection of
k–a.p.’s such that

∀w ∈W ((∀l ≥ m) (rw (l) ∈ GJ,hJ ) ∧ rw (m − 1) = w

∧ (∀l , l ′ ≤ m − 2) ((A ∩ (rw (l) + [hJ ]))− rw (l)

= (A ∩ (rw (l ′) + [hJ ]))− rw (l ′)))).

Claim 3 For each s ∈ N0 we can find an internal Us ⊆ [H] with
µH(Us) = 1 such that for each y ∈ Us and each l ∈ 1 + [k],
rws (l) + y ∈ U and (∀n ∈ N0) ξ(rws (l) + y , α, η,A, S ,U,K , n) is
true.
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Szemerédi’s Theorem

The proof of Claim 1 is done in V3.

Claim 2 There exists a J ∈ N2 \ N1 such that the θ(J,A,N) is
true, i.e., ∃W ⊆ [N] ∃R (W is an a.p. ∧ |W | ≥
min{K , b1/2D(1− dJ)c} ∧ R = {rw | w ∈W } is a collection of
k–a.p.’s such that

∀w ∈W ((∀l ≥ m) (rw (l) ∈ GJ,hJ ) ∧ rw (m − 1) = w

∧ (∀l , l ′ ≤ m − 2) ((A ∩ (rw (l) + [hJ ]))− rw (l)

= (A ∩ (rw (l ′) + [hJ ]))− rw (l ′)))).

Claim 3 For each s ∈ N0 we can find an internal Us ⊆ [H] with
µH(Us) = 1 such that for each y ∈ Us and each l ∈ 1 + [k],
rws (l) + y ∈ U and (∀n ∈ N0) ξ(rws (l) + y , α, η,A, S ,U,K , n) is
true.

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Multiple Levels of Infinities and Ramsey’s Theorem
Multidimensional van der Waerden’s Theorem
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Notice that δH(
⋂s

i=1 Ui ) > 1− 1/s. By Overspill Principle we
can find 1� I ≤ |WH | and

U ′ :=
⋂
{Us | 1 ≤ s ≤ I}

such that δH(U ′) > 1− 1/I . Hence µH(U ′) = 1. Applying the
induction hypothesis for L1(m − 1)(α, 1,H, τH , [H],U ′), we obtain
a k–a.p. ~y ⊆ U ′ with ~y ⊕ [K ] ⊆ [H], T ′l ⊆ CK ∩ U ′ with
µ|CK |(T ′l ) = 1 and V ′l ⊆ [K ] with µK (V ′l ) = 1 for each l ≥ m − 1,
and collections of k–a.p.’s

P ′ =
⋃
{P ′l ,t | t ∈ T ′l and l ≥ m − 1} and

Q′ =
⋃
{Q′l ,v | v ∈ V ′l and l ≥ m − 1}

such that
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(i) for each l ≥ m − 1 and t ∈ T ′l we have µK (P ′l ,t) = αm−2/k
and for each p ∈ P ′l ,t we have p v (~y ⊕ [K ]) ∩ U ′, p(l ′) ∈ τH for
l ′ < m − 1, p(l) = ~y(l) + t, and

(ii) for each l ≥ m − 1 and v ∈ V ′l we have µK (Q′l ,v ) ≤ αm−2,
and for each q v ~y ⊕ [K ] we have q ∈ Q′l ,v iff q(l ′) ∈ τH for every
l ′ < m − 1 and q(l) = ~y(l) + v .

For each l ≥ m, t ∈ Tl , and v ∈ Vl let

El ,t := {p(m − 1) | p ∈ P ′l ,t} and Fl ,v := {q(m − 1) | q ∈ Q′l ,v}.

Then El ,t ,Fl ,v ⊆ ~y(m − 1) + [K ],
µK (El ,t) = µK (P ′l ,t) = αm−2/k, and

µK (Fl ,v ) = µK (Q′l ,v ) ≤ αm−2.
Since ~y ⊆ U ′ we have that for each l ∈ 1 + [k],

(∀n ∈ N0) ξ(rws (l) + ~y(l), α, η,A, S ,U,K , n) is true.
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Applying Part (iii) of Mixing Lemma with
R := {ws + ~y(m − 1) | 1 ≤ s ≤ I} and H being replaced by K we
can find s0 ∈ [I ], Tl ⊆ T ′l with µ|CK |(Tl) = 1 and Vl ⊆ V ′l with
µK (Vl) = 1 for each l ≥ m such that for each t ∈ Tl and v ∈ Vl

we have

µK ((ws0 + El ,t) ∩ ((ws0 + ~y(m − 1) + [K ]) ∩ A))

= αµK (El ,t) = α(αm−2/k) = αm−1/k and
(19)

µK ((ws0 + Fl ,v ) ∩ ((ws0 + ~y(m − 1) + [K ]) ∩ A))

= αµK (Fl ,t) ≤ α·αm−2 = αm−1.
(20)

Let ~x := rws0
⊕ ~y . Clearly, we have ~x ⊕ [K ] ⊆ [N]. We also have

that ~x ⊆ U, µK ((~x(l) + [K ]) ∩ S) = η, and
µK ((~x(l) + [K ]) ∩ A) = α because rws0

⊆ SH and ~y ⊆ U ′ ⊆ Us0 .
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For each l ≥ m, t ∈ Tl , and v ∈ Vl let

Pl ,t := {rws0
⊕ p | p ∈ P ′l ,t and

p(m − 1) ∈ El ,t ∩ (((ws0 + ~y(m − 1) + [K ]) ∩ A)− ws0)},
Ql ,v := {rws0

⊕ q | q ∈ Q′l ,t and

q(m − 1) ∈ Fl ,v ∩ (((ws0 + ~y(m − 1) + [K ]) ∩ A)− ws0)}.

Then µK (Pl ,t) = αm−1/k by (19). If q̄ v ~x ⊕ [K ], then there is
a q v ~y ⊕ [K ] such that q̄ = rws0

⊕ q. If q̄(l ′) ∈ A for l ′ < m and
v ∈ Vl for some l ≥ m such that q̄(l) = ~x(l) + v , then q(l ′) ∈ τH
for l ′ < m − 1, v ∈ V ′l , and q(l) = ~y(l) + v , which imply q ∈ Q′l ,v
by induction hypothesis. Hence we have q(m − 1) ∈ Fl ,v . Clearly,
q̄(m − 1) = ws0 + q(m − 1) ∈ A implies
q(m − 1) ∈ Fl ,v ∩ (((ws0 + ~y(m − 1) + [K ]) ∩ A)− ws0). Thus we
have q̄ ∈ Ql ,v . Clearly, µK (Ql ,v ) ≤ αm−1 by (20).
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Summarizing the argument above we have that for each
rws0
⊕ p ∈ Pl ,t

rws0
(l ′) + p(l ′) ∈ rws0

(l ′) + τH ⊆ A for l ′ < m − 1 because
rws0

(l ′) ∈ BH ,

rws0
(m − 1) + p(m − 1) = ws0 + p(m − 1)
∈ (ws0 + El ,t) ∩ (ws0 + ~y(m − 1) + [K ]) ∩ A ⊆ A,

rws0
(l ′) + p(l ′) ∈ (~x(l ′) + [K ]) ∩ U ⊆ U for l ′ ≥ m because of

p ⊆ U ′,

rws0
(l) + p(l) = rws0

(l) + ~y(l) + t = ~x(l) + t.
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For each q̄ v ~x ⊕ [K ], q̄ ∈ Ql ,v iff there is a q v ~y ⊕ [K ] with
q̄ = rws0

⊕ q such that

rws0
(l ′) + q(l ′) ∈ rws0

(l ′) + τH ⊆ A for l ′ < m − 1 because
rws0

(l ′) ∈ BH ,

rws0
(m − 1) + q(m − 1) = ws0 + q(m − 1) ∈ A which is

equivalent to

ws0 + q(m − 1)

∈ (ws0 + Fl ,v ) ∩ (ws0 + ~y(m − 1) + [K ]) ∩ A ⊆ A,

rws0
(l) + q(l) = rws0

(l) + ~y(l) + v = ~x(l) + v .

This completes the proof of L1(m)(α, η,N,A, S ,U) as well as
L(m) by Lemma 3.19. 2
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Szemerédi’s Theorem

For each q̄ v ~x ⊕ [K ], q̄ ∈ Ql ,v iff there is a q v ~y ⊕ [K ] with
q̄ = rws0

⊕ q such that

rws0
(l ′) + q(l ′) ∈ rws0

(l ′) + τH ⊆ A for l ′ < m − 1 because
rws0

(l ′) ∈ BH ,

rws0
(m − 1) + q(m − 1) = ws0 + q(m − 1) ∈ A which is

equivalent to

ws0 + q(m − 1)

∈ (ws0 + Fl ,v ) ∩ (ws0 + ~y(m − 1) + [K ]) ∩ A ⊆ A,

rws0
(l) + q(l) = rws0

(l) + ~y(l) + v = ~x(l) + v .

This completes the proof of L1(m)(α, η,N,A, S ,U) as well as
L(m) by Lemma 3.19. 2

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Multiple Levels of Infinities and Ramsey’s Theorem
Multidimensional van der Waerden’s Theorem
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The End of Day Four

Thank you for your attention.
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