Nonstandard Analysis and Combinatorial Number Theory

Renling Jin

College of Charleston, SC

Day Three: Easy Applications to Combinatorics

2023 Fudan Logic Summer School Shanghai, China, August 10, 2023

OUTLINE:

(1) Nonstandard Versions of Densities

 (2) By-one-get-one-free Thesis
OUTLINE:

(1) Nonstandard Versions of Densities
(2) By-one-get-one-free Thesis

OUTLINE:

(1) Nonstandard Versions of Densities
(2) By-one-get-one-free Thesis

OUTLINE:

(1) Nonstandard Versions of Densities
(2) By-one-get-one-free Thesis
(3) Plünnecke's Inequalities

An apparent reason why nonstandard analysis should be a useful tool for other fields of mathematics is that a limit process which involves rank 3 objects in \mathcal{V} such as the limit of a sequence or a function with real values can be changed to an infinitesimal argument with rank 0 objects such as infinitesimals in ${ }^{*} \mathcal{V}$. So, good candidates for the applications of nonstandard analysis should be something involving limit processes. This may be why the density problems receive attention from nonstandard analysts. The densities introduced in this section are Shnirel'man density, lower and upper (asymptotic) density, and lower and upper Banach density.

An apparent reason why nonstandard analysis should be a useful tool for other fields of mathematics is that a limit process which involves rank 3 objects in \mathcal{V} such as the limit of a sequence or a function with real values can be changed to an infinitesimal argument with rank 0 objects such as infinitesimals in ${ }^{*} \mathcal{V}$. So, good candidates for the applications of nonstandard analysis should be something involving limit processes. This may be why the density problems receive attention from nonstandard analysts. The densities introduced in this section are Shnirel'man density, lower and upper (asymptotic) density, and lower and upper Banach density.

For two sets $A, B \subseteq \mathbb{N}$, let
$A+B:=\{a+b \mid a \in A$ and $b \in B\}$. If $A=\{a\}$ we write $a+B$ instead of $\{a\}+B$ for simplicity. If $r, r^{\prime} \in{ }^{*} \mathbb{R}$, we write $r \gtrsim r^{\prime}$ for $r>r^{\prime}$ or $r \approx r^{\prime}$ and $r \lesssim r^{\prime}$ for $r<r^{\prime}$ or $r \approx r^{\prime}$.

Definition (3.1)

Let $A \subseteq \mathbb{N}$. The Shnirel'man density $\sigma(A)$, lower density $\underline{d}(A)$, upper density $\bar{d}(A)$, upper Banach density $\overline{B D}(A)$, and lower Banach density $\underline{B D}(A)$ of A are defined by

Definition (3.1)

Let $A \subseteq \mathbb{N}$. The Shnirel'man density $\sigma(A)$, lower density $\underline{d}(A)$, upper density $\bar{d}(A)$, upper Banach density $\overline{B D}(A)$, and lower Banach density $\underline{B D}(A)$ of A are defined by
(1) $\sigma(A):=\inf _{n \geq 1} \frac{|A \cap(1+[n])|}{n}$;

Definition (3.1)

Let $A \subseteq \mathbb{N}$. The Shnirel'man density $\sigma(A)$, lower density $\underline{d}(A)$, upper density $\bar{d}(A)$, upper Banach density $\overline{B D}(A)$, and lower Banach density $\underline{B D}(A)$ of A are defined by
(1) $\sigma(A):=\inf _{n \geq 1} \frac{|A \cap(1+[n])|}{n}$;
(2) $\underline{d}(A):=\liminf _{n \rightarrow \infty} \frac{|A \cap[n]|}{n}$;

Definition (3.1)

Let $A \subseteq \mathbb{N}$. The Shnirel'man density $\sigma(A)$, lower density $\underline{d}(A)$, upper density $\bar{d}(A)$, upper Banach density $\overline{B D}(A)$, and lower Banach density $\underline{B D}(A)$ of A are defined by
(1) $\sigma(A):=\inf _{n \geq 1} \frac{|A \cap(1+[n])|}{n}$;
(2) $\underline{d}(A):=\liminf _{n \rightarrow \infty} \frac{|A \cap[n]|}{n}$;
(3) $\bar{d}(A):=\limsup _{n \rightarrow \infty} \frac{|A \cap[n]|}{n}$;

Definition (3.1)

Let $A \subseteq \mathbb{N}$. The Shnirel'man density $\sigma(A)$, lower density $\underline{d}(A)$, upper density $\bar{d}(A)$, upper Banach density $\overline{B D}(A)$, and lower Banach density $\underline{B D}(A)$ of A are defined by
(1) $\sigma(A):=\inf _{n \geq 1} \frac{|A \cap(1+[n])|}{n}$;
(2) $\underline{d}(A):=\liminf _{n \rightarrow \infty} \frac{|A \cap[n]|}{n}$;
(3) $\bar{d}(A):=\limsup _{n \rightarrow \infty} \frac{|A \cap[n]|}{n}$;
(9) $\overline{B D}(A):=\lim _{n \rightarrow \infty} \sup _{k \in \mathbb{N}} \frac{|A \cap(k+[n])|}{n}$;

Definition (3.1)

Let $A \subseteq \mathbb{N}$. The Shnirel'man density $\sigma(A)$, lower density $\underline{d}(A)$, upper density $\bar{d}(A)$, upper Banach density $\overline{B D}(A)$, and lower Banach density $\underline{B D}(A)$ of A are defined by
(1) $\sigma(A):=\inf _{n \geq 1} \frac{|A \cap(1+[n])|}{n}$;
(2) $\underline{d}(A):=\liminf _{n \rightarrow \infty} \frac{|A \cap[n]|}{n}$;
(3) $\bar{d}(A):=\limsup _{n \rightarrow \infty} \frac{|A \cap[n]|}{n}$;
(9) $\overline{B D}(A):=\lim _{n \rightarrow \infty} \sup _{k \in \mathbb{N}} \frac{|A \cap(k+[n])|}{n}$;
(6) $\underline{B D}(A):=\lim _{n \rightarrow \infty} \inf _{k \in \mathbb{N}} \frac{|A \cap(k+[n])|}{n}$.

Remark (3.2)

(1) In the definition of $\sigma(A)$, we have $1+[n]=\{1,2, \ldots, n\}$. Hence, 0 , in or not in A, does not play any role. If $\sigma(A)>0$, then $1 \in A$;
(2) If $\underline{d}(A)=\bar{d}(A)$, we say that the (asymptotic) density of A exists and is denoted by $d(A)$;

- If $B D(A)=\overline{B D}(A)$, we say that the Banach density of A
exists and is denoted by $B D(A)$,

Remark (3.2)

(1) In the definition of $\sigma(A)$, we have $1+[n]=\{1,2, \ldots, n\}$. Hence, 0 , in or not in A, does not play any role. If $\sigma(A)>0$, then $1 \in A$;
(2) If $\underline{d}(A)=\bar{d}(A)$, we say that the (asymptotic) density of A exists and is denoted by $d(A)$;

Remark (3.2)

(1) In the definition of $\sigma(A)$, we have $1+[n]=\{1,2, \ldots, n\}$. Hence, 0 , in or not in A, does not play any role. If $\sigma(A)>0$, then $1 \in A$;
(2) If $\underline{d}(A)=\bar{d}(A)$, we say that the (asymptotic) density of A exists and is denoted by $d(A)$;
(3) If $\underline{B D}(A)=\overline{B D}(A)$, we say that the Banach density of A exists and is denoted by $B D(A)$;

Remark (3.2)

(1) In the definition of $\sigma(A)$, we have $1+[n]=\{1,2, \ldots, n\}$. Hence, 0 , in or not in A, does not play any role. If $\sigma(A)>0$, then $1 \in A$;
(2) If $\underline{d}(A)=\bar{d}(A)$, we say that the (asymptotic) density of A exists and is denoted by $d(A)$;
(3) If $\underline{B D}(A)=\overline{B D}(A)$, we say that the Banach density of A exists and is denoted by $B D(A)$;
(1) In the definition of $\overline{B D}(A)$ the limit of $\sup _{k \in \mathbb{N}} \frac{|A \cap(k+[n])|}{n}$ as $n \rightarrow \infty$ always exists.

The following Proposition is direct consequences of the definition.

The following Proposition is direct consequences of the definition.

Proposition (3.3)

For any $A \subseteq \mathbb{N}$ we have

$$
\begin{gathered}
0 \leq \min \{\sigma(A), \underline{B D}(A)\} \leq \max \{\sigma(A), \underline{B D}(A)\} \\
\leq \underline{d}(A) \leq \bar{d}(A) \leq \overline{B D}(A) \leq 1
\end{gathered}
$$

The following Proposition is direct consequences of the definition.

Proposition (3.3)

For any $A \subseteq \mathbb{N}$ we have

$$
\begin{gathered}
0 \leq \min \{\sigma(A), \underline{B D}(A)\} \leq \max \{\sigma(A), \underline{B D}(A)\} \\
\leq \underline{d}(A) \leq \bar{d}(A) \leq \overline{B D}(A) \leq 1
\end{gathered}
$$

Lemma (3.4)

Let $A \subseteq \mathbb{N}$. Then, $\overline{B D}(A)$ is the largest real α in $[0,1]$ such that there exist $k_{m}, n_{m} \in \mathbb{N}$ with $n_{m} \rightarrow \infty$ as $m \rightarrow \infty$ such that

$$
\lim _{m \rightarrow \infty} \frac{\left|A \cap\left(k_{m}+\left[n_{m}\right]\right)\right|}{n_{m}}=\alpha
$$

Proposition (3.5)

Let $A \subseteq \mathbb{N}$ and $\alpha \in \mathbb{R}$. Then

Proposition (3.5)

Let $A \subseteq \mathbb{N}$ and $\alpha \in \mathbb{R}$. Then
(1) $\underline{d}(A) \geq \alpha$ iff $\frac{\left.\right|^{*} A \cap[N] \mid}{N} \gtrsim \alpha$ for any hyperfinite integer N; Proof. Part 1. " \Rightarrow ": Let N be an arbitrary hyperfinite
Since for each $\epsilon>0$, there exists an $n_{0} \in \mathbb{N}$ such that

Proposition (3.5)

Let $A \subseteq \mathbb{N}$ and $\alpha \in \mathbb{R}$. Then
(1) $\underline{d}(A) \geq \alpha$ iff $\frac{\left.\right|^{*} A \cap[N] \mid}{N} \gtrsim \alpha$ for any hyperfinite integer N;
(2 $\bar{d}(A) \geq \alpha$ iff $\frac{\left.\right|^{*} A \cap[N] \mid}{N} \gtrsim \alpha$ for some hyperfinite integer N.

By the transfer principle, it is true that

Proposition (3.5)

Let $A \subseteq \mathbb{N}$ and $\alpha \in \mathbb{R}$. Then
(1) $\underline{d}(A) \geq \alpha$ iff $\frac{\left.\right|^{*} A \cap[N] \mid}{N} \gtrsim \alpha$ for any hyperfinite integer N;
(2) $\bar{d}(A) \geq \alpha$ iff $\frac{\left|{ }^{*} A \cap[N]\right|}{N} \gtrsim \alpha$ for some hyperfinite integer N.

Proof: Part 1. " \Rightarrow ": Let N be an arbitrary hyperfinite integer. Since for each $\epsilon>0$, there exists an $n_{0} \in \mathbb{N}$ such that

$$
\forall n \in \mathbb{N}\left(n \geq n_{0} \rightarrow \frac{|A \cap[n]|}{n}>\alpha-\epsilon\right)
$$

Proposition (3.5)

Let $A \subseteq \mathbb{N}$ and $\alpha \in \mathbb{R}$. Then
(1) $\underline{d}(A) \geq \alpha$ iff $\frac{\left.\right|^{*} A \cap[N] \mid}{N} \gtrsim \alpha$ for any hyperfinite integer N;
(2) $\bar{d}(A) \geq \alpha$ iff $\frac{|* A \cap[N]|}{N} \gtrsim \alpha$ for some hyperfinite integer N.

Proof: Part 1. " \Rightarrow ": Let N be an arbitrary hyperfinite integer. Since for each $\epsilon>0$, there exists an $n_{0} \in \mathbb{N}$ such that

$$
\forall n \in \mathbb{N}\left(n \geq n_{0} \rightarrow \frac{|A \cap[n]|}{n}>\alpha-\epsilon\right)
$$

By the transfer principle, it is true that

$$
\forall n \in{ }^{*} \mathbb{N}\left(n \geq n_{0} \rightarrow \frac{\left|{ }^{*} A \cap[n]\right|}{n}>\alpha-\epsilon\right) .
$$

Since $N \in{ }^{*} \mathbb{N}$ and $N \geq n_{0}$, we have $\frac{\left.\right|^{*} A \cap[N] \mid}{N}>\alpha-\epsilon$. Since $\epsilon>0$ can be arbitrarily small, we have that $\frac{\left|{ }^{*} A \cap[N]\right|}{N} \gtrsim \alpha$.

Since $N \in{ }^{*} \mathbb{N}$ and $N \geq n_{0}$, we have $\frac{\left|*^{*} A \cap[N]\right|}{N}>\alpha-\epsilon$. Since $\epsilon>0$ can be arbitrarily small, we have that $\frac{\left|{ }^{*} A \cap[N]\right|}{N} \gtrsim \alpha$.

Part 1. " \Leftarrow ": Suppose $\underline{d}(A)<\alpha$. Let $\alpha^{\prime}=(\alpha+\underline{d}(A)) / 2$, then there is an increasing sequence $n_{1}<n_{2}<\cdots$ such that $\forall i \in \mathbb{N}\left(\frac{\left|A \cap\left[n_{i}\right]\right|}{n_{i}}<\alpha^{\prime}\right)$.

Since $N \in{ }^{*} \mathbb{N}$ and $N \geq n_{0}$, we have $\frac{\left.\right|^{*} A \cap[N] \mid}{N}>\alpha-\epsilon$. Since $\epsilon>0$ can be arbitrarily small, we have that $\frac{\left|{ }^{*} A \cap[N]\right|}{N} \gtrsim \alpha$.

Part 1. " \Leftarrow ": Suppose $\underline{d}(A)<\alpha$. Let $\alpha^{\prime}=(\alpha+\underline{d}(A)) / 2$, then there is an increasing sequence $n_{1}<n_{2}<\cdots$ such that $\forall i \in \mathbb{N}\left(\frac{\left|A \cap\left[n_{i}\right]\right|}{n_{i}}<\alpha^{\prime}\right)$. By the transfer principle the sentence $\forall i \in{ }^{*} \mathbb{N}\left(\frac{\left.\right|^{*} A \cap\left[n_{i}\right] \mid}{n_{i}}<\alpha^{\prime}\right)$ is true in ${ }^{*} \mathcal{V}$.
 $\epsilon>0$ can be arbitrarily small, we have that $\frac{\left|{ }^{*} A \cap[N]\right|}{N} \gtrsim \alpha$.

Part 1. " \Leftarrow ": Suppose $\underline{d}(A)<\alpha$. Let $\alpha^{\prime}=(\alpha+\underline{d}(A)) / 2$, then there is an increasing sequence $n_{1}<n_{2}<\cdots$ such that $\forall i \in \mathbb{N}\left(\frac{\left|A \cap\left[n_{i}\right]\right|}{n_{i}}<\alpha^{\prime}\right)$. By the transfer principle the sentence $\forall i \in{ }^{*} \mathbb{N}\left(\frac{\left|{ }^{*} A \cap\left[n_{i}\right]\right|}{n_{i}}<\alpha^{\prime}\right)$ is true in ${ }^{*} \mathcal{V}$.

Let N^{\prime} be a hyperfinite integer and $N:=n_{N^{\prime}}$. Then, N is hyperfinite and $\frac{\left|{ }^{*} A \cap[N]\right|}{N} \lesssim \alpha^{\prime}<\alpha$. Hence, the right side of Part 1 is false.

Since $N \in{ }^{*} \mathbb{N}$ and $N \geq n_{0}$, we have $\frac{\left.\right|^{*} A \cap[N] \mid}{N}>\alpha-\epsilon$. Since $\epsilon>0$ can be arbitrarily small, we have that $\frac{\left|{ }^{*} A \cap[N]\right|}{N} \gtrsim \alpha$.

Part 1. " \Leftarrow ": Suppose $\underline{d}(A)<\alpha$. Let $\alpha^{\prime}=(\alpha+\underline{d}(A)) / 2$, then there is an increasing sequence $n_{1}<n_{2}<\cdots$ such that $\forall i \in \mathbb{N}\left(\frac{\left|A \cap\left[n_{i}\right]\right|}{n_{i}}<\alpha^{\prime}\right)$. By the transfer principle the sentence $\forall i \in{ }^{*} \mathbb{N}\left(\frac{\left.\right|^{*} A \cap\left[n_{i}\right] \mid}{n_{i}}<\alpha^{\prime}\right)$ is true in ${ }^{*} \mathcal{V}$.

Let N^{\prime} be a hyperfinite integer and $N:=n_{N^{\prime}}$. Then, N is hyperfinite and $\frac{\left|{ }^{*} A \cap[N]\right|}{N} \lesssim \alpha^{\prime}<\alpha$. Hence, the right side of Part 1 is false.

The proof of Part 2 is left to the reader.

Proposition (3.6)

Let $A \subseteq \mathbb{N}$ and $\alpha \in \mathbb{R}$. Then

hyperfinite integer N,

some hyperfinite integer N

Proposition (3.6)

Let $A \subseteq \mathbb{N}$ and $\alpha \in \mathbb{R}$. Then
(1) $\underline{B D}(A) \geq \alpha$ iff $\frac{|* A \cap(k+[N])|}{N} \gtrsim \alpha$ for any $k \in{ }^{*} \mathbb{N}$ and any hyperfinite integer N;

Proof: We prove Part 2. The proof of Part 1 is left to the reader

Proposition (3.6)

Let $A \subseteq \mathbb{N}$ and $\alpha \in \mathbb{R}$. Then
(1) $\underline{B D}(A) \geq \alpha$ iff $\frac{|* A \cap(k+[N])|}{N} \gtrsim \alpha$ for any $k \in{ }^{*} \mathbb{N}$ and any hyperfinite integer N;
(2) $\overline{B D}(A) \geq \alpha$ iff $\frac{\left|{ }^{*} A \cap(k+[N])\right|}{N} \gtrsim \alpha$ for some $k \in{ }^{*} \mathbb{N}$ and some hyperfinite integer N.

$$
\text { Proof: We prove Part 2. The proof of Part } 1 \text { is left to the reader }
$$

\square Part 2. " \Rightarrow ": Given $m \in \mathbb{N}$, there exist $k_{m} \in \mathbb{N}$ and $n_{m}>m$ such that

Proposition (3.6)

Let $A \subseteq \mathbb{N}$ and $\alpha \in \mathbb{R}$. Then
(1) $\underline{B D}(A) \geq \alpha$ iff $\frac{|* A \cap(k+[N])|}{N} \gtrsim \alpha$ for any $k \in{ }^{*} \mathbb{N}$ and any hyperfinite integer N;
(2) $\overline{B D}(A) \geq \alpha$ iff $\frac{\left|{ }^{*} A \cap(k+[N])\right|}{N} \gtrsim \alpha$ for some $k \in{ }^{*} \mathbb{N}$ and some hyperfinite integer N.

Proof: We prove Part 2. The proof of Part 1 is left to the reader.
\qquad

Proposition (3.6)

Let $A \subseteq \mathbb{N}$ and $\alpha \in \mathbb{R}$. Then
(1) $\underline{B D}(A) \geq \alpha$ iff $\frac{|* A \cap(k+[N])|}{N} \gtrsim \alpha$ for any $k \in{ }^{*} \mathbb{N}$ and any hyperfinite integer N;
(2) $\overline{B D}(A) \geq \alpha$ iff $\frac{\left|{ }^{*} A \cap(k+[N])\right|}{N} \gtrsim \alpha$ for some $k \in{ }^{*} \mathbb{N}$ and some hyperfinite integer N.

Proof: We prove Part 2. The proof of Part 1 is left to the reader.
Part 2. " \Rightarrow ": Given $m \in \mathbb{N}$, there exist $k_{m} \in \mathbb{N}$ and $n_{m}>m$ such that

$$
\frac{\left|A \cap\left(k_{m}+\left[n_{m}\right]\right)\right|}{n_{m}}>\alpha-\frac{1}{m} .
$$

By the transfer principle, we have that for any $m \in{ }^{*} \mathbb{N}$ there exist $k_{m} \in{ }^{*} \mathbb{N}$ and $n_{m}>m$ such that

$$
\frac{\left|{ }^{*} A \cap\left(k_{m}+\left[n_{m}\right]\right)\right|}{n_{m}}>\alpha-\frac{1}{m} .
$$

By the transfer principle, we have that for any $m \in{ }^{*} \mathbb{N}$ there exist $k_{m} \in{ }^{*} \mathbb{N}$ and $n_{m}>m$ such that

$$
\frac{\left|{ }^{*} A \cap\left(k_{m}+\left[n_{m}\right]\right)\right|}{n_{m}}>\alpha-\frac{1}{m} .
$$

Now let m be a hyperfinite integer, $k:=k_{m}$, and $N:=n_{m}>m$. Then,

$$
\frac{|* A \cap(k+[N])|}{N} \gtrsim \alpha
$$

Part 2. " \Leftarrow ": Assume that $\overline{B D}(A)<\alpha$. Let
$\alpha^{\prime}=(\alpha+\overline{B D}(A)) / 2$. Then, there exists an $n_{0} \in \mathbb{N}$ such that the following sentence is true in \mathcal{V} :

$$
\forall k, n \in \mathbb{N}\left(n \geq n_{0} \rightarrow \frac{|A \cap(k+[n])|}{n} \leq \alpha^{\prime}\right)
$$

Part 2. " \Leftarrow ": Assume that $\overline{B D}(A)<\alpha$. Let
$\alpha^{\prime}=(\alpha+\overline{B D}(A)) / 2$. Then, there exists an $n_{0} \in \mathbb{N}$ such that the following sentence is true in \mathcal{V} :

$$
\forall k, n \in \mathbb{N}\left(n \geq n_{0} \rightarrow \frac{|A \cap(k+[n])|}{n} \leq \alpha^{\prime}\right)
$$

By the transfer principle, the following is true in ${ }^{*} \mathcal{V}$:

$$
\forall k, n \in{ }^{*} \mathbb{N}\left(n \geq n_{0} \rightarrow \frac{|A \cap(k+[n])|}{n} \leq \alpha^{\prime}\right)
$$

Since hyperfinite integers are greater than n_{0}, the right side of Part 2 is false.

Shnirel'man density and lower density are most used densities by number theorists. For example, Shnirel'man proved that if a set A has positive Shnirel'man density, then there is a fixed k such that every positive integer is the sum of at most k numbers in A. If P is the set of all prime numbers, then $A:=(\{0,1\} \cup P)+(\{0,1\} \cup P)$ has positive Shnirel'man density, therefore, every positive integer is the sum of at most $2 k$ prime numbers. This is the first nontrivial result towards the solution of Goldbach conjecture.

Shnirel'man density and lower density are most used densities by number theorists. For example, Shnirel'man proved that if a set A has positive Shnirel'man density, then there is a fixed k such that every positive integer is the sum of at most k numbers in A. If P is the set of all prime numbers, then $A:=(\{0,1\} \cup P)+(\{0,1\} \cup P)$ has positive Shnirel'man density, therefore, every positive integer is the sum of at most $2 k$ prime numbers. This is the first nontrivial result towards the solution of Goldbach conjecture.

The buy-one-get-one-free thesis is the following statement:

Shnirel'man density and lower density are most used densities by number theorists. For example, Shnirel'man proved that if a set A has positive Shnirel'man density, then there is a fixed k such that every positive integer is the sum of at most k numbers in A. If P is the set of all prime numbers, then $A:=(\{0,1\} \cup P)+(\{0,1\} \cup P)$ has positive Shnirel'man density, therefore, every positive integer is the sum of at most $2 k$ prime numbers. This is the first nontrivial result towards the solution of Goldbach conjecture.

The buy-one-get-one-free thesis is the following statement:
There is a parallel result involving upper Banach density for every existing result involving Shnirel'man density or lower density.

Shnirel'man density and lower density are most used densities by number theorists. For example, Shnirel'man proved that if a set A has positive Shnirel'man density, then there is a fixed k such that every positive integer is the sum of at most k numbers in A. If P is the set of all prime numbers, then $A:=(\{0,1\} \cup P)+(\{0,1\} \cup P)$ has positive Shnirel'man density, therefore, every positive integer is the sum of at most $2 k$ prime numbers. This is the first nontrivial result towards the solution of Goldbach conjecture.

The buy-one-get-one-free thesis is the following statement:
There is a parallel result involving upper Banach density for every existing result involving Shnirel'man density or lower density.

The thesis makes sense because of the following two theorems.

Theorem (3.7)

If $A \subseteq \mathbb{N}$ and $\overline{B D}(A)=\alpha$, then there is an $k \in{ }^{*} \mathbb{N}$ and a hyperfinite integer N such that for μ_{Ω}-almost all $n \in k+[N]$ where μ_{Ω} is the Loeb measure on $\Omega:=k+[N]$, we have $\left.\underline{d}\left({ }^{*} A-n\right) \cap \mathbb{N}\right)=\alpha$.

On the other hand, if $A \subseteq \mathbb{N}$ and there is a positive integer

Theorem (3.7)

If $A \subseteq \mathbb{N}$ and $\overline{B D}(A)=\alpha$, then there is an $k \in{ }^{*} \mathbb{N}$ and a hyperfinite integer N such that for μ_{Ω}-almost all $n \in k+[N]$ where μ_{Ω} is the Loeb measure on $\Omega:=k+[N]$, we have $\left.\underline{d}\left({ }^{*} A-n\right) \cap \mathbb{N}\right)=\alpha$.

On the other hand, if $A \subseteq \mathbb{N}$ and there is a positive integer $n \in{ }^{*} \mathbb{N}$ such that $\underline{d}\left(\left(^{*} A-n\right) \cap \mathbb{N}\right) \geq \alpha$, then $\overline{B D}(A) \geq \alpha$.

Theorem (3.7)

If $A \subseteq \mathbb{N}$ and $\overline{B D}(A)=\alpha$, then there is an $k \in{ }^{*} \mathbb{N}$ and a hyperfinite integer N such that for μ_{Ω}-almost all $n \in k+[N]$ where μ_{Ω} is the Loeb measure on $\Omega:=k+[N]$, we have $\underline{d}\left(\left({ }^{*} A-n\right) \cap \mathbb{N}\right)=\alpha$.

On the other hand, if $A \subseteq \mathbb{N}$ and there is a positive integer $n \in{ }^{*} \mathbb{N}$ such that $\underline{d}\left(\left(^{*} A-n\right) \cap \mathbb{N}\right) \geq \alpha$, then $\overline{B D}(A) \geq \alpha$.

Theorem (3.8)

If $A \subseteq \mathbb{N}$ and $\overline{B D}(A)=\alpha$, then there is an $n \in{ }^{*} \mathbb{N}$ such that

$$
\sigma\left(\left(^{*} A-n\right) \cap \mathbb{N}\right)=\alpha
$$

To present short proofs of Theorem 3.7 and Theorem 3.8 we borrow the following Birkhoff's Ergodic Theorem.

To present short proofs of Theorem 3.7 and Theorem 3.8 we borrow the following Birkhoff's Ergodic Theorem.

Theorem (3.9, Birkhoff's Ergodic Theorem)

Let (Ω, Σ, μ) be a probability space and T be a measure-preserving transformation from Ω to Ω. For every $f \in L_{1}(\Omega)$, there exists a T-invariant $\bar{f} \in L_{1}(\Omega)$ such that for μ-almost all $x \in \Omega$,

To present short proofs of Theorem 3.7 and Theorem 3.8 we borrow the following Birkhoff's Ergodic Theorem.

Theorem (3.9, Birkhoff's Ergodic Theorem)

Let (Ω, Σ, μ) be a probability space and T be a measure-preserving transformation from Ω to Ω. For every $f \in L_{1}(\Omega)$, there exists a T-invariant $\bar{f} \in L_{1}(\Omega)$ such that for μ-almost all $x \in \Omega$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(T^{k}(x)\right)=\bar{f}(x)
$$

where T^{0} is the identity map and $T^{k+1}(x)=T\left(T^{k}(x)\right)$ for every $k \in \mathbb{N}$.

Proof of Theorem 3.7: We prove the second part first. Assume that $\underline{d}\left(\left({ }^{*} A-k\right) \cap \mathbb{N}\right) \geq \alpha$ for some $k \in{ }^{*} \mathbb{N}$. For each $m \in \mathbb{N}$ there exists $n_{m} \in \mathbb{N}$ such that

$$
\frac{\left|{ }^{*} A \cap(k+[n])\right|}{n} \geq \alpha-\frac{1}{m}
$$

for every $n \geq n_{m}$. By Proposition 2.8 there is a hyperfinite integer

Proof of Theorem 3.7: We prove the second part first. Assume that $\underline{d}\left(\left({ }^{*} A-k\right) \cap \mathbb{N}\right) \geq \alpha$ for some $k \in{ }^{*} \mathbb{N}$. For each $m \in \mathbb{N}$ there exists $n_{m} \in \mathbb{N}$ such that

$$
\frac{\left|{ }^{*} A \cap(k+[n])\right|}{n} \geq \alpha-\frac{1}{m}
$$

for every $n \geq n_{m}$. By Proposition 2.8 there is a hyperfinite integer N^{\prime} such that

$$
\frac{\left|{ }^{*} A \cap(k+[n])\right|}{n} \geq \alpha-\frac{1}{N^{\prime}} \approx \alpha
$$

for every $n \geq n_{N^{\prime}}$. Choose $N \geq n_{N^{\prime}}$ to be hyperfinite. Then,

Proof of Theorem 3.7: We prove the second part first. Assume that $\underline{d}\left(\left({ }^{*} A-k\right) \cap \mathbb{N}\right) \geq \alpha$ for some $k \in{ }^{*} \mathbb{N}$. For each $m \in \mathbb{N}$ there exists $n_{m} \in \mathbb{N}$ such that

$$
\frac{\left|{ }^{*} A \cap(k+[n])\right|}{n} \geq \alpha-\frac{1}{m}
$$

for every $n \geq n_{m}$. By Proposition 2.8 there is a hyperfinite integer N^{\prime} such that

$$
\frac{\left|{ }^{*} A \cap(k+[n])\right|}{n} \geq \alpha-\frac{1}{N^{\prime}} \approx \alpha
$$

for every $n \geq n_{N^{\prime}}$. Choose $N \geq n_{N^{\prime}}$ to be hyperfinite. Then,

$$
\frac{\left|{ }^{*} A \cap(k+[N])\right|}{N} \gtrsim \alpha
$$

which implies $\overline{B D}(A) \geq \alpha$ by Part 2 of Proposition 3.6.

Now we prove the first part. Assume $\overline{B D}(A)=\alpha$.

Now we prove the first part. Assume $\overline{B D}(A)=\alpha$. By Part 2 of Proposition 2.8 there is a $k \in{ }^{*} \mathbb{N}$ and hyperfinite integer N such that $\left|{ }^{*} A \cap(k+[N])\right| / N \approx \alpha$.

Now we prove the first part. Assume $\overline{B D}(A)=\alpha$. By Part 2 of Proposition 2.8 there is a $k \in{ }^{*} \mathbb{N}$ and hyperfinite integer N such that $\left.\right|^{*} A \cap(k+[N]) \mid / N \approx \alpha$. Let $\Omega:=k+[N],\left(\Omega ; \Sigma, \mu_{\Omega}\right)$ be the Loeb space, $B:={ }^{*} A \cap \Omega$, and $f: \Omega \rightarrow \mathbb{R}$ be the characteristic function of B. Then, $f \in L_{1}(\Omega)$, i.e., f is integrable.

Now we prove the first part. Assume $\overline{B D}(A)=\alpha$. By Part 2 of Proposition 2.8 there is a $k \in{ }^{*} \mathbb{N}$ and hyperfinite integer N such that $\left.\right|^{*} A \cap(k+[N]) \mid / N \approx \alpha$. Let $\Omega:=k+[N],\left(\Omega ; \Sigma, \mu_{\Omega}\right)$ be the Loeb space, $B:={ }^{*} A \cap \Omega$, and $f: \Omega \rightarrow \mathbb{R}$ be the characteristic function of B. Then, $f \in L_{1}(\Omega)$, i.e., f is integrable. Let $T(n)=n+1$ for all $n \in \Omega, n \neq k+N-1$ and $T(k+N-1)=k$.

Now we prove the first part. Assume $\overline{B D}(A)=\alpha$. By Part 2 of Proposition 2.8 there is a $k \in{ }^{*} \mathbb{N}$ and hyperfinite integer N such that $\left.\right|^{*} A \cap(k+[N]) \mid / N \approx \alpha$. Let $\Omega:=k+[N],\left(\Omega ; \Sigma, \mu_{\Omega}\right)$ be the Loeb space, $B:={ }^{*} A \cap \Omega$, and $f: \Omega \rightarrow \mathbb{R}$ be the characteristic function of B. Then, $f \in L_{1}(\Omega)$, i.e., f is integrable. Let $T(n)=n+1$ for all $n \in \Omega, n \neq k+N-1$ and $T(k+N-1)=k$. Then T is a measure-preserving transformation on Ω.

Now we prove the first part. Assume $\overline{B D}(A)=\alpha$. By Part 2 of Proposition 2.8 there is a $k \in{ }^{*} \mathbb{N}$ and hyperfinite integer N such that $\left|{ }^{*} A \cap(k+[N])\right| / N \approx \alpha$. Let $\Omega:=k+[N],\left(\Omega ; \Sigma, \mu_{\Omega}\right)$ be the Loeb space, $B:={ }^{*} A \cap \Omega$, and $f: \Omega \rightarrow \mathbb{R}$ be the characteristic function of B. Then, $f \in L_{1}(\Omega)$, i.e., f is integrable. Let $T(n)=n+1$ for all $n \in \Omega, n \neq k+N-1$ and $T(k+N-1)=k$. Then T is a measure-preserving transformation on Ω.

By Birkhoff Ergodic Theorem there is a T-invariant $\bar{f} \in L_{1}(\Omega)$ such that there is a $X \subseteq \Omega$ with $\mu_{\Omega}(X)=1$ such that for all $n \in X$ we have

$$
\begin{aligned}
\bar{f}(n) & =\lim _{m \rightarrow \infty} \frac{1}{m} \sum_{i=0}^{m-1} f\left(T^{i}(n)\right)=\lim _{m \rightarrow \infty} \frac{1}{m} \sum_{i=0}^{m-1} f(n+i) \\
& =\lim _{m \rightarrow \infty} \frac{|B \cap(n+[m])|}{m}=d\left(\left({ }^{*} A-n\right) \cap \mathbb{N}\right) .
\end{aligned}
$$

Since $\bar{f}(n)>\alpha$ implies $\underline{d}\left(\left(^{*} A-n\right) \cap \mathbb{N}\right) \geq \alpha$ which implies $\overline{B D}(A)>\alpha$ by the first part, we have that $\bar{f}(n) \leq \alpha$ for all $n \in \Omega$.

Since $\bar{f}(n)>\alpha$ implies $\underline{d}\left(\left(^{*} A-n\right) \cap \mathbb{N}\right) \geq \alpha$ which implies $\overline{B D}(A)>\alpha$ by the first part, we have that $\bar{f}(n) \leq \alpha$ for all $n \in \Omega$.

Since

$$
\begin{aligned}
\int_{\Omega} \bar{f} d \mu_{\Omega} & =\lim _{m \rightarrow \infty} \frac{1}{m} \sum_{i=0}^{m-1} \int_{\Omega} f\left(T^{i}(n)\right) d \mu_{\Omega} \\
& =\int_{\Omega} f d \mu_{\Omega}=\mu_{\Omega}(B)=\alpha
\end{aligned}
$$

Since $\bar{f}(n)>\alpha$ implies $\underline{d}\left(\left({ }^{*} A-n\right) \cap \mathbb{N}\right) \geq \alpha$ which implies $\overline{B D}(A)>\alpha$ by the first part, we have that $\bar{f}(n) \leq \alpha$ for all $n \in \Omega$.

Since

$$
\begin{aligned}
\int_{\Omega} \bar{f} d \mu_{\Omega} & =\lim _{m \rightarrow \infty} \frac{1}{m} \sum_{i=0}^{m-1} \int_{\Omega} f\left(T^{i}(n)\right) d \mu_{\Omega} \\
& =\int_{\Omega} f d \mu_{\Omega}=\mu_{\Omega}(B)=\alpha
\end{aligned}
$$

we conclude that $\bar{f}(n)=\alpha$ for μ_{Ω}-almost all $n \in \Omega$. Hence, $\underline{d}\left(\left({ }^{*} A-n\right) \cap \mathbb{N}\right)=d\left(\left({ }^{*} A-n\right) \cap \mathbb{N}\right)=\alpha$ for μ_{Ω}-almost all $n \in \Omega$. \square

Proof of Theorem 3.8: By Theorem 3.7 we can find $k \in{ }^{*} \mathbb{N}$ such that $\underline{d}\left(\left({ }^{*} A-k\right) \cap \mathbb{N}\right)=\alpha$.

For each $m \in \mathbb{N}$ let

Note that n_{m} exists because otherwise we would have

Proof of Theorem 3.8: By Theorem 3.7 we can find $k \in{ }^{*} \mathbb{N}$ such that $\underline{d}\left(\left({ }^{*} A-k\right) \cap \mathbb{N}\right)=\alpha$.

For each $m \in \mathbb{N}$ let

$$
n_{m}:=\max \left\{n \in \mathbb{N}| |\left({ }^{*} A-k\right) \cap\left[n_{m}\right] \leq \alpha-1 / m\right\}
$$

Note that n_{m} exists because otherwise we would have $\underline{d}\left(\left({ }^{*} A-k\right) \cap \mathbb{N}\right) \leq \alpha-1 / m$. Note that $\left|\left({ }^{*} A-k-n_{m}\right) \cap[n]\right| / n>\alpha-1 / m$ for any $n \in 1+[m]$.

Proof of Theorem 3.8: By Theorem 3.7 we can find $k \in{ }^{*} \mathbb{N}$ such that $\underline{d}\left(\left({ }^{*} A-k\right) \cap \mathbb{N}\right)=\alpha$.

For each $m \in \mathbb{N}$ let

$$
\left.n_{m}:=\max \left\{n \in \mathbb{N}| |{ }^{*} A-k\right) \cap\left[n_{m}\right] \leq \alpha-1 / m\right\} .
$$

Note that n_{m} exists because otherwise we would have $\underline{d}\left(\left({ }^{*} A-k\right) \cap \mathbb{N}\right) \leq \alpha-1 / m$. Note that $\left|\left({ }^{*} A-k-n_{m}\right) \cap[n]\right| / n>\alpha-1 / m$ for any $n \in 1+[m]$.

By Proposition 2.8 we can find a hyperfinite integer N such that $\left|\left({ }^{*} A-k-n_{N}\right) \cap[n]\right| / n>\alpha-1 / N$ for any $n \in 1+[N]$. This implies that $\sigma\left(\left({ }^{*} A-k-n_{N}\right) \cap \mathbb{N}\right) \geq \alpha$.

Proof of Theorem 3.8: By Theorem 3.7 we can find $k \in{ }^{*} \mathbb{N}$ such that $\underline{d}\left(\left({ }^{*} A-k\right) \cap \mathbb{N}\right)=\alpha$.

For each $m \in \mathbb{N}$ let

$$
\left.n_{m}:=\max \left\{n \in \mathbb{N}| |{ }^{*} A-k\right) \cap\left[n_{m}\right] \leq \alpha-1 / m\right\}
$$

Note that n_{m} exists because otherwise we would have $\underline{d}\left(\left({ }^{*} A-k\right) \cap \mathbb{N}\right) \leq \alpha-1 / m$. Note that $\left|\left({ }^{*} A-k-n_{m}\right) \cap[n]\right| / n>\alpha-1 / m$ for any $n \in 1+[m]$.

By Proposition 2.8 we can find a hyperfinite integer N such that $\left|\left({ }^{*} A-k-n_{N}\right) \cap[n]\right| / n>\alpha-1 / N$ for any $n \in 1+[N]$. This implies that $\sigma\left(\left({ }^{*} A-k-n_{N}\right) \cap \mathbb{N}\right) \geq \alpha$.

Since $\sigma\left(\left({ }^{*} A-k-n_{N}\right) \cap \mathbb{N}\right)>\alpha$ implies $\underline{d}\left(\left(^{*} A-k-n_{N}\right) \cap \mathbb{N}\right)>\alpha$ which is impossible by Theorem 3.7 we conclude that $\sigma\left(\left({ }^{*} A-k-n_{N}\right) \cap \mathbb{N}\right)=\alpha$.

Theorem (3.10, Mann's Theorem)

Let $A, B \subseteq \mathbb{N}$ and $0 \in A \cap B$. Then

Theorem (3.10, Mann's Theorem)

Let $A, B \subseteq \mathbb{N}$ and $0 \in A \cap B$. Then

$$
\sigma(A+B) \geq \min \{\sigma(A)+\sigma(B), 1\}
$$

Theorem (3.10, Mann's Theorem)

Let $A, B \subseteq \mathbb{N}$ and $0 \in A \cap B$. Then

$$
\sigma(A+B) \geq \min \{\sigma(A)+\sigma(B), 1\}
$$

Theorem (3.11, Upper Banach Density Version)

Let $A, B \subseteq \mathbb{N}$. Then

Theorem (3.10, Mann's Theorem)

Let $A, B \subseteq \mathbb{N}$ and $0 \in A \cap B$. Then

$$
\sigma(A+B) \geq \min \{\sigma(A)+\sigma(B), 1\}
$$

Theorem (3.11, Upper Banach Density Version)

Let $A, B \subseteq \mathbb{N}$. Then

$$
\overline{B D}(A+B+\{0,1\}) \geq \min \{\overline{B D}(A)+\overline{B D}(B), 1\} .
$$

Definition (3.12)

Let $B \subseteq \mathbb{N}$. For a positive integer $h \in \mathbb{N}$, let

$$
h B:=\left\{b_{1}+b_{2}+\cdots+b_{h} \mid b_{i} \in B \text { for } i=1,2, \ldots, h\right\} .
$$

The set B is a basis if $h B=\mathbb{N}$ for some $h \in \mathbb{N}$. The least such h is called the order of B. Clearly, a basis must contain 0 , Suppose B is a basis of order h. For each $m \geq 1$ let $h(m):=\min \left\{h^{\prime} \in \mathbb{N} \mid m \in h^{\prime} B\right\}$. Then, the number

Definition (3.12)

Let $B \subseteq \mathbb{N}$. For a positive integer $h \in \mathbb{N}$, let

$$
h B:=\left\{b_{1}+b_{2}+\cdots+b_{h} \mid b_{i} \in B \text { for } i=1,2, \ldots, h\right\} .
$$

(1) The set B is a basis if $h B=\mathbb{N}$ for some $h \in \mathbb{N}$. The least such h is called the order of B. Clearly, a basis must contain 0 ;
\qquad $h(m):=\min \left\{h^{\prime} \in \mathbb{N} \mid m \in h^{\prime} B\right\}$. Then, the number

Definition (3.12)

Let $B \subseteq \mathbb{N}$. For a positive integer $h \in \mathbb{N}$, let

$$
h B:=\left\{b_{1}+b_{2}+\cdots+b_{h} \mid b_{i} \in B \text { for } i=1,2, \ldots, h\right\} .
$$

(1) The set B is a basis if $h B=\mathbb{N}$ for some $h \in \mathbb{N}$. The least such h is called the order of B. Clearly, a basis must contain 0 ;
(2) Suppose B is a basis of order h. For each $m \geq 1$ let $h(m):=\min \left\{h^{\prime} \in \mathbb{N} \mid m \in h^{\prime} B\right\}$. Then, the number

$$
h^{*}:=\sup _{n \geq 1} \frac{1}{n} \sum_{m=1}^{n} h(m)
$$

is called the average order of B. Note that $h^{*} \leq h$;

Definition (3.12)

(3) The set B is an asymptotic basis if $\mathbb{N} \backslash h_{a} B$ is finite for some $h_{a} \in \mathbb{N}$. The least such h_{a} is called the asymptotic order of B;

is called the asymptotic average order of B. Note that

Definition (3.12)

(3) The set B is an asymptotic basis if $\mathbb{N} \backslash h_{a} B$ is finite for some $h_{a} \in \mathbb{N}$. The least such h_{a} is called the asymptotic order of B;
(4) Suppose B is an asymptotic basis of order $h_{a} \in \mathbb{N}$ and $\mathbb{N} \backslash\left[n_{0}\right] \subseteq h_{a} B$ for some minimal $n_{0} \in \mathbb{N}$. For each $m \geq n_{0}$ let $h(m):=\min \left\{h^{\prime} \in \mathbb{N} \mid m \in h^{\prime} B\right\}$. Then, the number

$$
h_{a}^{*}:=\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{m=n_{0}}^{n_{0}+n-1} h(m)
$$

is called the asymptotic average order of B. Note that $h_{a}^{*} \leq h_{a} ;$

Definition (3.12)

(5) The set B is a piecewise basis if there exists some $h_{p} \in \mathbb{N}$ such that one can find a sequence $k_{n}+\left[m_{n}\right]$ with $m_{n} \rightarrow \infty$ as $n \rightarrow \infty$ satisfying

$$
k_{n}+\left(\left[m_{n}\right]\right) \subseteq h_{p}\left(\left(B-k_{n}\right) \cap \mathbb{N}\right)+k_{n}
$$

for every $n \in \mathbb{N}$. The least such h_{p} is called the piecewise order of B;

Definition (3.12)

(5) The set B is a piecewise basis if there exists some $h_{p} \in \mathbb{N}$ such that one can find a sequence $k_{n}+\left[m_{n}\right]$ with $m_{n} \rightarrow \infty$ as $n \rightarrow \infty$ satisfying

$$
k_{n}+\left(\left[m_{n}\right]\right) \subseteq h_{p}\left(\left(B-k_{n}\right) \cap \mathbb{N}\right)+k_{n}
$$

for every $n \in \mathbb{N}$. The least such h_{p} is called the piecewise order of B;
(6) The set B is a piecewise asymptotic basis if there is an $h_{p a} \in \mathbb{N}$ such that one can find a sequence $k_{n}+\left[m_{n}\right]$ with $m_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and a number $n_{0} \in \mathbb{N}$ satisfying

$$
k_{n}+\left(\left[m_{n}\right] \backslash\left[n_{0}\right]\right) \subseteq h_{p a}\left(\left(B-k_{n}\right) \cap \mathbb{N}\right)+k_{n}
$$

for every $n \in \mathbb{N}$. The least such $h_{p a}$ is called the piecewise asymptotic order of B;

Definition (3.12)

(7) Suppose that B is a piecewise asymptotic basis of piecewise asymptotic order $h_{p a}$. Let \mathcal{I} be the sequence $k_{n}+\left[m_{n}\right]$ and $n_{0} \in \mathbb{N}$ such that $k_{n}+\left(\left[m_{n}\right] \backslash\left[n_{0}\right]\right) \subseteq h_{p a}\left(\left(B-k_{n}\right) \cap \mathbb{N}\right)+k_{n}$ for every $n \in \mathbb{N}$. For each $m \in k_{n}+\left(\left[m_{n}\right] \backslash\left[n_{0}\right]\right)$ let $h(m):=\min \left\{h^{\prime} \in \mathbb{N} \mid m \in h^{\prime}\left(\left(B-k_{n}\right) \cap \mathbb{N}\right)+k_{n}\right.$. Let

$$
\begin{gathered}
h_{n}^{*}:=\sup _{k_{n}+n_{0} \leq m<k_{n}+m_{n}} \frac{1}{m_{n}-n_{0}} \sum_{i=k_{n}+n_{0}}^{k_{n}+m_{n}-1} h(m) \text { and } \\
h_{\mathcal{I}}^{*}:=\limsup _{n \rightarrow \infty} h_{n}^{*} .
\end{gathered}
$$

Then, the number

$$
h_{p a}^{*}:=\inf \left\{h_{\mathcal{I}}^{*} \mid \text { for all suitable } \mathcal{I}\right\}
$$

is called a piecewise asymptotic average order of B.

Theorem (3.13, Rohrback's Theorem)

If B is an asymptotic basis of asymptotic average order h_{a}^{*}, then for any $A \subseteq \mathbb{N}$ we have

$$
\underline{d}(A+B) \geq \underline{d}(A)+\frac{1}{2 h_{a}^{*}} \underline{d}(A)(1-\underline{d}(A)) .
$$

Theorem (3.13, Rohrback's Theorem)

If B is an asymptotic basis of asymptotic average order h_{a}^{*}, then for any $A \subseteq \mathbb{N}$ we have

$$
\underline{d}(A+B) \geq \underline{d}(A)+\frac{1}{2 h_{a}^{*}} \underline{d}(A)(1-\underline{d}(A)) .
$$

Theorem (3.14, Upper Banach Density Version)

If B is a piecewise asymptotic basis of piecewise asymptotic average order $h_{p a}^{*}$, then for any $A \subseteq \mathbb{N}$ we have

$$
\overline{B D}(A+B) \geq \overline{B D}(A)+\frac{1}{2 h_{p a}^{*}} \overline{B D}(A)(1-\overline{B D}(A))
$$

Rohrbach's Theorem is a generalization of Erdős' Theorem that if B is a basis of order h, then for any $A \subseteq \mathbb{N}$ it is true that

$$
\sigma(A+B) \geq \sigma(A)+\frac{1}{2 h} \sigma(A)(1-\sigma(A)) .
$$

Erdős' problems
A set B is called essential component it

Rohrbach's Theorem is a generalization of Erdős' Theorem that if B is a basis of order h, then for any $A \subseteq \mathbb{N}$ it is true that

$$
\sigma(A+B) \geq \sigma(A)+\frac{1}{2 h} \sigma(A)(1-\sigma(A))
$$

Erdős' theorem is for the study of so-called essential component problems.
basis must be an essential component.

Rohrbach's Theorem is a generalization of Erdős' Theorem that if B is a basis of order h, then for any $A \subseteq \mathbb{N}$ it is true that

$$
\sigma(A+B) \geq \sigma(A)+\frac{1}{2 h} \sigma(A)(1-\sigma(A))
$$

Erdős' theorem is for the study of so-called essential component problems. A set B is called essential component if $\sigma(A+B)>\sigma(A)$ for any $A \subseteq \mathbb{N}$ with $0<\sigma(A)<1$. Hence, a basis must be an essential component.

There is another generalization of Erdős' theorem, which is

Rohrbach's Theorem is a generalization of Erdős' Theorem that if B is a basis of order h, then for any $A \subseteq \mathbb{N}$ it is true that

$$
\sigma(A+B) \geq \sigma(A)+\frac{1}{2 h} \sigma(A)(1-\sigma(A)) .
$$

Erdős' theorem is for the study of so-called essential component problems. A set B is called essential component if $\sigma(A+B)>\sigma(A)$ for any $A \subseteq \mathbb{N}$ with $0<\sigma(A)<1$. Hence, a basis must be an essential component.

There is another generalization of Erdős' theorem, which is much more significant than Rohrbach's Theorem does. The following generalization of Erdős' Theorem used a completely different idea from Erdős'.

Theorem (3.15, Plünnecke's Theorem)

Let B be a basis of order h. Then, for any $A \subseteq \mathbb{N}$ we have

$$
\sigma(A+B) \geq \sigma(A)^{1-\frac{1}{h}}
$$

Theorem (3.15, Plünnecke's Theorem)

Let B be a basis of order h. Then, for any $A \subseteq \mathbb{N}$ we have

$$
\sigma(A+B) \geq \sigma(A)^{1-\frac{1}{h}}
$$

It is not too hard to show that
$\sigma(A)^{1-\frac{1}{h}} \geq \sigma(A)+\frac{1}{h} \sigma(A)(1-\sigma(A))$.
a version of Plünnecke's Inequality based on graph theoretic argument. The following lemma is a translation of an inequalit from the language of graph theory to the language of additive number theory.

Theorem (3.15, Plünnecke's Theorem)

Let B be a basis of order h. Then, for any $A \subseteq \mathbb{N}$ we have

$$
\sigma(A+B) \geq \sigma(A)^{1-\frac{1}{h}}
$$

It is not too hard to show that
$\sigma(A)^{1-\frac{1}{h}} \geq \sigma(A)+\frac{1}{h} \sigma(A)(1-\sigma(A))$.
The key component used in the proof of Plünnecke's Theorem is a version of Plünnecke's Inequality based on graph theoretic argument.

Theorem (3.15, Plünnecke's Theorem)

Let B be a basis of order h. Then, for any $A \subseteq \mathbb{N}$ we have

$$
\sigma(A+B) \geq \sigma(A)^{1-\frac{1}{h}}
$$

It is not too hard to show that
$\sigma(A)^{1-\frac{1}{h}} \geq \sigma(A)+\frac{1}{h} \sigma(A)(1-\sigma(A))$.
The key component used in the proof of Plünnecke's Theorem is a version of Plünnecke's Inequality based on graph theoretic argument. The following lemma is a translation of an inequality from the language of graph theory to the language of additive number theory.

Lemma (3.16, Plünnecke's Inequality)

Let $A, B \subseteq \mathbb{N}$ and $h, n \geq 1$ be such that $A \cap[n] \neq \emptyset$. For each $1 \leq i \leq h$ define

$$
\begin{aligned}
& \text { Many interesting subsets of } \mathbb{N} \text { are not bases but asymptotic } \\
& \text { bases. For example, }
\end{aligned}
$$

Lemma (3.16, Plünnecke's Inequality)

Let $A, B \subseteq \mathbb{N}$ and $h, n \geq 1$ be such that $A \cap[n] \neq \emptyset$. For each $1 \leq i \leq h$ define

$$
D_{A, B, n, i}=\min \left\{\frac{\left|\left(A^{\prime}+i B\right) \cap[n]\right|}{\left|A^{\prime} \cap[n]\right|}: \emptyset \neq A^{\prime} \subseteq A \cap[n]\right\} .
$$

Then, $D_{A, B, n, 1} \geq\left(D_{A, B, n, 2}\right)^{1 / 2} \geq \cdots \geq\left(D_{A, B, n, h}\right)^{1 / h}$.

Lemma (3.16, Plünnecke's Inequality)

Let $A, B \subseteq \mathbb{N}$ and $h, n \geq 1$ be such that $A \cap[n] \neq \emptyset$. For each $1 \leq i \leq h$ define

$$
D_{A, B, n, i}=\min \left\{\frac{\left|\left(A^{\prime}+i B\right) \cap[n]\right|}{\left|A^{\prime} \cap[n]\right|}: \emptyset \neq A^{\prime} \subseteq A \cap[n]\right\}
$$

Then, $D_{A, B, n, 1} \geq\left(D_{A, B, n, 2}\right)^{1 / 2} \geq \cdots \geq\left(D_{A, B, n, h}\right)^{1 / h}$.
Many interesting subsets of \mathbb{N} are not bases but asymptotic bases. For example,

Lemma (3.16, Plünnecke's Inequality)

Let $A, B \subseteq \mathbb{N}$ and $h, n \geq 1$ be such that $A \cap[n] \neq \emptyset$. For each $1 \leq i \leq h$ define

$$
D_{A, B, n, i}=\min \left\{\frac{\left|\left(A^{\prime}+i B\right) \cap[n]\right|}{\left|A^{\prime} \cap[n]\right|}: \emptyset \neq A^{\prime} \subseteq A \cap[n]\right\}
$$

Then, $D_{A, B, n, 1} \geq\left(D_{A, B, n, 2}\right)^{1 / 2} \geq \cdots \geq\left(D_{A, B, n, h}\right)^{1 / h}$.
Many interesting subsets of \mathbb{N} are not bases but asymptotic bases. For example,
$P:=\{p \in \mathbb{N} \mid p$ is a prime number $\}$,

Lemma (3.16, Plünnecke's Inequality)

Let $A, B \subseteq \mathbb{N}$ and $h, n \geq 1$ be such that $A \cap[n] \neq \emptyset$. For each $1 \leq i \leq h$ define

$$
D_{A, B, n, i}=\min \left\{\frac{\left|\left(A^{\prime}+i B\right) \cap[n]\right|}{\left|A^{\prime} \cap[n]\right|}: \emptyset \neq A^{\prime} \subseteq A \cap[n]\right\}
$$

Then, $D_{A, B, n, 1} \geq\left(D_{A, B, n, 2}\right)^{1 / 2} \geq \cdots \geq\left(D_{A, B, n, h}\right)^{1 / h}$.
Many interesting subsets of \mathbb{N} are not bases but asymptotic bases. For example,

$$
\begin{aligned}
& P:=\{p \in \mathbb{N} \mid p \text { is a prime number }\} \\
& C_{k}:=\left\{n^{k} \mid n \in \mathbb{N}\right\} \text { for } k \geq 1
\end{aligned}
$$

Lemma (3.16, Plünnecke's Inequality)

Let $A, B \subseteq \mathbb{N}$ and $h, n \geq 1$ be such that $A \cap[n] \neq \emptyset$. For each $1 \leq i \leq h$ define

$$
D_{A, B, n, i}=\min \left\{\frac{\left|\left(A^{\prime}+i B\right) \cap[n]\right|}{\left|A^{\prime} \cap[n]\right|}: \emptyset \neq A^{\prime} \subseteq A \cap[n]\right\}
$$

Then, $D_{A, B, n, 1} \geq\left(D_{A, B, n, 2}\right)^{1 / 2} \geq \cdots \geq\left(D_{A, B, n, h}\right)^{1 / h}$.
Many interesting subsets of \mathbb{N} are not bases but asymptotic bases. For example,

$$
\begin{aligned}
& P:=\{p \in \mathbb{N} \mid p \text { is a prime number }\} \\
& C_{k}:=\left\{n^{k} \mid n \in \mathbb{N}\right\} \text { for } k \geq 1, \\
& P^{2}:=\left\{a^{2} b^{3} \mid a, b \in \mathbb{N} \text { and } a, b \geq 1\right\}, \text { etc. }
\end{aligned}
$$

are asymptotic bases. Therefore, it is interesting to see whether
Plünnecke's Theorem can be generalized to some versions involving

Lemma (3.16, Plünnecke's Inequality)

Let $A, B \subseteq \mathbb{N}$ and $h, n \geq 1$ be such that $A \cap[n] \neq \emptyset$. For each $1 \leq i \leq h$ define

$$
D_{A, B, n, i}=\min \left\{\frac{\left|\left(A^{\prime}+i B\right) \cap[n]\right|}{\left|A^{\prime} \cap[n]\right|}: \emptyset \neq A^{\prime} \subseteq A \cap[n]\right\} .
$$

$$
\text { Then, } D_{A, B, n, 1} \geq\left(D_{A, B, n, 2}\right)^{1 / 2} \geq \cdots \geq\left(D_{A, B, n, h}\right)^{1 / h} \text {. }
$$

Many interesting subsets of \mathbb{N} are not bases but asymptotic bases. For example,

$$
\begin{aligned}
& P:=\{p \in \mathbb{N} \mid p \text { is a prime number }\} \\
& C_{k}:=\left\{n^{k} \mid n \in \mathbb{N}\right\} \text { for } k \geq 1, \\
& P^{2}:=\left\{a^{2} b^{3} \mid a, b \in \mathbb{N} \text { and } a, b \geq 1\right\}, \text { etc. }
\end{aligned}
$$

are asymptotic bases. Therefore, it is interesting to see whether Plünnecke's Theorem can be generalized to some versions involving other densities.

Definition (3.17)

(1) The set $B \subseteq \mathbb{N}$ is a lower asymptotic basis of order $h \in \mathbb{N}$ if $\underline{d}(h B)=1$;

Definition (3.17)

(1) The set $B \subseteq \mathbb{N}$ is a lower asymptotic basis of order $h \in \mathbb{N}$ if $\underline{d}(h B)=1$;
(2) The set $B \subseteq \mathbb{N}$ is an upper asymptotic basis of order $h \in \mathbb{N}$ if $\bar{d}(h B)=1$;

Definition (3.17)

(1) The set $B \subseteq \mathbb{N}$ is a lower asymptotic basis of order $h \in \mathbb{N}$ if $\underline{d}(h B)=1$;
(2) The set $B \subseteq \mathbb{N}$ is an upper asymptotic basis of order $h \in \mathbb{N}$ if $\bar{d}(h B)=1$;
(3) The set $B \subseteq \mathbb{N}$ is an upper Banach basis of order $h \in \mathbb{N}$ if $\overline{B D}(h B)=1$;

Note that P is an asymptotic basis of order 4 by Vinogradov's

 Theorem, or 3 if Goldbach conjecture is true
Definition (3.17)

(1) The set $B \subseteq \mathbb{N}$ is a lower asymptotic basis of order $h \in \mathbb{N}$ if $\underline{d}(h B)=1$;
(2) The set $B \subseteq \mathbb{N}$ is an upper asymptotic basis of order $h \in \mathbb{N}$ if $\bar{d}(h B)=1$;
(3) The set $B \subseteq \mathbb{N}$ is an upper Banach basis of order $h \in \mathbb{N}$ if $\overline{B D}(h B)=1$;
(9) The set $B \subseteq \mathbb{N}$ is a lower Banach basis of order $h \in \mathbb{N}$ if $\underline{B D}(h B)=1$.

[^0]
Definition (3.17)

(1) The set $B \subseteq \mathbb{N}$ is a lower asymptotic basis of order $h \in \mathbb{N}$ if $\underline{d}(h B)=1$;
(2) The set $B \subseteq \mathbb{N}$ is an upper asymptotic basis of order $h \in \mathbb{N}$ if $\bar{d}(h B)=1$;
(3) The set $B \subseteq \mathbb{N}$ is an upper Banach basis of order $h \in \mathbb{N}$ if $\overline{B D}(h B)=1$;
(9) The set $B \subseteq \mathbb{N}$ is a lower Banach basis of order $h \in \mathbb{N}$ if $\underline{B D}(h B)=1$.

Note that P is an asymptotic basis of order 4 by Vinogradov's Theorem, or 3 if Goldbach conjecture is true.

Definition (3.17)

(1) The set $B \subseteq \mathbb{N}$ is a lower asymptotic basis of order $h \in \mathbb{N}$ if $\underline{d}(h B)=1$;
(2) The set $B \subseteq \mathbb{N}$ is an upper asymptotic basis of order $h \in \mathbb{N}$ if $\bar{d}(h B)=1$;
(3) The set $B \subseteq \mathbb{N}$ is an upper Banach basis of order $h \in \mathbb{N}$ if $\overline{B D}(h B)=1$;
(9) The set $B \subseteq \mathbb{N}$ is a lower Banach basis of order $h \in \mathbb{N}$ if $\underline{B D}(h B)=1$.

Note that P is an asymptotic basis of order 4 by Vinogradov's Theorem, or 3 if Goldbach conjecture is true. It is also known that P is a lower asymptotic basis of order 3. P^{2} is an asymptotic basis of order 3 by a result of Heath-Brown.

Definition (3.17)

(1) The set $B \subseteq \mathbb{N}$ is a lower asymptotic basis of order $h \in \mathbb{N}$ if $\underline{d}(h B)=1$;
(2) The set $B \subseteq \mathbb{N}$ is an upper asymptotic basis of order $h \in \mathbb{N}$ if $\bar{d}(h B)=1$;
(3) The set $B \subseteq \mathbb{N}$ is an upper Banach basis of order $h \in \mathbb{N}$ if $\overline{B D}(h B)=1$;
(1) The set $B \subseteq \mathbb{N}$ is a lower Banach basis of order $h \in \mathbb{N}$ if $\underline{B D}(h B)=1$.

Note that P is an asymptotic basis of order 4 by Vinogradov's Theorem, or 3 if Goldbach conjecture is true. It is also known that P is a lower asymptotic basis of order 3. P^{2} is an asymptotic basis of order 3 by a result of Heath-Brown. C_{2} is a basis of order 4 and C_{3} is an asymptotic basis of order at most 7 .

Definition (3.17)

(1) The set $B \subseteq \mathbb{N}$ is a lower asymptotic basis of order $h \in \mathbb{N}$ if $\underline{d}(h B)=1$;
(2) The set $B \subseteq \mathbb{N}$ is an upper asymptotic basis of order $h \in \mathbb{N}$ if $\bar{d}(h B)=1$;
(3) The set $B \subseteq \mathbb{N}$ is an upper Banach basis of order $h \in \mathbb{N}$ if $\overline{B D}(h B)=1$;
(1) The set $B \subseteq \mathbb{N}$ is a lower Banach basis of order $h \in \mathbb{N}$ if $\underline{B D}(h B)=1$.

Note that P is an asymptotic basis of order 4 by Vinogradov's Theorem, or 3 if Goldbach conjecture is true. It is also known that P is a lower asymptotic basis of order 3. P^{2} is an asymptotic basis of order 3 by a result of Heath-Brown. C_{2} is a basis of order 4 and C_{3} is an asymptotic basis of order at most 7. Note also that P, C_{k}, P^{2} are all have upper density 0 .

Theorem (3.18)

Let $A, B \subseteq \mathbb{N}$ and B be a lower asymptotic basis of order h. Then

$$
\underline{d}(A+B) \geqslant \underline{d}(A)^{1-\frac{1}{n}} .
$$

Theorem (3.18)

Let $A, B \subseteq \mathbb{N}$ and B be a lower asymptotic basis of order h. Then

$$
\underline{d}(A+B) \geqslant \underline{d}(A)^{1-\frac{1}{n}} .
$$

Corollary (3.19)

For any $A \subseteq \mathbb{N}$ we haved (A

Theorem (3.18)

Let $A, B \subseteq \mathbb{N}$ and B be a lower asymptotic basis of order h. Then

$$
\underline{d}(A+B) \geqslant \underline{d}(A)^{1-\frac{1}{n}} .
$$

Corollary (3.19)

For any $A \subseteq \mathbb{N}$ we have
(1) $\underline{d}(A+P) \geq \underline{d}(A)^{2 / 3}$;

Theorem (3.18)

Let $A, B \subseteq \mathbb{N}$ and B be a lower asymptotic basis of order h. Then

$$
\underline{d}(A+B) \geqslant \underline{d}(A)^{1-\frac{1}{n}} .
$$

Corollary (3.19)

For any $A \subseteq \mathbb{N}$ we have
(1) $\underline{d}(A+P) \geq \underline{d}(A)^{2 / 3}$;
(2) $\underline{d}\left(A+C_{2}\right) \geq \underline{d}(A)^{3 / 4}$;

Theorem (3.18)

Let $A, B \subseteq \mathbb{N}$ and B be a lower asymptotic basis of order h. Then

$$
\underline{d}(A+B) \geqslant \underline{d}(A)^{1-\frac{1}{n}} .
$$

Corollary (3.19)

For any $A \subseteq \mathbb{N}$ we have
(1) $\underline{d}(A+P) \geq \underline{d}(A)^{2 / 3}$;
(2) $\underline{d}\left(A+C_{2}\right) \geq \underline{d}(A)^{3 / 4}$;
(3) $\underline{d}\left(A+C_{3}\right) \geq \underline{d}(A)^{6 / 7}$;

Theorem (3.18)

Let $A, B \subseteq \mathbb{N}$ and B be a lower asymptotic basis of order h. Then

$$
\underline{d}(A+B) \geqslant \underline{d}(A)^{1-\frac{1}{n}} .
$$

Corollary (3.19)

For any $A \subseteq \mathbb{N}$ we have
(1) $\underline{d}(A+P) \geq \underline{d}(A)^{2 / 3}$;
(2) $\underline{d}\left(A+C_{2}\right) \geq \underline{d}(A)^{3 / 4}$;
(3) $\underline{d}\left(A+C_{3}\right) \geq \underline{d}(A)^{6 / 7}$;
(9) $\underline{d}\left(A+P^{2}\right) \geq \underline{d}(A)^{2 / 3}$.

Theorem (3.19)

There are $A, B \subseteq \mathbb{N}$ with $\bar{d}(A)=\frac{1}{2}$, $\bar{d}(2 B)=1$, and

$$
\bar{d}(A+B)=\bar{d}(A)
$$

Theorem (3.19)

There are $A, B \subseteq \mathbb{N}$ with $\bar{d}(A)=\frac{1}{2}$, $\bar{d}(2 B)=1$, and

$$
\bar{d}(A+B)=\bar{d}(A) .
$$

Theorem (3.20)
Let $A, B \subseteq \mathbb{N}$ and B be a upper Banach basis of order h. Then

$$
\overline{B D}(A+B) \geq \overline{B D}(A)^{1-\frac{1}{h}} .
$$

Theorem (3.19)

There are $A, B \subseteq \mathbb{N}$ with $\bar{d}(A)=\frac{1}{2}$, $\bar{d}(2 B)=1$, and

$$
\bar{d}(A+B)=\bar{d}(A) .
$$

Theorem (3.20)
Let $A, B \subseteq \mathbb{N}$ and B be a upper Banach basis of order h. Then

$$
\overline{B D}(A+B) \geq \overline{B D}(A)^{1-\frac{1}{h}} .
$$

Theorem (3.21)

Let $A, B \subseteq \mathbb{N}$ and B be an upper Banach basis of order h. Then,

$$
\underline{B D}(A+B) \geq \underline{B D}(A)^{1-\frac{1}{h}} .
$$

Note that Theorem 3.18 and Theorem 3.20 show that lower density and upper density are asymmetrical on generalizing Plünnecke's Theorem. Theorem 3.21 and Theorem 3.22 look like following the same pattern but they show also that upper Banach density and lower Banach density are mildly asymmetrical. Both of the theorems require B be upper Banach basis.

Note that Theorem 3.18 and Theorem 3.20 show that lower density and upper density are asymmetrical on generalizing Plünnecke's Theorem. Theorem 3.21 and Theorem 3.22 look like following the same pattern but they show also that upper Banach density and lower Banach density are mildly asymmetrical. Both of the theorems require B be upper Banach basis.

We will prove Theorem 3.18 and Theorem 3.21. The arguments used in the proof of Theorem 3.15 deal with finite intervals of integers and are purely combinatorial. It becomes messy when the limit processes for \underline{d} or $\overline{B D}$ are involved. Using nonstandard analysis, we can transfer the limit processes to combinatorial arguments on intervals of hyperfinite length, which simplify the proofs.

Proof of Theorem 3.18: Let A and B be in Theorem 3.18 such that $\underline{d}(A)=\alpha$ and $\underline{d}(h B)=1$. Without loss of generality, we can assume $0<\alpha<1$. Let N be any hyperfinite integer.

Proof of Theorem 3.18: Let A and B be in Theorem 3.18 such that $\underline{d}(A)=\alpha$ and $\underline{d}(h B)=1$. Without loss of generality, we can assume $0<\alpha<1$. Let N be any hyperfinite integer. We want to show that

$$
\frac{\left|{ }^{*}(A+B) \cap[N]\right|}{N}=\frac{\mid\left({ }^{*} A+{ }^{*} B\right) \cap[N]}{N} \gtrsim \alpha^{1-\frac{1}{h}},
$$

which implies Theorem 3.18 by Proposition 3.5.

Proof of Theorem 3.18: Let A and B be in Theorem 3.18 such that $\underline{d}(A)=\alpha$ and $\underline{d}(h B)=1$. Without loss of generality, we can assume $0<\alpha<1$. Let N be any hyperfinite integer. We want to show that

$$
\frac{\left|{ }^{*}(A+B) \cap[N]\right|}{N}=\frac{\mid\left({ }^{*} A+{ }^{*} B\right) \cap[N]}{N} \gtrsim \alpha^{1-\frac{1}{h}},
$$

which implies Theorem 3.18 by Proposition 3.5. Choose hyperfinite integers $N^{\prime}<K<N$ such that $(N-K) / N \approx 0$ and $\left(K-N^{\prime}\right) /\left(N-N^{\prime}\right) \approx 0$ (for example $K=N-\lfloor\sqrt{N}\rfloor$ and $N^{\prime}=K-\lfloor\sqrt[4]{N}\rfloor$ satisfy the requirements).

Proof of Theorem 3.18: Let A and B be in Theorem 3.18 such that $\underline{d}(A)=\alpha$ and $\underline{d}(h B)=1$. Without loss of generality, we can assume $0<\alpha<1$. Let N be any hyperfinite integer. We want to show that

$$
\frac{\left|{ }^{*}(A+B) \cap[N]\right|}{N}=\frac{\mid\left({ }^{*} A+{ }^{*} B\right) \cap[N]}{N} \gtrsim \alpha^{1-\frac{1}{h}},
$$

which implies Theorem 3.18 by Proposition 3.5. Choose hyperfinite integers $N^{\prime}<K<N$ such that $(N-K) / N \approx 0$ and $\left(K-N^{\prime}\right) /\left(N-N^{\prime}\right) \approx 0$ (for example $K=N-\lfloor\sqrt{N}\rfloor$ and $N^{\prime}=K-\lfloor\sqrt[4]{N}\rfloor$ satisfy the requirements). Let $C_{0}={ }^{*} A \cap[K]$. Then $\left(\left|C_{0} \cap[N]\right|\right) / N \gtrsim \alpha$.

Proof of Theorem 3.18: Let A and B be in Theorem 3.18 such that $\underline{d}(A)=\alpha$ and $\underline{d}(h B)=1$. Without loss of generality, we can assume $0<\alpha<1$. Let N be any hyperfinite integer. We want to show that

$$
\frac{\left|{ }^{*}(A+B) \cap[N]\right|}{N}=\frac{\mid\left({ }^{*} A+{ }^{*} B\right) \cap[N]}{N} \gtrsim \alpha^{1-\frac{1}{h}},
$$

which implies Theorem 3.18 by Proposition 3.5. Choose hyperfinite integers $N^{\prime}<K<N$ such that $(N-K) / N \approx 0$ and $\left(K-N^{\prime}\right) /\left(N-N^{\prime}\right) \approx 0$ (for example $K=N-\lfloor\sqrt{N}\rfloor$ and $N^{\prime}=K-\lfloor\sqrt[4]{N}\rfloor$ satisfy the requirements). Let $C_{0}={ }^{*} A \cap[K]$.
Then $\left(\left|C_{0} \cap[N]\right|\right) / N \gtrsim \alpha$. Next we want to trim C_{0} so that the density of the trimmed set in each interval $\{x, x+1, \ldots, N-1\}$ for every $x \leq K$ would not be too large.

We define C_{k} inductively for $k=0,1, \ldots, N^{\prime}-1$ so that

$$
\begin{gathered}
C_{0} \supseteq C_{1} \supseteq \cdots \supseteq C_{N^{\prime}-1}, \frac{\left|C_{N^{\prime}-1} \cap[N]\right|}{N} \approx \alpha, \text { and } \\
\qquad \frac{\left|C_{N^{\prime}-1} \cap\{x, x+1, \ldots, N-1\}\right|}{N-x} \lesssim \alpha
\end{gathered}
$$

for any $x \leq K$.

We define C_{k} inductively for $k=0,1, \ldots, N^{\prime}-1$ so that

$$
\begin{gathered}
C_{0} \supseteq C_{1} \supseteq \cdots \supseteq C_{N^{\prime}-1}, \frac{\left|C_{N^{\prime}-1} \cap[N]\right|}{N} \approx \alpha, \text { and } \\
\frac{\left|C_{N^{\prime}-1} \cap\{x, x+1, \ldots, N-1\}\right|}{N-x} \lesssim \alpha
\end{gathered}
$$

for any $x \leq K$. Start with C_{0}. For each $k<N^{\prime}-1$ let

$$
C_{k+1}= \begin{cases}C_{k}, & \text { if } \frac{\left|C_{k} \cap\left\{N^{\prime}-k, N^{\prime}-k+1, \ldots, N-1\right\}\right|}{N-N^{\prime}+k} \leq \alpha \\ C_{k} \backslash\left\{N^{\prime}-k\right\}, & \text { otherwise. }\end{cases}
$$

We define C_{k} inductively for $k=0,1, \ldots, N^{\prime}-1$ so that

$$
\begin{gathered}
C_{0} \supseteq C_{1} \supseteq \cdots \supseteq C_{N^{\prime}-1}, \frac{\left|C_{N^{\prime}-1} \cap[N]\right|}{N} \approx \alpha, \text { and } \\
\qquad \frac{\left|C_{N^{\prime}-1} \cap\{x, x+1, \ldots, N-1\}\right|}{N-x} \lesssim \alpha
\end{gathered}
$$

for any $x \leq K$. Start with C_{0}. For each $k<N^{\prime}-1$ let

$$
C_{k+1}= \begin{cases}C_{k}, & \text { if } \frac{\left|C_{k} \cap\left\{N^{\prime}-k, N^{\prime}-k+1, \ldots, N-1\right\}\right|}{N-N^{\prime}+k} \leq \alpha \\ C_{k} \backslash\left\{N^{\prime}-k\right\}, & \text { otherwise. }\end{cases}
$$

It is easy to see that $C_{0}, C_{1}, \ldots, C_{N^{\prime}-1}$ has the desired properties.

We define C_{k} inductively for $k=0,1, \ldots, N^{\prime}-1$ so that

$$
\begin{aligned}
C_{0} \supseteq & C_{1} \supseteq \cdots \supseteq C_{N^{\prime}-1}, \frac{\left|C_{N^{\prime}-1} \cap[N]\right|}{N} \approx \alpha, \text { and } \\
& \frac{\left|C_{N^{\prime}-1} \cap\{x, x+1, \ldots, N-1\}\right|}{N-x} \lesssim \alpha
\end{aligned}
$$

for any $x \leq K$. Start with C_{0}. For each $k<N^{\prime}-1$ let

$$
C_{k+1}= \begin{cases}C_{k}, & \text { if } \frac{\left|C_{k} \cap\left\{N^{\prime}-k, N^{\prime}-k+1, \ldots, N-1\right\}\right|}{N-N^{\prime}+k} \leq \alpha \\ C_{k} \backslash\left\{N^{\prime}-k\right\}, & \text { otherwise. }\end{cases}
$$

It is easy to see that $C_{0}, C_{1}, \ldots, C_{N^{\prime}-1}$ has the desired properties.
Let $A_{0}=C_{N^{\prime}-1}$ and nonempty $A^{\prime} \subseteq A_{0}$ be such that

$$
D_{A_{0},{ }^{*} B, N, h}=\frac{\left.\left|\left(A^{\prime}+h^{*} B\right) \cap[N]\right|\right)}{\left|A^{\prime} \cap[N]\right|}
$$

Let $z=\min A^{\prime}$.

Then $z<K$ because $A_{0} \subseteq[K]$. Hence $N-z$ is hyperfinite, which implies $\frac{\left|\left(h^{*} B\right) \cap[N-z]\right|}{N-z} \approx 1$.

Then $z<K$ because $A_{0} \subseteq[K]$. Hence $N-z$ is hyperfinite, which implies $\frac{\left|\left(h^{*} B\right) \cap[N-z]\right|}{N-z} \approx 1$. By Lemma 3.16 we have

$$
\begin{aligned}
& \frac{\left|\left(A_{0}+{ }^{*} B\right) \cap[N]\right|}{\left|A_{0} \cap[N]\right|}
\end{aligned}
$$

$$
\begin{aligned}
& \gtrsim\left(\frac{\left|\left(z+h^{*} B\right) \cap[N]\right|}{\left.\left|A^{\prime} \cap[N]\right|\right)}\right)^{1 / h} \\
& \gtrsim\left(\frac{\left|\left(h^{*} B\right) \cap[N-z]\right| /(N-z)}{\left|A^{\prime} \cap\{z, z+1, \ldots, N-1\}\right| /(N-z)}\right)^{1 / h} \\
& \gtrsim\left(\frac{1}{\left|A_{0} \cap\{z, z+1, \ldots, N-1\}\right| /(N-z)}\right)^{1 / h} \gtrsim \frac{1}{\alpha^{1 / h}},
\end{aligned}
$$

which implies

$$
\begin{aligned}
& \frac{\left|{ }^{*}(A+B) \cap[N]\right|}{N} \\
& \quad \geq \frac{\left|\left(A_{0}+{ }^{*} B\right) \cap[N]\right|}{N} \gtrsim \frac{\left|A_{0} \cap[N]\right|}{N} \cdot \frac{1}{\alpha^{1 / h}} \gtrsim \alpha^{1-\frac{1}{h}} .
\end{aligned}
$$

which implies

$$
\begin{aligned}
& \frac{\left|{ }^{*}(A+B) \cap[N]\right|}{N} \\
& \quad \geq \frac{\left|\left(A_{0}+{ }^{*} B\right) \cap[N]\right|}{N} \gtrsim \frac{\left|A_{0} \cap[N]\right|}{N} \cdot \frac{1}{\alpha^{1 / h}} \gtrsim \alpha^{1-\frac{1}{h}} .
\end{aligned}
$$

Since N is an arbitrary hyperfinite integer, Theorem 3.18 is proven with the help of Proposition 3.5.

Proof of Theorem 3.21: Let A and B be in Theorem 3.21 with $\overline{B D}(A)=\alpha$ and $\overline{B D}(h B)=1$ for some $h \in \mathbb{N}$.

Proof of Theorem 3.21: Let A and B be in Theorem 3.21 with $\overline{B D}(A)=\alpha$ and $\overline{B D}(h B)=1$ for some $h \in \mathbb{N}$.

Theorem 3.21 is trivially true if $\overline{B D}(A)=0$ or $\overline{B D}(A)=1$. So, we can assume that $0<\alpha=\overline{B D}(A)<1$.

Proof of Theorem 3.21: Let A and B be in Theorem 3.21 with $\overline{B D}(A)=\alpha$ and $\overline{B D}(h B)=1$ for some $h \in \mathbb{N}$.

Theorem 3.21 is trivially true if $\overline{B D}(A)=0$ or $\overline{B D}(A)=1$. So, we can assume that $0<\alpha=\overline{B D}(A)<1$.

Let $n \in{ }^{*} \mathbb{N}$ and K be a hyperfinite integer such that $n+[K] \subseteq\left(h^{*} B\right)$.

Proof of Theorem 3.21: Let A and B be in Theorem 3.21 with $\overline{B D}(A)=\alpha$ and $\overline{B D}(h B)=1$ for some $h \in \mathbb{N}$.

Theorem 3.21 is trivially true if $\overline{B D}(A)=0$ or $\overline{B D}(A)=1$. So, we can assume that $0<\alpha=\overline{B D}(A)<1$.

Let $n \in{ }^{*} \mathbb{N}$ and K be a hyperfinite integer such that $n+[K] \subseteq\left(h^{*} B\right)$.

Choose N large enough so that $(n+K) / N \approx 0$ and $\left.\right|^{*} A \cap(m+[N]) \mid / N \approx \alpha$ for some $m \in{ }^{*} \mathbb{N}$.

Proof of Theorem 3.21: Let A and B be in Theorem 3.21 with $\overline{B D}(A)=\alpha$ and $\overline{B D}(h B)=1$ for some $h \in \mathbb{N}$.

Theorem 3.21 is trivially true if $\overline{B D}(A)=0$ or $\overline{B D}(A)=1$. So, we can assume that $0<\alpha=\overline{B D}(A)<1$.

Let $n \in{ }^{*} \mathbb{N}$ and K be a hyperfinite integer such that $n+[K] \subseteq\left(h^{*} B\right)$.

Choose N large enough so that $(n+K) / N \approx 0$ and $\left.\right|^{*} A \cap(m+[N]) \mid / N \approx \alpha$ for some $m \in{ }^{*} \mathbb{N}$.

It suffices to show that

$$
\frac{\left|\left({ }^{*} A \cap(m+[N])+{ }^{*} B\right) \cap(m+[N])\right|}{N} \gtrsim \alpha^{1-\frac{1}{h}}
$$

by Proposition 3.6.

Let $A_{0}=\left({ }^{*} A \cap(m+[N-n-K])-m\right.$. By the choice of N and A_{0} we have
$\frac{\left|A_{0} \cap[N]\right|}{N} \approx \alpha$ and $\frac{\left|\left(A_{0}+{ }^{*} B\right) \cap[N]\right|}{N} \lesssim \frac{\left|\left({ }^{*} A+{ }^{*} B\right) \cap(m+[N])\right|}{N}$.

Let $A_{0}=\left({ }^{*} A \cap(m+[N-n-K])-m\right.$. By the choice of N and A_{0} we have
$\frac{\left|A_{0} \cap[N]\right|}{N} \approx \alpha$ and $\frac{\left|\left(A_{0}+{ }^{*} B\right) \cap[N]\right|}{N} \lesssim \frac{\left|\left({ }^{*} A+{ }^{*} B\right) \cap(m+[N])\right|}{N}$.
It now suffices to show that

$$
\frac{\left|\left(A_{0}+{ }^{*} B\right) \cap[N]\right|}{N} \gtrsim \alpha^{1-\frac{1}{h}} .
$$

Let $A_{0}=\left({ }^{*} A \cap(m+[N-n-K])-m\right.$. By the choice of N and A_{0} we have
$\frac{\left|A_{0} \cap[N]\right|}{N} \approx \alpha$ and $\frac{\left|\left(A_{0}+{ }^{*} B\right) \cap[N]\right|}{N} \lesssim \frac{\left|\left({ }^{*} A+{ }^{*} B\right) \cap(m+[N])\right|}{N}$.
It now suffices to show that

$$
\frac{\left|\left(A_{0}+{ }^{*} B\right) \cap[N]\right|}{N} \gtrsim \alpha^{1-\frac{1}{h}} .
$$

Let $A^{\prime} \subseteq A_{0}$ be nonempty such that

$$
D_{A_{0},{ }^{*} B, N, h}=\frac{\left|\left(A^{\prime}+h^{*} B\right) \cap[N]\right|}{\left|A^{\prime} \cap[N]\right|} .
$$

Claim:

$$
\frac{\left|\left(A^{\prime}+h^{*} B\right) \cap[N]\right|}{\left|A^{\prime} \cap[N]\right|}=D_{A_{0}, * B, H, h} \gtrsim \frac{1}{\alpha} .
$$

Claim:

$$
\frac{\left|\left(A^{\prime}+h^{*} B\right) \cap[N]\right|}{\left|A^{\prime} \cap[N]\right|}=D_{A_{0},{ }^{*} B, H, h} \gtrsim \frac{1}{\alpha} .
$$

Proof of Claim: Let $H=\lfloor K / 2\rfloor$ and let $I_{i}=i H+[H]$ for $i=0,1, \ldots\lfloor N / H\rfloor-1$, and let

$$
I_{\lfloor N / H\rfloor}=\lfloor N / H\rfloor \cdot H+[N-\lfloor N / H\rfloor \cdot H] .
$$

Claim:

$$
\frac{\left|\left(A^{\prime}+h^{*} B\right) \cap[N]\right|}{\left|A^{\prime} \cap[N]\right|}=D_{A_{0}, * B, H, h} \gtrsim \frac{1}{\alpha} .
$$

Proof of Claim: Let $H=\lfloor K / 2\rfloor$ and let $I_{i}=i H+[H]$ for $i=0,1, \ldots\lfloor N / H\rfloor-1$, and let

$$
I_{\lfloor N / H\rfloor}=\lfloor N / H\rfloor \cdot H+[N-\lfloor N / H\rfloor \cdot H] .
$$

Denote

$$
\mathcal{I}:=\left\{I_{i} \mid i \in[\lfloor N / H\rfloor+1] \text { and } I_{i} \cap A^{\prime} \neq \emptyset\right\} .
$$

Claim:

$$
\frac{\left|\left(A^{\prime}+h^{*} B\right) \cap[N]\right|}{\left|A^{\prime} \cap[N]\right|}=D_{A_{0},{ }^{*} B, H, h} \gtrsim \frac{1}{\alpha} .
$$

Proof of Claim: Let $H=\lfloor K / 2\rfloor$ and let $I_{i}=i H+[H]$ for $i=0,1, \ldots\lfloor N / H\rfloor-1$, and let

$$
I_{\lfloor N / H\rfloor}=\lfloor N / H\rfloor \cdot H+[N-\lfloor N / H\rfloor \cdot H] .
$$

Denote

$$
\mathcal{I}:=\left\{I_{i} \mid i \in[\lfloor N / H\rfloor+1] \text { and } I_{i} \cap A^{\prime} \neq \emptyset\right\} .
$$

Then

$$
\left|\left(A^{\prime}+h^{*} B\right) \cap[N]\right| \geqslant|\mathcal{I}| \cdot H
$$

Claim:

$$
\frac{\left|\left(A^{\prime}+h^{*} B\right) \cap[N]\right|}{\left|A^{\prime} \cap[N]\right|}=D_{A_{0},{ }^{*} B, H, h} \gtrsim \frac{1}{\alpha} .
$$

Proof of Claim: Let $H=\lfloor K / 2\rfloor$ and let $I_{i}=i H+[H]$ for $i=0,1, \ldots\lfloor N / H\rfloor-1$, and let

$$
I_{\lfloor N / H\rfloor}=\lfloor N / H\rfloor \cdot H+[N-\lfloor N / H\rfloor \cdot H] .
$$

Denote

$$
\mathcal{I}:=\left\{I_{i} \mid i \in[\lfloor N / H\rfloor+1] \text { and } I_{i} \cap A^{\prime} \neq \emptyset\right\} .
$$

Then

$$
\left|\left(A^{\prime}+h^{*} B\right) \cap[N]\right| \geqslant|\mathcal{I}| \cdot H
$$

because $H \leq K / 2$, every element in A^{\prime} is less than or equal to $N-n-K$, and $H+n+I_{i} \subseteq\left(A^{\prime}+h^{*} B\right) \cap[N]$ if $A^{\prime} \cap I_{i} \neq \emptyset$ for every $i=0,1, \ldots,\lfloor H / N\rfloor$.

Given a positive standard real ϵ, we have

$$
\left|A^{\prime} \cap[N]\right| \leqslant|\mathcal{I}| \cdot(\alpha+\epsilon) H
$$

because $\left|A^{\prime} \cap I_{i}\right| /\left|I_{i}\right| \lesssim \alpha$ when $\left|I_{i}\right|$ is hyperfinite by Proposition 3.6.
\qquad

Given a positive standard real ϵ, we have

$$
\left|A^{\prime} \cap[N]\right| \leqslant|\mathcal{I}| \cdot(\alpha+\epsilon) H
$$

because $\left|A^{\prime} \cap I_{i}\right| /\left|I_{i}\right| \lesssim \alpha$ when $\left|I_{i}\right|$ is hyperfinite by Proposition 3.6. Because ϵ is an arbitrary standard positive real number, we have that

$$
\frac{\left|\left(A^{\prime}+h^{*} B\right) \cap[N]\right|}{\left|A^{\prime} \cap[N]\right|} \gtrsim \frac{|\mathcal{I}| \cdot H}{|\mathcal{I}| \cdot \alpha H}=\frac{1}{\alpha} .
$$

Given a positive standard real ϵ, we have

$$
\left|A^{\prime} \cap[N]\right| \leqslant|\mathcal{I}| \cdot(\alpha+\epsilon) H
$$

because $\left|A^{\prime} \cap I_{i}\right| /\left|I_{i}\right| \lesssim \alpha$ when $\left|I_{i}\right|$ is hyperfinite by Proposition 3.6. Because ϵ is an arbitrary standard positive real number, we have that

$$
\frac{\left|\left(A^{\prime}+h^{*} B\right) \cap[N]\right|}{\left|A^{\prime} \cap[N]\right|} \gtrsim \frac{|\mathcal{I}| \cdot H}{|\mathcal{I}| \cdot \alpha H}=\frac{1}{\alpha} .
$$

This completes the proof of the claim.
\qquad

Given a positive standard real ϵ, we have

$$
\left|A^{\prime} \cap[N]\right| \leqslant|\mathcal{I}| \cdot(\alpha+\epsilon) H
$$

because $\left|A^{\prime} \cap I_{i}\right| /\left|I_{i}\right| \lesssim \alpha$ when $\left|I_{i}\right|$ is hyperfinite by Proposition 3.6. Because ϵ is an arbitrary standard positive real number, we have that

$$
\frac{\left|\left(A^{\prime}+h^{*} B\right) \cap[N]\right|}{\left|A^{\prime} \cap[N]\right|} \gtrsim \frac{|\mathcal{I}| \cdot H}{|\mathcal{I}| \cdot \alpha H}=\frac{1}{\alpha} .
$$

This completes the proof of the claim.
We continue to prove Theorem 3.21.

Given a positive standard real ϵ, we have

$$
\left|A^{\prime} \cap[N]\right| \leqslant|\mathcal{I}| \cdot(\alpha+\epsilon) H
$$

because $\left|A^{\prime} \cap I_{i}\right| /\left|I_{i}\right| \lesssim \alpha$ when $\left|I_{i}\right|$ is hyperfinite by Proposition 3.6. Because ϵ is an arbitrary standard positive real number, we have that

$$
\frac{\left|\left(A^{\prime}+h^{*} B\right) \cap[N]\right|}{\left|A^{\prime} \cap[N]\right|} \gtrsim \frac{|\mathcal{I}| \cdot H}{|\mathcal{I}| \cdot \alpha H}=\frac{1}{\alpha} .
$$

This completes the proof of the claim.
We continue to prove Theorem 3.21. Combine the arguments above and Theorem 3.16 we now have

Given a positive standard real ϵ, we have

$$
\left|A^{\prime} \cap[N]\right| \leqslant|\mathcal{I}| \cdot(\alpha+\epsilon) H
$$

because $\left|A^{\prime} \cap I_{i}\right| /\left|I_{i}\right| \lesssim \alpha$ when $\left|I_{i}\right|$ is hyperfinite by Proposition 3.6. Because ϵ is an arbitrary standard positive real number, we have that

$$
\frac{\left|\left(A^{\prime}+h^{*} B\right) \cap[N]\right|}{\left|A^{\prime} \cap[N]\right|} \gtrsim \frac{|\mathcal{I}| \cdot H}{|\mathcal{I}| \cdot \alpha H}=\frac{1}{\alpha} .
$$

This completes the proof of the claim.
We continue to prove Theorem 3.21. Combine the arguments above and Theorem 3.16 we now have

$$
\begin{gathered}
\frac{\left|\left(A_{0}+{ }^{*} B\right) \cap[N]\right|}{\left|A_{0} \cap[N]\right|} \gtrsim D_{A_{0},{ }^{*} B, N, 1} \geq\left(D_{A_{0}, * B, N, h}\right)^{1 / h} \\
\quad=\left(\frac{\left|\left(A^{\prime}+h^{*} B\right) \cap[N]\right|}{\left|A^{\prime} \cap[N]\right|}\right)^{1 / h} \gtrsim \frac{1}{\alpha^{1 / h}} .
\end{gathered}
$$

Hence

$$
\begin{gathered}
\frac{|*(A+B) \cap[N]|}{N} \gtrsim \frac{\left|\left(A_{0}+{ }^{*} B\right) \cap[N]\right|}{N} \\
\gtrsim \frac{\left|A_{0} \cap[N]\right|}{N} \cdot \frac{1}{\alpha^{1 / h}} \approx \alpha^{1-\frac{1}{h}},
\end{gathered}
$$

Hence

$$
\begin{gathered}
\frac{|*(A+B) \cap[N]|}{N} \gtrsim \frac{\left|\left(A_{0}+{ }^{*} B\right) \cap[N]\right|}{N} \\
\gtrsim \frac{\left|A_{0} \cap[N]\right|}{N} \cdot \frac{1}{\alpha^{1 / h}} \approx \alpha^{1-\frac{1}{h}},
\end{gathered}
$$

which implies Theorem 3.21 by Proposition 3.6.

The End of Day Three

Thank you for your attention.

[^0]: Note that P is an asymptotic basis of order 4 by Vinogradov's Theorem, or 3 if Goldbach conjecture is true. It is also known that P is a lower asymptotic basis of order 3. P^{2} is an asymptotic basis of order 3 by a result of Heath-Brown.

