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Nonstandard Versions of Densities
By-one-get-one-free Thesis

Plünnecke’s Inequalities

An apparent reason why nonstandard analysis should be a useful
tool for other fields of mathematics is that a limit process which
involves rank 3 objects in V such as the limit of a sequence or a
function with real values can be changed to an infinitesimal
argument with rank 0 objects such as infinitesimals in ∗V. So,
good candidates for the applications of nonstandard analysis
should be something involving limit processes. This may be why
the density problems receive attention from nonstandard analysts.
The densities introduced in this section are Shnirel’man density,
lower and upper (asymptotic) density, and lower and upper Banach
density.

For two sets A,B ⊆ N, let
A + B := {a + b | a ∈ A and b ∈ B}. If A = {a} we write a + B
instead of {a}+ B for simplicity. If r , r ′ ∈ ∗R, we write r ' r ′ for
r > r ′ or r ≈ r ′ and r / r ′ for r < r ′ or r ≈ r ′.
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Nonstandard Versions of Densities
By-one-get-one-free Thesis

Plünnecke’s Inequalities

Definition (3.1)

Let A ⊆ N. The Shnirel’man density σ(A), lower density d(A),
upper density d(A), upper Banach density BD(A), and lower
Banach density BD(A) of A are defined by

1 σ(A) := inf
n≥1

|A ∩ (1 + [n])|
n

;

2 d(A) := lim inf
n→∞

|A ∩ [n]|
n

;

3 d(A) := lim sup
n→∞

|A ∩ [n]|
n

;

4 BD(A) := lim
n→∞

sup
k∈N

|A ∩ (k + [n])|
n

;

5 BD(A) := lim
n→∞

inf
k∈N

|A ∩ (k + [n])|
n

.
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Plünnecke’s Inequalities

Remark (3.2)

1 In the definition of σ(A), we have 1 + [n] = {1, 2, . . . , n}.
Hence, 0, in or not in A, does not play any role. If σ(A) > 0,
then 1 ∈ A;

2 If d(A) = d(A), we say that the (asymptotic) density of A
exists and is denoted by d(A);

3 If BD(A) = BD(A), we say that the Banach density of A
exists and is denoted by BD(A);

4 In the definition of BD(A) the limit of sup
k∈N

|A ∩ (k + [n])|
n

as

n→∞ always exists.
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Plünnecke’s Inequalities

The following Proposition is direct consequences of the
definition.

Proposition (3.3)

For any A ⊆ N we have

0 ≤ min{σ(A),BD(A)} ≤ max{σ(A),BD(A)}
≤ d(A) ≤ d(A) ≤ BD(A) ≤ 1.

Lemma (3.4)

Let A ⊆ N. Then, BD(A) is the largest real α in [0, 1] such that
there exist km, nm ∈ N with nm →∞ as m→∞ such that

lim
m→∞

|A ∩ (km + [nm])|
nm

= α.
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Proposition (3.5)

Let A ⊆ N and α ∈ R. Then

1 d(A) ≥ α iff
|∗A ∩ [N]|

N
' α for any hyperfinite integer N;

2 d(A) ≥ α iff
|∗A ∩ [N]|

N
' α for some hyperfinite integer N.

Proof: Part 1. “⇒”: Let N be an arbitrary hyperfinite integer.
Since for each ε > 0, there exists an n0 ∈ N such that

∀n ∈ N
(

n ≥ n0 →
|A ∩ [n]|

n
> α− ε

)
.

By the transfer principle, it is true that

∀n ∈ ∗N
(

n ≥ n0 →
|∗A ∩ [n]|

n
> α− ε

)
.
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Since N ∈ ∗N and N ≥ n0, we have
|∗A ∩ [N]|

N
> α− ε. Since

ε > 0 can be arbitrarily small, we have that
|∗A ∩ [N]|

N
' α.

Part 1. “⇐”: Suppose d(A) < α. Let α′ = (α + d(A))/2, then
there is an increasing sequence n1 < n2 < · · · such that

∀i ∈ N
(
|A ∩ [ni ]|

ni
< α′

)
. By the transfer principle the sentence

∀i ∈ ∗N
(
|∗A ∩ [ni ]|

ni
< α′

)
is true in ∗V.

Let N ′ be a hyperfinite integer and N := nN′ . Then, N is

hyperfinite and
|∗A ∩ [N]|

N
/ α′ < α. Hence, the right side of Part

1 is false.

The proof of Part 2 is left to the reader. 2
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Proposition (3.6)

Let A ⊆ N and α ∈ R. Then

1 BD(A) ≥ α iff
|∗A ∩ (k + [N])|

N
' α for any k ∈ ∗N and any

hyperfinite integer N;

2 BD(A) ≥ α iff
|∗A ∩ (k + [N])|

N
' α for some k ∈ ∗N and

some hyperfinite integer N.

Proof: We prove Part 2. The proof of Part 1 is left to the reader.

Part 2. “⇒”: Given m ∈ N, there exist km ∈ N and nm > m
such that

|A ∩ (km + [nm])|
nm

> α− 1

m
.
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some hyperfinite integer N.

Proof: We prove Part 2. The proof of Part 1 is left to the reader.

Part 2. “⇒”: Given m ∈ N, there exist km ∈ N and nm > m
such that

|A ∩ (km + [nm])|
nm

> α− 1

m
.
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Plünnecke’s Inequalities

Part 2. “⇐”: Assume that BD(A) < α. Let
α′ = (α + BD(A))/2. Then, there exists an n0 ∈ N such that the
following sentence is true in V:

∀k, n ∈ N
(

n ≥ n0 →
|A ∩ (k + [n])|

n
≤ α′

)
.

By the transfer principle, the following is true in ∗V:

∀k , n ∈ ∗N
(

n ≥ n0 →
|A ∩ (k + [n])|

n
≤ α′

)
.

Since hyperfinite integers are greater than n0, the right side of Part
2 is false. 2
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Nonstandard Versions of Densities
By-one-get-one-free Thesis

Plünnecke’s Inequalities

Shnirel’man density and lower density are most used densities by
number theorists. For example, Shnirel’man proved that if a set A
has positive Shnirel’man density, then there is a fixed k such that
every positive integer is the sum of at most k numbers in A. If P is
the set of all prime numbers, then A := ({0, 1} ∪ P) + ({0, 1} ∪ P)
has positive Shnirel’man density, therefore, every positive integer is
the sum of at most 2k prime numbers. This is the first nontrivial
result towards the solution of Goldbach conjecture.

The buy-one-get-one-free thesis is the following statement:

There is a parallel result involving upper Banach density
for every existing result involving Shnirel’man density or
lower density.

The thesis makes sense because of the following two theorems.
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Nonstandard Versions of Densities
By-one-get-one-free Thesis

Plünnecke’s Inequalities

Theorem (3.7)

If A ⊆ N and BD(A) = α, then there is an k ∈ ∗N and a
hyperfinite integer N such that for µΩ-almost all n ∈ k + [N]
where µΩ is the Loeb measure on Ω := k + [N], we have
d((∗A− n) ∩ N) = α.

On the other hand, if A ⊆ N and there is a positive integer
n ∈ ∗N such that d((∗A− n) ∩ N) ≥ α, then BD(A) ≥ α.

Theorem (3.8)

If A ⊆ N and BD(A) = α, then there is an n ∈ ∗N such that

σ((∗A− n) ∩ N) = α.
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Nonstandard Versions of Densities
By-one-get-one-free Thesis

Plünnecke’s Inequalities

To present short proofs of Theorem 3.7 and Theorem 3.8 we
borrow the following Birkhoff’s Ergodic Theorem.

Theorem (3.9, Birkhoff’s Ergodic Theorem)

Let (Ω,Σ, µ) be a probability space and T be a
measure-preserving transformation from Ω to Ω. For every
f ∈ L1(Ω), there exists a T -invariant f̄ ∈ L1(Ω) such that for
µ-almost all x ∈ Ω,

lim
n→∞

1

n

n−1∑
k=0

f (T k(x)) = f̄ (x),

where T 0 is the identity map and T k+1(x) = T (T k(x)) for every
k ∈ N.
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Nonstandard Versions of Densities
By-one-get-one-free Thesis

Plünnecke’s Inequalities

Proof of Theorem 3.7: We prove the second part first. Assume
that d((∗A− k) ∩ N) ≥ α for some k ∈ ∗N. For each m ∈ N there
exists nm ∈ N such that

|∗A ∩ (k + [n])|
n

≥ α− 1

m

for every n ≥ nm. By Proposition 2.8 there is a hyperfinite integer
N ′ such that

|∗A ∩ (k + [n])|
n

≥ α− 1

N ′
≈ α

for every n ≥ nN′ . Choose N ≥ nN′ to be hyperfinite. Then,

|∗A ∩ (k + [N])|
N

' α,

which implies BD(A) ≥ α by Part 2 of Proposition 3.6.
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Plünnecke’s Inequalities

Now we prove the first part. Assume BD(A) = α. By Part 2 of
Proposition 2.8 there is a k ∈ ∗N and hyperfinite integer N such
that |∗A ∩ (k + [N])|/N ≈ α. Let Ω := k + [N], (Ω; Σ, µΩ) be the
Loeb space, B := ∗A ∩ Ω, and f : Ω→ R be the characteristic
function of B. Then, f ∈ L1(Ω), i.e., f is integrable. Let
T (n) = n + 1 for all n ∈ Ω, n 6= k + N − 1 and T (k + N − 1) = k .
Then T is a measure-preserving transformation on Ω.

By Birkhoff Ergodic Theorem there is a T -invariant f̄ ∈ L1(Ω)
such that there is a X ⊆ Ω with µΩ(X ) = 1 such that for all n ∈ X
we have

f̄ (n) = lim
m→∞

1

m

m−1∑
i=0

f (T i (n)) = lim
m→∞

1

m

m−1∑
i=0

f (n + i)

= lim
m→∞

|B ∩ (n + [m])|
m

= d((∗A− n) ∩ N).
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Since f̄ (n) > α implies d((∗A− n) ∩ N) > α which implies
BD(A) > α by the first part, we have that f̄ (n) ≤ α for all n ∈ Ω.

Since ∫
Ω

f̄ dµΩ = lim
m→∞

1

m

m−1∑
i=0

∫
Ω

f (T i (n))dµΩ

=

∫
Ω

fdµΩ = µΩ(B) = α,

we conclude that f̄ (n) = α for µΩ-almost all n ∈ Ω. Hence,
d((∗A− n)∩N) = d((∗A− n)∩N) = α for µΩ-almost all n ∈ Ω. 2
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Plünnecke’s Inequalities

Proof of Theorem 3.8: By Theorem 3.7 we can find k ∈ ∗N such
that d((∗A− k) ∩ N) = α.

For each m ∈ N let

nm := max{n ∈ N | |(∗A− k) ∩ [nm] ≤ α− 1/m}.

Note that nm exists because otherwise we would have
d((∗A− k) ∩ N) ≤ α− 1/m. Note that
|(∗A− k − nm) ∩ [n]|/n > α− 1/m for any n ∈ 1 + [m].

By Proposition 2.8 we can find a hyperfinite integer N such that
|(∗A− k − nN) ∩ [n]|/n > α− 1/N for any n ∈ 1 + [N]. This
implies that σ((∗A− k − nN) ∩ N) ≥ α.

Since σ((∗A− k − nN) ∩ N) > α implies
d((∗A− k − nN) ∩ N) > α which is impossible by Theorem 3.7 we
conclude that σ((∗A− k − nN) ∩ N) = α. 2.
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Plünnecke’s Inequalities

Theorem (3.10, Mann’s Theorem)

Let A,B ⊆ N and 0 ∈ A ∩ B. Then

σ(A + B) ≥ min{σ(A) + σ(B), 1}.

Theorem (3.11, Upper Banach Density Version)

Let A,B ⊆ N. Then

BD(A + B + {0, 1}) ≥ min{BD(A) + BD(B), 1}.

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Nonstandard Versions of Densities
By-one-get-one-free Thesis

Plünnecke’s Inequalities

Theorem (3.10, Mann’s Theorem)

Let A,B ⊆ N and 0 ∈ A ∩ B. Then

σ(A + B) ≥ min{σ(A) + σ(B), 1}.

Theorem (3.11, Upper Banach Density Version)

Let A,B ⊆ N. Then

BD(A + B + {0, 1}) ≥ min{BD(A) + BD(B), 1}.

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Nonstandard Versions of Densities
By-one-get-one-free Thesis

Plünnecke’s Inequalities

Theorem (3.10, Mann’s Theorem)

Let A,B ⊆ N and 0 ∈ A ∩ B. Then

σ(A + B) ≥ min{σ(A) + σ(B), 1}.

Theorem (3.11, Upper Banach Density Version)

Let A,B ⊆ N. Then

BD(A + B + {0, 1}) ≥ min{BD(A) + BD(B), 1}.

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Nonstandard Versions of Densities
By-one-get-one-free Thesis

Plünnecke’s Inequalities

Theorem (3.10, Mann’s Theorem)

Let A,B ⊆ N and 0 ∈ A ∩ B. Then

σ(A + B) ≥ min{σ(A) + σ(B), 1}.

Theorem (3.11, Upper Banach Density Version)

Let A,B ⊆ N. Then

BD(A + B + {0, 1}) ≥ min{BD(A) + BD(B), 1}.

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Nonstandard Versions of Densities
By-one-get-one-free Thesis

Plünnecke’s Inequalities

Definition (3.12)

Let B ⊆ N. For a positive integer h ∈ N, let

hB := {b1 + b2 + · · ·+ bh | bi ∈ B for i = 1, 2, . . . , h}.

(1) The set B is a basis if hB = N for some h ∈ N. The least such
h is called the order of B. Clearly, a basis must contain 0;

(2) Suppose B is a basis of order h. For each m ≥ 1 let
h(m) := min{h′ ∈ N | m ∈ h′B}. Then, the number

h∗ := sup
n≥1

1

n

n∑
m=1

h(m)

is called the average order of B. Note that h∗ ≤ h;
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Definition (3.12)

(3) The set B is an asymptotic basis if N \ haB is finite for some
ha ∈ N. The least such ha is called the asymptotic order of B;

(4) Suppose B is an asymptotic basis of order ha ∈ N and
N \ [n0] ⊆ haB for some minimal n0 ∈ N. For each m ≥ n0 let
h(m) := min{h′ ∈ N | m ∈ h′B}. Then, the number

h∗a := lim sup
n→∞

1

n

n0+n−1∑
m=n0

h(m)

is called the asymptotic average order of B. Note that
h∗a ≤ ha;
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Plünnecke’s Inequalities

Definition (3.12)

(5) The set B is a piecewise basis if there exists some hp ∈ N
such that one can find a sequence kn + [mn] with mn →∞ as
n→∞ satisfying

kn + ([mn]) ⊆ hp((B − kn) ∩ N) + kn

for every n ∈ N. The least such hp is called the piecewise
order of B;

(6) The set B is a piecewise asymptotic basis if there is an
hpa ∈ N such that one can find a sequence kn + [mn] with
mn →∞ as n→∞ and a number n0 ∈ N satisfying

kn + ([mn] \ [n0]) ⊆ hpa((B − kn) ∩ N) + kn

for every n ∈ N. The least such hpa is called the piecewise
asymptotic order of B;
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Definition (3.12)

(7) Suppose that B is a piecewise asymptotic basis of piecewise
asymptotic order hpa. Let I be the sequence kn + [mn] and
n0 ∈ N such that kn + ([mn] \ [n0]) ⊆ hpa((B − kn) ∩ N) + kn
for every n ∈ N. For each m ∈ kn + ([mn] \ [n0]) let
h(m) := min{h′ ∈ N | m ∈ h′((B − kn) ∩ N) + kn. Let

h∗n := sup
kn+n0≤m<kn+mn

1

mn − n0

kn+mn−1∑
i=kn+n0

h(m) and

h∗I := lim sup
n→∞

h∗n.

Then, the number

h∗pa := inf{h∗I | for all suitable I}

is called a piecewise asymptotic average order of B.
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Plünnecke’s Inequalities

Theorem (3.13, Rohrback’s Theorem)

If B is an asymptotic basis of asymptotic average order h∗a, then
for any A ⊆ N we have

d(A + B) ≥ d(A) +
1

2h∗a
d(A)(1− d(A)).

Theorem (3.14, Upper Banach Density Version)

If B is a piecewise asymptotic basis of piecewise asymptotic
average order h∗pa, then for any A ⊆ N we have

BD(A + B) ≥ BD(A) +
1

2h∗pa
BD(A)(1− BD(A)).
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Plünnecke’s Inequalities

Rohrbach’s Theorem is a generalization of Erdős’ Theorem that
if B is a basis of order h, then for any A ⊆ N it is true that

σ(A + B) ≥ σ(A) +
1

2h
σ(A)(1− σ(A)).

Erdős’ theorem is for the study of so-called essential component
problems. A set B is called essential component if
σ(A + B) > σ(A) for any A ⊆ N with 0 < σ(A) < 1. Hence, a
basis must be an essential component.

There is another generalization of Erdős’ theorem, which is
much more significant than Rohrbach’s Theorem does. The
following generalization of Erdős’ Theorem used a completely
different idea from Erdős’.
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Plünnecke’s Inequalities

Theorem (3.15, Plünnecke’s Theorem)

Let B be a basis of order h. Then, for any A ⊆ N we have

σ(A + B) ≥ σ(A)1− 1
h .

It is not too hard to show that

σ(A)1− 1
h ≥ σ(A) +

1

h
σ(A)(1− σ(A)).

The key component used in the proof of Plünnecke’s Theorem is
a version of Plünnecke’s Inequality based on graph theoretic
argument. The following lemma is a translation of an inequality
from the language of graph theory to the language of additive
number theory.
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Plünnecke’s Inequalities

Lemma (3.16, Plünnecke’s Inequality)

Let A,B ⊆ N and h, n ≥ 1 be such that A ∩ [n] 6= ∅. For each
1 ≤ i ≤ h define

DA,B,n,i = min

{
|(A′ + iB) ∩ [n]|
|A′ ∩ [n]|

: ∅ 6= A′ ⊆ A ∩ [n]

}
.

Then, DA,B,n,1 ≥ (DA,B,n,2)1/2 ≥ · · · ≥ (DA,B,n,h)1/h.

Many interesting subsets of N are not bases but asymptotic
bases. For example,

P := {p ∈ N | p is a prime number},
Ck := {nk | n ∈ N} for k ≥ 1,
P2 := {a2b3 | a, b ∈ N and a, b ≥ 1}, etc.

are asymptotic bases. Therefore, it is interesting to see whether
Plünnecke’s Theorem can be generalized to some versions involving
other densities.
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are asymptotic bases. Therefore, it is interesting to see whether
Plünnecke’s Theorem can be generalized to some versions involving
other densities.
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Nonstandard Versions of Densities
By-one-get-one-free Thesis

Plünnecke’s Inequalities

Definition (3.17)

1 The set B ⊆ N is a lower asymptotic basis of order h ∈ N if
d(hB) = 1;

2 The set B ⊆ N is an upper asymptotic basis of order h ∈ N if
d(hB) = 1;

3 The set B ⊆ N is an upper Banach basis of order h ∈ N if
BD(hB) = 1;

4 The set B ⊆ N is a lower Banach basis of order h ∈ N if
BD(hB) = 1.

Note that P is an asymptotic basis of order 4 by Vinogradov’s
Theorem, or 3 if Goldbach conjecture is true. It is also known that
P is a lower asymptotic basis of order 3. P2 is an asymptotic basis
of order 3 by a result of Heath-Brown. C2 is a basis of order 4 and
C3 is an asymptotic basis of order at most 7. Note also that
P,Ck ,P

2 are all have upper density 0.
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Plünnecke’s Inequalities

Theorem (3.18)

Let A,B ⊆ N and B be a lower asymptotic basis of order h.
Then

d(A + B) > d(A)1− 1
h .

Corollary (3.19)

For any A ⊆ N we have

1 d(A + P) ≥ d(A)2/3;

2 d(A + C2) ≥ d(A)3/4;

3 d(A + C3) ≥ d(A)6/7;

4 d(A + P2) ≥ d(A)2/3.
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Plünnecke’s Inequalities

Theorem (3.19)

There are A,B ⊆ N with d(A) = 1
2 ,

d(2B) = 1, and
d(A + B) = d(A).

Theorem (3.20)

Let A,B ⊆ N and B be a upper Banach basis of order h. Then

BD(A + B) ≥ BD(A)1− 1
h .

Theorem (3.21)

Let A,B ⊆ N and B be an upper Banach basis of order h. Then,

BD(A + B) ≥ BD(A)1− 1
h .
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Nonstandard Versions of Densities
By-one-get-one-free Thesis

Plünnecke’s Inequalities

Note that Theorem 3.18 and Theorem 3.20 show that lower
density and upper density are asymmetrical on generalizing
Plünnecke’s Theorem. Theorem 3.21 and Theorem 3.22 look like
following the same pattern but they show also that upper Banach
density and lower Banach density are mildly asymmetrical. Both of
the theorems require B be upper Banach basis.

We will prove Theorem 3.18 and Theorem 3.21. The arguments
used in the proof of Theorem 3.15 deal with finite intervals of
integers and are purely combinatorial. It becomes messy when the
limit processes for d or BD are involved. Using nonstandard
analysis, we can transfer the limit processes to combinatorial
arguments on intervals of hyperfinite length, which simplify the
proofs.
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Plünnecke’s Inequalities

Proof of Theorem 3.18: Let A and B be in Theorem 3.18 such
that d(A) = α and d(hB) = 1. Without loss of generality, we can
assume 0 < α < 1. Let N be any hyperfinite integer. We want to
show that

|∗(A + B) ∩ [N]|
N

=
|(∗A + ∗B) ∩ [N]

N
' α1− 1

h ,

which implies Theorem 3.18 by Proposition 3.5. Choose hyperfinite
integers N ′ < K < N such that (N − K )/N ≈ 0 and

(K − N ′)/(N − N ′) ≈ 0 (for example K = N −
⌊√

N
⌋

and

N ′ = K −
⌊

4
√

N
⌋

satisfy the requirements). Let C0 = ∗A ∩ [K ].

Then (|C0 ∩ [N]|)/N ' α. Next we want to trim C0 so that the
density of the trimmed set in each interval {x , x + 1, . . . ,N − 1}
for every x ≤ K would not be too large.
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Plünnecke’s Inequalities

We define Ck inductively for k = 0, 1, . . . ,N ′ − 1 so that

C0 ⊇ C1 ⊇ · · · ⊇ CN′−1,
|CN′−1 ∩ [N]|

N
≈ α, and

|CN′−1 ∩ {x , x + 1, . . . ,N − 1}|
N − x

/ α

for any x ≤ K . Start with C0. For each k < N ′ − 1 let

Ck+1 =

{
Ck , if |Ck∩{N′−k,N′−k+1,...,N−1}|

N−N′+k ≤ α
Ck r {N ′ − k}, otherwise.

It is easy to see that C0,C1, . . . ,CN′−1 has the desired properties.
Let A0 = CN′−1 and nonempty A′ ⊆ A0 be such that

DA0, ∗B,N,h =
|(A′ + h ∗B) ∩ [N]|)

|A′ ∩ [N]|
.

Let z = min A′.
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Plünnecke’s Inequalities

Then z < K because A0 ⊆ [K ]. Hence N − z is hyperfinite,

which implies
|(h ∗B) ∩ [N − z ]|

N − z
≈ 1. By Lemma 3.16 we have

|(A0 + ∗B) ∩ [N]|
|A0 ∩ [N]|

≥ DA0, ∗B,N,1 ≥ (DA0, ∗B,N,h)1/h =

(
|(A′ + h ∗B) ∩ [N]

|A′ ∩ [N]|

)1/h

'

(
|(z + h ∗B) ∩ [N]|
|A′ ∩ [N]|)

)1/h

'

(
|(h ∗B) ∩ [N − z ]|/(N − z)

|A′ ∩ {z , z + 1, . . . ,N − 1}|/(N − z)

)1/h

'

(
1

|A0 ∩ {z , z + 1, . . . ,N − 1}|/(N − z)

)1/h

'
1

α1/h
,
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which implies

|∗(A + B) ∩ [N]|
N

≥ |(A0 + ∗B) ∩ [N]|
N

'
|A0 ∩ [N]|

N
· 1

α1/h
' α1− 1

h .

Since N is an arbitrary hyperfinite integer, Theorem 3.18 is
proven with the help of Proposition 3.5. 2
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Proof of Theorem 3.21: Let A and B be in Theorem 3.21 with
BD(A) = α and BD(hB) = 1 for some h ∈ N.

Theorem 3.21 is trivially true if BD(A) = 0 or BD(A) = 1. So,
we can assume that 0 < α = BD(A) < 1.

Let n ∈ ∗N and K be a hyperfinite integer such that
n + [K ] ⊆ (h ∗B).

Choose N large enough so that (n + K )/N ≈ 0 and
|∗A ∩ (m + [N])|/N ≈ α for some m ∈ ∗N.

It suffices to show that

|(∗A ∩ (m + [N]) + ∗B) ∩ (m + [N])|
N

' α1− 1
h

by Proposition 3.6.
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Let A0 = (∗A ∩ (m + [N − n−K ])−m. By the choice of N and
A0 we have

|A0 ∩ [N]|
N

≈ α and
|(A0 + ∗B) ∩ [N]|

N
/
|(∗A + ∗B) ∩ (m + [N])|

N
.

It now suffices to show that

|(A0 + ∗B) ∩ [N]|
N

' α1− 1
h .

Let A′ ⊆ A0 be nonempty such that

DA0, ∗B,N,h =
|(A′ + h ∗B) ∩ [N]|
|A′ ∩ [N]|

.
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Claim:
|(A′ + h ∗B) ∩ [N]|
|A′ ∩ [N]|

= DA0, ∗B,H,h '
1

α
.

Proof of Claim: Let H = bK/2c and let Ii = iH + [H] for
i = 0, 1, . . . bN/Hc − 1, and let

IbN/Hc = bN/Hc·H + [N − bN/Hc·H].

Denote

I := {Ii | i ∈ [bN/Hc+ 1] and Ii ∩ A′ 6= ∅}.

Then |(A′ + h ∗B) ∩ [N]| > |I| · H

because H ≤ K/2, every element in A′ is less than or equal to
N − n − K , and H + n + Ii ⊆ (A′ + h ∗B) ∩ [N] if A′ ∩ Ii 6= ∅ for
every i = 0, 1, . . . , bH/Nc.
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Given a positive standard real ε, we have

|A′ ∩ [N]| 6 |I| · (α + ε)H

because |A′ ∩ Ii |/|Ii | / α when |Ii | is hyperfinite by Proposition
3.6. Because ε is an arbitrary standard positive real number, we
have that

|(A′ + h ∗B) ∩ [N]|
|A′ ∩ [N]|

'
|I| · H
|I| · αH

=
1

α
.

This completes the proof of the claim.

We continue to prove Theorem 3.21. Combine the arguments
above and Theorem 3.16 we now have

|(A0 + ∗B) ∩ [N]|
|A0 ∩ [N]|

' DA0, ∗B,N,1 ≥ (DA0, ∗B,N,h)1/h

=

(
|(A′ + h ∗B) ∩ [N]|
|A′ ∩ [N]|

)1/h

'
1

α1/h
.

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Nonstandard Versions of Densities
By-one-get-one-free Thesis

Plünnecke’s Inequalities

Given a positive standard real ε, we have

|A′ ∩ [N]| 6 |I| · (α + ε)H

because |A′ ∩ Ii |/|Ii | / α when |Ii | is hyperfinite by Proposition
3.6. Because ε is an arbitrary standard positive real number, we
have that

|(A′ + h ∗B) ∩ [N]|
|A′ ∩ [N]|

'
|I| · H
|I| · αH

=
1

α
.

This completes the proof of the claim.

We continue to prove Theorem 3.21. Combine the arguments
above and Theorem 3.16 we now have

|(A0 + ∗B) ∩ [N]|
|A0 ∩ [N]|

' DA0, ∗B,N,1 ≥ (DA0, ∗B,N,h)1/h

=

(
|(A′ + h ∗B) ∩ [N]|
|A′ ∩ [N]|

)1/h

'
1

α1/h
.

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Nonstandard Versions of Densities
By-one-get-one-free Thesis

Plünnecke’s Inequalities

Given a positive standard real ε, we have

|A′ ∩ [N]| 6 |I| · (α + ε)H

because |A′ ∩ Ii |/|Ii | / α when |Ii | is hyperfinite by Proposition
3.6. Because ε is an arbitrary standard positive real number, we
have that

|(A′ + h ∗B) ∩ [N]|
|A′ ∩ [N]|

'
|I| · H
|I| · αH

=
1

α
.

This completes the proof of the claim.

We continue to prove Theorem 3.21. Combine the arguments
above and Theorem 3.16 we now have

|(A0 + ∗B) ∩ [N]|
|A0 ∩ [N]|

' DA0, ∗B,N,1 ≥ (DA0, ∗B,N,h)1/h

=

(
|(A′ + h ∗B) ∩ [N]|
|A′ ∩ [N]|

)1/h

'
1

α1/h
.

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Nonstandard Versions of Densities
By-one-get-one-free Thesis

Plünnecke’s Inequalities

Given a positive standard real ε, we have

|A′ ∩ [N]| 6 |I| · (α + ε)H

because |A′ ∩ Ii |/|Ii | / α when |Ii | is hyperfinite by Proposition
3.6. Because ε is an arbitrary standard positive real number, we
have that

|(A′ + h ∗B) ∩ [N]|
|A′ ∩ [N]|

'
|I| · H
|I| · αH

=
1

α
.

This completes the proof of the claim.

We continue to prove Theorem 3.21. Combine the arguments
above and Theorem 3.16 we now have

|(A0 + ∗B) ∩ [N]|
|A0 ∩ [N]|

' DA0, ∗B,N,1 ≥ (DA0, ∗B,N,h)1/h

=

(
|(A′ + h ∗B) ∩ [N]|
|A′ ∩ [N]|

)1/h

'
1

α1/h
.

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Nonstandard Versions of Densities
By-one-get-one-free Thesis

Plünnecke’s Inequalities

Given a positive standard real ε, we have

|A′ ∩ [N]| 6 |I| · (α + ε)H

because |A′ ∩ Ii |/|Ii | / α when |Ii | is hyperfinite by Proposition
3.6. Because ε is an arbitrary standard positive real number, we
have that

|(A′ + h ∗B) ∩ [N]|
|A′ ∩ [N]|

'
|I| · H
|I| · αH

=
1

α
.

This completes the proof of the claim.

We continue to prove Theorem 3.21. Combine the arguments
above and Theorem 3.16 we now have

|(A0 + ∗B) ∩ [N]|
|A0 ∩ [N]|

' DA0, ∗B,N,1 ≥ (DA0, ∗B,N,h)1/h

=

(
|(A′ + h ∗B) ∩ [N]|
|A′ ∩ [N]|

)1/h

'
1

α1/h
.

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Nonstandard Versions of Densities
By-one-get-one-free Thesis

Plünnecke’s Inequalities

Given a positive standard real ε, we have

|A′ ∩ [N]| 6 |I| · (α + ε)H

because |A′ ∩ Ii |/|Ii | / α when |Ii | is hyperfinite by Proposition
3.6. Because ε is an arbitrary standard positive real number, we
have that

|(A′ + h ∗B) ∩ [N]|
|A′ ∩ [N]|

'
|I| · H
|I| · αH

=
1

α
.

This completes the proof of the claim.

We continue to prove Theorem 3.21. Combine the arguments
above and Theorem 3.16 we now have

|(A0 + ∗B) ∩ [N]|
|A0 ∩ [N]|

' DA0, ∗B,N,1 ≥ (DA0, ∗B,N,h)1/h

=

(
|(A′ + h ∗B) ∩ [N]|
|A′ ∩ [N]|

)1/h

'
1

α1/h
.

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Nonstandard Versions of Densities
By-one-get-one-free Thesis

Plünnecke’s Inequalities

Hence
|∗(A + B) ∩ [N]|

N
'
|(A0 + ∗B) ∩ [N]|

N

'
|A0 ∩ [N]|

N
· 1

α1/h
≈ α1− 1

h ,

which implies Theorem 3.21 by Proposition 3.6. 2
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The End of Day Three

Thank you for your attention.

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT


	Nonstandard Versions of Densities
	By-one-get-one-free Thesis
	Plünnecke's Inequalities

