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Properties and Principles

We mentioned before that the nonstandard real field *R does
not satisfy the completeness property and pointed out that the
property is not first-order.
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Properties and Principles

We mentioned before that the nonstandard real field *R does
not satisfy the completeness property and pointed out that the
property is not first-order. It is also true that a superstructure V as
the model of standard mathematics, contains all sets in Z(R) as
its elements. Note that V satisfies the first-order sentence :

Vx € 2(]0,1])(x has a least upper bound in [0,1]). (1)
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Properties and Principles

We mentioned before that the nonstandard real field *R does
not satisfy the completeness property and pointed out that the
property is not first-order. It is also true that a superstructure V as
the model of standard mathematics, contains all sets in Z(R) as
its elements. Note that V satisfies the first-order sentence :

Vx € Z([0,1])(x has a least upper bound in [0,1]). (1)
Can we conclude by the transfer principle that the sentence
Vx € Z(*[0,1])(x has a least upper bound in *[0, 1])

is true in *V7?
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We mentioned before that the nonstandard real field *R does
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property is not first-order. It is also true that a superstructure V as
the model of standard mathematics, contains all sets in Z(R) as
its elements. Note that V satisfies the first-order sentence :

Vx € Z([0,1])(x has a least upper bound in [0,1]). (1)
Can we conclude by the transfer principle that the sentence
Vx € Z(*[0,1])(x has a least upper bound in *[0, 1])

is true in *V7? Of course, *R in *V should not satisfy the
completeness property because there is no least upper bound of all
infinitesimals.
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We mentioned before that the nonstandard real field *R does
not satisfy the completeness property and pointed out that the
property is not first-order. It is also true that a superstructure V as
the model of standard mathematics, contains all sets in Z(R) as
its elements. Note that V satisfies the first-order sentence :

Vx € Z([0,1])(x has a least upper bound in [0,1]). (1)
Can we conclude by the transfer principle that the sentence
Vx € Z(*[0,1])(x has a least upper bound in *[0, 1])

is true in *V7? Of course, *R in *V should not satisfy the
completeness property because there is no least upper bound of all
infinitesimals. Does this cause inconsistency?
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Properties and Principles

We mentioned before that the nonstandard real field *R does
not satisfy the completeness property and pointed out that the
property is not first-order. It is also true that a superstructure V as
the model of standard mathematics, contains all sets in Z(R) as
its elements. Note that V satisfies the first-order sentence :

Vx € Z([0,1])(x has a least upper bound in [0,1]). (1)
Can we conclude by the transfer principle that the sentence
Vx € Z(*[0,1])(x has a least upper bound in *[0, 1])

is true in *V7? Of course, *R in *V should not satisfy the
completeness property because there is no least upper bound of all
infinitesimals. Does this cause inconsistency? To clarify the issue
we should pay attention to the difference between internal sets and
external sets.

Renling Jin Nonstandard Analysis and CNT



Properties and Principles

Let A € V be a set with rank < n. A subset Ay of A is finite iff
there is a bijection in V between Ag and [n] for some n € N. We
denote |Ag| = n for saying that Ag has a cardinality n.
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Let A € V be a set with rank < n. A subset Ay of A is finite iff
there is a bijection in V between Ag and [n] for some n € N. We
denote |Ag| = n for saying that Ag has a cardinality n. The
cardinality function | - | can be extend to a function *| - | from all
*finite subsets of *A to *N.
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Let A € V be a set with rank < n. A subset Ay of A is finite iff
there is a bijection in V between Ag and [n] for some n € N. We
denote |Ag| = n for saying that Ag has a cardinality n. The
cardinality function | - | can be extend to a function *| - | from all
*finite subsets of *A to *N. So, *|A1| = n iff there is a bijection in
*V between A; and [n]. For notational convenience, we omit *
from *| - |.
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Let A € V be a set with rank < n. A subset Ay of A is finite iff
there is a bijection in V between Ag and [n] for some n € N. We
denote |Ag| = n for saying that Ag has a cardinality n. The
cardinality function | - | can be extend to a function *| - | from all
*finite subsets of *A to *N. So, *|A1| = n iff there is a bijection in
*V between A; and [n]. For notational convenience, we omit *
from *| - |. A set A; is called a hyperfinite set if |A1] is a
hyperfinite integer.
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Properties and Principles

Let A € V be a set with rank < n. A subset Ay of A is finite iff
there is a bijection in V between Ag and [n] for some n € N. We
denote |Ag| = n for saying that Ag has a cardinality n. The
cardinality function | - | can be extend to a function *| - | from all
*finite subsets of *A to *N. So, *|A1| = n iff there is a bijection in
*V between A; and [n]. For notational convenience, we omit *
from *| - |. A set A; is called a hyperfinite set if |A1] is a
hyperfinite integer.

Definition (2.1)

Every element or set of the form *a for some a € V is called
standard and every element or set a € *V is called internal. If an
element or a set is not in *V, we call it external.
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Properties and Principles

Example (2.2)
© Every r € R is standard, and *N, *R are standard.
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Example (2.2)
© Every r € R is standard, and *N, *R are standard.

@ For each hyperfinite integer N the sets [N] and [-N, N] N *R
are internal but not standard.
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Properties and Principles

© Every r € R is standard, and *N, *R are standard.

@ For each hyperfinite integer N the sets [N] and [-N, N] N *R
are internal but not standard.

© The sets N and R are external subsets of *R.
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Properties and Principles

© Every r € R is standard, and *N, *R are standard.

@ For each hyperfinite integer N the sets [N] and [-N, N] N *R
are internal but not standard.

© The sets N and R are external subsets of *R.

For Part 2 above let N — 1 = [g] where g : N — N and
{neN|g(n) > m} € F for each me N,

Renling Jin Nonstandard Analysis and CNT



Properties and Principles

© Every r € R is standard, and *N, *R are standard.

@ For each hyperfinite integer N the sets [N] and [-N, N] N *R
are internal but not standard.

© The sets N and R are external subsets of *R.

For Part 2 above let N — 1 = [g] where g : N — N and
{neN|g(n) > m} € F for each me N,

If *a= *NNJO0,[g]] € *V is standard, then *a being bounded
above in *N implies a being bounded above in N by the transfer
property. This means that a is a finite subset of N. So, we have
*a = a which is a finite set contradicting that *a is a hyperfinite set.
Hence, *N N [N] is internal but not standard. By a similar reason,
the set *R N [—N, N] is internal but not standard.

Renling Jin Nonstandard Analysis and CNT



Properties and Principles

Note that the statement V = ¢ for ¢ being in (1) is transferred
to *V to become

YV Vx € *Z(*0,1])(x has a least upper bound in *[0,1]).
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Properties and Principles

Note that the statement V = ¢ for ¢ being in (1) is transferred
to *V to become

YV Vx € *Z(*0,1])(x has a least upper bound in *[0,1]).

The reader should notice the difference between *22(*[0, 1]) and
2(*]0,1]). The former is the collection of all internal subsets of
*[0, 1] and the latter is the collection of all subsets (internal or
external) of *[0,1]. So, in *V every internal subset of *[0, 1] has a
least upper bound. Therefore, the set of all infinitesimals in *R is
not an internal set.
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Properties and Principles

Note that the statement V = ¢ for ¢ being in (1) is transferred
to *V to become

YV Vx € *Z(*0,1])(x has a least upper bound in *[0,1]).

The reader should notice the difference between *22(*[0, 1]) and
2(*]0,1]). The former is the collection of all internal subsets of
*[0, 1] and the latter is the collection of all subsets (internal or
external) of *[0,1]. So, in *V every internal subset of *[0, 1] has a
least upper bound. Therefore, the set of all infinitesimals in *R is
not an internal set.

For Part 3 above, since every bounded subset of N is finite and
has a maximal element in N, by the transfer principle, every
bounded internal subset of *N is finite or hyperfinite and has a
maximal element. But N as a subset of *N does not have a
maximal element. Therefore, N is not internal in *N. By a similar
reason, R is not an internal subset of *RR.
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Properties and Principles

Proposition (2.3, Definability of Internal Sets)

Let A € *V be an internal set with rank(A) < n and ©(X, b) be
a formula with parameters b in *V where X is an m-tuple of

variables. Then {3€ A" | *V |= ¢(3,b)} (2)

is again an internal subset of A™.
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Properties and Principles

Proposition (2.3, Definability of Internal Sets)

Let A € *V be an internal set with rank(A) < n and ©(X, b) be
a formula with parameters b in *V where X is an m-tuple of

variables. Then {3€ A" | *V |= ¢(3,b)} (2)

is again an internal subset of A™.

Proof. Let A= [f] and b = [g]. Define a function h: N — V by
letting

h(n):={acf(n™ |V ¢ g(n)}

for each n € N.
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Properties and Principles

Proposition (2.3, Definability of Internal Sets)

Let A € *V be an internal set with rank(A) < n and ©(X, b) be
a formula with parameters b in *V where X is an m-tuple of

variables. Then {3€ A" | *V |= ¢(3,b)} (2)

is again an internal subset of A™.

Proof. Let A= [f] and b = [g]. Define a function h: N — V by
letting

h(n):={acf(n™ |V ¢ g(n)}

for each n € N. Let B = [h]. Then B is an internal subset of A™.
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Properties and Principles

Proposition (2.3, Definability of Internal Sets)

Let A € *V be an internal set with rank(A) < n and ©(X, b) be
a formula with parameters b in *V where X is an m-tuple of

variables. Then {3€ A" | *V |= ¢(3,b)} (2)

is again an internal subset of A™.

Proof. Let A= [f] and b = [g]. Define a function h: N — V by
letti _ — 7N
TR ()= (EEf(n)7 |V = (@ g(n))

for each n € N. Let B = [h]. Then B is an internal subset of A™.
The proposition follows because

[p] € B iff {ne N |p(n) € h(n)} € F B
iff {ne N[V E o(p(n),g(n)} € F iff V= ¢([p], b)

by Los" Theorem. |
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Properties and Principles

If a subset B of an internal set A is itself internal, then B can be
trivially defined by the formula x € B with parameter B. So,
Proposition 2.3 says that a subset of an internal set is internal iff
the subset is first-order definable.
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Properties and Principles

If a subset B of an internal set A is itself internal, then B can be
trivially defined by the formula x € B with parameter B. So,
Proposition 2.3 says that a subset of an internal set is internal iff
the subset is first-order definable.

A nonempty set U C *N is an initial segment of *N if n € U
and m < n imply m € U for any m,n € *N. For example, N is an
external initial segment of *N.
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Properties and Principles

Proposition (2.4, Overspill and Underspill Principle)

Let U be an external initial segment of *N and A be an internal
subset of *N.

@ If AN U is unbounded above in U, then A\ U # ();
@ If A\ U is unbounded below in *N\ U, then AN U # 0.
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Properties and Principles

Proposition (2.4, Overspill and Underspill Principle)

Let U be an external initial segment of *N and A be an internal
subset of *N.

@ If AN U is unbounded above in U, then A\ U # ();
@ If A\ U is unbounded below in *N\ U, then AN U # 0.

Proof.  Part 1: Suppose A\ U = (). Then
U={xe "N|JacA(x<a)}

is internal by Proposition 2.3 which contradicts the assumption
that U is external. The proof of Part 2 is similar. O
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Properties and Principles

Proposition (2.4, Overspill and Underspill Principle)

Let U be an external initial segment of *N and A be an internal
subset of *N.

@ If AN U is unbounded above in U, then A\ U # ();
@ If A\ U is unbounded below in *N\ U, then AN U # 0.

Proof.  Part 1: Suppose A\ U = (). Then
U={xe "N|JacA(x<a)}

is internal by Proposition 2.3 which contradicts the assumption
that U is external. The proof of Part 2 is similar. O

The overspill and underspill principles are frequently used tools
in nonstandard analysis.
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Properties and Principles

Proposition (2.5, Countable Saturation)

Let A be an infinite internal set in *V with rank < n and
AD By D By D --- be a nested sequence of nonempty internal

sets. Then,
() Bm #0.
meN
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Properties and Principles

Proposition (2.5, Countable Saturation)

Let A be an infinite internal set in *V with rank < n and
AD By D By D --- be a nested sequence of nonempty internal

sets. Then,
() Bm #0.
meN

Proof. Let By, = [by] for some b, € VN and choose an
[fm] € [bm]. For each m € N let

Un:={neN|n>m, fn(n) € by(n),
and bo(n) 2 by(n) 2 -+ 2 bu(n)}.

Then U, € F. Foreach n €N, let mp, ;== max{m e N | n € Up}.

Note that m,, exists because ﬂ Um = 0. Note also that n € U, .
meN
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Properties and Principles

Let £ € VN be a function such that f(n) = fm,(n) for every
n € N. It suffices to show that [f] € [by,] for every m € N.
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Properties and Principles

Let £ € VN be a function such that f(n) = fm,(n) for every
n € N. It suffices to show that [f] € [by,] for every m € N.

Given me N, let U := {n € N | f(n) € bm(n)}. For each
n € Up, we have m < m, by the maximality of m,.
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Properties and Principles

Let £ € VN be a function such that f(n) = fm,(n) for every
n € N. It suffices to show that [f] € [by,] for every m € N.

Given me N, let U := {n € N | f(n) € bm(n)}. For each
n € Up, we have m < m, by the maximality of m,.

Since n € Uy, we have f(n) = f,, (n) € by, (n) C bm(n).

Renling Jin Nonstandard Analysis and CNT



Properties and Principles

Let £ € VN be a function such that f(n) = fm,(n) for every
n € N. It suffices to show that [f] € [by,] for every m € N.

Given me N, let U := {n € N | f(n) € bm(n)}. For each
n € Up, we have m < m, by the maximality of m,.

Since n € Uy, we have f(n) = f,, (n) € by, (n) C bm(n).
Hence, n € U which means U,, C U.
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Properties and Principles

Let £ € VN be a function such that f(n) = fm,(n) for every
n € N. It suffices to show that [f] € [by,] for every m € N.

Given me N, let U := {n € N | f(n) € bm(n)}. For each
n € Up, we have m < m, by the maximality of m,.

Since n € Uy, we have f(n) = f,, (n) € by, (n) C bm(n).
Hence, n € U which means U,, C U.

Since Uy, € F, we have that U € F, which implies [f] € [by]. O
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Properties and Principles

Countable saturation was used first by W. A. J. Luxemburg in
1969. It is a key property in the development of Loeb measure.
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Properties and Principles

Countable saturation was used first by W. A. J. Luxemburg in
1969. It is a key property in the development of Loeb measure.

In Proposition 2.3 and Proposition 2.5 the set A is assumed to
have rank < n because some collection of subsets of A are
mentioned which may have rank greater than n. Since the elements
with rank higher than n are still in V as long as the rank is < 2n.
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Properties and Principles

Countable saturation was used first by W. A. J. Luxemburg in
1969. It is a key property in the development of Loeb measure.

In Proposition 2.3 and Proposition 2.5 the set A is assumed to
have rank < n because some collection of subsets of A are
mentioned which may have rank greater than n. Since the elements
with rank higher than n are still in V as long as the rank is < 2n.

If the set A has a rank 2n, then some objects needed will be
outside of V.
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Properties and Principles

Countable saturation was used first by W. A. J. Luxemburg in
1969. It is a key property in the development of Loeb measure.

In Proposition 2.3 and Proposition 2.5 the set A is assumed to
have rank < n because some collection of subsets of A are
mentioned which may have rank greater than n. Since the elements
with rank higher than n are still in V as long as the rank is < 2n.

If the set A has a rank 2n, then some objects needed will be
outside of V.

Since all mathematical objects in our applications will have a rank
< n the restriction rank(A) < n will not cause any problem.

Renling Jin Nonstandard Analysis and CNT



Properties and Principles

Countable saturation was used first by W. A. J. Luxemburg in
1969. It is a key property in the development of Loeb measure.

In Proposition 2.3 and Proposition 2.5 the set A is assumed to
have rank < n because some collection of subsets of A are
mentioned which may have rank greater than n. Since the elements
with rank higher than n are still in V as long as the rank is < 2n.

If the set A has a rank 2n, then some objects needed will be
outside of V.

Since all mathematical objects in our applications will have a rank
< n the restriction rank(A) < n will not cause any problem.

Although the rank of some element used in the proofs may not be
mentioned, the reader should understand when it is assumed to
have a rank below n.
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Properties and Principles

Proposition 2.5 is still true if the sequence By, is assumed to
satisfy the finite intersection property, i.e., the intersection of any
finite collection of By,’s is nonempty, instead of the sequence being
nested.
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Properties and Principles

Proposition 2.5 is still true if the sequence By, is assumed to
satisfy the finite intersection property, i.e., the intersection of any

finite collection of By,’s is nonempty, instead of the sequence being
nested.

Proposition 2.5 is also true if F is a non-principal ultrafilter on any
infinite set X as long as it is countably incomplete.
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Properties and Principles

Proposition 2.5 is still true if the sequence By, is assumed to
satisfy the finite intersection property, i.e., the intersection of any
finite collection of By,’s is nonempty, instead of the sequence being
nested.

Proposition 2.5 is also true if F is a non-principal ultrafilter on any
infinite set X as long as it is countably incomplete.

For any infinite cardinal x, there exist ultrafilters F such that the
ultrapower of ¥ modulo F satisfies x-saturation property, i.e., any
collection of less than k many internal subsets of an internal set

satisfying finite intersection property has a nonempty intersection.
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Properties and Principles

The next two corollaries are trivial.

nlin
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Properties and Principles

The next two corollaries are trivial.

Corollary (2.6)

Every internal set A in *V is either finite or uncountable.
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Properties and Principles

The next two corollaries are trivial.

Corollary (2.6)

Every internal set A in *V is either finite or uncountable.

Corollary (2.7)

Let U be an infinite initial segment of *N. Let {x, € U | n € N}
be increasing and {y, € *N\ U | n € N} be decreasing. Then
either {x, € U | n € N} is bounded above by some z € U or
{yn € *N\ U | n € N} is bounded below by some z € *N\ U.
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Properties and Principles

Corollary (2.8)

Let A€ *V and s : N — A be an external sequence. There
exists an internal function S : *N — A such that S[N = s.
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Properties and Principles

Corollary (2.8)

Let A€ *V and s : N — A be an external sequence. There
exists an internal function S : *N — A such that S[N = s.

Proof: For each m € N let

Smi={te "V |t: *"N—= A(t(i) =s(i) for i € [m+1]).
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Properties and Principles

Corollary (2.8)

Let A€ *V and s : N — A be an external sequence. There
exists an internal function S : *N — A such that S[N = s.

Proof: For each m € N let
Smi={te "V |t: *"N—= A(t(i) =s(i) for i € [m+1]).

Note that S, € *22(A "N N *V) is nonempty because it contains
at least an internal function s’ such that s'(i) = s(/) for

i €[m+1] and s'(i) = s(0) for any i € *N\ [m]. It is easy to see
that S, D Sm+1.
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Properties and Principles

Corollary (2.8)

Let A€ *V and s : N — A be an external sequence. There
exists an internal function S : *N — A such that S[N = s.

Proof: For each m € N let
Smi={te "V |t: *"N—= A(t(i) =s(i) for i € [m+1]).

Note that S, € *22(A "N N *V) is nonempty because it contains
at least an internal function s’ such that s'(i) = s(/) for

i €[m+1] and s'(i) = s(0) for any i € *N\ [m]. It is easy to see
that S, D Sm+1.

By countable saturation we can find S : *N — A such that
SIN=s. a
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Properties and Principles

Remark (2.9)

Note that if s : N — A is an injection, we cannot require that
S : *N — A be an injection in Corollary 2.8.
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Properties and Principles

Remark (2.9)

Note that if s : N — A is an injection, we cannot require that
S : *N — A be an injection in Corollary 2.8. However, if

B:={me *N| S[[m+1] is an injection},

then B is internal and upper unbounded in N.
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Properties and Principles

Remark (2.9)

Note that if s : N — A is an injection, we cannot require that
S : *N — A be an injection in Corollary 2.8. However, if

B:={me *N| S[[m+1] is an injection},

then B is internal and upper unbounded in N.

By the overspill principle the set B contains some hyperfinite
integer N. Hence, S |[N + 1] is an injection from [N + 1] to A.

Renling Jin Nonstandard Analysis and CNT



Properties and Principles

Remark (2.9)

Note that if s : N — A is an injection, we cannot require that
S : *N — A be an injection in Corollary 2.8. However, if

B:={me *N| S[[m+1] is an injection},

then B is internal and upper unbounded in N.

By the overspill principle the set B contains some hyperfinite
integer N. Hence, S |[N + 1] is an injection from [N + 1] to A.

For example, a strictly increasing sequence {r; | i € N} in some
interval [a, b] C *R may not be extended to an internal strictly
increasing sequence {r; | i € *N} in [a, b]. Instead, it can be
extended to a hyperfinite strictly increasing sequence

{ri | 0 < i < N} for some hyperfinite integer N.
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Loeb Space Construction

In this course we introduce only Loeb probability space generated
by an internal normalized counting measure on a hyperfinite set.
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Loeb Space Construction

In this course we introduce only Loeb probability space generated
by an internal normalized counting measure on a hyperfinite set.

Definition (2.10)

Let Q be a hyperfinite set in *V and Lo := *(Q) be the set of
all internal subsets of Q). Clearly, each A € X is a finite or
hyperfinite set.
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Loeb Space Construction

In this course we introduce only Loeb probability space generated
by an internal normalized counting measure on a hyperfinite set.

Definition (2.10)

Let Q be a hyperfinite set in *V and Lo := *(Q) be the set of
all internal subsets of Q). Clearly, each A € X is a finite or
hyperfinite set. For A € ¥ define

§(A) = ||QA|’ € *[0,1] and pq(A) := st(6(A)) € [0, 1].
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Loeb Space Construction

In this course we introduce only Loeb probability space generated
by an internal normalized counting measure on a hyperfinite set.

Definition (2.10)

Let Q be a hyperfinite set in *V and Lo := *(Q) be the set of
all internal subsets of Q). Clearly, each A € X is a finite or
hyperfinite set. For A € ¥ define

A
§(A) = ||Q|] € *[0,1] and pq(A) := st(6(A)) € [0, 1].
Then, (2; Xo,0) is called a normalized counting measure space,
and (£2; Xo, uq) is called a standardized normalized counting
measure space.

Renling Jin Nonstandard Analysis and CNT



Loeb Space Construction

Definition (2.11)

Let (Q; X0, uq) be the standardized normalized counting
measure space on a hyperfinite set 2.
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Loeb Space Construction

Definition (2.11)

Let (Q; X0, uq) be the standardized normalized counting
measure space on a hyperfinite set Q. For each X C Q where X
could be external, the upper measure and lower measure of X are
defined by

fa(X) :=inf{uq(A) | X C A and A € Xy} and

Bo(X) :=sup{ua(A) | X 2 A and A € To}.
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Loeb Space Construction

Definition (2.11)

Let (Q; X0, uq) be the standardized normalized counting
measure space on a hyperfinite set Q. For each X C Q where X
could be external, the upper measure and lower measure of X are
defined by

fa(X) :=inf{uq(A) | X C A and A € Xy} and
Bo(X) :=sup{ua(A) | X 2 A and A € To}.

Let ¥ :={X C Q| fiq(X) = py(X)}. Foreach X € L define
pa(X) = fg(X).
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Loeb Space Construction

Definition (2.11)

Let (Q; X0, uq) be the standardized normalized counting
measure space on a hyperfinite set Q. For each X C Q where X
could be external, the upper measure and lower measure of X are
defined by

fa(X) :=inf{uq(A) | X C A and A € Xy} and
Bo(X) :=sup{ua(A) | X 2 A and A € To}.
Let ¥ :={X C Q| fiq(X) = py(X)}. Foreach X € L define
ua(X) = ng(X). Then, (22; Z ,uQ) is called a Loeb probability

space, or just Loeb space, generated by the normalized counting
measure on Q.
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Loeb Space Construction

Proposition (2.12 with proof)
Let (2, X, uq) be a Loeb space defined in Definition 2.2. Then,
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Loeb Space Construction

Proposition (2.12 with proof)
Let (2, X, uq) be a Loeb space defined in Definition 2.2. Then,
(1) Zo - Z,‘
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Loeb Space Construction

Proposition (2.12 with proof)
Let (2, X, uq) be a Loeb space defined in Definition 2.2. Then,
(1) ToCxL;
Part 1 is true because of the definition of lower and upper
measure.
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Loeb Space Construction

Proposition (2.12 with proof)

Let (2, X, uq) be a Loeb space defined in Definition 2.2. Then,
(1) Zo - Z,‘

Part 1 is true because of the definition of lower and upper
measure.

(2) pa(Q2) =1 and pa({x}) =0 for each x € ;
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Loeb Space Construction

Proposition (2.12 with proof)

Let (2, X, uq) be a Loeb space defined in Definition 2.2. Then,
(1) Zo - Z,‘
Part 1 is true because of the definition of lower and upper
measure.

(2) ua(2) =1 and pq({x}) =0 for each x € Q;
Part 2 is true because |Q2|/|2] =1 and st(1/|€2|) = 0.
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Loeb Space Construction

Proposition (2.12 with proof)
Let (2, X, uq) be a Loeb space defined in Definition 2.2. Then,
(1) ToCxL;
Part 1 is true because of the definition of lower and upper
measure.

(2) ua(2) =1 and pq({x}) =0 for each x € Q;
Part 2 is true because |Q2|/|2] =1 and st(1/|€2|) = 0.

(3) FYCXCQ,XeX, and ug(X) =0, then Y € ¥ and
pa(Y) =0;
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Loeb Space Construction

Proposition (2.12 with proof)

Let (2, X, uq) be a Loeb space defined in Definition 2.2. Then,
(1) Zo - Z,‘
Part 1 is true because of the definition of lower and upper
measure.

(2) ua(2) =1 and pq({x}) =0 for each x € Q;
Part 2 is true because |Q2|/|2] =1 and st(1/|€2|) = 0.

(3) FYCXCQ,XeX, and ug(X) =0, then Y € ¥ and
pa(Y) =0,
Part 3 is true because 0 = Jiq(X) > fiq(Y) = p(Y) >0
implies Tig(Y) = po(Y) = 0.
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Loeb Space Construction

Proposition (2.12 with proof)

Let (2, X, uq) be a Loeb space defined in Definition 2.2. Then,
(1) Zo - Z,‘
Part 1 is true because of the definition of lower and upper
measure.

(2) ua(2) =1 and pq({x}) =0 for each x € Q;
Part 2 is true because |Q2|/|2] =1 and st(1/|€2|) = 0.
(3) FYCXCQ,XeX, and ug(X) =0, then Y € ¥ and
pa(Y) =0;
Part 3 is true because 0 = Jiq(X) > fig(Y) > 1.
implies Tig(Y) = po(Y) = 0.
(4) IfFX,Y e X and Y C X, then ug(Y) < pua(X);

oY) 20
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Loeb Space Construction

Proposition (2.12 with proof)

Let (2, X, uq) be a Loeb space defined in Definition 2.2. Then,

(1) ToCxL;
Part 1 is true because of the definition of lower and upper
measure.

(2) ua(2) =1 and pq({x}) =0 for each x € Q;
Part 2 is true because |Q2|/|2] =1 and st(1/|€2|) = 0.

(3) FYCXCQ,XeX, and ug(X) =0, then Y € ¥ and
pa(Y)=0;
Part 3 is true because 0 = Jiq(X) > fiq(Y) = p(Y) >0
implies Tig(Y) = po(Y) = 0.

(4) IfFX,Y e X and Y C X, then ug(Y) < pua(X);
Part 4 follows from the fact that if A C B for internal sets
A, B € ¥y, then §(A) < §(B).
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Loeb Space Construction

Proposition (2.12 with proof)

(5) Let X C Q. Then, X € ¥ iff X has squeezing sandwich
sequences of internal sets A; and B; for i € N, i.e., (sandwich)

AlCACA3C---CXC---CBC B CB CQ,

and (squeezing) mlinoo pa(Bm \ Am) = 0.
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Loeb Space Construction

Proposition (2.12 with proof)

(5) Let X C Q. Then, X € ¥ iff X has squeezing sandwich
sequences of internal sets A; and B; for i € N, i.e., (sandwich)

AlCACA3C---CXC---CBC B CB CQ,

and (squeezing) mlinoo pa(Bm \ Am) = 0.

Furthermore, if A, By are squeezing sandwich sequences for
X, then pg(X) = lim pa(Am) = lim po(Bm),
m—o0 m—00
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Loeb Space Construction

Proposition (2.12 with proof)

Part 5: “=": Assume X € ¥.. For each m € N there are
internal sets Ap,, B, € o with A, € X C B, such that
3(Am) > pa(X) —1/m and 6(Bm) < pa(X) +1/m.
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Loeb Space Construction

Proposition (2.12 with proof)

Part 5: “=": Assume X € ¥.. For each m € N there are
internal sets Ap,, B, € o with A, € X C B, such that
8(Am) > ua(X) —1/m and 6(Bn) < pa(X)+1/m. By
taking unions of An,'s and intersections of B,'s we can
assume that Ap,'s and B,,'s are sandwich sequences of X.
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Loeb Space Construction

Proposition (2.12 with proof)

Part 5: “=": Assume X € ¥.. For each m € N there are
internal sets Ap,, B, € o with A, € X C B, such that
8(Am) > ua(X) —1/m and 6(Bn) < pa(X)+1/m. By
taking unions of An,'s and intersections of B,'s we can
assume that Ap,'s and B,,'s are sandwich sequences of X.
Since §(Bm \ Am) = 6(Bm) — 6(Am) < 2/m, we have that the
sequences are squeezing, i.e., mllnoo u(Bm \ Am) = 0.
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Loeb Space Construction

Proposition (2.12 with proof)

Part 5: “=": Assume X € ¥.. For each m € N there are
internal sets Ap,, B, € o with A, € X C B, such that
8(Am) > ua(X) —1/m and 6(Bn) < pa(X)+1/m. By
taking unions of An,'s and intersections of B,'s we can
assume that Ap,'s and B,,'s are sandwich sequences of X.
Since §(Bm \ Am) = 6(Bm) — 6(Am) < 2/m, we have that the
sequences are squeezing, i.e., mllnoo u(Bm \ Am) = 0.

“<=": Since pq(Bm \ Am) — 0 we have that

o = mllnooNQ(Am) = mll—r>noo pa(Bm) = 5.
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Loeb Space Construction

Proposition (2.12 with proof)

Part 5: “=": Assume X € ¥.. For each m € N there are
internal sets Ap,, B, € o with A, € X C B, such that
8(Am) > ua(X) —1/m and 6(Bn) < pa(X)+1/m. By
taking unions of An,'s and intersections of B,'s we can
assume that Ap,'s and B,,'s are sandwich sequences of X.
Since §(Bm \ Am) = 6(Bm) — 6(Am) < 2/m, we have that the
sequences are squeezing, i.e., mllnoo u(Bm \ Am) = 0.

“<=": Since pq(Bm \ Am) — 0 we have that

o = mllnooNQ(Am) = mll—r>noo pa(Bm) = 5.

Note that v < p,(X) < fig(X) < 8.
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Loeb Space Construction

Proposition (2.12 with proof)

Part 5: “=": Assume X € ¥.. For each m € N there are
internal sets Ap,, B, € o with A, € X C B, such that
8(Am) > ua(X) —1/m and 6(Bn) < pa(X)+1/m. By
taking unions of An,'s and intersections of B,'s we can
assume that Ap,'s and B,,'s are sandwich sequences of X.
Since §(Bm \ Am) = 6(Bm) — 6(Am) < 2/m, we have that the
sequences are squeezing, i.e., mllnoo u(Bm \ Am) = 0.

“<=": Since pq(Bm \ Am) — 0 we have that
o = nji_r)nooNQ(Am) = mll—r>noo pa(Bm) = 5.
Note that oo < p,(X) < fig(X) < B. So,

Bo(X) = Tig(X) = pa(X) = a = B, which clearly implies
XeX.
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Loeb Space Construction

Proposition (2.12 with proof)
(6) Let X, Y € L.
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Loeb Space Construction

Proposition (2.12 with proof)
(6) Let X, Y € L.

® XUYeX and ,LLQ(XU Y) < ,LLQ(X) Jr,uQ(Y),‘
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Loeb Space Construction

Proposition (2.12 with proof)
(6) Let X, Y € L.

® XUYeX and ,LLQ(XU Y) < ,LLQ(X) Jr,uQ(Y),‘
@ IfY CX, then X\ Y € X and ua(X\Y) = pa(X) — pa(Y);
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Loeb Space Construction

Proposition (2.12 with proof)
(6) Let X, Y € L.

® XUYeX and ,LLQ(XU Y) < ,LLQ(X) Jr,uQ(Y),‘
@ IfY CX, then X\ Y € X and ua(X\Y) = pa(X) — pa(Y);
@ IfFXNY =0, then uo(XUY) = ua(X) + ua(Y);
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Loeb Space Construction

Proposition (2.12 with proof)
(6) Let X, Y € L.

@ XUY €X and ug(XUY) < pa(X)+ pa(Y),

@ IfY CX, then X\ Y € X and ua(X\Y) = pa(X) — pa(Y);
@ IFXNY =0, then ug(X UY) = ua(X) + pa(Y);

0 X\Yex.
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Loeb Space Construction

Proposition (2.12 with proof)
(6) Let X, Y € L.

@ XUY €X and ug(XUY) < pa(X)+ pa(Y),

@ IfY CX, then X\ Y € X and ua(X\Y) = pa(X) — pa(Y);
@ IFXNY =0, then ug(X UY) = ua(X) + pa(Y);

0 X\Yex.

Part 6: Let A, and B, be squeezing sandwich sequences for
X, and A, and B], be squeezing sandwich sequences for Y .

v

Renling Jin Nonstandard Analysis and CNT



Loeb Space Construction

Proposition (2.12 with proof)

(6.1): Since A, UA!, and B, U B, are sandwich sequences of
XUY and

(Bm U Bp) \ (Am U AL) € (Bm \ Am) U (By, \ Ary),
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Loeb Space Construction

Proposition (2.12 with proof)

(6.1): Since A, UA!, and B, U B, are sandwich sequences of
XUY and

(BmUBy) \ (AmUAL) € (Bm \ Am) U (B, \ AL,
we have that
lim_ (B U Bjp) \ (Am U AL))
< n!inoo pa(Bm \ Am) + mlf)noo NQ(B;n \ A/m) =0,
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Loeb Space Construction

Proposition (2.12 with proof)

(6.1): Since A, UA!, and B, U B, are sandwich sequences of
XUY and

(BmUBp) \ (AmUAL) € (Bm \ Am) U (B, \ AL),
we have that
lim_ (B U Bip) \ (Am U A7)
< mlinoo pa(Bm \ Am) + mlf)noo MQ(B;n \ A/m) =0,
which implies X U'Y € ¥ by Part 5 and hence,
lna(X U Y) = lim ug(BmU B,)
< lim_pa(Bm) + lim pa(Bh) = pa(X) + pa(Y).
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Loeb Space Construction

Proposition (2.12 with proof)
(6.2): Note that Ay, \ B}, C X\ 'Y C By, \ Al,,, which mean

m?’

Am\ B!, and B, \ AL, are sandwich sequences for X \ Y.
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Loeb Space Construction

Proposition (2.12 with proof)
(6.2): Note that Ay, \ B}, C X\ 'Y C By, \ Al,,, which mean

m?’

Am\ B!, and B, \ AL, are sandwich sequences for X \ Y.

Since (Bm \ A) \ (Am \ Br,) € (Bm \ Am) U (Bf, \ A7), we
have that Ap, \ By, and B, \ Al are squeezing.
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Loeb Space Construction

Proposition (2.12 with proof)

(6.2): Note that A, \ B, C X\'Y C By, \ AL, which mean
Am\ B!, and B, \ AL, are sandwich sequences for X \ Y.

Since (Bm \ A) \ (Am \ Br,) € (Bm \ Am) U (Bf, \ A7), we
have that Ap, \ By, and B, \ Al are squeezing.

So, X\ Y € ¥ and (X \ Y) = lim_piq(By\ Apy) =
Jim pg(Bm) = lim_pa(AR) = na(X) — pa(Y).
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Loeb Space Construction

Proposition (2.12 with proof)

(6.2): Note that A, \ B, C X\'Y C By, \ AL, which mean
Am\ B!, and B, \ AL, are sandwich sequences for X \ Y.

Since (Bm \ A) \ (Am \ Br,) € (Bm \ Am) U (Bf, \ A7), we
have that Ap, \ By, and B, \ Al are squeezing.

So, X\ Y€e€Xand ug(X\Y)= Ii_r}n pa(Bm \ AL) =
a n / _ _

Jim pa(Bm) — lim pa(An) = pa(X) — pa(Y).

In particular, we have X€ € ¥, where X :=Q\ X, and

pa(X) =1 — po(X).
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Loeb Space Construction

Proposition (2.12 with proof)
(6.3): IFXNY =0, then Y C X°. Hence,
XUY = (XN Y = (X\ Y)° and
p(XUY) =1—(uX\Y)) =1 (ua(X) = pa(Y)) =
1— (1= pa(X) = pa(Y)) = pa(X) + pa(Y).
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Loeb Space Construction

Proposition (2.12 with proof)
(6.3): IFXNY =0, then Y C X°. Hence,
XUY = (XN Y = (X\ Y)° and
p(XUY) =1—(uX\Y)) =1 (ua(X) = pa(Y)) =
1— (1= pa(X) = pa(Y)) = pa(X) + pa(Y).
(64): X\ Y =XNY = (XUY)EE.
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Loeb Space Construction

Proposition (2.12 with proof)
(6.3): IFXNY =0, then Y C X°. Hence,
XUY = (XN Y = (X\ Y)° and
p(XUY) =1—(uX\Y)) =1 (ua(X) = pa(Y)) =
1— (1= pa(X) = pa(Y)) = pa(X) + pa(Y).
(64): X\ Y =XNY = (XUY)EE.

(7) If X € ¥, then there exists K € ¥ such that ug(XAK) =0,
where XAK = (X \ K) U (K \ X);
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Loeb Space Construction

Proposition (2.12 with proof)
(6.3): IFXNY =0, then Y C X°. Hence,
XUY = (XN Y = (X\ Y)° and
p(XUY) =1—(uX\Y)) =1 (ua(X) = pa(Y)) =
1— (1= pa(X) = pa(Y)) = pa(X) + pa(Y).
(64): X\ Y =XNY = (XUY)EE.

(7) If X € ¥, then there exists K € ¥ such that ug(XAK) =0,
where XAK = (X \ K) U (K \ X);

Part 7: Let An, and By, be a squeezing sandwich sequences
for X. Let Ky ={K € Xo | Am C K C Bn}. Then, KCp, is
nonempty, internal, and K11 C Kp,.
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Loeb Space Construction

Proposition (2.12 with proof)
(6.3): IFXNY =0, then Y C X°. Hence,
XUY = (XN Y = (X\ Y)° and
p(XUY) =1—(uX\Y)) =1 (ua(X) = pa(Y)) =
1— (1= pa(X) = pa(Y)) = pa(X) + pa(Y).
(64): X\ Y =XNY = (XUY)EE.

(7) If X € ¥, then there exists K € ¥ such that ug(XAK) =0,
where XAK = (X \ K) U (K \ X);

Part 7: Let An, and By, be a squeezing sandwich sequences
for X. Let Ky ={K € Xo | Am C K C Bn}. Then, KCp, is
nonempty, internal, and K11 C K. By Proposition 2.5
there isa K € ﬂmeN Km. Clearly, Apm, Bm are squeezing
sandwich sequences for K. Since XAK C By, \ Am, we have
that puo(XAK) < uq(Bm \ Am) — 0. So, uo(XAK) =0.
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Loeb Space Construction

Proposition (2.12 with proof)

(8) If Xi € X for i € N is a pairwise disjoint sequence, then

pa UXi :Z,UQ(Xi);

iEN ieN
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Loeb Space Construction

Proposition (2.12 with proof)
(8) If Xi € X for i € N is a pairwise disjoint sequence, then

Ho (U X;> = na(Xi);

iEN ieN

Part 8: By passing to subsequences we can find squeezing
sandwich sequences AS,',), B,(,é) for each X; such that

max{ua(BS \ X;), ua(Xi \ A} < pna(BW \ AY) < 1/2/m.
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Loeb Space Construction

Proposition (2.12 with proof)
(8) If Xi € X for i € N is a pairwise disjoint sequence, then

Ho (U X;> = na(Xi);

iEN ieN

Part 8: By passing to subsequences we can find squeezing
sandwich sequences AS,',), B,(,é) for each X; such that

max{ua(BS \ X;), ua(Xi \ A} < pna(BW \ AY) < 1/2/m.

Note that AS,';) fori =1,2,... are pairwise disjoint.
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Loeb Space Construction

Proposition (2.12 with proof)

For each m € N we can find a hyperfinite integer Ny, such
that the sequences {Af,i,), B,(,;') | i € N} can be extended to
internal sequences {A%), B,(,';) | 1 <i< Np} such that
5(BI\ AW < 1/2im for 0 < i < Np.
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Loeb Space Construction

Proposition (2.12 with proof)

For each m € N we can find a hyperfinite integer Ny, such
that the sequences {Af,i,), B,(,;') | i € N} can be extended to
internal sequences {A%), B,(,';) | 1 <i< Np} such that
6(8,(,';) \AS,'.,)) <1/2'm for 0 < i < N,. By Corollary 2.7 there
is a hyperfinite integer N < N,, for every m € N. So, for any
meN and0<i <N we have 5(BYW \ AY) < 1/2'm.
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Loeb Space Construction

Proposition (2.12 with proof)

For each m € N we can find a hyperfinite integer Ny, such
that the sequences {Af,i,), B,(,;') | i € N} can be extended to
internal sequences {A%), B,(,';) | 1 <i< Np} such that
6(8,(,';) \AS,'.,)) <1/2'm for 0 < i < N,. By Corollary 2.7 there
is a hyperfinite integer N < N,, for every m € N. So, for any
meN and0<i <N we have 5(BY \ AY) < 1/2'm. For
each m € N et

B, =||BY and A, UA&,’?

=

i=1
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Loeb Space Construction

Proposition (2.12 with proof)

Clearly, A, Bm are sandwich sequences of internal sets for
X := Ujen Xi. It suffices to show that the sequences are also
squeezing.
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Loeb Space Construction

Proposition (2.12 with proof)

Clearly, A, Bm are sandwich sequences of internal sets for
X := Ujen Xi. It suffices to show that the sequences are also
squeezing.

Since
> na(X) = pa (U Xi) <1
i=1 i=1
by Part 6, we have that Ii_r;n Tm = 0 where

[e.e]

Tmi= Y pna(X).

i=m+1
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Loeb Space Construction

Proposition (2.12 with proof)

Given any m' > m in N, we have

/ /

<L, c D\ vy, N .
Z 6(Bw) < —+ > ua(Bnm \X,)+'Z pa(Xi)
i=m-+1 i=m+1 i=m+1
<l iyl o <l <2y,
- mi:m+1zl m2m
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Loeb Space Construction

Proposition (2.12 with proof)
Given any m' > m in N, we have

/ /

<L, c D\ vy, N .
Z 6(Bw) < —+ > ua(Bnm \X,)+'Z pa(Xi)
i=m-+1 i=m+1 i=m+1
<l iyl o <l <2y,
- mi:m+1zl m2m

By extending m’ to hyperfinite we can assume that

N _ N _ 5
5( U B,S?) < ¥ 6(8,(,4))§;+Tm.
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Loeb Space Construction

Proposition (2.12 with proof)

So, NQ(Bm \ Am)

m m N
< po (U B,@\UAS,’?) +MQ( U B,(ai))

i=1 i=1 i=m+1
G i 3

< g (U(Bﬁn) \ A%’)) + 4 T
i=1

m

1 3 4

<> i Tt Ims — 4+ 1Tm—0
i=1

as m — oQ.
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Loeb Space Construction

Proposition (2.12 with proof)

So, NQ(Bm \ Am)

m m N
< po (U B,@\UAS,’?) +MQ( U B,(ai))

i=1 i=1 i=m+1
G i 3

< g (U(Bﬁn) \ A%’)) + 4 T
i=1

1 3 4

§;2,m+m+Tm§m+Tm—>o
=

as m — oo. Therefore, Am, Bm are squeezing for X which

implies X € L.
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Loeb Space Construction

Proposition (2.12 with proof)

Note that

i=m+1
gzmj a(X) + = +5< U 85 )
i=1 = m+1

Szm: (X)+3+T —>ZMQ

as m— oo, and
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Loeb Space Construction

Proposition (2.12 with proof)

pa(X) = lim_pa(An) = lim >~ ua(Ar)

i=1
T N o0\ A9
= Jim, 3 (#a(X) — pa0\ A7)
> lim in: [,LQ(X,')— 1
T m—oo = 2'm
= dm, > nalX) = im 3 o5 =3 alX)
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Loeb Space Construction

Proposition (2.12 with proof)

pa(X) = lim_pa(An) = lim >~ ua(Ar)

i=1
T N o0\ A9
= Jim, 3 (#a(X) — pa0\ A7)
> lim in: [,LQ(X,')— 1
T m—oo = 2'm
= dm, > nalX) = im 3 o5 =3 alX)

We conclude that puq(X) = Z ua(Xi)-
ieN
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Loeb Space Construction

Proposition (2.12 with proof)

(9) X is a o-algebra and (Q; X, uq) is an atomless, complete,
countably additive probability space in the standard sense.
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Loeb Space Construction

Proposition (2.12 with proof)
(9) X is a o-algebra and (Q; X, uq) is an atomless, complete,
countably additive probability space in the standard sense.

Part 9: ¥ is a o-algebra by Part 6 and 8.
(%, X, uq) is complete by Part 3, and
countably additive by Part 8.
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Loeb Space Construction

Proposition (2.12 with proof)
(9) X is a o-algebra and (Q; X, uq) is an atomless, complete,
countably additive probability space in the standard sense.

Part 9: ¥ is a o-algebra by Part 6 and 8.
(%, X, uq) is complete by Part 3, and
countably additive by Part 8.

If X € ¥ with ug(X) > 0, we can find an internal set
A C X such that 6(A) > pa(X)/2 > 0.
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Loeb Space Construction

Proposition (2.12 with proof)

(9) X is a o-algebra and (Q; X, uq) is an atomless, complete,
countably additive probability space in the standard sense.

Part 9: ¥ is a o-algebra by Part 6 and 8.
(%, X, uq) is complete by Part 3, and
countably additive by Part 8.

If X € ¥ with ug(X) > 0, we can find an internal set
A C X such that 6(A) > pa(X)/2 > 0.

Since A is *finite, we can find an internal set B C A such
that |A| = 2|B| or |A| = 2|B| + 1. For each case

pna(B) = pa(A)/2 and pa(X \ B) > pa(A)/2. So, (XX, ua)
is atomless. O
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Loeb Space Construction

Theorem (2.13)

Let (2; X, uq) be a Loeb space on a hyperfinite set Q and
f:Q — RU{£oo} be a measurable function, i.e., f1(0) € ¥ for
any open set O in RU {£oo}, then, there is an internal function
F : Q — *R such that for almost all w € Q we have

st(F(w)) = f(w).
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Loeb Space Construction

Theorem (2.13)

Let (2; X, uq) be a Loeb space on a hyperfinite set Q and
f:Q — RU{£oo} be a measurable function, i.e., f1(0) € ¥ for
any open set O in RU {£oo}, then, there is an internal function
F : Q — *R such that for almost all w € Q we have

st(F(w)) = f(w).

Proof. Let U := {0, | n € N} be a topological basis of RU {+o0}.
For each O, e U let Ay m C f~1(On) be increasing with respect to
m such that Ii_r>n pa(Am) = ua(f~1(0n)).
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Loeb Space Construction

For each m € N let

Om:=1<g: U Apm — "R | g is internal and g[Ap,m] C O,

n<m
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Loeb Space Construction

For each m € N let

Om:=1<g: U Apm — "R | g is internal and g[Ap,m] C O,

n<m

It is easy to see that G, is nonempty, internal, and decreasing. By
countable saturation there is an F € [, cny Gm-
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Loeb Space Construction

For each m € N let

Gmi=1g: U Apm — "R | g is internal and g[Ap,m] C O,

n<m

It is easy to see that G, is nonempty, internal, and decreasing. By
countable saturation there is an F € [,y Gm- Note that the set

Z= [ FHOo)\ U Anm

neN meN

is a countable union of Loeb measure zero sets. Hence,
pa(Z) = 0.
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Loeb Space Construction

For each m € N let

Gm = {g : U Apm — "R | g is internal and g[Apm] C *On} .

n<m

It is easy to see that G, is nonempty, internal, and decreasing. By
countable saturation there is an F € [,y Gm- Note that the set

VAES U (f_l(on)\ U An,m)

neN meN

is a countable union of Loeb measure zero sets. Hence,
ua(Z) =0. Foreach w € Q\ Z and O, € U, if f(w) € Op, then
w € Ap,m for some m > n.
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Loeb Space Construction

For each m € N let

Gm = {g : U Apm — "R | g is internal and g[Apm] C *On} .

n<m

It is easy to see that G, is nonempty, internal, and decreasing. By
countable saturation there is an F € [,y Gm- Note that the set

VAES U (f_l(on)\ U An,m)

neN meN

is a countable union of Loeb measure zero sets. Hence,
ua(Z) =0. Foreach w € Q\ Z and O, € U, if f(w) € Op, then
w € An m for some m > n. Hence, F(w) € *O, which implies

st(F(w)) = f(w). O
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Application to Finance

We present an application of nonstandard analysis to finance
theory due to Dr. Yeneng Sun. This application may technically be
the simplest one among all Dr. Sun's contributions to
mathematical economics.
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Application to Finance

We present an application of nonstandard analysis to finance
theory due to Dr. Yeneng Sun. This application may technically be
the simplest one among all Dr. Sun's contributions to
mathematical economics.

Given two hyperfinite Loeb spaces (Q; X, uq) and (V; T, vy),
one can form two different product measure spaces on  x V.
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Application to Finance

We present an application of nonstandard analysis to finance
theory due to Dr. Yeneng Sun. This application may technically be
the simplest one among all Dr. Sun's contributions to
mathematical economics.

Given two hyperfinite Loeb spaces (Q; X, uq) and (V; T, vy),
one can form two different product measure spaces on  x V.

The first one is the standard product measure space. For any
two standard probability spaces (2; X, 1) and (W; T, v) a rectangle
is a set of form A x B for some A€ ¥ and B € . The measure
u X v(Ax B):=pu(A) v(B). Let £ x I be the collection of all
finite union of disjoint rectangles. The measure i X v can be
trivially generalized to sets in X x I'. Note that

(Qx WV, T xTuxv)

is a finitely additive probability space.
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Application to Finance

By the same process as in Proposition 2.12 the measure pu X v
can uniquely be extended to the o-algebra o (X x I') generated by
> x I'. By including in all subsets of zero-measure sets one can
make the measure i X v complete. The space

QxTo(ExWV),uxv)

is called the standard product measure space on  x V.
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Application to Finance

By the same process as in Proposition 2.12 the measure pu X v
can uniquely be extended to the o-algebra o (X x I') generated by
> x I'. By including in all subsets of zero-measure sets one can
make the measure i X v complete. The space

QxTo(ExWV),uxv)

is called the standard product measure space on  x V.

The product measure space on Q x V in the rest of this
subsection is different from the standard one.
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Application to Finance

By the same process as in Proposition 2.12 the measure pu X v
can uniquely be extended to the o-algebra o (X x I') generated by
> x I'. By including in all subsets of zero-measure sets one can
make the measure i X v complete. The space

QxTo(ExWV),uxv)

is called the standard product measure space on  x V.

The product measure space on Q x V in the rest of this
subsection is different from the standard one.

Let's consider the product space of two hyperfinite Loeb spaces
(X, ug) and (W; T, vy). Since Q x W is again a hyperfinite set,
one can form the Loeb probability space generalized by the
normalized counting measure on all internal subsets of Q x W.
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Application to Finance

Denote this Loeb product space by

QX V,EZRT, ug @ vy).
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Application to Finance

Denote this Loeb product space by

QX V,EZRT, ug @ vy).

Since a finite union of disjoint rectangles is an internal subset of
Qx WV, we havethat T x T C X ®T. Since 2 ®T is a o-algebra
and contains all subsets of zero-measure sets with respect to
1o ® vy, we have that

c(EXTN)CERI and po @y o (X xT) = puqg x vy.
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Application to Finance

Theorem (2.14, Keisler's Fubini Theorem)

Let (4, X, ug) and (V;T,vy) be two Loeb spaces. Assume that
f:Q x WV — R is an integrable function on the Loeb product space
(Q X F, 2R F, na & Z/\p). Then,
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Application to Finance

Theorem (2.14, Keisler's Fubini Theorem)

Let (4, X, ug) and (V;T,vy) be two Loeb spaces. Assume that
f:Q x WV — R is an integrable function on the Loeb product space
(Q X F, 2R F, na & Z/\p). Then,

@ for vy-almost all y € V, f,(x) := f(x,y) is puq-integrable,
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Application to Finance

Theorem (2.14, Keisler's Fubini Theorem)

Let (4, X, ug) and (V;T,vy) be two Loeb spaces. Assume that
f:Q x WV — R is an integrable function on the Loeb product space
(Q X F, 2R F, na & Z/\p). Then,

@ for vy-almost all y € V, f,(x) := f(x,y) is puq-integrable,

Q F(y):= / f(x,y)duq(x) is vy-integrable, and
Q
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Application to Finance

Theorem (2.14, Keisler's Fubini Theorem)

Let (4, X, ug) and (V;T,vy) be two Loeb spaces. Assume that
f:Q x WV — R is an integrable function on the Loeb product space
(Q X F, 2R F, na & Z/\p). Then,

@ for vy-almost all y € V, f,(x) := f(x,y) is puq-integrable,

Q F(y):= / f(x,y)duq(x) is vy-integrable, and
Q

(3] A/Qf(x,y)dun(x)dw(y):/ﬂw f(x,y)dua ® vy.
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Application to Finance

Imagine that an insurance company has a life insurance policy
for people satisfying certain conditions. Each policy could bring a
gain or loss of some values for the company with certain
probability distribution. It is a common sense that if the identical
policy is sold to enough many policy holders and each of these
policy holders lives an independent life, then the company's
financial risk of selling the policy can be diminished.
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Application to Finance

Imagine that an insurance company has a life insurance policy
for people satisfying certain conditions. Each policy could bring a
gain or loss of some values for the company with certain
probability distribution. It is a common sense that if the identical
policy is sold to enough many policy holders and each of these
policy holders lives an independent life, then the company's
financial risk of selling the policy can be diminished.

How can this phenomenon be mathematically modeled?
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Imagine that an insurance company has a life insurance policy
for people satisfying certain conditions. Each policy could bring a
gain or loss of some values for the company with certain
probability distribution. It is a common sense that if the identical
policy is sold to enough many policy holders and each of these
policy holders lives an independent life, then the company's
financial risk of selling the policy can be diminished.

How can this phenomenon be mathematically modeled?

Definition (2.15)

Fix a probability space (Q2; ¥, ). A random variable is a
measurable function v(w) : Q — R.
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Application to Finance

Imagine that an insurance company has a life insurance policy
for people satisfying certain conditions. Each policy could bring a
gain or loss of some values for the company with certain
probability distribution. It is a common sense that if the identical
policy is sold to enough many policy holders and each of these
policy holders lives an independent life, then the company's
financial risk of selling the policy can be diminished.

How can this phenomenon be mathematically modeled?

Definition (2.15)

Fix a probability space (Q2; ¥, ). A random variable is a
measurable function v(w) : Q — R.

@ By an individual insurance agent (for example, an insurance
policy holder) we mean a random variable f;(w) : Q — R.
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Application to Finance

Imagine that an insurance company has a life insurance policy
for people satisfying certain conditions. Each policy could bring a
gain or loss of some values for the company with certain
probability distribution. It is a common sense that if the identical
policy is sold to enough many policy holders and each of these
policy holders lives an independent life, then the company's
financial risk of selling the policy can be diminished.

How can this phenomenon be mathematically modeled?

Definition (2.15)

Fix a probability space (Q2; ¥, ). A random variable is a
measurable function v(w) : Q — R.

@ By an individual insurance agent (for example, an insurance
policy holder) we mean a random variable f;(w) : Q — R.

@ By an insurance system we mean a function f : Q x | —+ R
such that fi(w) := f(w, i) for each i € | is an insurance agent.
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Application to Finance

To find an idealize the model of the phenomenon, the number of
insurance agents |/| should be infinite. To measure the size of
agent groups, a measure on the set / is needed. Since a measure
should be countably additive, the size of / should be uncountable.
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Application to Finance

To find an idealize the model of the phenomenon, the number of
insurance agents |/| should be infinite. To measure the size of
agent groups, a measure on the set / is needed. Since a measure
should be countably additive, the size of / should be uncountable.

Definition (2.16)
Let (; X, 1) and (V;T,v) be two probability spaces.
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Application to Finance

To find an idealize the model of the phenomenon, the number of
insurance agents |/| should be infinite. To measure the size of
agent groups, a measure on the set / is needed. Since a measure
should be countably additive, the size of / should be uncountable.

Definition (2.16)
Let (; X, 1) and (V;T,v) be two probability spaces.
Q A function f : Q x W — R /s said to be jointly measurable if f
is measurable with respect to the standard product space
(Qx Vo (XxT),puxv);
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Application to Finance

To find an idealize the model of the phenomenon, the number of
insurance agents |/| should be infinite. To measure the size of
agent groups, a measure on the set / is needed. Since a measure
should be countably additive, the size of / should be uncountable.

Definition (2.16)
Let (; X, 1) and (V;T,v) be two probability spaces.

Q A function f : Q x W — R /s said to be jointly measurable if f
is measurable with respect to the standard product space
(Qx Vo (XxT),puxv);

@ Suppose a function f : Q x W — R satisfies that
f>i) :== f(w, i) is (V; T, v) measurable for almost every
w € Q and fi(w) := f(w, i) is (2; X, u) measurable for almost
every i € V. The function f is almost pairwise independent
on V if for v x v-almost all pairs (i,i") € V x V, the random
variables f;(w) and fi(w) are independent.
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Application to Finance

Theorem (2.17, Joseph L. Doob)

Let (2; X, 1) and (V;T,v) be two probability spaces and
f:Q x WV — R be a function such that

@ f is jointly measurable and square-integrable;

@ f is almost pairwise independent on V.

Renling Jin Nonstandard Analysis and CNT



Application to Finance

Theorem (2.17, Joseph L. Doob)

Let (2; X, 1) and (V;T,v) be two probability spaces and
f:Q x WV — R be a function such that

@ f is jointly measurable and square-integrable;

@ f is almost pairwise independent on V.

Then, for v-almost all i € W, the random variable fj(w) is p-almost
surely a constant function.

4
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Application to Finance

Theorem (2.17, Joseph L. Doob)
Let (0, %, 1) and (V;T,v) be two probability spaces and
f:Q x W =R be a function such that
@ f is jointly measurable and square-integrable;
@ f is almost pairwise independent on V.
Then, for v-almost all i € W, the random variable fj(w) is p-almost
surely a constant function.

By Theorem 2.17 there is no non-trivial insurance system can be
jointly measurable with respect to the standard product of the
insurance policy space and the space of insurance agents which are
pairwise independent.
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Application to Finance

Example (2.18)

Let N be a hyperfinite integer and Q = {w | w : [N] — [2]}.
Then, Q is a hyperfinite set and || = 2V. Let (; X, uq) be the
Loeb space on Q.
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Application to Finance

Example (2.18)

Let N be a hyperfinite integer and Q = {w | w : [N] — [2]}.
Then, Q is a hyperfinite set and || = 2V. Let (; X, uq) be the
Loeb space on Q. Let W = [N] and (V;T,vy) be the Loeb space
on V.
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Application to Finance

Example (2.18)

Let N be a hyperfinite integer and Q = {w | w : [N] — [2]}.
Then, Q is a hyperfinite set and || = 2V. Let (; X, uq) be the
Loeb space on Q. Let W = [N] and (V;T,vy) be the Loeb space
on V. Foreach i €V et fi : Q — R be defined as fi(w) := w(i).

Renling Jin Nonstandard Analysis and CNT



Application to Finance

Example (2.18)

Let N be a hyperfinite integer and Q = {w | w : [N] — [2]}.
Then, Q is a hyperfinite set and || = 2V. Let (; X, uq) be the
Loeb space on Q. Let W = [N] and (V;T,vy) be the Loeb space
on V. Foreach i €V et fi : Q — R be defined as fi(w) := w(i).
Then each f; is a 0, 1-valued random variable on €2 and

po({w | fi(w) =0}) =1/2.
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Example (2.18)

Let N be a hyperfinite integer and Q = {w | w : [N] — [2]}.
Then, Q is a hyperfinite set and || = 2V. Let (; X, uq) be the
Loeb space on Q. Let W = [N] and (V;T,vy) be the Loeb space
on V. Foreach i €V et fi : Q — R be defined as fi(w) := w(i).
Then each f; is a 0, 1-valued random variable on €2 and

po({w | fi(w) =0}) =1/2.

Each f; can be viewed as a coin flip.
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Application to Finance

Example (2.18)

Let N be a hyperfinite integer and Q = {w | w : [N] — [2]}.
Then, Q is a hyperfinite set and || = 2V. Let (; X, uq) be the
Loeb space on Q. Let W = [N] and (V;T,vy) be the Loeb space
on V. Foreach i €V et fi : Q — R be defined as fi(w) := w(i).
Then each f; is a 0, 1-valued random variable on €2 and

po({w | fi(w) =0}) =1/2.

Each f; can be viewed as a coin flip.
For any i # 1" in T, f; and fi: are independent and have identical
probability distribution.
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Application to Finance

Example (2.18)

Let N be a hyperfinite integer and Q = {w | w : [N] — [2]}.
Then, Q is a hyperfinite set and || = 2V. Let (; X, uq) be the
Loeb space on Q. Let W = [N] and (V;T,vy) be the Loeb space
on V. Foreach i €V et fi : Q — R be defined as fi(w) := w(i).
Then each f; is a 0, 1-valued random variable on €2 and

pa({w | filw) =0}) = 1/2.

Each f; can be viewed as a coin flip.

For any i # 1" in T, f; and fi: are independent and have identical
probability distribution.

Clearly, f(w, i) := fi(w) defines a measurable function on the
Loeb product (2 x V; X @ T, uq ® vy) such that all f; are
non-trivial.
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Application to Finance

Theorem (2.19, Y. Sun)

Let (2; X, pq) and (V;T,vy) be two Loeb spaces and
f:Qx WV — R be a square-integrable measurable insurance system
in(QxV,ERT, ug ® vy).
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Application to Finance

Theorem (2.19, Y. Sun)

Let (2; X, pq) and (V;T,vy) be two Loeb spaces and
f:Qx WV — R be a square-integrable measurable insurance system
in(Qx WV, XE®T, uq ®vy). If the insurance agents f; and fi: are
independent for almost all (i,i") in W x W, then for almost all
w e Q
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Application to Finance

Theorem (2.19, Y. Sun)

Let (2; X, pq) and (V;T,vy) be two Loeb spaces and
f:Qx WV — R be a square-integrable measurable insurance system
in(Qx WV, XE®T, uq ®vy). If the insurance agents f; and fi: are
independent for almost all (i,i") in W x W, then for almost all
w e Q

/f(w,i)dy\u:/ f(w,i)d,tm@uwz//f(w,i)d,quI/\u.
v VxQ v JQ
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Application to Finance

Theorem (2.19, Y. Sun)

Let (2; X, pq) and (V;T,vy) be two Loeb spaces and
f:Qx WV — R be a square-integrable measurable insurance system
in(Qx WV, XE®T, uq ®vy). If the insurance agents f; and fi: are
independent for almost all (i,i") in W x W, then for almost all
w e Q

/f(w,i)dy\u:/ f(w,i)d,tm@uwz//f(w,i)d,quI/\u.
v VxQ v JQ

The theorem above is called the Exact Law of Large Numbers
which indicates that the average pay-off of all insurance agents
under particular realization w for almost all w € € is a constant
which is the average pay-off of one agent.
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The End of Day Two

Thank you for your attention.
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