
Properties and Principles
Loeb Space Construction

Application to Finance

Nonstandard Analysis and
Combinatorial Number Theory

Renling Jin

College of Charleston, SC

Day Two: Basic Methods

2023 Fudan Logic Summer School
Shanghai, China, August 8, 2023

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Properties and Principles
Loeb Space Construction

Application to Finance

OUTLINE:

1 Properties and Principles

2 Loeb Space Construction

3 Application to Finance

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Properties and Principles
Loeb Space Construction

Application to Finance

OUTLINE:

1 Properties and Principles

2 Loeb Space Construction

3 Application to Finance

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Properties and Principles
Loeb Space Construction

Application to Finance

OUTLINE:

1 Properties and Principles

2 Loeb Space Construction

3 Application to Finance

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Properties and Principles
Loeb Space Construction

Application to Finance

OUTLINE:

1 Properties and Principles

2 Loeb Space Construction

3 Application to Finance

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Properties and Principles
Loeb Space Construction

Application to Finance

We mentioned before that the nonstandard real field ∗R does
not satisfy the completeness property and pointed out that the
property is not first-order. It is also true that a superstructure V as
the model of standard mathematics, contains all sets in P(R) as
its elements. Note that V satisfies the first-order sentence ϕ:

∀x ∈P([0, 1])(x has a least upper bound in [0, 1]). (1)

Can we conclude by the transfer principle that the sentence

∀x ∈P(∗[0, 1])(x has a least upper bound in ∗[0, 1])

is true in ∗V? Of course, ∗R in ∗V should not satisfy the
completeness property because there is no least upper bound of all
infinitesimals. Does this cause inconsistency? To clarify the issue
we should pay attention to the difference between internal sets and
external sets.
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Let A ∈ V be a set with rank ≤ n. A subset A0 of A is finite iff
there is a bijection in V between A0 and [n] for some n ∈ N. We
denote |A0| = n for saying that A0 has a cardinality n. The
cardinality function | · | can be extend to a function ∗| · | from all
∗finite subsets of ∗A to ∗N. So, ∗|A1| = n iff there is a bijection in
∗V between A1 and [n]. For notational convenience, we omit ∗

from ∗| · |. A set A1 is called a hyperfinite set if |A1| is a
hyperfinite integer.

Definition (2.1)

Every element or set of the form ∗a for some a ∈ V is called
standard and every element or set a ∈ ∗V is called internal. If an
element or a set is not in ∗V, we call it external.
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Example (2.2)

1 Every r ∈ R is standard, and ∗N, ∗R are standard.

2 For each hyperfinite integer N the sets [N] and [−N,N] ∩ ∗R
are internal but not standard.

3 The sets N and R are external subsets of ∗R.

For Part 2 above let N − 1 = [g ] where g : N→ N and
{n ∈ N | g(n) > m} ∈ F for each m ∈ N.

If ∗a = ∗N ∩ [0, [g ]] ∈ ∗V is standard, then ∗a being bounded
above in ∗N implies a being bounded above in N by the transfer
property. This means that a is a finite subset of N. So, we have
∗a = a which is a finite set contradicting that ∗a is a hyperfinite set.
Hence, ∗N ∩ [N] is internal but not standard. By a similar reason,
the set ∗R ∩ [−N,N] is internal but not standard.
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Note that the statement V |= ϕ for ϕ being in (1) is transferred
to ∗V to become
∗V |= ∀x ∈ ∗P(∗[0, 1])(x has a least upper bound in ∗[0, 1]).

The reader should notice the difference between ∗P(∗[0, 1]) and
P(∗[0, 1]). The former is the collection of all internal subsets of
∗[0, 1] and the latter is the collection of all subsets (internal or
external) of ∗[0, 1]. So, in ∗V every internal subset of ∗[0, 1] has a
least upper bound. Therefore, the set of all infinitesimals in ∗R is
not an internal set.

For Part 3 above, since every bounded subset of N is finite and
has a maximal element in N, by the transfer principle, every
bounded internal subset of ∗N is finite or hyperfinite and has a
maximal element. But N as a subset of ∗N does not have a
maximal element. Therefore, N is not internal in ∗N. By a similar
reason, R is not an internal subset of ∗R.
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Proposition (2.3, Definability of Internal Sets)

Let A ∈ ∗V be an internal set with rank(A) ≤ n and ϕ(x , b) be
a formula with parameters b in ∗V where x is an m-tuple of
variables. Then {

a ∈ Am | ∗V |= ϕ(a, b)
}

(2)

is again an internal subset of Am.

Proof: Let A = [f ] and b = [g ]. Define a function h : N→ V by
letting

h(n) := {a ∈ f (n)m | V |= ϕ(a, g(n))}

for each n ∈ N. Let B = [h]. Then B is an internal subset of Am.
The proposition follows because

[p] ∈ B iff {n ∈ N | p(n) ∈ h(n)} ∈ F
iff {n ∈ N | V |= ϕ(p(n), g(n))} ∈ F iff ∗V |= ϕ([p], b)

by  Loś’ Theorem. 2
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If a subset B of an internal set A is itself internal, then B can be
trivially defined by the formula x ∈ B with parameter B. So,
Proposition 2.3 says that a subset of an internal set is internal iff
the subset is first-order definable.

A nonempty set U ⊆ ∗N is an initial segment of ∗N if n ∈ U
and m < n imply m ∈ U for any m, n ∈ ∗N. For example, N is an
external initial segment of ∗N.
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Proposition (2.4, Overspill and Underspill Principle)

Let U be an external initial segment of ∗N and A be an internal
subset of ∗N.

1 If A ∩ U is unbounded above in U, then A \ U 6= ∅;
2 If A \ U is unbounded below in ∗N \ U, then A ∩ U 6= ∅.

Proof: Part 1: Suppose A \ U = ∅. Then

U = {x ∈ ∗N | ∃a ∈ A (x ≤ a)}

is internal by Proposition 2.3 which contradicts the assumption
that U is external. The proof of Part 2 is similar. 2

The overspill and underspill principles are frequently used tools
in nonstandard analysis.
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Proposition (2.5, Countable Saturation)

Let A be an infinite internal set in ∗V with rank ≤ n and
A ⊇ B0 ⊇ B1 ⊇ · · · be a nested sequence of nonempty internal
sets. Then, ⋂

m∈N
Bm 6= ∅.

Proof: Let Bm = [bm] for some bm ∈ VN and choose an
[fm] ∈ [bm]. For each m ∈ N let

Um := {n ∈ N | n > m, fm(n) ∈ bm(n),

and b0(n) ⊇ b1(n) ⊇ · · · ⊇ bm(n)}.

Then Um ∈ F . For each n ∈ N, let mn := max{m ∈ N | n ∈ Um}.
Note that mn exists because

⋂
m∈N

Um = ∅. Note also that n ∈ Umn .
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Let f ∈ VN be a function such that f (n) = fmn(n) for every
n ∈ N. It suffices to show that [f ] ∈ [bm] for every m ∈ N.

Given m ∈ N, let U := {n ∈ N | f (n) ∈ bm(n)}. For each
n ∈ Um, we have m ≤ mn by the maximality of mn.

Since n ∈ Umn , we have f (n) = fmn(n) ∈ bmn(n) ⊆ bm(n).
Hence, n ∈ U which means Um ⊆ U.

Since Um ∈ F , we have that U ∈ F , which implies [f ] ∈ [bm]. 2
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Countable saturation was used first by W. A. J. Luxemburg in
1969. It is a key property in the development of Loeb measure.

In Proposition 2.3 and Proposition 2.5 the set A is assumed to
have rank ≤ n because some collection of subsets of A are
mentioned which may have rank greater than n. Since the elements
with rank higher than n are still in V as long as the rank is ≤ 2n.

If the set A has a rank 2n, then some objects needed will be
outside of V.

Since all mathematical objects in our applications will have a rank
≤ n the restriction rank(A) ≤ n will not cause any problem.

Although the rank of some element used in the proofs may not be
mentioned, the reader should understand when it is assumed to
have a rank below n.
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Proposition 2.5 is still true if the sequence Bm is assumed to
satisfy the finite intersection property, i.e., the intersection of any
finite collection of Bm’s is nonempty, instead of the sequence being
nested.

Proposition 2.5 is also true if F is a non-principal ultrafilter on any
infinite set X as long as it is countably incomplete.

For any infinite cardinal κ, there exist ultrafilters F such that the
ultrapower of V modulo F satisfies κ-saturation property, i.e., any
collection of less than κ many internal subsets of an internal set
satisfying finite intersection property has a nonempty intersection.
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The next two corollaries are trivial.

Corollary (2.6)

Every internal set A in ∗V is either finite or uncountable.

Corollary (2.7)

Let U be an infinite initial segment of ∗N. Let {xn ∈ U | n ∈ N}
be increasing and {yn ∈ ∗N \ U | n ∈ N} be decreasing. Then
either {xn ∈ U | n ∈ N} is bounded above by some z ∈ U or
{yn ∈ ∗N \ U | n ∈ N} is bounded below by some z ∈ ∗N \ U.
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Corollary (2.8)

Let A ∈ ∗V and s : N→ A be an external sequence. There
exists an internal function S : ∗N→ A such that S �N = s.

Proof: For each m ∈ N let

Sm := {t ∈ ∗V | t : ∗N→ A (t(i) = s(i) for i ∈ [m + 1]).

Note that Sm ∈ ∗P(A
∗N ∩ ∗V) is nonempty because it contains

at least an internal function s ′ such that s ′(i) = s(i) for
i ∈ [m + 1] and s ′(i) = s(0) for any i ∈ ∗N \ [m]. It is easy to see
that Sm ⊇ Sm+1.

By countable saturation we can find S : ∗N→ A such that
S �N = s. 2
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Remark (2.9)

Note that if s : N→ A is an injection, we cannot require that
S : ∗N→ A be an injection in Corollary 2.8. However, if

B := {m ∈ ∗N | S � [m + 1] is an injection},

then B is internal and upper unbounded in N.

By the overspill principle the set B contains some hyperfinite
integer N. Hence, S � [N + 1] is an injection from [N + 1] to A.

For example, a strictly increasing sequence {ri | i ∈ N} in some
interval [a, b] ⊆ ∗R may not be extended to an internal strictly
increasing sequence {ri | i ∈ ∗N} in [a, b]. Instead, it can be
extended to a hyperfinite strictly increasing sequence
{ri | 0 ≤ i ≤ N} for some hyperfinite integer N.
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In this course we introduce only Loeb probability space generated
by an internal normalized counting measure on a hyperfinite set.

Definition (2.10)

Let Ω be a hyperfinite set in ∗V and Σ0 := ∗P(Ω) be the set of
all internal subsets of Ω. Clearly, each A ∈ Σ0 is a finite or
hyperfinite set. For A ∈ Σ0 define

δ(A) :=
|A|
|Ω|
∈ ∗[0, 1] and µΩ(A) := st(δ(A)) ∈ [0, 1].

Then, (Ω; Σ0, δ) is called a normalized counting measure space,
and (Ω; Σ0, µΩ) is called a standardized normalized counting
measure space.
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Definition (2.11)

Let (Ω; Σ0, µΩ) be the standardized normalized counting
measure space on a hyperfinite set Ω. For each X ⊆ Ω where X
could be external, the upper measure and lower measure of X are
defined by

µΩ(X ) := inf{µΩ(A) | X ⊆ A and A ∈ Σ0} and

µ
Ω

(X ) := sup{µΩ(A) | X ⊇ A and A ∈ Σ0}.

Let Σ := {X ⊆ Ω | µΩ(X ) = µ
Ω

(X )}. For each X ∈ Σ define
µΩ(X ) = µΩ(X ). Then, (Ω; Σ, µΩ) is called a Loeb probability
space, or just Loeb space, generated by the normalized counting
measure on Ω.
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Proposition (2.12 with proof)

Let (Ω; Σ, µΩ) be a Loeb space defined in Definition 2.2. Then,

(1) Σ0 ⊆ Σ;
Part 1 is true because of the definition of lower and upper
measure.

(2) µΩ(Ω) = 1 and µΩ({x}) = 0 for each x ∈ Ω;
Part 2 is true because |Ω|/|Ω| = 1 and st(1/|Ω|) = 0.

(3) If Y ⊆ X ⊆ Ω, X ∈ Σ, and µΩ(X ) = 0, then Y ∈ Σ and
µΩ(Y ) = 0;
Part 3 is true because 0 = µΩ(X ) ≥ µΩ(Y ) ≥ µ

Ω
(Y ) ≥ 0

implies µΩ(Y ) = µ
Ω

(Y ) = 0.

(4) If X ,Y ∈ Σ and Y ⊆ X , then µΩ(Y ) ≤ µΩ(X );
Part 4 follows from the fact that if A ⊆ B for internal sets
A,B ∈ Σ0, then δ(A) ≤ δ(B).
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Proposition (2.12 with proof)

(5) Let X ⊆ Ω. Then, X ∈ Σ iff X has squeezing sandwich
sequences of internal sets Ai and Bi for i ∈ N, i.e., (sandwich)

A1 ⊆ A2 ⊆ A3 ⊆ · · · ⊆ X ⊆ · · · ⊆ B3 ⊆ B2 ⊆ B1 ⊆ Ω,

and (squeezing) lim
m→∞

µΩ(Bm \ Am) = 0.

Furthermore, if Am,Bm are squeezing sandwich sequences for
X , then µΩ(X ) = lim

m→∞
µΩ(Am) = lim

m→∞
µΩ(Bm);
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Part 5: “⇒”: Assume X ∈ Σ. For each m ∈ N there are
internal sets Am,Bm ∈ Σ0 with Am ⊆ X ⊆ Bm such that
δ(Am) > µΩ(X )− 1/m and δ(Bm) < µΩ(X ) + 1/m. By
taking unions of Am’s and intersections of Bm’s we can
assume that Am’s and Bm’s are sandwich sequences of X .
Since δ(Bm \ Am) = δ(Bm)− δ(Am) < 2/m, we have that the
sequences are squeezing, i.e., lim

m→∞
µΩ(Bm \ Am) = 0.

“⇐”: Since µΩ(Bm \ Am)→ 0 we have that

α = lim
m→∞

µΩ(Am) = lim
m→∞

µΩ(Bm) = β.

Note that α ≤ µ
Ω

(X ) ≤ µΩ(X ) ≤ β. So,
µ

Ω
(X ) = µΩ(X ) = µΩ(X ) = α = β, which clearly implies

X ∈ Σ.
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(6) Let X ,Y ∈ Σ.

1 X ∪ Y ∈ Σ and µΩ(X ∪ Y ) ≤ µΩ(X ) + µΩ(Y );

2 If Y ⊆ X , then X \ Y ∈ Σ and µΩ(X \ Y ) = µΩ(X )− µΩ(Y );

3 If X ∩ Y = ∅, then µΩ(X ∪ Y ) = µΩ(X ) + µΩ(Y );

4 X \ Y ∈ Σ.

Part 6: Let Am and Bm be squeezing sandwich sequences for
X , and A′m and B ′m be squeezing sandwich sequences for Y .
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(6.1): Since Am ∪A′m and Bm ∪B ′m are sandwich sequences of
X ∪ Y and

(Bm ∪ B ′m) \ (Am ∪ A′m) ⊆ (Bm \ Am) ∪ (B ′m \ A′m),

we have that

lim
m→∞

µΩ((Bm ∪ B ′m) \ (Am ∪ A′m))

≤ lim
m→∞

µΩ(Bm \ Am) + lim
m→∞

µΩ(B ′m \ A′m) = 0,

which implies X ∪ Y ∈ Σ by Part 5 and hence,

|µΩ(X ∪ Y ) = lim
m→∞

µΩ(Bm ∪ B ′m)

≤ lim
m→∞

µΩ(Bm) + lim
m→∞

µΩ(B ′m) = µΩ(X ) + µΩ(Y ).
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(6.2): Note that Am \ B ′m ⊆ X \ Y ⊆ Bm \ A′m, which mean
Am \ B ′m and Bm \ A′m are sandwich sequences for X \ Y .

Since (Bm \ A′m) \ (Am \ B ′m) ⊆ (Bm \ Am) ∪ (B ′m \ A′m), we
have that Am \ B ′m and Bm \ A′m are squeezing.

So, X \ Y ∈ Σ and µΩ(X \ Y ) = lim
m→∞

µΩ(Bm \ A′m) =

lim
m→∞

µΩ(Bm)− lim
m→∞

µΩ(A′m) = µΩ(X )− µΩ(Y ).

In particular, we have X c ∈ Σ, where X c := Ω \ X , and
µΩ(X c) = 1− µΩ(X ).
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(6.3): If X ∩ Y = ∅, then Y ⊆ X c . Hence,
X ∪ Y = (X c ∩ Y c)c = (X c \ Y )c and
µΩ(X ∪ Y ) = 1− (µ(X c \ Y )) = 1− (µΩ(X c)− µΩ(Y )) =
1− (1− µΩ(X )− µΩ(Y )) = µΩ(X ) + µΩ(Y ).

(6.4): X \ Y = X ∩ Y c = (X c ∪ Y )c ∈ Σ.

(7) If X ∈ Σ, then there exists K ∈ Σ0 such that µΩ(X ∆K ) = 0,
where X ∆K := (X \ K ) ∪ (K \ X );

Part 7: Let Am and Bm be a squeezing sandwich sequences
for X . Let Km = {K ∈ Σ0 | Am ⊆ K ⊆ Bm}. Then, Km is
nonempty, internal, and Km+1 ⊆ Km. By Proposition 2.5
there is a K ∈

⋂
m∈NKm. Clearly, Am,Bm are squeezing

sandwich sequences for K . Since X ∆K ⊆ Bm \ Am, we have
that µΩ(X ∆K ) ≤ µΩ(Bm \ Am)→ 0. So, µΩ(X ∆K ) = 0.
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(8) If Xi ∈ Σ for i ∈ N is a pairwise disjoint sequence, then

µΩ

(⋃
i∈N

Xi

)
=
∑
i∈N

µΩ(Xi );

Part 8: By passing to subsequences we can find squeezing

sandwich sequences A
(i)
m ,B

(i)
m for each Xi such that

max{µΩ(B
(i)
m \ Xi ), µΩ(Xi \ A

(i)
m )} ≤ µΩ(B

(i)
m \ A

(i)
m ) < 1/2im.

Note that A
(i)
m for i = 1, 2, . . . are pairwise disjoint.
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For each m ∈ N we can find a hyperfinite integer Nm such

that the sequences {A(i)
m ,B

(i)
m | i ∈ N} can be extended to

internal sequences {A(i)
m ,B

(i)
m | 1 ≤ i ≤ Nm} such that

δ(B
(i)
m \ A

(i)
m ) < 1/2im for 0 ≤ i ≤ Nm. By Corollary 2.7 there

is a hyperfinite integer N ≤ Nm for every m ∈ N. So, for any

m ∈ N and 0 ≤ i ≤ N we have δ(B
(i)
m \ A

(i)
m ) < 1/2im. For

each m ∈ N let

Bm :=
N⋃
i=1

B
(i)
m and Am :=

m⋃
i=1

A
(i)
m .
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Clearly, Am,Bm are sandwich sequences of internal sets for
X :=

⋃
i∈N Xi . It suffices to show that the sequences are also

squeezing.

Since
m∑
i=1

µΩ(Xi ) = µΩ

(
m⋃
i=1

Xi

)
≤ 1

by Part 6, we have that lim
m→∞

Tm = 0 where

Tm :=
∞∑

i=m+1

µΩ(Xi ).
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Given any m′ > m in N, we have

m′∑
i=m+1

δ(B
(i)
m ) ≤ 1

m
+

m′∑
i=m+1

µΩ(B
(i)
m \ Xi ) +

m′∑
i=m+1

µΩ(Xi )

≤ 1

m
+

1

m

m′∑
i=m+1

1

2i
+ Tm ≤

1

m
+

1

m2m
+ Tm ≤

2

m
+ Tm.

By extending m′ to hyperfinite we can assume that

δ

(
N⋃

i=m+1

B
(i)
m

)
≤

N∑
i=m+1

δ(B
(i)
m ) ≤ 2

m
+ Tm.
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So, µΩ(Bm \ Am)

≤ µΩ

(
m⋃
i=1

B
(i)
m \

m⋃
i=1

A
(i)
m

)
+ µΩ

(
N⋃

i=m+1

B
(i)
m

)

≤ µΩ

(
m⋃
i=1

(B
(i)
m \ A

(i)
m )

)
+

3

m
+ Tm

≤
m∑
i=1

1

2im
+

3

m
+ Tm ≤

4

m
+ Tm → 0

as m→∞. Therefore, Am,Bm are squeezing for X which
implies X ∈ Σ.
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Note that

µΩ(X ) =
m∑
i=1

µΩ(Xi ) + µΩ

( ∞⋃
i=m+1

Xi

)

≤
m∑
i=1

µΩ(Xi ) +
1

m
+ δ

(
N⋃

i=m+1

B
(i)
m

)

≤
m∑
i=1

µΩ(Xi ) +
3

m
+ Tm →

∞∑
i=1

µΩ(Xi )

as m→∞, and
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µΩ(X ) = lim
m→∞

µΩ(Am) = lim
m→∞

m∑
i=1

µΩ(A
(i)
m )

= lim
m→∞

m∑
i=1

(
µΩ(Xi )− µΩ(Xi \ A

(i)
m )
)

≥ lim
m→∞

m∑
i=1

(
µΩ(Xi )−

1

2im

)

= lim
m→∞

m∑
i=1

µΩ(Xi )− lim
m→∞

m∑
i=1

1

2im
=
∞∑
i=1

µΩ(Xi ).

We conclude that µΩ(X ) =
∑
i∈N

µΩ(Xi ).
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(9) Σ is a σ-algebra and (Ω; Σ, µΩ) is an atomless, complete,
countably additive probability space in the standard sense.

Part 9: Σ is a σ-algebra by Part 6 and 8.
(Ω; Σ, µΩ) is complete by Part 3, and
countably additive by Part 8.

If X ∈ Σ with µΩ(X ) > 0, we can find an internal set
A ⊆ X such that δ(A) > µΩ(X )/2 > 0.

Since A is ∗finite, we can find an internal set B ⊆ A such
that |A| = 2|B| or |A| = 2|B|+ 1. For each case
µΩ(B) = µΩ(A)/2 and µΩ(X \ B) ≥ µΩ(A)/2. So, (Ω; Σ, µΩ)
is atomless. 2
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Theorem (2.13)

Let (Ω; Σ, µΩ) be a Loeb space on a hyperfinite set Ω and
f : Ω→ R ∪ {±∞} be a measurable function, i.e., f −1(O) ∈ Σ for
any open set O in R ∪ {±∞}, then, there is an internal function
F : Ω→ ∗R such that for almost all ω ∈ Ω we have

st(F (ω)) = f (ω).

Proof: Let U := {On | n ∈ N} be a topological basis of R∪ {±∞}.
For each On ∈ U let An,m ⊆ f −1(On) be increasing with respect to
m such that lim

m→∞
µΩ(Am) = µΩ(f −1(On)).
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For each m ∈ N let

Gm :=

{
g :

⋃
n<m

An,m → ∗R | g is internal and g [An,m] ⊆ ∗On

}
.

It is easy to see that Gm is nonempty, internal, and decreasing. By
countable saturation there is an F ∈

⋂
m∈N Gm. Note that the set

Z :=
⋃
n∈N

(
f −1(On) \

⋃
m∈N

An,m

)

is a countable union of Loeb measure zero sets. Hence,
µΩ(Z ) = 0. For each ω ∈ Ω \ Z and On ∈ U , if f (ω) ∈ On, then
ω ∈ An,m for some m > n. Hence, F (ω) ∈ ∗On which implies
st(F (ω)) = f (ω). 2
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Properties and Principles
Loeb Space Construction

Application to Finance

We present an application of nonstandard analysis to finance
theory due to Dr. Yeneng Sun. This application may technically be
the simplest one among all Dr. Sun’s contributions to
mathematical economics.

Given two hyperfinite Loeb spaces (Ω; Σ, µΩ) and (Ψ; Γ, νΨ),
one can form two different product measure spaces on Ω×Ψ.

The first one is the standard product measure space. For any
two standard probability spaces (Ω; Σ, µ) and (Ψ; Γ, ν) a rectangle
is a set of form A× B for some A ∈ Σ and B ∈ Γ. The measure
µ× ν(A× B) := µ(A) · ν(B). Let Σ× Γ be the collection of all
finite union of disjoint rectangles. The measure µ× ν can be
trivially generalized to sets in Σ× Γ. Note that

(Ω×Ψ; Σ× Γ, µ× ν)

is a finitely additive probability space.
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Properties and Principles
Loeb Space Construction

Application to Finance

By the same process as in Proposition 2.12 the measure µ× ν
can uniquely be extended to the σ-algebra σ (Σ× Γ) generated by
Σ× Γ. By including in all subsets of zero-measure sets one can
make the measure µ× ν complete. The space

(Ω× Γ;σ (Σ×Ψ) , µ× ν)

is called the standard product measure space on Ω×Ψ.

The product measure space on Ω×Ψ in the rest of this
subsection is different from the standard one.

Let’s consider the product space of two hyperfinite Loeb spaces
(Ω; Σ, µΩ) and (Ψ; Γ, νΨ). Since Ω×Ψ is again a hyperfinite set,
one can form the Loeb probability space generalized by the
normalized counting measure on all internal subsets of Ω×Ψ.
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Properties and Principles
Loeb Space Construction

Application to Finance

Denote this Loeb product space by

(Ω×Ψ; Σ⊗ Γ, µΩ ⊗ νΨ).

Since a finite union of disjoint rectangles is an internal subset of
Ω×Ψ, we have that Σ× Γ ⊆ Σ⊗ Γ. Since Σ⊗ Γ is a σ-algebra
and contains all subsets of zero-measure sets with respect to
µΩ ⊗ νΨ, we have that

σ (Σ× Γ) ⊆ Σ⊗ Γ and µΩ ⊗ νΨ �σ (Σ× Γ) = µΩ × νΨ.
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Properties and Principles
Loeb Space Construction

Application to Finance

Theorem (2.14, Keisler’s Fubini Theorem)

Let (Ω; Σ, µΩ) and (Ψ; Γ, νΨ) be two Loeb spaces. Assume that
f : Ω×Ψ→ R is an integrable function on the Loeb product space
(Ω× Γ,Σ⊗ Γ, µΩ ⊗ νΨ). Then,

1 for νΨ-almost all y ∈ Ψ, fy (x) := f (x , y) is µΩ-integrable,

2 F (y) :=

∫
Ω

f (x , y)dµΩ(x) is νΨ-integrable, and

3

∫
Ψ

∫
Ω

f (x , y)dµΩ(x)dνΨ(y) =

∫
Ω×Ψ

f (x , y)dµΩ ⊗ νΨ.
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Properties and Principles
Loeb Space Construction

Application to Finance

Imagine that an insurance company has a life insurance policy
for people satisfying certain conditions. Each policy could bring a
gain or loss of some values for the company with certain
probability distribution. It is a common sense that if the identical
policy is sold to enough many policy holders and each of these
policy holders lives an independent life, then the company’s
financial risk of selling the policy can be diminished.

How can this phenomenon be mathematically modeled?

Definition (2.15)

Fix a probability space (Ω; Σ, µ). A random variable is a
measurable function v(ω) : Ω→ R.

1 By an individual insurance agent (for example, an insurance
policy holder) we mean a random variable fi (ω) : Ω→ R.

2 By an insurance system we mean a function f : Ω× I → R
such that fi (ω) := f (ω, i) for each i ∈ I is an insurance agent.
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Properties and Principles
Loeb Space Construction

Application to Finance

To find an idealize the model of the phenomenon, the number of
insurance agents |I | should be infinite. To measure the size of
agent groups, a measure on the set I is needed. Since a measure
should be countably additive, the size of I should be uncountable.

Definition (2.16)

Let (Ω; Σ, µ) and (Ψ; Γ, ν) be two probability spaces.

1 A function f : Ω×Ψ→ R is said to be jointly measurable if f
is measurable with respect to the standard product space
(Ω×Ψ;σ (Σ× Γ) , µ× ν);

2 Suppose a function f : Ω×Ψ→ R satisfies that
f ω(i) := f (ω, i) is (Ψ; Γ, ν) measurable for almost every
ω ∈ Ω and fi (ω) := f (ω, i) is (Ω; Σ, µ) measurable for almost
every i ∈ Ψ. The function f is almost pairwise independent
on Ψ if for ν × ν-almost all pairs (i , i ′) ∈ Ψ×Ψ, the random
variables fi (ω) and fi ′(ω) are independent.
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Properties and Principles
Loeb Space Construction

Application to Finance

Theorem (2.17, Joseph L. Doob)

Let (Ω; Σ, µ) and (Ψ; Γ, ν) be two probability spaces and
f : Ω×Ψ→ R be a function such that

1 f is jointly measurable and square-integrable;

2 f is almost pairwise independent on Ψ.

Then, for ν-almost all i ∈ Ψ, the random variable fi (ω) is µ-almost
surely a constant function.

By Theorem 2.17 there is no non-trivial insurance system can be
jointly measurable with respect to the standard product of the
insurance policy space and the space of insurance agents which are
pairwise independent.
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Properties and Principles
Loeb Space Construction

Application to Finance

Example (2.18)

Let N be a hyperfinite integer and Ω = {ω | ω : [N]→ [2]}.
Then, Ω is a hyperfinite set and |Ω| = 2N . Let (Ω; Σ, µΩ) be the
Loeb space on Ω. Let Ψ = [N] and (Ψ; Γ, νΨ) be the Loeb space
on Ψ. For each i ∈ Ψ let fi : Ω→ R be defined as fi (ω) := ω(i).
Then each fi is a 0, 1-valued random variable on Ω and

µΩ({ω | fi (ω) = 0}) = 1/2.

Each fi can be viewed as a coin flip.
For any i 6= i ′ in T , fi and fi ′ are independent and have identical

probability distribution.
Clearly, f (ω, i) := fi (ω) defines a measurable function on the

Loeb product (Ω×Ψ; Σ⊗ Γ, µΩ ⊗ νΨ) such that all fi are
non-trivial.
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Loeb product (Ω×Ψ; Σ⊗ Γ, µΩ ⊗ νΨ) such that all fi are
non-trivial.
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Theorem (2.19, Y. Sun)

Let (Ω; Σ, µΩ) and (Ψ; Γ, νΨ) be two Loeb spaces and
f : Ω×Ψ→ R be a square-integrable measurable insurance system
in (Ω×Ψ,Σ⊗ Γ, µΩ ⊗ νΨ). If the insurance agents fi and fi ′ are
independent for almost all (i , i ′) in Ψ×Ψ, then for almost all
ω ∈ Ω∫

Ψ
f (ω, i)dνΨ =

∫
Ψ×Ω

f (ω, i)dµΩ ⊗ νΨ =

∫
Ψ

∫
Ω

f (ω, i)dµΩdνΨ.

The theorem above is called the Exact Law of Large Numbers
which indicates that the average pay-off of all insurance agents
under particular realization ω for almost all ω ∈ Ω is a constant
which is the average pay-off of one agent.
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The End of Day Two

Thank you for your attention.
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