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Ultrapower of Superstructure

We will limit the breadth of our non-traditional introduction of
the first-order logic. We will touch only the part enough for the
purpose of this course.

Logical symbols:

connectives: ¬, ∧, ∨, →, ↔,

quantifiers: ∀, ∃,

equality symbol: =,

variables: x , y , z , . . ..

Non-logical symbols:

L = {+, · ,≤, 0, 1,P}P∈P for ordered field or

L = {∈} for superstructure where ∈ is a binary relation
symbol.
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In the language of ordered field, the symbols +, · , ≤, 0, 1, can
all be viewed as relation symbols. Hence, Just say L := {P}P∈P
is enough. However, we list +, · , ≤, 0, 1, separately from P just
for clarity.

For notational simplicity all non-logical symbols considered are
relational symbols (note that an n-variable function can be
identified with the graph of the function which is an
(n + 1)-dimensional relation and a constant symbol is a
0-dimensional relation symbol).

We do not distinguish each symbol from its intended
interpretation. For example, + represents a three dimensional
relation symbol in the language of ordered field as well as the
actual addition in an ordered field.
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Ultrapower of Superstructure

Definition (1.1)

An L -formula can be formed inductively by the following two
steps (L will be omitted later on).

1 Basic step: The atomic formulas are those in the form of
P(x , c) where
P ∈ L ∪ {=} is a relation symbol with arity m and x
represents the k-tuple (x1, x2, . . . , xk) of variables and c
represents the m − k tuple of constant symbols;

2 Inductive step: If ϕ and ψ are formulas, so are ¬ϕ, ϕ ∧ ψ,
ϕ ∨ ψ, ϕ→ ψ, ϕ↔ ψ, ∀x ϕ, and ∃x ϕ.

By the complexity of a formula, we mean the number of steps in
Definition 1.1 used to form the formula.
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The sub-formula ϕ is called the scope of the quantifier ∀ or ∃ in
the formula ∀x ϕ or ∃x ϕ, respectively. The variable x in ∀x ϕ or
∃x ϕ is called bounded. An occurrence of a variable x is called
bounded in an formula ϕ if it is bounded in a sub-formula ∀x ψ or
∃x ψ of ϕ. An occurrence of a variable x is called free in ϕ if it is
not bounded.

We write x for a tuple of variables, and write ϕ(x) to indicate
implicitly that all free variables in ϕ are among the variables in x .

Definition (1.2)

A model M := (M; PM)P∈L contains a nonempty base set M
together with the interpretation PM ⊆ Mm of each relation
symbol P ∈ L with arity m. We sometimes write M for a model
as well as its base set.
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Ultrapower of Superstructure

Definition (1.3)

For each formula ϕ(x) and a tuple a of elements in a model M,
define M |= ϕ(a), i.e., ϕ(a) is true in M, inductively on the
complexity of the formula:

(1) ϕ is an atomic formula P(x , c): M |= P(a, c) iff
(a, cM) ∈ PM;

(2) M |= ¬ϕ iff M 6|= ϕ, i.e., it’s not true that M |= ϕ (so “¬”
means “not”);

(3) M |= ϕ ∧ ψ iff M |= ϕ and M |= ψ (so “∧” means “and”);

(4) M |= ϕ ∨ ψ iff M |= ϕ or M |= ψ (so “∨” means “or”);
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Ultrapower of Superstructure

Definition (1.3)

(5) M |= ϕ→ ψ iff M |= ϕ implies M |= ψ (so “→” means
“imply”);

(6) M |= ϕ↔ ψ iff M |= (ϕ→ ψ) ∧ (ψ → ϕ) (so “↔” means
“equivalent to”);

(7) M |= ∀x ϕ(x , a) iff M |= ϕ(b, a) for every b ∈M (so “∀”
means “for every”);

(8) M |= ∃x ϕ(x , a) iff M |= ϕ(b, a) for some b ∈M (so “∃”
means “for some”).

Note that by (1), (7), and (8) the intended value in M for a
variable x is always an element of M. This is the reason why we
call the logic system above the first-order logic.
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Ultrapower of Superstructure

When we say a formula, we mean a first-order formula unless
otherwise specified. A formula without free variable is called a
sentence. If a model M is given and every free variable of a
formula ϕ(x) is substituted by an element in a in M, we call also
ϕ(a) a sentence or a sentence with parameters a. So, the truth
value of a sentence in a model is always determined.

It is an easy fact that each formula ϕ is logically equivalent to a
formula ψ, i.e., ϕ and ψ have the same truth value in any model,
where ψ does not use any of the symbols ∨, →, ↔, or ∀. Hence, it
suffices to consider only the formulas using logic connectives ¬, ∧,
and quantifier ∃ in some of the proofs later on.
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Ultrapower of Superstructure

Example (1.4)

Let L = {+, · ,≤, 0, 1,P}P∈P be the language of ordered field
and R := (R; +, · ,≤, 0, 1,PR)P∈P be the usual real ordered field
with some extra relations. Then R is an L -model. If ϕ is the
sentence ∀x , y , z (x ≤ y → x + z ≤ y + z),
then R |= ϕ.

Note that the sentence above can formally be written as a logic
sentence

∀x∀y∀z∀u∀v (≤ (x , y) ∧+(x , z , u) ∧+(y , z , v)→≤ (u, v)).

We will use conventional expressions more often than the formal
ones. The reader is guaranteed that all conventional expressions
can be re-written as formal ones.
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Ultrapower of Superstructure

The following is a familiar sentence in the language of real
ordered field which is not first-order because variable X in the
sentence takes a set not an element of R as its value.

Example (1.5)

Let ϕ be the sentence

∀X ⊆ [0, 1]∃β (β is the least upper bound of X ).

then ϕ is true in R.

We now construct an ultrapower of R. Let N := {0, 1, 2, . . .}
and Z := {0,±1,±2, . . .}. If n is a positive integer, let
[n] := {0, 1, . . . , n − 1}.
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Ultrapower of Superstructure

Definition (1.6)

Let X be an infinite set and P be the power set operator. A
collection F ⊆P(X ) is called a non-principal ultrafilter on X if
for any A,B ⊆ X

1 ∅ is not in F and every co-finite subset A of X (i.e., X \ A is
finite) is in F ;

2 if A,B are in F , then A ∩ B is in F ;

3 if A is in F and A ⊆ B, then B is in F ;

4 if A is not in F , then X \ A is in F .

The existence of a non-principal ultrafilter on an infinite set X is
guaranteed by the axiom of choice. For simplicity we use only a
fixed non-principal ultrafilter F on X := N. In fact, any
non-principal ultrafilter on an infinite set X works as long as it is
countably incomplete (F on a countable set such as N is trivially
countably incomplete.)
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Ultrapower of Superstructure

Definition (1.7)

Let M be a model. Let MN be the set of all functions from N
to M. For any f , g ∈MN define f ∼ g iff
{n ∈ N | f (n) = g(n)} ∈ F . The equivalence class of f ∈MN is
the set [f ] := {g ∈MN | f ∼ g}. Set MN/F := {[f ] | f ∈MN}.
The ultrapower of M modulo F , denoted by MN/F , is a model
with the base set MN/F and for each relation symbol P, the
interpretation of P in MN/F is defined by

[f ] ∈ PM
N/F iff {n ∈ N | f (n) ∈ PM} ∈ F . (1)

For each a ∈M let φa : N→M be the constant function with
a unique value a. If b = (b1, b2, . . . , bk), we write [φb] for
([φb1 ], [φb2 ], . . . , [φbk ]).
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Ultrapower of Superstructure

Definition (1.8)

Let i :M→MN/F be the function such that i(a) = [φa]. The
function i is called an elementary embedding associated with the
ultrapower construction.

Theorem (1.9, J.  Loś)

Let MN/F be the ultrapower of a model M modulo F . Let
ϕ(x , b) be a formula with parameters b in M. Then

MN/F |= ϕ([f ], [φb]) iff {n ∈ N | M |= ϕ(f (n), b)} ∈ F .
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Proof of Theorem 1.9: If ϕ is an atomic formula P(x , c), then the

theorem follows from the definition of PM
N/F . If ϕ is ¬ψ, then

the theorem follows from Part 4 of Definition 1.6 and induction
hypothesis for ψ. If ϕ is ψ ∧ χ, then the theorem follows from Part
2 of Definition 1.6 and induction hypothesis for ψ and χ.

Assume ϕ is ∃x ψ(x , y , b). If

A := {n ∈ N | M |= ∃x ψ(x , f (n), b)} ∈ F ,

define a function g : N→M by letting g(n) be any fixed element
in M if n 6∈ A, and g(n) = an for some an ∈M with
M |= ψ(an, f (n), b) if n ∈ A. Then

A ⊆ {n ∈ N | M |= ψ(g(n), f (n), b)}.
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Ultrapower of Superstructure

By Part 3 of Definition 1.6 and the induction hypothesis on ψ we
have MN/F |= ψ([g ], [f ], [φb]), which implies

MN/F |= ∃x ψ(x , [f ], [φb]).

On the other hand, if MN/F |= ∃x ψ(x , [f ], [φb]), then there is
a g : N→M such that MN/F |= ψ([g ], [f ], [φb]). By the
induction hypothesis for ψ we have

B := {n ∈ N | M |= ψ(g(n), f (n), b)} ∈ F .

So, if n ∈ B, we have M |= ∃x ψ(x , f (n), b). Hence,

B ⊆ {n ∈ N | M |= ∃x ψ(x , [f ], [φb])} ∈ F

by Part 2 of Definition 1.6. 2
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Corollary (1.10)

Let i :M→MN/F be the embedding defined in Definition
1.8. For any sentence ϕ(b) with parameters b in M, we have

M |= ϕ(b) iff MN/F |= ϕ(i(b)). (2)

Proof: The corollary follows from Theorem 1.9, Part 1 of Definition
1.6, and the fact that the set {n ∈ N | M |= ϕ([φb(n)])} is either
N or ∅ depending on whether M |= ϕ(b) is true or not. 2

The map i satisfying (2) is called an elementary embedding from
a model M to another model M′ =MN/F . (2) is also called the
transfer principle.
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In fact, the elementary embedding from M to M′ can be
defined for any two models M and M′ when (2) is true.

Denote by M�M′ for the existence of such an elementary
embedding from M to M′. If we want to emphasize that an
elementary embedding i :M→M′ is not surjective, we can just
write M≺M′ instead.

The embedding i is often written as ∗ in nonstandard analysis.
For example, a nonstandard analyst may write ∗A more often than
i(A).

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Introduction
First-order Logic and Ultrapower of Real Field

Ultrapower of Superstructure

In fact, the elementary embedding from M to M′ can be
defined for any two models M and M′ when (2) is true.

Denote by M�M′ for the existence of such an elementary
embedding from M to M′. If we want to emphasize that an
elementary embedding i :M→M′ is not surjective, we can just
write M≺M′ instead.

The embedding i is often written as ∗ in nonstandard analysis.
For example, a nonstandard analyst may write ∗A more often than
i(A).

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Introduction
First-order Logic and Ultrapower of Real Field

Ultrapower of Superstructure

In fact, the elementary embedding from M to M′ can be
defined for any two models M and M′ when (2) is true.

Denote by M�M′ for the existence of such an elementary
embedding from M to M′. If we want to emphasize that an
elementary embedding i :M→M′ is not surjective, we can just
write M≺M′ instead.

The embedding i is often written as ∗ in nonstandard analysis.
For example, a nonstandard analyst may write ∗A more often than
i(A).

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Introduction
First-order Logic and Ultrapower of Real Field

Ultrapower of Superstructure

Example (1.11)

Let ∗R be the ultrapower of the “standard” real ordered field R
modulo F .

(1) ∗R satisfies the same first-order sentences with parameters
from R, in particular, ∗R is an ordered field and contains a
copy of R as its (elementary) sub-model. We call real
numbers in R the standard real numbers.

(2) By identifying each α ∈ R with ∗α = [φα] ∈ ∗R, we can
assume that R ⊆ ∗R.

(3) A real r ∈ ∗R is called an infinitesimal, denoted by r ≈ 0, if
|r | < |α| for every non-zero α ∈ R. Two reals r1, r2 ∈ ∗R are
said to be infinitesimally close, denoted by r1 ≈ r2, if r1 − r2 is
an infinitesimal.
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Example (1.11)

(4) If Id ∈ RN is the identity function, i.e., Id(n) = n for every
n ∈ N, then [Id ] ∈ ∗R and [Id ] > r for every r ∈ R. So, ∗R
contains numbers larger than every r ∈ R.

(5) 1/[Id ] in ∗R is a positive infinitesimal;

(6) A number N ∈ ∗N \ N is called a hyperfinite integer. For
example, [Id ] is a hyperfinite integer. A hyperfinite integer is
infinitely large from the standard point of view, but is finite
from nonstandard point of view.
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Proposition (1.12)

A real number r ∈ ∗R is called near standard if |r | ≤ α for some
α ∈ R. If r is near standard, then there exists a unique β ∈ R such
that r ≈ β.

Proof: Let S = {γ ∈ R | γ < r}. Then the set S ⊆ R is bounded
above by α. By the completeness property S has a least upper
bound β. It is easy to check that r ≈ β. The uniqueness follows
from the fact that two distinct standard reals can never be
infinitesimally close. 2

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Introduction
First-order Logic and Ultrapower of Real Field

Ultrapower of Superstructure

Proposition (1.12)

A real number r ∈ ∗R is called near standard if |r | ≤ α for some
α ∈ R. If r is near standard, then there exists a unique β ∈ R such
that r ≈ β.

Proof: Let S = {γ ∈ R | γ < r}. Then the set S ⊆ R is bounded
above by α. By the completeness property S has a least upper
bound β. It is easy to check that r ≈ β. The uniqueness follows
from the fact that two distinct standard reals can never be
infinitesimally close. 2

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Introduction
First-order Logic and Ultrapower of Real Field

Ultrapower of Superstructure

Example (1.13)

Let S be the set of all infinitesimals in ∗R. Then S is nonempty
and bounded above by 1. Note that S does not have a least upper
bound. Indeed, if β > 0 were the least upper bound of S, then β
being infinitesimal would imply 2β being also an infinitesimal which
violates β being upper bound of S, and β being non-infinitesimal
would imply β/2 being also a non-infinitesimal which violates β
being the least. Either way we have a contradiction.

The example above shows that R and ∗R may not share the
same truth beyond the first-order.

Besides the transfer principle, the standard part map is another
way to connect ∗R to R.
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Definition (1.14)

Let ns(∗R) be the set of all near standard reals in ∗R. We
define the standard part map st : ∗R → R ∪ {±} by letting
st(r) = α for every r ∈ ns(∗R) where α is the unique number in R
such that r ≈ α, st(r) =∞ if r > α for every α ∈ R, and
st(r) = −∞ if r < α for every α ∈ R.

We would like to present very simple applications of nonstandard
analysis to calculus. Note that the arguments in these applications
avoid the use of limit process.

Definition (1.15)

Let s : N→ R be a standard sequence. The sequence s is
convergent if ∗s(N) ≈ ∗s(N ′) for any hyperfinite integers N,N ′.
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Theorem (1.16, Bolzano–Weierstrass)

Every standard bounded sequence contains a convergent
subsequence.

Proof: Suppose s is the bounded sequence in [a, b]. Let
N ∈ ∗N \ N. Then ∗s(N) ∈ ns( ∗R). Let L = st(∗s(N)). We show
that there exists a subsequence s ′ of s such that s ′ converges to L.

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Introduction
First-order Logic and Ultrapower of Real Field

Ultrapower of Superstructure

Theorem (1.16, Bolzano–Weierstrass)

Every standard bounded sequence contains a convergent
subsequence.

Proof: Suppose s is the bounded sequence in [a, b]. Let
N ∈ ∗N \ N. Then ∗s(N) ∈ ns( ∗R). Let L = st(∗s(N)). We show
that there exists a subsequence s ′ of s such that s ′ converges to L.

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Introduction
First-order Logic and Ultrapower of Real Field

Ultrapower of Superstructure

For each n ∈ N, if there is an mn ∈ N such that
s(m) 6∈ (L− 1/n, L + 1/n) for all m ≥ mn in N, then
∗s(m) 6∈ ∗(L− 1/n, L + 1/n) for any m ≥ mn in ∗N by the transfer
principle, which contradicts st(∗s(N)) = L because N ≥ mn.

Hence, (L− 1/n, L + 1/n) contains infinitely many terms of s for
each n ∈ N. So, one can choose m1 < m2 < · · · such that
s(mn) ∈ (L− 1/n, L + 1/n).

Now for any hyperfinite integers N < N ′ we have
∗s(mN), ∗s(mN′) ∈ ∗(L− 1/N, L + 1/N). Hence,
∗s(mN) ≈ ∗s(mN′).

This shows that the subsequence s(m1), s(m2), . . . is a convergent
subsequence of s. 2
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Definition (1.17)

Let f : [a, b]→ R be a standard function. Then,

1 f is continuous at c ∈ [a, b] if for any r ∈ ∗[a, b] we have
r ≈ c implies ∗f (r) ≈ f (c); f is continuous on [a, b] if f is
continuous at every c ∈ [a, b];

2 f is uniformly continuous on [a, b] if r1 ≈ r2 implies
∗f (r1) ≈ ∗f (r2) for any r1, r2 ∈ ∗[a, b].
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Theorem (1.18)

If a standard function f : [a, b]→ R is continuous on [a, b], then
f is uniformly continuous on [a, b].

Proof: Suppose that f is continuous on [a, b] but not uniformly
continuous on [a, b]. Then, there exist r1, r2 ∈ ∗[a, b] such that
r1 ≈ r2 but ∗f (r1) 6≈ ∗f (r2).

Since r1 ≈ r2 we have st(r1) = st(r2) = c ∈ [a, b]. Since
r1 ≈ c ≈ r2, then ∗f (r1) ≈ f (c) ≈ ∗f (r2), which contradicts the
assumption that ∗f (r1) 6≈ ∗f (r2). 2
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Definition (1.19)

Let f : (a, b)→ R be a standard function and c ∈ (a, b). The
function f is differentiable at c if there exists an α ∈ R such that

f ′(c) := st

(∗f (r)− f (c)

r − c

)
= α

for any r ∈ ∗R with r ≈ c and r 6= c.

Given a function f : X → Y , a ∈ X , and A ⊆ X , we write f (a)
for some element in Y , and write f [A] for the set {f (a) | a ∈ A}.

Theorem (1.20, Chain Rule)

If the standard function f : (a, b)→ R is differentiable at
c ∈ (a, b), f [(a, b)] ⊆ (α, β), and a standard function
g : (α, β)→ R is differentiable at f (c), then g(f (x)) : (a, b)→ R
is differentiable at c and (g(f (x)))′c = g ′(f (c))f ′(c).
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c ∈ (a, b), f [(a, b)] ⊆ (α, β), and a standard function
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To deal with integration we encounter the integral operator
which is a linear functional. Therefore, it cannot be handled in ∗R.
We need a structure not only containing functions from Rn to R
but also containing the functions of the functions, the functions of
the functions of the functions, etc. This is why we introduce
another model called superstructure to deal with this and many
other needs in the next subsection.
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Ultrapower of Superstructure

The use of superstructure and its elementary extension as the
model of nonstandard analysis started by Robinson and Zakon.

Fix a sufficiently large positive integer n, say n = 100. Let
L := {∈} contain only one binary relation symbol. Given an
infinite set X of urelements, i.e., elements without members, the
superstructure on X , denoted by V(X ), is an L -model (V (X );∈)
where V (X ) is defined inductively by letting

V (X , 0) := X , V (X , n + 1) := V (X , n) ∪P(V (X , n))

for every n < 2n, V (X ) = V (X ; 2n), and letting ∈ be the true set
theoretic membership relation on V (X ) as the interpretation of the
symbol ∈ in L . For notational convenience, we don’t distinguish
V(X ) for the model from the base set of the model. We write also
V(X , n) for both (V (X , n);∈) and V (X , n).

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Introduction
First-order Logic and Ultrapower of Real Field

Ultrapower of Superstructure

The use of superstructure and its elementary extension as the
model of nonstandard analysis started by Robinson and Zakon.

Fix a sufficiently large positive integer n, say n = 100. Let
L := {∈} contain only one binary relation symbol. Given an
infinite set X of urelements, i.e., elements without members, the
superstructure on X , denoted by V(X ), is an L -model (V (X );∈)
where V (X ) is defined inductively by letting

V (X , 0) := X , V (X , n + 1) := V (X , n) ∪P(V (X , n))

for every n < 2n, V (X ) = V (X ; 2n), and letting ∈ be the true set
theoretic membership relation on V (X ) as the interpretation of the
symbol ∈ in L . For notational convenience, we don’t distinguish
V(X ) for the model from the base set of the model. We write also
V(X , n) for both (V (X , n);∈) and V (X , n).

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Introduction
First-order Logic and Ultrapower of Real Field

Ultrapower of Superstructure

The use of superstructure and its elementary extension as the
model of nonstandard analysis started by Robinson and Zakon.

Fix a sufficiently large positive integer n, say n = 100. Let
L := {∈} contain only one binary relation symbol. Given an
infinite set X of urelements, i.e., elements without members, the
superstructure on X , denoted by V(X ), is an L -model (V (X );∈)
where V (X ) is defined inductively by letting

V (X , 0) := X , V (X , n + 1) := V (X , n) ∪P(V (X , n))

for every n < 2n, V (X ) = V (X ; 2n), and letting ∈ be the true set
theoretic membership relation on V (X ) as the interpretation of the
symbol ∈ in L . For notational convenience, we don’t distinguish
V(X ) for the model from the base set of the model. We write also
V(X , n) for both (V (X , n);∈) and V (X , n).

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Introduction
First-order Logic and Ultrapower of Real Field

Ultrapower of Superstructure

The use of superstructure and its elementary extension as the
model of nonstandard analysis started by Robinson and Zakon.

Fix a sufficiently large positive integer n, say n = 100. Let
L := {∈} contain only one binary relation symbol. Given an
infinite set X of urelements, i.e., elements without members, the
superstructure on X , denoted by V(X ), is an L -model (V (X );∈)
where V (X ) is defined inductively by letting

V (X , 0) := X , V (X , n + 1) := V (X , n) ∪P(V (X , n))

for every n < 2n, V (X ) = V (X ; 2n), and letting ∈ be the true set
theoretic membership relation on V (X ) as the interpretation of the
symbol ∈ in L . For notational convenience, we don’t distinguish
V(X ) for the model from the base set of the model. We write also
V(X , n) for both (V (X , n);∈) and V (X , n).

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Introduction
First-order Logic and Ultrapower of Real Field

Ultrapower of Superstructure

The use of superstructure and its elementary extension as the
model of nonstandard analysis started by Robinson and Zakon.

Fix a sufficiently large positive integer n, say n = 100. Let
L := {∈} contain only one binary relation symbol. Given an
infinite set X of urelements, i.e., elements without members, the
superstructure on X , denoted by V(X ), is an L -model (V (X );∈)
where V (X ) is defined inductively by letting

V (X , 0) := X , V (X , n + 1) := V (X , n) ∪P(V (X , n))

for every n < 2n, V (X ) = V (X ; 2n), and letting ∈ be the true set
theoretic membership relation on V (X ) as the interpretation of the
symbol ∈ in L . For notational convenience, we don’t distinguish
V(X ) for the model from the base set of the model. We write also
V(X , n) for both (V (X , n);∈) and V (X , n).

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Introduction
First-order Logic and Ultrapower of Real Field

Ultrapower of Superstructure

The use of superstructure and its elementary extension as the
model of nonstandard analysis started by Robinson and Zakon.

Fix a sufficiently large positive integer n, say n = 100. Let
L := {∈} contain only one binary relation symbol. Given an
infinite set X of urelements, i.e., elements without members, the
superstructure on X , denoted by V(X ), is an L -model (V (X );∈)
where V (X ) is defined inductively by letting

V (X , 0) := X , V (X , n + 1) := V (X , n) ∪P(V (X , n))

for every n < 2n, V (X ) = V (X ; 2n), and letting ∈ be the true set
theoretic membership relation on V (X ) as the interpretation of the
symbol ∈ in L . For notational convenience, we don’t distinguish
V(X ) for the model from the base set of the model. We write also
V(X , n) for both (V (X , n);∈) and V (X , n).

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Introduction
First-order Logic and Ultrapower of Real Field

Ultrapower of Superstructure

The use of superstructure and its elementary extension as the
model of nonstandard analysis started by Robinson and Zakon.

Fix a sufficiently large positive integer n, say n = 100. Let
L := {∈} contain only one binary relation symbol. Given an
infinite set X of urelements, i.e., elements without members, the
superstructure on X , denoted by V(X ), is an L -model (V (X );∈)
where V (X ) is defined inductively by letting

V (X , 0) := X , V (X , n + 1) := V (X , n) ∪P(V (X , n))

for every n < 2n, V (X ) = V (X ; 2n), and letting ∈ be the true set
theoretic membership relation on V (X ) as the interpretation of the
symbol ∈ in L . For notational convenience, we don’t distinguish
V(X ) for the model from the base set of the model. We write also
V(X , n) for both (V (X , n);∈) and V (X , n).

Renling Jin College of Charleston, SC Nonstandard Analysis and CNT



Introduction
First-order Logic and Ultrapower of Real Field
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For each element a ∈ V(X ) we define the rank of a, denoted by
rank(a), by that if a ∈ X , then rank(a) = 0 and if
a ∈ V(X , n + 1) \ V(X , n) for some number n < 2n, then
rank(a) = n + 1. The rank function on V(X ) is bounded by 2n and
is definable in V(X ) by a first-order formula.

We assume always that N ⊆ R ⊆ X . For simplicity, set X = R.
Note that all standard mathematical objects mentioned in the
lecture notes have ranks below n = 100. We set the highest rank
to be 2n instead of n for convenience.

Note that an ordered pair (a, b) of real numbers a, b ∈ R can be
viewed as the set {{a}, {a, b}} ∈ V(R, 2) and a function
f : D ⊆ R→ R can be viewed as a set of ordered pairs in V(R, 2).
Hence, f ∈ V(R, 3). A linear functional L on functions from R to
R is a set of pairs (f , r) = {{f }, {f , r}} ∈ V(R, 5). Hence,
L ∈ V(R, 6). Note also that the ultrafilter F on N is in V(R, 3).
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Ultrapower of Superstructure

The superstructure V(R) is often called the standard universe,
which means that all discussion of ordinary mathematical problems
at the moment can be conducted in V(R). Since X is always R in
the notes we omit R and write V for V(R). Recall that F is a
non-principal ultrafilter on N.

Definition (1.21)

The ultrapower of V modulo F , denoted by ∗V, is the model

(∗V ; ∗∈) ,

where the base set is ∗V = V (X )N/F and the interpretation ∗∈ of
the binary relation symbol ∈ is defined by letting [f ] ∗∈ [g ] iff
{n ∈ N | f (n) ∈ g(n)} ∈ F for any [f ], [g ] ∈ V (X )N/F . Let
∗ : V → ∗V be the elementary embedding, i.e., ∗a := [φa] for every
a ∈ V.
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Ultrapower of Superstructure

Note that the real ordered field R is in V. Hence, ∗R is in ∗V.

The model ∗V is called a nonstandard universe, or a nonstandard
elementary extension of the standard universe V.

One of the advantages of using nonstandard methods is to
replace a limit argument, which has a higher set theoretic
complexity in the standard model, by an infinitesimal argument,
which has a lower set theoretic complexity in a nonstandard model.
The reader is encouraged to treat all r ∈ ∗R as urelements instead
of equivalence classes of functions from N to R to take this
advantage and treat ∗∈ as a real membership relation.
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Ultrapower of Superstructure

Formally, assume that elements in ∗R are urelements with rank
0. Let M be the Mostowski collapsing map on ∗V, i.e., M (a) = a
for every a ∈ ∗R and

M (b) := {M (a) | a ∗∈ b}

for every b ∈ ∗V \ ∗R. Then M is an injection and a ∗∈ b iff
M (a) ∈M (b). If one identifies ∗V with the image of ∗V under
M , one can pretend that ∗∈ is the true membership relation and
consider ∗V as a subset of the superstructure V( ∗R). Hence, we
can drop the upper-left superscript ∗ from ∗∈ for notational
convenience.

Similar to the elements in V, the rank function can also be
defined for elements in ∗V. Every element in ∗R has rank 0. It is
easy to check that every element in ∗V(R, n + 1) \ ∗V(R, n) has
the rank n + 1 for n ∈ [2n].
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Formally, assume that elements in ∗R are urelements with rank
0. Let M be the Mostowski collapsing map on ∗V, i.e., M (a) = a
for every a ∈ ∗R and

M (b) := {M (a) | a ∗∈ b}

for every b ∈ ∗V \ ∗R. Then M is an injection and a ∗∈ b iff
M (a) ∈M (b). If one identifies ∗V with the image of ∗V under
M , one can pretend that ∗∈ is the true membership relation and
consider ∗V as a subset of the superstructure V( ∗R). Hence, we
can drop the upper-left superscript ∗ from ∗∈ for notational
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Ultrapower of Superstructure

Fix a hyperfinite integer K . Let

Γ :=
{ z

K
| z ∈ ∗Z

}
and ∆t = 1/K . An element A ∈ ∗V which happens to be a set,
function, relation, etc. is called an internal set, function, relation,
etc., respectively.

Given an interval [a, b] in V, an internal set T ⊆ [a, b] is called a
set of tag points (with respect to Γ) if T contains exactly one
element in each subinterval [c, d ] where c , d ∈ Γ ∩ [a, b] with
d − c = ∆t.
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Definition (1.22)

A standard bounded function f : [a, b]→ R is said to be
Riemann integrable on [a, b] if for any two internal sets
T ,T ′ ⊆ ∗[a, b] of tag points, we have∑

t∈T

∗f (t)∆t ≈
∑
t∈T ′

∗f (t)∆t.

If f is Riemann integrable on [a, b], define the integration of f on
[a, b] by ∫ b

a
f (x)dx := st

(∑
t∈T

∗f (t)∆t

)
for some internal set T ⊆ ∗[a, b] of tag points.
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Ultrapower of Superstructure

Theorem (1.23)

Given a standard bounded continuous function
g : [0, 1]× R→ R and a number α ∈ R, there exists a standard
function y : [0, 1]→ R satisfying Lipschitz condition such that

y(x) = α +

∫ x

0
g(s, y(s))ds (3)

for every x ∈ [0, 1].

Proof: Let B ∈ R be a bound of g and Γ ∩ [0, 1]
= {t0 < t1 < · · · < tN}. Define inductively on n ≤ N such that
Y (t0) = α and

Y (tn+1) = α +
n∑

i=0

∗g(ti ,Y (ti ))∆t (4)

for n ∈ [N].
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Note that Y (tn) ∈ ns( ∗R) because g being bounded by B ∈ R
implies ∗g being bounded by B by the transfer principle. Let
y(0) = st(Y (t0)). For each x ∈ (0, 1] let y(x) = st(Y (x−)) where
x− is the largest tn ≤ x in Γ ∩ [0, 1]. It is easy to see that y
satisfies Lipschitz condition on [0, 1].

Indeed, if 0 ≤ z1 ≤ z2 ≤ 1 are standard, then∑
z−1 <ti≤z−2

∆t ≈ z2 − z1 and

|y(z2)− y(z1)| =

∣∣∣∣∣∣st

 ∑
z−1 <ti≤z−2

∗g(ti ,Y (ti ))∆t

∣∣∣∣∣∣ ≤ B(z2 − z1).
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Similarly, |Y (ti )− Y (tj)| ≤ B|tj − ti | for ti ≤ tj in Γ ∩ [0, 1].

We show that y satisfies (3).
By Definition 1.22 the integral at the right side of (3) is

infinitesimally close to α +
∑n

i=0
∗g(ti ,

∗y(ti ))∆t and the left side
of (3) is infinitesimally close to α +

∑n
i=0

∗g(ti ,Y (ti ))∆t. Hence,
it suffices to show that

n∑
i=0

(∗g(ti ,
∗y(ti ))− ∗g(ti ,Y (ti ))) ∆t ≈ 0.

If st(ti ) = β, then Y (ti ) ≈ Y (β−) ≈ y(β) ≈ ∗y(ti ). Hence,
η(ti ) := ∗g(ti ,

∗y(ti ))− ∗g(ti ,Y (ti )) ≈ 0 by the continuity of g .
This verifies (3). 2
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The End of Day One

Thank you for your attention.
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