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Abstract

This one-week course is for the students with some background in math-

ematical logic in a typical one-semester undergraduate level course on

mathematical logic. In the first two days, we will cover basic ideas, con-

cepts, properties, principles, etc. in nonstandard analysis with some ap-

plications in calculus and finance. In the last two days, we will focus

on applications of nonstandard methods to the problems in combinato-

rial number theory. In the third day, we study some density problems

by working in a simple nonstandard universe. In the last day, we study

van der Waerden Theorem and Szemerédi Theorem related problems by

working in a nonstandard universe with multiple levels of infinities.
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1 Foundation of Nonstandard Analysis

1.1 Introduction

Can we incorporate new real numbers such as non-zero infinitesimals which is non-

zero but closer to 0 than all old non-zero real numbers into our existing number

system?

The geometric understanding of real numbers can be achieved by identifying each

of them with the position of a point on a line relative to a pre-fixed location called

origin on the line with a pre-determined unit length. From the origin and unit one

can naturally generates the set of all integers. It is easy to imagine the addition–

subtraction and multiplication–division in terms of the physical reality. Hence, the

admission of the set of all rational numbers into our number system should not be

controversial. Can we say the same for admitting more numbers beyond rational

numbers?

There have been historical and psychological controversies when mathematicians

tried to admit real numbers beyond rational numbers into existing number system.

In ancient Greece, it costed, according to a legend, the life of Hippasus after he

discovered the secret that
√

2 is not a rational number. Pre and during Hilbert’s

time, it was natural to assume that the real line should be complete, i.e., every

bounded nonempty set of reals has a least upper bound. One of the consequences

of the completeness property is, discovered by Georg Cantor, that the set of all real

numbers is uncountable. But since there are only countably many ways to describe

or identify individual real numbers, there should be a lot of real numbers which can
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never be identified or described. But why should we assume the existence of these

real numbers? Can we do mathematics without them?

The completeness property adds to the structural beauty of the real number sys-

tem which allows mathematicians to develop real analysis and prove theorems in an

elegant and simple way. It might be fine to develop real analysis without the com-

pleteness property. But that could be much more cumbersome and tedious since the

set of all describable reals has vague boundary.

The completeness property of the real line is an example of mathematical con-

cept as the product of human’s imagination to stretch a pattern of the reality to

create an idealize structure, which in turn offers a better and more efficient tool for

mathematicians to study real physical problems.

There are other examples of this nature. For another example, one can define

an angle between two vectors in four or higher dimensional Euclidean space over

the real field by following the parallel pattern of angles in the three dimensional

space using inner product and Schwarz Inequality. Note that there seems no way

to measure an angle physically between two vectors in a four or higher dimensional

space. However, the angle between two vectors in a four or higher dimensional space

is the key concept used to establish the connection between the value of a correlation

coefficient of a paired data and the linear associativity of the data in statistics.

During the time when calculus was developed in seventeen century, both I. Newton

and G. Leibniz used infinitesimals to create differentiation and integration theory. Due

to lack of logical foundation despite its effectiveness, the admission of infinitesimals

into existing number system for calculus became the target of criticism for potential

inconsistency in the early eighteen century. Clearly, incorporating infinitesimals into

existing real number system, if possible, demonstrates another example of human’s

imagination contributing to the mathematical reality and makes the enlarged real

number system more useful. The problem is how the current real number system

can be enlarged consistently so that the enlarged system satisfies still many useful

properties such as the axioms of ordered field, and contains infinitesimal elements.

Due to the limitation of human’s intuition, it is hard to imagine a positive but

infinitesimal distance between two points. However, we can consider the real number

system from an algebraic point of view. Imagine that the real numbers are pebbles

(or calculi, which is how the branch of mathematics “Calculus” got its name). All

relations and functions on the real field describe merely how these pebbles are related

to each other. Now we just want to add some new pebbles to the collection and gen-

eralize the old relations and functions to the new collection so that the new collection

remains to be an ordered field and some new pebbles act like infinitesimals. Can we

do this consistently and if we can, why mathematicians in nineteen century didn’t
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already do this?

There has been a huge progress in mathematical logic since the first half of twen-

tieth century. Based on the compactness theorem in mathematical logic, A. Robinson

in the early 1960s (cf. [23]) proved the consistency of admitting infinitesimals into the

existing real field R so that the expanded system ∗R is an ordered field and satisfies

all first-order sentences which are true in R. What does the word “first-order” mean?

1.2 First-order Logic and Ultrapower of Real Field

We will limit the breadth of our non-traditional introduction of the first-order logic.

We will touch only the part enough for the purpose of this course.

The language of the first-order logic contains the logical symbols and non-logical

symbols. The logical symbols include logical connectives: ¬, ∧, ∨,→,↔, quantifiers:

∀, ∃, equality symbol: =, and variables: x, y, z, . . .. Logical symbols are used in the

study of all branches of mathematics. A set of non-logical symbols, denoted by L ,

is for some specific branch of mathematics. For example, the set of symbols

L = {+, · ,≤, 0, 1, P}P∈P

is the language of ordered field, where + and · are three dimensional relation symbols,

≤ is a two dimension relation symbol, 0 and 1 are constant symbols which can also

be considered as zero-dimensional relation symbols, and P is a collection of other

relation symbols of finite arity. Although P can be assumed to contains +, · , ≤, 0, 1,

we list these arithmetic operation symbols explicitly for clarity. By a language we

mean the set of non-logical symbols. For notational simplicity all non-logical symbols

considered are relational symbols (note that an n-variable function can be identified

with the graph of the function which is an (n+1)-dimensional relation and a constant

symbol is a 0-dimensional relation symbol). We do not distinguish each symbol from

its intended interpretation. For example, + represents a three dimensional relation

symbol in the language of ordered field as well as the actual addition in an ordered

field.

Definition 1.1 An L -formula can be formed inductively by the following two steps.

1. Basic step: The atomic formulas are those in the form of P (x, c) where

P ∈ L ∪ {=} is a relation symbol with arity m and x represents the k-tuple

(x1, x2, . . . , xk) of variables and c represents the m−k tuple of constant symbols;

2. Inductive step: If ϕ and ψ are L -formulas, so are ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ,

ϕ↔ ψ, ∀xϕ, and ∃xϕ.
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By the complexity of a formula, we mean the number of steps in Definition 1.1

used to form the formula. The sub-formula ϕ is called the scope of the quantifier ∀ or

∃ in the formula ∀xϕ or ∃xϕ, respectively. The variable x in ∀xϕ or ∃xϕ is called

bounded. An occurrence of a variable x is called bounded in an formula ϕ if it is

bounded in a sub-formula ∀xψ or ∃xψ of ϕ. An occurrence of a variable x is called

free in ϕ if it is not bounded. We write x for a tuple of variables, and write ϕ(x) to

indicate implicitly that all free variables in ϕ are among the variables in x.

Definition 1.2 An L -model M := (M ;PM)P∈L contains a non-empty base set M

together with the interpretation PM ⊆Mm of each relation symbol P ∈ L with arity

m.

Note that if P is a constant symbol, sometimes denoted by c, then PM = cM is

an element in M . We sometimes write M for a model as well as its base set. Since

the languages considered in the notes are either the language of ordered field or the

language of set theory, we will omit L when we mention L -formula or L -model

unless otherwise specific. The word “iff” is an abbreviation of “if and only if.”

Definition 1.3 For each formula ϕ(x) and a tuple a of elements in a model M,

we define M |= ϕ(a), i.e., ϕ(a) is true in M, inductively on the complexity of the

formula.

1. ϕ is an atomic formula P (x, c): M |= P (a, c) iff (a, cM) ∈ PM;

2. M |= ¬ϕ iff M 6|= ϕ, i.e., it’s not true that M |= ϕ (so “¬” means “not”);

3. M |= ϕ ∧ ψ iff M |= ϕ and M |= ψ (so “∧” means “and”);

4. M |= ϕ ∨ ψ iff M |= ϕ or M |= ψ (so “∨” means “or”);

5. M |= ϕ→ ψ iff M |= ϕ implies M |= ψ (so “→” means “imply”);

6. M |= ϕ↔ ψ iff M |= (ϕ→ ψ) ∧ (ψ → ϕ) (so “↔” means “equivalent to”);

7. M |= ∀xϕ(x, a) iff M |= ϕ(b, a) for every b ∈M (so “∀” means “for every”);

8. M |= ∃xϕ(x, a) iff M |= ϕ(b, a) for some b ∈M (so “∃” means “for some”).

Note that by (1), (7), and (8) the intended value in M for a variable x is always

an element of M. This is the reason why we call the logic system above the first-

order logic. When we say a formula, we mean a first-order formula unless otherwise

specified. A formula without free variable is called a sentence. If a modelM is given
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and every free variable of a formula ϕ(x) is substituted by an element in a inM, we

call also ϕ(a) a sentence or a sentence with parameters a. So, the truth value of a

sentence in a model is always determined.

It is an easy fact that each formula ϕ is logically equivalent to a formula ψ, i.e.,

ϕ and ψ have the same truth value in any model, where ψ does not use any of the

symbols ∨, →, ↔, or ∀. Hence, it suffices to consider only the formulas using logic

connectives ¬, ∧, and quantifier ∃ in some of the proofs later on.

Example 1.4 Let L = {+, · ,≤, 0, 1, P}P∈P be the language of ordered field and

R := (R; +, · ,≤, 0, 1, PR)P∈P be the usual real ordered field with some extra relations.

Then R is an L -model. If ϕ is the sentence

∀x, y, z (x ≤ y → x+ z ≤ y + z),

then R |= ϕ.

Note that the sentence above can formally be written as a logic sentence

∀x∀y∀z∀u∀v (≤ (x, y) ∧+(x, z, u) ∧+(y, z, v)→≤ (u, v)).

We will use conventional expressions more often than the formal ones. The reader is

guaranteed that all conventional expressions can be re-written as formal ones.

The following is a familiar sentence in the language of real ordered field which is

not first-order because variable X in the sentence takes a set not an element of R as

its value.

Example 1.5 Let ϕ be the sentence

∀X ⊆ [0, 1]∃β (β is the least upper bound of X).

then ϕ is true in R.

We now construct an ultrapower of R. Let N := {0, 1, 2, . . .} and

Z := {0,±1,±2, . . .}. If n is a positive integer, let [n] := {0, 1, . . . , n− 1}.

Definition 1.6 Let X be an infinite set and P be the power set operator. A collection

F ⊆P(X) is called a non-principal ultrafilter on X if for any A,B ⊆ X

1. ∅ is not in F and every co-finite subset A of X (i.e., X \ A is finite) is in F ;

2. if A,B are in F , then A ∩B is in F ;
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3. if A is in F and A ⊆ B, then B is in F ;

4. if A is not in F , then X \ A is in F .

The existence of a non-principal ultrafilter on an infinite set X is guaranteed by

the axiom of choice. For simplicity we use only a fixed non-principal ultrafilter F
on X := N. In fact, any non-principal ultrafilter on an infinite set X works as long

as it is countably incomplete (F on a countable set such as N is trivially countably

incomplete.)

Definition 1.7 Let M be a model. Let MN be the set of all functions from N to M.

For any f, g ∈MN define f ∼ g if {n ∈ N | f(n) = g(n)} ∈ F . The equivalence class

of f ∈ MN is the set [f ] := {g ∈ MN | f ∼ g}. Set MN/F := {[f ] | f ∈ MN}. The

ultrapower of M modulo F , denoted by MN/F , is a model with the base set MN/F
and for each relation symbol P , the interpretation of P in MN/F is defined by

[f ] ∈ PMN/F iff {n ∈ N | f(n) ∈ PM} ∈ F . (1)

For each a ∈ M let φa : N→M be the constant function with a unique value a.

If b = (b1, b2, . . . , bk), we write [φb] for ([φb1 ], [φb2 ], . . . , [φbk ]).

Definition 1.8 Let i :M→MN/F be the function such that i(a) = [φa]. The func-

tion i is called an elementary embedding associated with the ultrapower construction.

Theorem 1.9 (J.  Loś) Let MN/F be the ultrapower of a model M modulo F . Let

ϕ(x, b) be a formula with parameters b in M. Then

MN/F |= ϕ([f ], [φb]) iff {n ∈ N | M |= ϕ(f(n), b)} ∈ F .

Proof: If ϕ is an atomic formula P (x, c), then the theorem follows from the

definition of PM
N/F . If ϕ is ¬ψ, then the theorem follows from Part 4 of Definition

1.6 and induction hypothesis for ψ. If ϕ is ψ ∧χ, then the theorem follows from Part

2 of Definition 1.6 and induction hypothesis for ψ and χ.

Assume ϕ is ∃y ψ(x, y, b). If A := {n ∈ N | M |= ∃xψ(x, f(n), b)} ∈ F , define

a function g : N → M by letting g(n) be any fixed element in M if n 6∈ A, and

g(n) = an for some an ∈M with M |= ψ(an, f(n), b) if n ∈ A. Then

A ⊆ {n ∈ N | M |= ψ(g(n), f(n), b)}.

By Part 3 of Definition 1.6 and the induction hypothesis on ψ we have MN/F |=
ψ([g], [f ], [φb]), which implies MN/F |= ∃xψ(x, [f ], [φb]).
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On the other hand, ifMN/F |= ∃xψ(x, [f ], [φb]), then there is a g : N→M such

that MN/F |= ψ([g], [f ], [φb]). By the induction hypothesis for ψ we have

B := {n ∈ N | M |= ψ(g(n), f(n), b)} ∈ F .

So, if n ∈ B, we have M |= ∃xψ(x, f(n), b). Hence,

B ⊆ {n ∈ N | M |= ∃xψ(x, [f ], [φb])} ∈ F

by Part 2 of Definition 1.6. 2

Corollary 1.10 Let i :M→MN/F be the embedding defined in Definition 1.8. For

any sentence ϕ(b) with parameters b in M, we have

M |= ϕ(b) iff MN/F |= ϕ(i(b)). (2)

Proof: The corollary follows from Theorem 1.9, Part 1 of Definition 1.6, and the

fact that the set {n ∈ N | M |= ϕ(φb(n))} is either N or ∅ depending on whether

M |= ϕ(b) is true or not. 2

The map i satisfying (2) is called an elementary embedding from a model M to

another modelM′ =MN/F . In fact, the elementary embedding fromM toM′ can

be defined for any two models M and M′ when (2) is true. Denote by M � M′

for the existence of such an elementary embedding from M to M′. If we want to

emphasize that an elementary embedding i : M → M′ is not surjective, we can

just write M ≺ M′ instead. The statement (2) is also called the transfer principle

betweenM andM′ =MN/F . The embedding i is often written as ∗ in nonstandard

analysis. For example, a nonstandard analyst may write ∗A more often than i(A).

Example 1.11 Let ∗R be the ultrapower of the “standard” real ordered field R mod-

ulo F .

1. ∗R satisfies the same first-order sentences with parameters from R, in par-

ticular, ∗R is an ordered field and contains a copy of R as its (elementary)

sub-model. We call real numbers in R the standard real numbers.

2. By identifying each α ∈ R with ∗α = [φα] ∈ ∗R, we can assume that R ⊆ ∗R.

3. A real r ∈ ∗R is called an infinitesimal, denoted by r ≈ 0, if |r| < |α| for every

non-zero α ∈ R. Two reals r1, r2 ∈ ∗R are said to be infinitesimally close,

denoted by r1 ≈ r2, if r1 − r2 is an infinitesimal.
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4. If Id ∈ RN is the identity function, i.e., Id(n) = n for every n ∈ N, then

[Id] ∈ ∗R and [Id] > r for every r ∈ R. So, ∗R contains numbers larger than

every r ∈ R.

5. 1/[Id] in ∗R is a positive infinitesimal;

6. A number N ∈ ∗N \ N is called a hyperfinite integer. For example, [Id] is a

hyperfinite integer. A hyperfinite integer is infinitely large from the standard

point of view, but is finite from nonstandard point of view.

Proposition 1.12 A real number r ∈ ∗R is called near standard if |r| ≤ α for some

α ∈ R. If r is near standard, then there exists a unique β ∈ R such that r ≈ β.

Proof: Let S = {γ ∈ R | γ < r}. Then the set S ⊆ R is bounded above by α.

By the completeness property S has a least upper bound β. It is easy to check that

r ≈ β. The uniqueness follows from the fact that two distinct standard reals can

never be infinitesimally close. 2

Example 1.13 Let S be the set of all infinitesimals in ∗R. Then S is nonempty

and bounded above by 1. Note that S does not have a least upper bound. Indeed, if

β > 0 were the least upper bound of S, then β being infinitesimal would imply 2β

being also an infinitesimal which violates β being upper bound of S, and β being non-

infinitesimal would imply β/2 being also a non-infinitesimal which violates β being

the least. Either way we have a contradiction.

The example above shows that R and ∗R may not share the same truth beyond

the first-order. Besides the transfer principle, the standard part map is another way

to connect ∗R to R.

Definition 1.14 Let ns(∗R) be the set of all near standard reals in ∗R. We define

the standard part map st : ∗R → R ∪ {±} by letting st(r) = α for every r ∈ ns(∗R)

where α is the unique number in R such that r ≈ α, st(r) = ∞ if r > α for every

α ∈ R, and st(r) = −∞ if r < α for every α ∈ R.

We would like to present very simple applications of nonstandard analysis to

calculus. Note that the arguments in these applications avoid the use of limit process.

Definition 1.15 Let s : N→ R be a standard sequence. The sequence s is convergent

if ∗s(N) ≈ ∗s(N ′) for any hyperfinite integers N,N ′.
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Theorem 1.16 (Bolzano–Weierstrass) Every standard bounded sequence con-

tains a convergent subsequence.

Proof: Suppose s is the bounded sequence in [a, b]. Let N ∈ ∗N \ N. Then
∗s(N) ∈ ns( ∗R). Let L = st(∗s(N)). We show that there exists a subsequence s′ of s

such that s′ converges to L.

For each n ∈ N, if there is an mn ∈ N such that s(m) 6∈ (L − 1/n, L + 1/n)

for all m ≥ mn in N, then ∗s(m) 6∈ ∗(L − 1/n, L + 1/n) for any m ≥ mn in ∗N by

the transfer principle, which contradicts st(∗s(N)) = L because N ≥ mn. Hence,

(L − 1/n, L + 1/n) contains infinitely many terms of s for each n ∈ N. So, one

can choose m1 < m2 < · · · such that s(mn) ∈ (L − 1/n, L + 1/n). Now for any

hyperfinite integers N < N ′ we have ∗s(mN), ∗s(mN ′) ∈ ∗(L− 1/N,L+ 1/N). Hence,
∗s(mN) ≈ ∗s(mN ′). This shows that the subsequence s(m1), s(m2), . . . is a convergent

subsequence of s. 2

Definition 1.17 Let f : [a, b]→ R be a standard function. Then,

1. f is continuous at c ∈ [a, b] if for any r ∈ ∗[a, b] we have r ≈ c implies ∗f(r) ≈
f(c); f is continuous on [a, b] if f is continuous at every c ∈ [a, b];

2. f is uniformly continuous on [a, b] if r1 ≈ r2 implies ∗f(r1) ≈ ∗f(r2) for any

r1, r2 ∈ ∗[a, b].

Theorem 1.18 If a standard function f : [a, b] → R is continuous on [a, b], then f

is uniformly continuous on [a, b].

Proof: Suppose that f is continuous on [a, b] but not uniformly continuous on

[a, b]. Then, there exist r1, r2 ∈ ∗[a, b] such that r1 ≈ r2 but ∗f(r1) 6≈ ∗f(r2). Since

r1 ≈ r2 we have st(r1) = st(r2) = c ∈ [a, b]. Since r1 ≈ c ≈ r2, then ∗f(r1) ≈ f(c) ≈
∗f(r2), which contradicts the assumption that ∗f(r1) 6≈ ∗f(r2). 2

Definition 1.19 Let f : (a, b) → R be a standard function and c ∈ (a, b). The

function f is differentiable at c if there exists an α ∈ R such that

f ′(c) := st

(∗f(r)− f(c)

r − c

)
= α

for any r ∈ ∗R with r ≈ c and r 6= c.

Given a function f : X → Y , a ∈ X, and A ⊆ X, we write f(a) for some element

in Y , and write f [A] for the set {f(a) | a ∈ A}.
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Theorem 1.20 (Chain Rule) If the standard function f : (a, b) → R is differen-

tiable at c ∈ (a, b), f [(a, b)] ⊆ (α, β), and a standard function g : (α, β) → R is

differentiable at f(c), then g(f(x)) : (a, b)→ R is differentiable at c and (g(f(x)))′c =

g′(f(c))f ′(c).

Proof: Given any r ≈ c and r 6= c. Since f is differentiable at c, there is

an infinitesimal t1 such that that ∗f(r) − f(c) = (f ′(c) + t1)(r − c). Since g is

differentiable at f(c) and ∗f(r) ≈ f(c) there is another infinitesimal t2 such that
∗(g(f(r))− g(f(c)) = (g′(f(c)) + t2)(∗f(r)− f(c)). Hence, we have

∗(g(f(r))− g(f(c))) = (g′(f(c)) + t2)(∗f(r)− f(c))

= (g′(f(c)) + t2)(f ′(c) + t1)(r − c)
= (g′(f(c))f ′(c) + t2f

′(c) + t1g
′(f(c)) + t2t1)(r − c),

which implies

st

(
g(f(r))− g(f(c))

r − c

)
= st (g′(f(c))f ′(c) + t2f

′(c) + t1g
′(f(c)) + t2t1) = g′(f(c))f ′(c).

2

To deal with integration we encounter the integral operator which is a linear

functional. Therefore, it cannot be handled in ∗R. We need a structure not only

containing functions from Rn to R but also containing the functions of the functions,

the functions of the functions of the functions, etc. This is why we introduce another

model called superstructure to deal with this and many other needs in the next

subsection.

1.3 Ultrapower of Superstructure

The use of superstructure and its elementary extension as the model of nonstandard

analysis appeared in [24] for the first time. Fix a sufficiently large positive integer

n, say n = 100. Let L := {∈} contain only one binary relation symbol. Given an

infinite set X of urelements, i.e., elements without members, the superstructure on

X, denoted by V(X), is an L -model (V (X);∈) where V (X) is defined inductively

by letting

V (X, 0) := X, V (X,n+ 1) := V (X,n) ∪P(V (X,n))

for every n < 2n, V (X) = V (X; 2n), and letting ∈ be the true set theoretic mem-

bership relation on V (X) as the interpretation of the symbol ∈ in L . For notational
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convenience, we don’t distinguish V(X) for the model from the base set of the model.

We write also V(X,n) for both (V (X,n);∈) and V (X,n).

For each element a ∈ V(X) we define the rank of a, denoted by rank(a), by that

if a ∈ X, then rank(a) = 0 and if a ∈ V(X,n+ 1) \ V(X,n) for some number n < 2n,

then rank(a) = n+ 1. The rank function on V(X) is bounded by 2n and is definable

in V(X) by a first-order formula.

We assume always that N ⊆ R ⊆ X. For simplicity, set X = R. Note that

all standard mathematical objects mentioned in the lecture notes have ranks below

n = 100. We set the highest rank to be 2n instead of n for convenience. Note that an

ordered pair (a, b) of real numbers a, b ∈ R can be viewed as the set {{a}, {a, b}} ∈
V(R, 2) and a function f : D ⊆ R → R can be viewed as a set of ordered pairs in

V(R, 2). Hence, f ∈ V(R, 3). A linear functional L on functions from R to R is a

set of pairs (f, r) = {{f}, {f, r}} ∈ V(R, 5). Hence, L ∈ V(R, 6). Note also that the

ultrafilter F on N is in V(R, 3).

The superstructure V(R) is often called the standard universe, which means that

all discussion of ordinary mathematical problems at the moment can be conducted

in V(R). Since X is always R in the notes we omit R and write V for V(R). Recall

that F is a non-principal ultrafilter on N.

Definition 1.21 The ultrapower of V modulo F , denoted by ∗V, is the model

(∗V ; ∗∈) ,

where the base set ∗V = V (X)N/F and the interpretation ∗∈ of the binary relation

symbol ∈ is defined by letting [f ] ∗∈ [g] iff {n ∈ N | f(n) ∈ g(n)} ∈ F for any

[f ], [g] ∈ V (X)N/F . Let ∗ : V → ∗V be the elementary embedding, i.e., ∗a := [φa] for

every a ∈ V.

Note that the real ordered field R is in V . Hence, ∗R is in ∗V .

The model ∗V is called a nonstandard universe, or a nonstandard elementary

extension of the standard universe V .

One of the advantages of using nonstandard methods is to replace a limit ar-

gument, which has a higher set theoretic complexity in the standard model, by an

infinitesimal argument, which has a lower set theoretic complexity in a nonstandard

model. The reader is encouraged to treat all r ∈ ∗R as urelements instead of equiv-

alence classes of functions from N to R to take this advantage and treat ∗∈ as a real

membership relation.

Formally, assume that elements in ∗R are urelements with rank 0. Let M be the

Mostowski collapsing map on ∗V , i.e., M (a) = a for every a ∈ ∗R and

M (b) := {M (a) | a ∗∈ b}
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for every b ∈ ∗V \ ∗R. Then M is an injection and a ∗∈ b iff M (a) ∈ M (b). If

one identifies ∗V with the image of ∗V under M , one can pretend that ∗∈ is the true

membership relation and consider ∗V as a subset of the superstructure V( ∗R). Hence,

we can drop the upper-left superscript ∗ from ∗∈ for notational convenience.

Similar to the elements in V , the rank function can also be defined for elements

in ∗V . Every element in ∗R has rank 0. It is easy to check that every element in
∗V(R, n+ 1) \ ∗V(R, n) has the rank n+ 1 for n ∈ [2n].

Fix a hyperfinite integer K. Let Γ := {z/K | z ∈ ∗Z} and ∆t = 1/K.

An element A ∈ ∗V which happens to be a set, function, relation, etc. is called

an internal set, function, relation, etc., respectively.

Given an interval [a, b] in V , an internal set T ⊆ [a, b] is called a set of tag points

(with respect to Γ) if T contains exactly one element in each subinterval [c, d] where

c, d ∈ Γ ∩ [a, b] with d− c = ∆t.

Definition 1.22 A standard bounded function f : [a, b] → R is said to be Riemann

integrable on [a, b] if for any two internal sets T, T ′ ⊆ ∗[a, b] of tag points, we have∑
t∈T

∗f(t)∆t ≈
∑
t∈T ′

∗f(t)∆t.

If f is Riemann integrable on [a, b], define the integration of f on [a, b] by∫ b

a

f(x)dx := st

(∑
t∈T

∗f(t)∆t

)

for some internal set T ⊆ ∗[a, b] of tag points.

Theorem 1.23 Given a standard bounded continuous function g : [0, 1]×R→ R and

a number α ∈ R, there exists a standard function y : [0, 1] → R satisfying Lipschitz

condition such that

y(x) = α +

∫ x

0

g(s, y(s))ds (3)

for every x ∈ [0, 1].

Proof: Let B ∈ R be a bound of g and Γ ∩ [0, 1] = {t0 < t1 < · · · < tN}. Define

inductively on n ≤ N such that Y (t0) = α and

Y (tn+1) = α +
n∑
i=0

∗g(ti, Y (ti))∆t (4)
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for n ∈ [N ]. Note that Y (tn) ∈ ns( ∗R) because g being bounded by B ∈ R implies
∗g being bounded by B by the transfer principle. Let y(0) = st(Y (t0)). For each

x ∈ (0, 1] let y(x) = st(Y (x−)) where x− is the largest tn ≤ x in Γ ∩ [0, 1]. It is easy

to see that y satisfies Lipschitz condition on [0, 1]. Indeed, if 0 ≤ z1 ≤ z2 ≤ 1 are

standard, then
∑

z−1 <ti≤z
−
2

∆t ≈ z2 − z1 and

|y(z2)− y(z1)| =

∣∣∣∣∣∣st
 ∑
z−1 <ti≤z

−
2

∗g(ti, Y (ti))∆t

∣∣∣∣∣∣ ≤ B(z2 − z1).

Similarly, |Y (ti) − Y (tj)| ≤ B|tj − ti| for ti ≤ tj in Γ ∩ [0, 1]. We show that y

satisfies (3). By Definition 1.22 the integral at the right side of (3) is infinitesimally

close to α +
∑n

i=0
∗g(ti,

∗y(ti))∆t and the left side of (3) is infinitesimally close to

α +
∑n

i=0
∗g(ti, Y (ti))∆t. Hence, it suffices to show that

n∑
i=0

(∗g(ti,
∗y(ti))− ∗g(ti, Y (ti))) ∆t ≈ 0.

If st(ti) = β, then Y (ti) ≈ Y (β−) ≈ y(β) ≈ ∗y(ti). Hence, η(ti) := ∗g(ti,
∗y(ti)) −

∗g(ti, Y (ti)) ≈ 0 by the continuity of g. This verifies (3). 2

1.4 Exercises

1. Prove that 1/[Id] is a non-zero infinitesimal in ∗R as defined in Example 1.11.

2. Prove that a standard sequence s of real numbers being convergent as defined

in Definition 1.15 is equivalent to that s is a Cauchy sequence in the standard

sense.

3. Let f : [a, b] → R be a standard function. Prove that f being continuous at

some c ∈ (a, b) or uniformly continuous on [a, b] in terms of Definition 1.17

is equivalent to that f is continuous at c or uniformly continuous on [a, b],

respectively, in the standard sense (ε− δ definition).

4. Let f : [a, b]→ R be a standard bounded function. Prove that f being Riemann

integrable on [a, b] as defined in Definition 1.22 is equivalent to that f is Riemann

integrable on [a, b] in the standard sense.

2 Basic Methods

In Example 1.13 we mentioned that the nonstandard real field ∗R does not satisfy

the completeness property and pointed out that the property is not first-order. It is
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also true that a superstructure V as the model of standard mathematics, contains all

sets in P(R) as its elements. Note that V satisfies the first-order sentence ϕ:

∀x ∈P([0, 1])(x has a least upper bound in [0, 1]). (5)

Can we conclude by the transfer principle that the sentence

∀x ∈P(∗[0, 1])(x has a least upper bound in ∗[0, 1])

is true in ∗V? Of course, ∗R in ∗V should not satisfy the completeness property

because there is no least upper bound of all infinitesimals. Does this cause inconsis-

tency? To clarify the issue we should pay attention to the difference between internal

sets and external sets.

2.1 Properties and Principles

Let A ∈ V be a set with rank ≤ n. A subset A0 of A is finite iff there is a bijection in

V between A0 and [n] for some n ∈ N. We denote |A0| = n for saying that A0 has a

cardinality n. The cardinality function | · | can be extend to a function ∗| · | from all
∗finite subsets of ∗A to ∗N. So, ∗|A1| = n iff there is a bijection in ∗V between A1 and

[n]. For notational convenience, we omit ∗ from ∗| · |. A set A1 is called a hyperfinite

set if |A1| is a hyperfinite integer.

Definition 2.1 Every element or set of the form ∗a for some a ∈ V is called standard

and every element or set a ∈ ∗V is called internal. If an element or a set is not in
∗V, we call it external.

Example 2.2 Recall that R is a subset of ∗R.

1. Every r ∈ R is standard, and ∗N, ∗R are standard.

2. For each hyperfinite integer N the sets [N ] and [−N,N ] ∩ ∗R are internal but

not standard.

3. The sets N and R are external subsets of ∗R.

For Part 2 above let N − 1 = [g] where g : N → N and {n ∈ N | g(n) > m} ∈ F
for each m ∈ N. Then ∗N ∩ [0, [g]] ∈ ∗V . If ∗a = ∗N ∩ [0, [g]] ∈ ∗V is standard, then
∗a being bounded above in ∗N implies a being bounded above in N by the transfer

property. This means that a is a finite subset of N. Since ∗r = r for every r ∈ R,

we have ∗a = a which is a finite set contradicting that ∗a is a hyperfinite set. Hence,
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∗N ∩ [N ] is internal but not standard. By a similar reason, the set ∗R ∩ [−N,N ] is

internal but not standard.

Note that the statement V |= ϕ for ϕ being in (5) is transferred to ∗V to become

∗V |= ∀x ∈ ∗P(∗[0, 1])(x has a least upper bound in ∗[0, 1]).

The reader should notice the difference between ∗P(∗[0, 1]) and P(∗[0, 1]). The former

is the collection of all internal subsets of ∗[0, 1] and the latter is the collection of all

subsets (internal or external) of ∗[0, 1]. So, in ∗V every internal subset of ∗[0, 1] has

a least upper bound. Therefore, the set of all infinitesimals in ∗R is not an internal

set.

For Part 3 above, since every bounded subset of N is finite and has a maximal

element in N, by the transfer principle, every bounded internal subset of ∗N is finite

or hyperfinite and has a maximal element. But N as a subset of ∗N does not have a

maximal element. Therefore, N is not internal in ∗N. By a similar reason, R is not

an internal subset of ∗R.

Proposition 2.3 (Definability of Internal Sets) Let A ∈ ∗V be an internal set

with rank(A) ≤ n and ϕ(x, b) be a formula with parameters b in ∗V where x is an

m-tuple of variables. Then {
a ∈ Am | ∗V |= ϕ(a, b)

}
(6)

is again an internal subset of Am.

Proof: Let A = [f ] and b = [g]. Define a function h : N→ V by letting

h(n) := {a ∈ f(n)m | V |= ϕ(a, g(n))}

for each n ∈ N. Let B = [h]. Then B is an internal subset of Am. The proposition

follows because

[p] ∈ B iff {n ∈ N | p(n) ∈ h(n)} ∈ F
iff {n ∈ N | V |= ϕ(p(n), g(n))} ∈ F iff ∗V |= ϕ([p], b)

by Theorem 1.9. 2

If a subset B of an internal set A is itself internal, then B can be trivially defined

by the formula x ∈ B with parameter B. So, Proposition 6 says that a subset of an

internal set is internal iff the subset is first-order definable.

A nonempty set U ⊆ ∗N is an initial segment of ∗N if n ∈ U and m < n imply

m ∈ U for any m,n ∈ ∗N. For example, N is an external initial segment of ∗N.
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Proposition 2.4 (Overspill and Underspill Principle) Let U be an external

initial segment of ∗N and A be an internal subset of ∗N.

1. If A ∩ U is unbounded above in U , then A \ U 6= ∅;

2. If A \ U is unbounded below in ∗N \ U , then A ∩ U 6= ∅.

Proof: Part 1: Suppose A \ U = ∅. Then U = {x ∈ ∗N | ∃a ∈ A (x ≤ a)} is

internal by Proposition 2.3 which contradicts the assumption that U is external. The

proof of Part 2 is similar. 2

The overspill and underspill principles are frequently used tools in nonstandard

analysis.

Proposition 2.5 (Countable Saturation) Let A be an infinite internal set in
∗V with rank ≤ n and A ⊇ B0 ⊇ B1 ⊇ · · · be a nested sequence of nonempty internal

sets. Then, ⋂
m∈N

Bm 6= ∅.

Proof: Let Bm = [bm] for some bm ∈ VN and choose an [fm] ∈ [bm]. For each m ∈ N
let Um := {n ∈ N | n > m, fm(n) ∈ bm(n), and b0(n) ⊇ b1(n) ⊇ · · · ⊇ bm(n)}. Then

Um ∈ F . For each n ∈ N, let mn := max{m ∈ N | n ∈ Um}. Note that mn exists

because
⋂
m∈N

Um = ∅. Note also that n ∈ Umn . Let f ∈ VN be a function such that

f(n) = fmn(n) for every n ∈ N. It suffices to show that [f ] ∈ [bm] for every m ∈ N.

Given m ∈ N, let U := {n ∈ N | f(n) ∈ bm(n)}. For each n ∈ Um, we have

m ≤ mn by the maximality of mn. Since n ∈ Umn , we have f(n) = fmn(n) ∈
bmn(n) ⊆ bm(n). Hence, n ∈ U which means Um ⊆ U . Since Um ∈ F , we have that

U ∈ F , which implies [f ] ∈ [bm]. 2

Countable saturation appeared first time in [19]. It is a key property in the

development of Loeb measure. In Proposition 2.3 and Proposition 2.5 the set A is

assumed to have rank ≤ n because some collection of subsets of A are mentioned

which may have rank greater than n. Since the elements with rank higher than n are

still in V as long as the rank is ≤ 2n. If the set A has a rank 2n, then some objects

needed will be outside of V . Since all mathematical objects in our applications will

have a rank ≤ n the restriction rank(A) ≤ n will not cause any problem. Although

the rank of some element used in the proofs may not be mentioned, the reader should

understand when it is assumed to have a rank below n.

Proposition 2.5 is still true if the sequence Bm is assumed to satisfy the finite

intersection property, i.e., the intersection of any finite collection of Bm’s is nonempty,
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instead of the sequence being nested. Proposition 2.5 is also true if F is a non-principal

ultrafilter on any infinite set X as long as it is countably incomplete. For any infinite

cardinal κ, there exist ultrafilters F such that the ultrapower of V modulo F satisfies

κ-saturation property, i.e., any collection of less than κ many internal subsets of an

internal set satisfying finite intersection property has a nonempty intersection.

The next two corollaries are trivial.

Corollary 2.6 Every internal set A in ∗V is either finite or uncountable.

Corollary 2.7 Let U be an infinite initial segment of ∗N. Let {xn ∈ U | n ∈ N} be

increasing and {yn ∈ ∗N \ U | n ∈ N} be decreasing. Then either {xn ∈ U | n ∈ N}
is bounded above by some z ∈ U or {yn ∈ ∗N \ U | n ∈ N} is bounded below by some

z ∈ ∗N \ U .

Corollary 2.8 Let A ∈ ∗V and s : N→ A be an external sequence. There exists an

internal function S : ∗N→ A such that S �N = s.

Proof: For each m ∈ N let

Sm := {t ∈ ∗V | t : ∗N→ A (t(i) = s(i) for i ∈ [m+ 1]).

Note that Sm ∈ ∗P(A
∗N ∩ ∗V) is nonempty because it contains at least an internal

function s′ such that s′(i) = s(i) for i ∈ [m+ 1] and s′(i) = s(0) for any i ∈ ∗N \ [m].

It is easy to see that Sm ⊇ Sm+1. By Proposition 2.5 we can find S : ∗N → A such

that S �N = s. 2

Remark 2.9 Note that if s : N→ A is an injection, we cannot require that S : ∗N→
A be an injection in Corollary 2.8. However, if

B := {m ∈ ∗N | S � [m+ 1] is an injection},

then B is internal and upper unbounded in N. By Proposition 2.4 the set B contains

some hyperfinite integer N . Hence, S � [N + 1] is an injection from [N + 1] to A.

For example, a strictly increasing sequence {ri | i ∈ N} in some interval [a, b] ⊆ ∗R
may not be extended to an internal strictly increasing sequence {ri | i ∈ ∗N} in [a, b].

Instead, it can be extended to a hyperfinite strictly increasing sequence {ri | 0 ≤ i ≤
N} for some hyperfinite integer N .
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2.2 Loeb Space Construction

In this course we introduce only Loeb probability space generated by an internal

normalized counting measure on a hyperfinite set. For general approach to Loeb

measure theory the reader should consult some literature such as [18, 25].

Definition 2.10 Let Ω be a hyperfinite set in ∗V and Σ0 := ∗P(Ω) be the set of all

internal subsets of Ω. Clearly, each A ∈ Σ0 is a finite or hyperfinite set. For A ∈ Σ0

define

δ(A) :=
|A|
|Ω|
∈ ∗[0, 1] and µΩ(A) := st(δ(A)) ∈ [0, 1].

Then, (Ω; Σ0, δ) is called a normalized counting measure space, and (Ω; Σ0, µΩ) is

called a standardized normalized counting measure space.

Definition 2.11 Let (Ω; Σ0, µΩ) be the standardized normalized counting measure

space on a hyperfinite set Ω. For each X ⊆ Ω where X could be external, the upper

measure and lower measure of X are defined by

µΩ(X) := inf{µΩ(A) | X ⊆ A and A ∈ Σ0} and

µ
Ω

(X) := sup{µΩ(A) | X ⊇ A and A ∈ Σ0}.

Let Σ := {X ⊆ Ω | µΩ(X) = µ
Ω

(X)}. For each X ∈ Σ define µΩ(X) = µΩ(X).

Then, (Ω; Σ, µΩ) is called a Loeb probability space, or just Loeb space, generated by

the normalized counting measure on Ω.

Proposition 2.12 Let (Ω; Σ, µΩ) be a Loeb space defined in Definition 2.11. Then,

1. Σ0 ⊆ Σ;

2. µΩ(Ω) = 1 and µΩ({x}) = 0 for each x ∈ Ω;

3. If Y ⊆ X ⊆ Ω, X ∈ Σ, and µΩ(X) = 0, then Y ∈ Σ and µΩ(Y ) = 0;

4. If X, Y ∈ Σ and Y ⊆ X, then µΩ(Y ) ≤ µΩ(X);

5. Let X ⊆ Ω. Then, X ∈ Σ iff X has squeezing sandwich sequences of internal

sets Ai and Bi for i ∈ N, i.e., (sandwich)

A1 ⊆ A2 ⊆ A3 ⊆ · · · ⊆ X ⊆ · · · ⊆ B3 ⊆ B2 ⊆ B1 ⊆ Ω,

and (squeezing) lim
m→∞

µΩ(Bm \ Am) = 0. Furthermore, if Am, Bm are squeezing

sandwich sequences for X, then µΩ(X) = lim
m→∞

µΩ(Am) = lim
m→∞

µΩ(Bm);
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6. Let X, Y ∈ Σ.

(a) X ∪ Y ∈ Σ and µΩ(X ∪ Y ) ≤ µΩ(X) + µΩ(Y );

(b) If Y ⊆ X, then X \ Y ∈ Σ and µΩ(X \ Y ) = µΩ(X)− µΩ(Y );

(c) If X ∩ Y = ∅, then µΩ(X ∪ Y ) = µΩ(X) + µΩ(Y );

(d) X \ Y ∈ Σ.

7. If X ∈ Σ, then there exists K ∈ Σ0 such that µΩ(X∆K) = 0, where X∆K :=

(X \K) ∪ (K \X);

8. If Xi ∈ Σ for i ∈ N is a pairwise disjoint sequence, then

µΩ

(⋃
i∈N

Xi

)
=
∑
i∈N

µΩ(Xi);

9. Σ is a σ-algebra and (Ω; Σ, µΩ) is an atomless, complete, countably additive

probability space in the standard sense.

Proof: Part 1 is true because of the definition of lower and upper measure.

Part 2 is true because |Ω|/|Ω| = 1 and st(1/|Ω|) = 0.

Part 3 is true because 0 = µΩ(X) ≥ µΩ(Y ) ≥ µ
Ω

(Y ) ≥ 0 implies µΩ(Y ) =

µ
Ω

(Y ) = 0.

Part 4 follows from the fact that if A ⊆ B for internal sets A,B ∈ Σ0, then

δ(A) ≤ δ(B).

Part 5: “⇒”: Assume X ∈ Σ. For each m ∈ N there are internal sets Am, Bm ∈ Σ0

with Am ⊆ X ⊆ Bm such that δ(Am) > µΩ(X) − 1/m and δ(Bm) < µΩ(X) + 1/m.

By taking unions of Am’s and intersections of Bm’s we can assume that Am’s and

Bm’s are sandwich sequences of X. Since δ(Bm \ Am) = δ(Bm) − δ(Am) < 2/m, we

have that the sequences are squeezing, i.e., lim
m→∞

µΩ(Bm \ Am) = 0.

“⇐”: Since µΩ(Bm \ Am)→ 0 we have that

α = lim
m→∞

µΩ(Am) = lim
m→∞

µΩ(Bm) = β.

Note that α ≤ µ
Ω

(X) ≤ µΩ(X) ≤ β. So, µ
Ω

(X) = µΩ(X) = µΩ(X) = α = β, which

clearly implies X ∈ Σ.

Part 6: Let Am and Bm be squeezing sandwich sequences for X, and A′m and B′m
be squeezing sandwich sequences for Y .
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(a): Since Am ∪ A′m and Bm ∪B′m are sandwich sequences of X ∪ Y and

(Bm ∪B′m) \ (Am ∪ A′m) ⊆ (Bm \ Am) ∪ (B′m \ A′m),

we have that

lim
m→∞

µΩ((Bm ∪B′m) \ (Am ∪ A′m)) ≤ lim
m→∞

µΩ(Bm \ Am) + lim
m→∞

µΩ(B′m \ A′m) = 0,

which implies X ∪ Y ∈ Σ by Part 5 and hence,

µΩ(X ∪ Y ) = lim
m→∞

µΩ(Bm ∪B′m) ≤ lim
m→∞

µΩ(Bm) + lim
m→∞

µΩ(B′m) = µΩ(X) + µΩ(Y ).

(b): Note that Am\B′m ⊆ X \Y ⊆ Bm\A′m, which mean Am\B′m and Bm\A′m are

sandwich sequences for X \Y . Since (Bm \A′m)\ (Am \B′m) ⊆ (Bm \Am)∪ (B′m \A′m),

we have that Am \B′m and Bm \A′m are squeezing. So, X \ Y ∈ Σ and µΩ(X \ Y ) =

lim
m→∞

µΩ(Bm \ A′m) = lim
m→∞

µΩ(Bm)− lim
m→∞

µΩ(A′m) = µΩ(X)− µΩ(Y ).

In particular, we have Xc ∈ Σ, where Xc := Ω \X, and µΩ(Xc) = 1− µΩ(X).

(c): If X ∩ Y = ∅, then Y ⊆ Xc. Hence, X ∪ Y = (Xc ∩ Y c)c = (Xc \ Y )c and

µΩ(X ∪ Y ) = 1− (µ(Xc \ Y )) = 1− (µΩ(Xc)−µΩ(Y )) = 1− (1−µΩ(X)−µΩ(Y )) =

µΩ(X) + µΩ(Y ).

(d): X \ Y = X ∩ Y c = (Xc ∪ Y )c ∈ Σ.

Part 7: Let Am and Bm be a squeezing sandwich sequences for X. Let Km =

{K ∈ Σ0 | Am ⊆ K ⊆ Bm}. Then, Km is nonempty, internal, and Km+1 ⊆ Km. By

Proposition 2.5 there is a K ∈
⋂
m∈NKm. Clearly, Am, Bm are squeezing sandwich

sequences for K. Since X∆K ⊆ Bm\Am, we have that µΩ(X∆K) ≤ µΩ(Bm\Am)→
0. So, µΩ(X∆K) = 0.

Part 8: By passing to subsequences we can find squeezing sandwich sequences

A
(i)
m , B

(i)
m for each Xi such that

max{µΩ(B(i)
m \Xi), µΩ(Xi \ A(i)

m )} ≤ µΩ(B(i)
m \ A(i)

m ) < 1/2im.

Note that A
(i)
m for i = 1, 2, . . . are pairwise disjoint. For each m ∈ N we can find a

hyperfinite integer Nm such that the sequences {A(i)
m , B

(i)
m | i ∈ N} can be extended

to internal sequences {A(i)
m , B

(i)
m | 1 ≤ i ≤ Nm} such that δ(B

(i)
m \ A(i)

m ) < 1/2im for

0 ≤ i ≤ Nm. By Corollary 2.7 there is a hyperfinite integer N ≤ Nm for every m ∈ N.

So, for any m ∈ N and 0 ≤ i ≤ N we have δ(B
(i)
m \A(i)

m ) < 1/2im. For each m ∈ N let

Bm :=
N⋃
i=1

B(i)
m and Am :=

m⋃
i=1

A(i)
m .
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Clearly, Am, Bm are sandwich sequences of internal sets for X :=
⋃
i∈NXi. It suffices

to show that the sequences are also squeezing.

Since
m∑
i=1

µΩ(Xi) = µΩ

(
m⋃
i=1

Xi

)
≤ 1

by Part 6, we have that lim
m→∞

Tm = 0 where Tm :=
∞∑

i=m+1

µΩ(Xi). Given any m′ > m

in N, we have

m′∑
i=m+1

δ(B(i)
m ) ≤ 1

m
+

m′∑
i=m+1

µΩ(B(i)
m \Xi) +

m′∑
i=m+1

µΩ(Xi)

≤ 1

m
+

1

m

m′∑
i=m+1

1

2i
+ Tm ≤

1

m
+

1

m2m
+ Tm ≤

2

m
+ Tm.

By extending m′ to hyperfinite we can assume that

δ

(
N⋃

i=m+1

B(i)
m

)
≤

N∑
i=m+1

δ(B(i)
m ) ≤ 2

m
+ Tm.

So,

µΩ(Bm \ Am) ≤ µΩ

(
m⋃
i=1

B(i)
m \

m⋃
i=1

A(i)
m

)
+ µΩ

(
N⋃

i=m+1

B(i)
m

)

≤ µΩ

(
m⋃
i=1

(B(i)
m \ A(i)

m )

)
+

3

m
+ Tm ≤

m∑
i=1

1

2im
+

3

m
+ Tm ≤

4

m
+ Tm → 0

as m→∞. Therefore, Am, Bm are squeezing for X which implies X ∈ Σ. Note that

µΩ(X) =
m∑
i=1

µΩ(Xi) + µΩ

(
∞⋃

i=m+1

Xi

)

≤
m∑
i=1

µΩ(Xi) +
1

m
+ δ

(
N⋃

i=m+1

B(i)
m

)

≤
m∑
i=1

µΩ(Xi) +
3

m
+ Tm →

∞∑
i=1

µΩ(Xi)

as m→∞, and

µΩ(X) = lim
m→∞

µΩ(Am) = lim
m→∞

m∑
i=1

µΩ(A(i)
m )
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= lim
m→∞

m∑
i=1

(
µΩ(Xi)− µΩ(Xi \ A(i)

m )
)
≥ lim

m→∞

m∑
i=1

(
µΩ(Xi)−

1

2im

)
= lim

m→∞

m∑
i=1

µΩ(Xi)− lim
m→∞

m∑
i=1

1

2im
=
∞∑
i=1

µΩ(Xi).

We conclude that µΩ(X) =
∑
i∈N

µΩ(Xi).

Part 9: Σ is a σ-algebra by Part 6 and 8. (Ω; Σ, µΩ) is complete by Part 3, and

countably additive by Part 8. If X ∈ Σ with µΩ(X) > 0, we can find an internal set

A ⊆ X such that δ(A) > µΩ(X)/2 > 0. Since A is ∗finite, we can find an internal set

B ⊆ A such that |A| = 2|B| or |A| = 2|B|+ 1. For each case µΩ(B) = µΩ(A)/2 and

µΩ(X \B) ≥ µΩ(A)/2. So, (Ω; Σ, µΩ) is atomless. 2

Theorem 2.13 Let (Ω; Σ, µΩ) be a Loeb space on a hyperfinite set Ω and f : Ω →
R∪{±∞} be a measurable function, i.e., f−1(O) ∈ Σ for any open set O in R∪{±∞},
then, there is an internal function F : Ω → ∗R such that for almost all ω ∈ Ω we

have

st(F (ω)) = f(ω).

Proof: Let U := {On | n ∈ N} be a topological basis of R ∪ {±∞}. For each

On ∈ U let An,m ⊆ f−1(On) be increasing with respect to m such that lim
m→∞

µΩ(Am) =

µΩ(f−1(On)). For each m ∈ N let

Gm :=

{
g :
⋃
n<m

An,m → ∗R | g is internal and g[An,m] ⊆ ∗On

}
.

It is easy to see that Gm is nonempty, internal, and decreasing. By Proposition 2.5

there is an F ∈
⋂
m∈N Gm. Note that the set

Z :=
⋃
n∈N

(
f−1(On) \

⋃
m∈N

An,m

)
is a countable union of Loeb measure zero sets. Hence, µΩ(Z) = 0. For each ω ∈ Ω\Z
and On ∈ U , if f(ω) ∈ On, then ω ∈ An,m for some m > n. Hence, F (ω) ∈ ∗On which

implies st(F (ω)) = f(ω). 2

2.3 Application to Finance

We present an application of nonstandard analysis to finance theory due to Dr. Yeneng

Sun. This application may technically be the simplest one among all Dr. Sun’s con-

tributions to mathematical economics.
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Given two hyperfinite Loeb spaces (Ω; Σ, µΩ) and (Ψ; Γ, νΨ), one can form two

different product measure spaces on Ω × Ψ. The first one is the standard product

measure space. For any two standard probability spaces (Ω; Σ, µ) and (Ψ; Γ, ν) a

rectangle is a set of form A×B for some A ∈ Σ and B ∈ Γ. The measure µ× ν(A×
B) := µ(A) ·ν(B). Let Σ×Γ be the collection of all finite union of disjoint rectangles.

The measure µ× ν can be trivially generalized to sets in Σ× Γ. Note that

(Ω×Ψ; Σ× Γ, µ× ν)

is a finitely additive probability space. By the same process as in Proposition 2.12

the measure µ× ν can uniquely be extended to the σ-algebra σ (Σ× Γ) generated by

Σ × Γ. By including in all subsets of zero-measure sets one can make the measure

µ× ν complete. The space

(Ω× Γ;σ (Σ×Ψ) , µ× ν)

is called the standard product measure space on Ω×Ψ.

The product measure space on Ω × Ψ in the rest of this subsection is different

from the standard one.

Let’s consider the product space of two hyperfinite Loeb spaces (Ω; Σ, µΩ) and

(Ψ; Γ, νΨ). Since Ω×Ψ is again a hyperfinite set, one can form the Loeb probability

space generalized by the normalized counting measure on all internal subsets of Ω×Ψ.

Denote this Loeb product space by

(Ω×Ψ; Σ⊗ Γ, µΩ ⊗ νΨ).

Since a finite union of disjoint rectangles is an internal subset of Ω× Ψ, we have

that Σ×Γ ⊆ Σ⊗Γ. Since Σ⊗Γ is a σ-algebra and contains all subsets of zero-measure

sets with respect to µΩ ⊗ νΨ, we have that

σ (Σ× Γ) ⊆ Σ⊗ Γ and µΩ ⊗ νΨ �σ (Σ× Γ) = µΩ × νΨ.

Theorem 2.14 (Keisler’s Fubini Theorem, Corollary 6.3.17 in [18])

Let (Ω; Σ, µΩ) and (Ψ; Γ, νΨ) be two Loeb spaces. Assume that f : Ω × Ψ → R
is an integrable function on the Loeb product space (Ω× Γ,Σ⊗ Γ, µΩ ⊗ νΨ). Then,

1. for νΨ-almost all y ∈ Ψ, fy(x) := f(x, y) is µΩ-integrable,

2. F (y) :=

∫
Ω

f(x, y)dµΩ(x) is νΨ-integrable, and

3.

∫
Ψ

∫
Ω

f(x, y)dµΩ(x)dνΨ(y) =

∫
Ω×Ψ

f(x, y)dµΩ ⊗ νΨ.
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Imagine that an insurance company has a life insurance policy for people satisfying

certain conditions. Each policy could bring a gain or loss of some values for the

company with certain probability distribution. It is a common sense that if the

identical policy is sold to enough many policy holders and each of these policy holders

lives an independent life, then the company’s financial risk of selling the policy can

be diminished.

How can this phenomenon be mathematically modeled?

Definition 2.15 Fix a probability space (Ω; Σ, µ). A random variable is a measurable

function v(ω) : Ω→ R.

1. By an individual insurance agent (for example, an insurance policy holder) we

mean a random variable fi(ω) : Ω→ R.

2. By an insurance system we mean a function f : Ω× I → R such that fi(ω) :=

f(ω, i) for each i ∈ I is an insurance agent.

To find an idealize the model of the phenomenon, the number of insurance agents

|I| should be infinite. To measure the size of the certain group of agents, there should

be a measure on the set I. Since a measure should be countably additive, the size of

I should be uncountable. For example, the Lebesgue measure on the unit interval of

reals [0, 1] is the measure space on an uncountable set [0, 1].

Definition 2.16 Let (Ω; Σ, µ) and (Ψ; Γ, ν) be two probability spaces.

1. A function f : Ω × Ψ → R is said to be jointly measurable if f is measurable

with respect to the standard product space (Ω×Ψ;σ (Σ× Γ) , µ× ν);

2. Suppose a function f : Ω × Ψ → R satisfies that fω(i) := f(ω, i) is (Ψ; Γ, ν)

measurable for almost every ω ∈ Ω and fi(ω) := f(ω, i) is (Ω; Σ, µ) measurable

for almost every i ∈ Ψ. The function f is almost pairwise independent on Ψ if

for ν × ν-almost all pairs (i, i′) ∈ Ψ×Ψ, the random variables fi(ω) and fi′(ω)

are independent.

Theorem 2.17 (Joseph L. Doob, Proposition 8.3.3 in [18]) Let (Ω; Σ, µ) and

(Ψ; Γ, ν) be two probability spaces and f : Ω×Ψ→ R be a function such that

1. f is jointly measurable and square-integrable;

2. f is almost pairwise independent on Ψ.
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Then, for ν-almost all i ∈ Ψ, the random variable fi(ω) is µ-almost surely a constant

function.

By Theorem 2.17 there is no non-trivial insurance system can be jointly measur-

able with respect to the standard product of the insurance policy space and the space

of insurance agents which are pairwise independent.

Example 2.18 Let N be a hyperfinite integer and Ω = {ω | ω : [N ]→ [2]}. Then, Ω

is a hyperfinite set and |Ω| = 2N . Let (Ω; Σ, µΩ) be the Loeb space on Ω. Let Ψ = [N ]

and (Ψ; Γ, νΨ) be the Loeb space on Ψ. For each i ∈ Ψ let fi : Ω → R be defined as

fi(ω) := ω(i). Then each fi is a 0, 1-valued random variable on Ω and

µΩ({ω | fi(ω) = 0}) = 1/2.

Each fi can be viewed as a coin flip.

For any i 6= i′ in T , fi and fi′ are independent and have identical probability

distribution.

Clearly, f(ω, i) := fi(ω) defines a measurable function on the Loeb product

(Ω×Ψ; Σ⊗ Γ, µΩ ⊗ νΨ) such that all fi are non-trivial.

Theorem 2.19 (Y. Sun, Theorem 8.5.3 in [18]) Let (Ω; Σ, µΩ) and (Ψ; Γ, νΨ)

be two Loeb spaces and f : Ω × Ψ → R be a square-integrable insurance system in

(Ω×Ψ,Σ⊗Γ, µΩ⊗ νΨ). If the insurance agents fi and fi′ are independent for almost

all (i, i′) in Ψ×Ψ, then for almost all ω ∈ Ω∫
Ψ

f(ω, i)dνΨ =

∫
Ψ×Ω

f(ω, i)dµΩ ⊗ νΨ =

∫
Ψ

∫
Ω

f(ω, i)dµΩdνΨ.

The theorem above is called the Exact Law of Large Numbers which indicates that

the average pay-off of all insurance agents under particular realization ω for almost

all ω ∈ Ω is a constant which is the average pay-off of one agent.

2.4 Exercises

1. Let A be a set in V . Prove that ∗A = {∗a | a ∈ A} iff A is a finite set.

2. Prove that an internal set A ∈ ∗V is either finite or uncountable.

3. Let N be a hyperfinite integer, Ω := {j/N | j = 0, 1, . . . , N −1}, and (Ω; Σ, µΩ)

be the Loeb space on Ω. Note that st �Ω is a function from Ω to the standard

unit interval [0, 1] (cf. Definition 1.14). Let Γ := {U ⊆ [0, 1] | st−1[U ] ∩ Ω ∈ Σ}
and λ(U) := µΩ(st−1[U ] ∩ Ω) for each U ∈ Γ. Prove that ([0, 1]; Γ, λ) is the

Lebesgue measure space on [0, 1].
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4. Let (Ω; Σ, µΩ) and (Ψ; Γ, νΨ) be two Loeb spaces defined in Example 2.18. Let

A := {(ω, i) ∈ Ω×Ψ | ω(i) = 0}.

Note that A ∈ Σ⊗ Γ because A is internal. Prove that µΩ ⊗ νΨ (A) = 1/2 and

A 6∈ σ(Σ× Γ).

3 Easy Applications to Combinatorics

An apparent reason why nonstandard analysis should be a useful tool for other fields

of mathematics is that a limit process which involves rank 3 objects in V such as the

limit of a sequence or a function with real values can be changed to an infinitesimal

argument with rank 0 objects such as infinitesimals in ∗V . So, good candidates for the

applications of nonstandard analysis should be something involving limit processes.

This may be why the density problems receive attention from nonstandard analysts.

The densities introduced in this section are Shnirel’man density, lower and upper

(asymptotic) density, and lower and upper Banach density.

For two sets A,B ⊆ N, let A + B := {a + b | a ∈ A and b ∈ B}. If A = {a} we

write a+B instead of {a}+B for simplicity. If r, r′ ∈ ∗R, we write r ' r′ for r > r′

or r ≈ r′ and r / r′ for r < r′ or r ≈ r′.

Definition 3.1 Let A ⊆ N. The Shnirel’man density σ(A), lower density d(A),

upper density d(A), upper Banach density BD(A), and lower Banach density BD(A)

of A are defined by

1. σ(A) := inf
n≥1

|A ∩ (1 + [n])|
n

;

2. d(A) := lim inf
n→∞

|A ∩ [n]|
n

;

3. d(A) := lim sup
n→∞

|A ∩ [n]|
n

;

4. BD(A) := lim
n→∞

sup
k∈N

|A ∩ (k + [n])|
n

;

5. BD(A) := lim
n→∞

inf
k∈N

|A ∩ (k + [n])|
n

.

Remark 3.2 1. In the definition of σ(A), we have 1 + [n] = {1, 2, . . . , n}. Hence,

0, in or not in A, does not play any role. If σ(A) > 0, then 1 ∈ A;
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2. If d(A) = d(A), we say that the (asymptotic) density of A exists and is denoted

by d(A);

3. If BD(A) = BD(A), we say that the Banach density of A exists and is denoted

by BD(A);

4. In the definition of BD(A) the limit of sup
k∈N

|A ∩ (k + [n])|
n

as n → ∞ always

exists.

The following Proposition is direct consequences of the definition.

Proposition 3.3 For any A ⊆ N we have

0 ≤ min{σ(A), BD(A)} ≤ max{σ(A), BD(A)} ≤ d(A) ≤ d(A) ≤ BD(A) ≤ 1.

Lemma 3.4 Let A ⊆ N. Then, BD(A) is the largest real α in [0, 1] such that there

exist km, nm ∈ N with nm →∞ as m→∞ such that

lim
m→∞

|A ∩ (km + [nm])|
nm

= α.

The proof of the lemma is left to the reader.

3.1 Nonstandard Versions of Densities

Proposition 3.5 Let A ⊆ N and α ∈ R. Then

1. d(A) ≥ α iff
|∗A ∩ [N ]|

N
' α for any hyperfinite integer N ;

2. d(A) ≥ α iff
|∗A ∩ [N ]|

N
' α for some hyperfinite integer N .

Proof: Part 1. “⇒”: Let N be an arbitrary hyperfinite integer. Since for each

ε > 0, there exists an n0 ∈ N such that

∀n ∈ N
(
n ≥ n0 →

|A ∩ [n]|
n

> α− ε
)
.

By the transfer principle, it is true that

∀n ∈ ∗N
(
n ≥ n0 →

|∗A ∩ [n]|
n

> α− ε
)
.
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Since N ∈ ∗N and N ≥ n0, we have
|∗A ∩ [N ]|

N
> α− ε. Since ε > 0 can be arbitrarily

small, we have that
|∗A ∩ [N ]|

N
' α.

Part 1. “⇐”: Suppose d(A) < α. Let α′ = (α + d(A))/2, then there is an

increasing sequence n1 < n2 < · · · such that ∀i ∈ N
(
|A ∩ [ni]|

ni
< α′

)
. By the

transfer principle the sentence ∀i ∈ ∗N
(
|∗A ∩ [ni]|

ni
< α′

)
is true in ∗V . Let N ′ be a

hyperfinite integer and N := nN ′ . Then, N is hyperfinite and
|∗A ∩ [N ]|

N
/ α′ < α.

Hence, the right side of Part 1 is false.

The proof of Part 2 is left to the reader. 2

Proposition 3.6 Let A ⊆ N and α ∈ R. Then

1. BD(A) ≥ α iff
|∗A ∩ (k + [N ])|

N
' α for any k ∈ ∗N and any hyperfinite integer

N ;

2. BD(A) ≥ α iff
|∗A ∩ (k + [N ])|

N
' α for some k ∈ ∗N and some hyperfinite

integer N .

Proof: We prove Part 2. The proof of Part 1 is left to the reader.

Part 2. “⇒”: Given m ∈ N, there exist km ∈ N and nm > m such that

|A ∩ (km + [nm])|
nm

> α− 1

m
.

By the transfer principle, we have that for any m ∈ ∗N there exist km ∈ ∗N and

nm > m such that
|∗A ∩ (km + [nm])|

nm
> α− 1

m
.

Now let m be a hyperfinite integer, k := km, and N := nm > m. Then,

|∗A ∩ (k + [N ])|
N

' α.

Part 2. “⇐”: Assume that BD(A) < α. Let α′ = (α + BD(A))/2. Then, there

exists an n0 ∈ N such that the following sentence is true in V :

∀k, n ∈ N
(
n ≥ n0 →

|A ∩ (k + [n])|
n

≤ α′
)
.

By the transfer principle, the following is true in ∗V :

∀k, n ∈ ∗N
(
n ≥ n0 →

|A ∩ (k + [n])|
n

≤ α′
)
.

Since hyperfinite integers are greater than n0, the right side of Part 2 is false. 2
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3.2 By-one-get-one-free Thesis

Shnirel’man density and lower density are most used densities by number theorists.

For example, Shnirel’man proved that if a set A has positive Shnirel’man density, then

there is a fixed k such that every positive integer is the sum of at most k numbers

in A. If P is the set of all prime numbers, then A := ({0, 1} ∪ P ) + ({0, 1} ∪ P ) has

positive Shnirel’man density, therefore, every positive integer is the sum of at most

2k prime numbers. This is the first nontrivial result towards the solution of Goldbach

conjecture.

The buy-one-get-one-free thesis is the following statement:

There is a parallel result involving upper Banach density for every existing

result involving Shnirel’man density or lower density.

The thesis makes sense because of the following two theorems.

Theorem 3.7 If A ⊆ N and BD(A) = α, then there is an k ∈ ∗N and a hyperfinite

integer N such that for µΩ-almost all n ∈ k + [N ] where µΩ is the Loeb measure on

Ω := k + [N ], we have d((∗A− n) ∩ N) = α. On the other hand, if A ⊆ N and there

is a positive integer n ∈ ∗N such that d((∗A− n) ∩ N) ≥ α, then BD(A) ≥ α.

Theorem 3.8 If A ⊆ N and BD(A) = α, then there is an n ∈ ∗N such that

σ((∗A− n) ∩ N) = α.

To present short proofs of Theorem 3.7 and Theorem 3.8 we borrow the following

Birkhoff’s Ergodic Theorem.

Theorem 3.9 (Birkhoff’s Ergodic Theorem, Theorem 2.3 in [22])

Let (Ω,Σ, µ) be a probability space and T be a measure-preserving transformation

from Ω to Ω. For every f ∈ L1(Ω), there exists a f̄ ∈ L1(Ω) such that for µ-almost

all x ∈ Ω,

lim
n→∞

1

n

n−1∑
k=0

f(T k(x)) = f̄(x),

where T 0 is the identity map and T k+1(x) = T (T k(x)) for every k ∈ N.

Prove of Theorem 3.7: We prove the second part first. Assume that d((∗A−k)∩
N) ≥ α for some k ∈ ∗N. For each m ∈ N there exists nm ∈ N such that

|∗A ∩ (k + [n])|
n

≥ α− 1

m
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for every n ≥ nm. By Proposition 2.8 there is a hyperfinite integer N ′ such that

|∗A ∩ (k + [n])|
n

≥ α− 1

N ′
≈ α

for every n ≥ nN ′ . Choose N ≥ nN ′ to be hyperfinite. Then,

|∗A ∩ (k + [N ])|
N

' α,

which implies BD(A) ≥ α by Part 2 of Proposition 3.6.

Now we prove the first part. Assume BD(A) = α. By Part 2 of Proposition 3.6

there is a k ∈ ∗N and hyperfinite integer N such that |∗A ∩ (k + [N ])|/N ≈ α. Let

Ω := k + [N ], (Ω; Σ, µΩ) be the Loeb space, B := ∗A ∩ Ω, and f : Ω → R be the

characteristic function of B. Then, f ∈ L1(Ω), i.e., f is integrable. Let T (n) = n+ 1

for all n ∈ Ω, n 6= k +N − 1 and T (k +N − 1) = k. Then T is a measure-preserving

transformation on Ω. By Theorem 3.9 there is a f̄ ∈ L1(Ω) such that there is a

X ⊆ Ω with µΩ(X) = 1 such that for all n ∈ X we have

f̄(n) = lim
m→∞

1

m

m−1∑
i=0

f(T i(n)) = lim
m→∞

1

m

m−1∑
i=0

f(n+ i)

= lim
m→∞

|B ∩ (n+ [m])|
m

= d((∗A− n) ∩ N).

Since f̄(n) > α implies d((∗A − n) ∩ N) > α which implies BD(A) > α by the first

part, we have that f̄(n) ≤ α for all n ∈ Ω. Since∫
Ω

f̄dµΩ = lim
m→∞

1

m

m−1∑
i=0

∫
Ω

f(T i(n))dµΩ =

∫
Ω

fdµΩ = µΩ(B) = α,

we conclude that f̄(n) = α for µΩ-almost all n ∈ Ω. Hence, d((∗A − n) ∩ N) =

d((∗A− n) ∩ N) = α for µΩ-almost all n ∈ Ω. 2

Proof of Theorem 3.8: By Theorem 3.7 we can find k ∈ ∗N such that d((∗A− k)∩
N) = α. For each m ∈ N let nm := max{n ∈ N | |(∗A− k) ∩ [nm] ≤ α − 1/m}. Note

that nm exists because otherwise we would have d((∗A − k) ∩ N) ≤ α − 1/m. Note

that |(∗A − k − nm) ∩ [n]|/n > α − 1/m for any n ∈ 1 + [m]. By Proposition 2.8 we

can find a hyperfinite integer N such that |(∗A− k− nN)∩ [n]|/n > α− 1/N for any

n ∈ 1+[N ]. This implies that σ((∗A−k−nN)∩N) ≥ α. Since σ((∗A−k−nN)∩N) > α

implies d((∗A − k − nN) ∩ N) > α which is impossible by Theorem 3.7 we conclude

that σ((∗A− k − nN) ∩ N) = α. 2.
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Theorem 3.10 (Mann’s Theorem, Theorem 3 in [9]) Let A,B ⊆ N and 0 ∈
A ∩B. Then

σ(A+B) ≥ min{σ(A) + σ(B), 1}.

Theorem 3.11 (Upper Banach Density Version, Theorem 2 in [12])

Let A,B ⊆ N. Then

BD(A+B + {0, 1}) ≥ min{BD(A) +BD(B), 1}.

Definition 3.12 Let B ⊆ N. For a positive integer h ∈ N, let

hB := {b1 + b2 + · · ·+ bh | bi ∈ B for i = 1, 2, . . . , h}.

1. The set B is a basis if hB = N for some h ∈ N. The least such h is called the

order of B. Clearly, a basis must contain 0;

2. Suppose B is a basis of order h. For each m ≥ 1 let h(m) := min{h′ ∈ N | m ∈
h′B}. Then, the number

h∗ := sup
n≥1

1

n

n∑
m=1

h(m)

is called the average order of B. Note that h∗ ≤ h;

3. The set B is an asymptotic basis if N\haB is finite for some ha ∈ N. The least

such ha is called the asymptotic order of B;

4. Suppose B is an asymptotic basis of order ha ∈ N and N \ [n0] ⊆ haB for some

minimal n0 ∈ N. For each m ≥ n0 let h(m) := min{h′ ∈ N | m ∈ h′B}. Then,

the number

h∗a := lim sup
n→∞

1

n

n0+n−1∑
m=n0

h(m)

is called the asymptotic average order of B. Note that h∗a ≤ ha;

5. The set B is a piecewise basis if there exists some hp ∈ N such that one can

find a sequence kn + [mn] with mn →∞ as n→∞ satisfying

kn + ([mn]) ⊆ hp((B − kn) ∩ N) + kn

for every n ∈ N. The least such hp is called the piecewise order of B;
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6. The set B is a piecewise asymptotic basis if there is an hpa ∈ N such that one

can find a sequence kn + [mn] with mn → ∞ as n → ∞ and a number n0 ∈ N
satisfying

kn + ([mn] \ [n0]) ⊆ hpa((B − kn) ∩ N) + kn

for every n ∈ N. The least such hpa is called the piecewise asymptotic order of

B;

7. Suppose that B is a piecewise asymptotic basis of piecewise asymptotic order

hpa. Let I be the sequence kn + [mn] and n0 ∈ N such that kn + ([mn] \ [n0]) ⊆
hpa((B − kn) ∩ N) + kn for every n ∈ N. For each m ∈ kn + ([mn] \ [n0]) let

h(m) := min{h′ ∈ N | m ∈ h′((B − kn) ∩ N) + kn. Let

h∗n :=
1

mn − n0

kn+mn−1∑
i=kn+n0

h(m) and

h∗I := lim sup
n→∞

h∗n.

Then, the number

h∗pa := inf{h∗I | for all suitable I}

is called a piecewise asymptotic average order of B.

Theorem 3.13 (Rohrback’s Theorem, Theorem 13 in [9]) If B is an asymp-

totic basis of asymptotic average order h∗a, then for any A ⊆ N we have

d(A+B) ≥ d(A) +
1

2h∗a
d(A)(1− d(A)).

Theorem 3.14 (Upper Banach Density Version, Theorem 4 in [12]) If B is

a piecewise asymptotic basis of piecewise asymptotic average order h∗pa, then for any

A ⊆ N we have

BD(A+B) ≥ BD(A) +
1

2h∗pa
BD(A)(1−BD(A)).

3.3 Plünnecke’s Inequalities

Theorem 3.13 is a generalization of Erdős’ theorem (cf. [9, Theorem 5]) that if B is

a basis of order h, then for any A ⊆ N it is true that

σ(A+B) ≥ σ(A) +
1

2h
σ(A)(1− σ(A)).
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Erdős’ theorem is for the study of so-called essential component problems. A set B

is called essential component if σ(A+ B) > σ(A) for any A ⊆ N with 0 < σ(A) < 1.

Hence, a basis must be an essential component.

There is another generalization of Erdős’ theorem, which is much more significant

than Theorem 3.13 does. The following generalization of Erdős’ theorem used a

completely different idea from Erdős’.

Theorem 3.15 (Plünnecke’s Theorem, Theorem 7.10 in [21]) Let B be a ba-

sis of order h. Then, for any A ⊆ N we have

σ(A+B) ≥ σ(A)1− 1
h .

It is not too hard to show that σ(A)1− 1
h ≥ σ(A) +

1

h
σ(A)(1 − σ(A)) (cf. [21,

Corollary 7.2]).

The key component used in the proof of Theorem 3.15 is a version of Plünnecke’s

inequality based on graph theoretic argument. The following lemma is a translation

of [21, Theorem 7.4] from the language of graph theory to the language of additive

number theory.

Lemma 3.16 (Plünnecke’s Inequality, Theorem 7.4 in [21])

Let A,B ⊆ N and h, n ≥ 1 be such that A ∩ [n] 6= ∅. For each 1 ≤ i ≤ h define

DA,B,n,i = min

{
|(A′ + iB) ∩ [n]|
|A′ ∩ [n]|

: ∅ 6= A′ ⊆ A ∩ [n]

}
.

Then

DA,B,n,1 ≥ (DA,B,n,2)1/2 ≥ · · · ≥ (DA,B,n,h)
1/h.

Many interesting subsets of N are not bases but asymptotic bases. For example,

P := {p ∈ N | p is a prime number}, Ck := {nk | n ∈ N} for k ≥ 1, P 2 := {a2b3 |
a, b ∈ N and a, b ≥ 1}, etc. are asymptotic bases. Therefore, it is interesting to see

whether Plünnecke’s Theorem can be generalized to some versions involving other

densities.

Definition 3.17 Let B ⊆ N.

1. The set B is a lower asymptotic basis of order h ∈ N if d(hB) = 1;

2. The set B is an upper asymptotic basis of order h ∈ N if d(hB) = 1;

3. The set B is an upper Banach basis of order h ∈ N if BD(hB) = 1;
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4. The set B is a lower Banach basis of order h ∈ N if BD(hB) = 1.

Note that P is an asymptotic basis of order 4 by Vinogradov’s Theorem, or 3 if

Goldbach conjecture is true. It is also known that P is a lower asymptotic basis of

order 3. P 2 is an asymptotic basis of order 3 by a result of Heath-Brown (cf. [10]).

C2 is a basis of order 4 and C3 is an asymptotic basis of order at most 7 (cf. [20]).

Note also that P,Ck, P
2 are all have upper density 0.

Theorem 3.18 (Theorem 1.5 in [14]) Let A,B ⊆ N and B be a lower asymptotic

basis of order h. Then

d(A+B) > d(A)1− 1
h .

Corollary 3.19 For any A ⊆ N we have

1. d(A+ P ) ≥ d(A)2/3;

2. d(A+ C2) ≥ d(A)3/4;

3. d(A+ C3) ≥ d(A)6/7;

4. d(A+ P 2) ≥ d(A)2/3.

Theorem 3.20 (Theorem 1.6 in [14]) There are A,B ⊆ N with d(A) = 1
2
,

d(2B) = 1, and

d(A+B) = d(A).

Theorem 3.21 (Theorem 1.7 in [14]) Let A,B ⊆ N and B be a upper Banach

basis of order h. Then

BD(A+B) ≥ BD(A)1− 1
h .

Theorem 3.22 (Theorem 7 in [15]) Let A,B ⊆ N and B be an upper Banach

basis of order h. Then,

BD(A+B) ≥ BD(A)1− 1
h .

Note that Theorem 3.18 and Theorem 3.20 show that lower density and upper

density are asymmetrical on generalizing Plünnecke’s Theorem. Theorem 3.21 and

Theorem 3.22 look like following the same pattern but they show also that upper

Banach density and lower Banach density are mildly asymmetrical. Both of the

theorems require B be upper Banach basis.

We will prove Theorem 3.18 and Theorem 3.21. The reader can find the proofs of

the other two theorems in [14, 15]. The arguments used in the proof of Theorem 3.15
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deal with finite intervals of integers and are purely combinatorial. It becomes messy

when the limit processes for d or BD are involved. Using nonstandard analysis, we

can transfer the limit processes to combinatorial arguments on intervals of hyperfinite

length, which simplify the proofs.

Proof of Theorem 3.18: Let A and B be in Theorem 3.18 such that d(A) = α and

d(hB) = 1. Without loss of generality, we can assume 0 < α < 1. Let N be any

hyperfinite integer. We want to show that

|∗(A+B) ∩ [N ]|
N

=
|(∗A+ ∗B) ∩ [N ]

N
' α1− 1

h ,

which implies Theorem 3.18 by Proposition 3.5. Choose hyperfinite integers N ′ <

K < N such that (N − K)/N ≈ 0 and (K − N ′)/(N − N ′) ≈ 0 (for example

K = N −
⌊√

N
⌋

and N ′ = K −
⌊

4
√
N
⌋

satisfy the requirements). Let C0 = ∗A∩ [K].

Then (|C0∩[N ]|)/N ' α. Next we want to trim C0 so that the density of the trimmed

set in each interval {x, x+ 1, . . . , N − 1} for every x ≤ K would not be too large. We

define Ck inductively for k = 0, 1, . . . , N ′ − 1 so that

C0 ⊇ C1 ⊇ · · · ⊇ CN ′−1,
|CN ′−1 ∩ [N ]|

N
≈ α, and

|CN ′−1 ∩ {x, x+ 1, . . . , N − 1}|
N − x

/ α

for any x ≤ K. Start with C0. For each k < N ′ − 1 let

Ck+1 =

{
Ck, if |Ck∩{N

′−k,N ′−k+1,...,N−1}|
N−N ′+k ≤ α

Ck r {N ′ − k}, otherwise.

It is easy to see that C0, C1, . . . , CN ′−1 has the desired properties. Let A0 = CN ′−1

and nonempty A′ ⊆ A0 be such that

DA0, ∗B,N,h =
|(A′ + h ∗B) ∩ [N ]|)

|A′ ∩ [N ]|
.

Let z = minA′. Then z < K because A0 ⊆ [K]. Hence N − z is hyperfinite, which

implies
|(h ∗B) ∩ [N − z]|

N − z
≈ 1. By Lemma 3.16 we have

|(A0 + ∗B) ∩ [N ]|
|A0 ∩ [N ]|

≥ DA0, ∗B,N,1 ≥ (DA0, ∗B,N,h)
1/h =

(
|(A′ + h ∗B) ∩ [N ]

|A′ ∩ [N ]|

)1/h
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'

(
|(z + h ∗B) ∩ [N ]|
|A′ ∩ [N ]|)

)1/h

'

(
|(h ∗B) ∩ [N − z]|/(N − z)

|A′ ∩ {z, z + 1, . . . , N − 1}|/(N − z)

)1/h

'

(
1

|A0 ∩ {z, z + 1, . . . , N − 1}|/(N − z)

)1/h

'
1

α1/h
,

which implies

|∗(A+B) ∩ [N ]|
N

≥ |(A0 + ∗B) ∩ [N ]|
N

'
|A0 ∩ [N ]|

N
· 1

α1/h
' α1− 1

h .

Since N is an arbitrary hyperfinite integer, Theorem 3.18 is proven with the help of

Proposition 3.5. 2

Proof of Theorem 3.21: Let A and B be in Theorem 3.21 with BD(A) = α and

BD(hB) = 1 for some h ∈ N. Theorem 3.21 is trivially true if BD(A) = 0 or

BD(A) = 1. So, we can assume that 0 < α = BD(A) < 1. Let n ∈ ∗N and K be

a hyperfinite integer such that n + [K] ⊆ (h ∗B). Choose N large enough so that

(n + K)/N ≈ 0 and |∗A ∩ (m + [N ])|/N ≈ α for some m ∈ ∗N. It suffices to show

that
|(∗A ∩ (m+ [N ]) + ∗B) ∩ (m+ [N ])|

N
' α1− 1

h

by Proposition 3.6. Let A0 = (∗A ∩ (m+ [N − n−K])−m. By the choice of N and

A0 we have

|A0 ∩ [N ]|
N

≈ α and
|(A0 + ∗B) ∩ [N ]|

N
/
|(∗A+ ∗B) ∩ (m+ [N ])|

N
.

It now suffices to show that

|(A0 + ∗B) ∩ [N ]|
N

' α1− 1
h .

Let A′ ⊆ A0 be nonempty such that DA0, ∗B,N,h = |(A′ + h ∗B) ∩ [N ]|/|A′ ∩ [N ]|.

Claim:
|(A′ + h ∗B) ∩ [N ]|
|A′ ∩ [N ]|

= DA0, ∗B,H,h '
1

α
.

Proof of Claim: Let H = bK/2c and let Ii = iH+[H] for i = 0, 1, . . . bN/Hc−1,

and let IbN/Hc = bN/Hc·H + [N − bN/Hc·H]. Denote

I := {Ii | i ∈ [bN/Hc+ 1] and Ii ∩ A′ 6= ∅}.

Then

|(A′ + h ∗B) ∩ [N ]| > |I| ·H
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because H ≤ K/2, every element in A′ is less than or equal to N − n − K, and

H + n + Ii ⊆ (A′ + h ∗B) ∩ [N ] if A′ ∩ Ii 6= ∅ for every i = 0, 1, . . . , bH/Nc. Given a

positive standard real ε, we have

|A′ ∩ [N ]| 6 |I| · (α + ε)H

because |A′ ∩ Ii|/|Ii| / α when |Ii| is hyperfinite by Proposition 3.6. Because ε is an

arbitrary standard positive real number, we have that

|(A′ + h ∗B) ∩ [N ]|
|A′ ∩ [N ]|

'
|I| ·H
|I| · αH

=
1

α
.

This completes the proof of the claim.

We continue to prove Theorem 3.21. Combine the arguments above and Theorem

3.16 we now have

|(A0 + ∗B) ∩ [N ]|
|A0 ∩ [N ]|

' DA0, ∗B,N,1 ≥ (DA0, ∗B,N,h)
1/h

=

(
|(A′ + h ∗B) ∩ [N ]|
|A′ ∩ [N ]|

)1/h

'
1

α1/h
.

Hence

|∗(A+B) ∩ [N ]|
N

'
|(A0 + ∗B) ∩ [N ]|

N
'
|A0 ∩ [N ]|

N
· 1

α1/h
≈ α1− 1

h ,

which implies Theorem 3.21 by Proposition 3.6. 2

3.4 Exercises

1. Let A ⊆ N. Prove that the limit of the sequence

sn := sup
k∈N

|A ∩ (k + [n])|
n

as n→∞ exists.

2. Prove Lemma 3.4.

3. Prove Part 2 of Proposition 3.5.

4. Prove that Theorem 3.14 using Theorem 3.13 and By-one-get-one-free Thesis.
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4 Hard Applications to Combinatorics

There have been many recent applications of nonstandard analysis to Ramsey type

problems in combinatorial number theory (cf. [4, 5, 6, 16].) One of the characteristics

of these new applications is the use of multiple levels of infinities. We will first

construct nonstandard universes with multiple levels of infinities and then solve some

combinatorial problems in these nonstandard universes.

4.1 Multiple Levels of Infinities and Ramsey’s Theorem

Our first goal in this subsection is to construct a sequence of nonstandard universes

and two types of correspondent elementary embeddings satisfying some nice proper-

ties.

Proposition 4.1 There exists a sequence of nonstandard universes

V0 = V ≺ V1 ≺ V2 ≺ · · · Vn ≺ · · ·

and elementary embeddings

im,n : Vn → Vn+1

for all 0 ≤ m ≤ n in N such that

1. N0 := N and Nn+1 := in,n(Nn) ⊇ in,n[Nn] = Nn is an end-extension of Nn, i.e.,

every number in Nn+1 \ Nn is greater than any number in Nn, for n = 0, 1, . . .;

2. im,n[Nk \ Nk−1] ⊆ Nk+1 \ Nk for k = m+ 1,m+ 2, . . . , n;

3. im,n(x) = x for every x ∈ Nm and im,n �Vk = im,k for m ≤ k ≤ n;

4. im,n � Vk : (Vk;Rk−l+1,Rk−l) → (Vk+1;Rk−l+2,Rk+1−l) is an elementary embed-

ding where (Vk;Rk−l+1,Rk−l) and (Vk+1;Rk−l+2,Rk+1−1) represent the models Vk
and Vk+1 augmented by unary relations Rk+1−l,Rk−l 6∈ Vk and Rk−l+2,Rk+1−l 6∈
Vk, respectively, for m ≤ k ≤ n and 2 ≤ l ≤ k −m;

Recall that the ultrafilter F is fixed after Definition 1.6. Let V0 := V , F0 := F ,

V1 := ∗V be the ultrapower of V0 modulo F0, and i0,0 := ∗ be the elementary

embedding from V0 to V1 constructed in Definition 1.21. Note that F0 ∈ V0.

Let F1 := i0,0(F0) ∈ V1. By the transfer principle we have that F1 satisfies Parts

1 – 4 of Definition 1.6 for any A,B ∈ V1 with X = N1 := i0,0(N0) and co-finite is

replaced by co-hyperfinite in V1. We call F1 a V1–internal non-principal ultrafilter on

N1. Notice that i0,0(P(N0)) = V1 ∩P(N1) and

i0,0(P<N0(N0)) = V1 ∩P<N1(N1) := {A ⊆ N1 | A ∈ V1 ∧ ∃N ∈ N1(A ⊆ [N ])}.
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If an ∈–formula ϕ is coded by a finite sequence of numbers in N0, then i0,0(ϕ) = ϕ.

Without loss of generality we can identify i0,0[V0] with V0 so that V0 is an elemen-

tary submodel of V1.

Let F ′0 := F0 and N′0 := N0. We use ′ to indicate the different location where F0

and N0 are used. To form an ultrapower of V1 modulo F ′0, we obtain an elementary

extension

V2 := (V
N′0

1 /F ′0, ∗∈) = VN′0
1 /F ′0 =

(
VN0

0 /F0

)N′0 /F ′0 (7)

and associated elementary embedding i0,1 : V1 → V2 as we did in Definition 1.8 and

Corollary 1.10. By applying Mostowski collapsing map again we can assume that ∗∈
is the real membership relation ∈ and N1 ⊆ N2 := i0,1(N1). Note that N1 and i0,1[N1]

are not the same even after Mostowski collapsing. Let’s call VN′0
1 /F ′0 the external

ultrapower of V1 modulo F ′0.

If N1 had been identified with i0,1[N1], then N2 won’t be an end-extension of N1.

Therefore, we should look at V2 from a different angle.

Definition 4.2 The V1-internal ultrapower of V1 modulo F1 is the model with the

base set VN1
1 ∩ V1 := {[f ]F1 | f ∈ VN1

1 and f ∈ V1}, where

f ∼F1 g iff {n ∈ N1 | f(n) = g(n)} ∈ F1 and

[f ]F1 := {g ∈ VN1
1 ∩ V1 | f ∼F1 g},

and the membership relation ∈2 defined by

[f ]F1 ∈2 [g]F1 iff {n ∈ N1 | f(n) ∈ g(n)} ∈ F1.

The map i1,1 : V1 → (VN1
1 ∩ V1)/F1 with i1,1(c) = [φc]F1 is the elementary embedding

from V1 to (VN1
1 ∩V1)/F1 associated with the V1-internal ultrapower of V1 modulo the

V1-internal ultrafilter F1.

By applying Mostowski collapsing map again we can assume that ∈2 is ∈. An

element a ∈ V2 is called V2-internal. An element a ∈ V2 is called V1-internal if

a ∈ i1,1[V1]. Recall that ((VN1
1 ∩V1)/F1;∈) is the V1-internal ultrapower of V1 modulo

F1.

Note that the V1-internal ultrapower of V1 modulo F1 is really the same as the

external ultrapower of V1 modulo F ′0. Indeed, we can make two-step ultrapower

process in two different order. In the external ultrapower of V1 modulo F ′0 we view

the ultrapower modulo F0 to get V1 first and the ultrapower of V1 modulo F ′0 the

second. If we view the two-step ultrapower process by taking the ultrapower modulo

F ′0 first, N0 and F0 in V0 become N1 and F1, respectively, and VN0
0 because the
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collection VN1
1 ∩ V1 of all V1-internal functions from N1 to V1. Hence, the process

of taking ultrapower of V0 modulo F0 is lifted into V1 to become the V1-internal

ultrapower of V1 modulo F1 to complete the second step. Symbolically, we have

V2 =
(
VN0

0 /F0

)N′0 /F ′0 = (VN1
1 ∩ V1)/F1 (8)

= ((VN′0
0 /F ′0)N

N′0
0 /F0 ∩ (VN′0

0 /F ′0))/(FN′0
0 /F ′0).

Roughly speaking, (8) shows that one can change the order of ultrapower of V0

construction steps first modulo F0 and then modulo F ′0 to the order that first modulo

F ′0 and then modulo F1 = i0,0(F0).

By applying the transfer principle to the statement that every bounded function

from N0 to N0 is equivalent, modulo F0, to a constant function, we have that every

bounded V1-internal function from N1 to N1 is equivalent, modulo F1, to a constant

function. So, if [f ]F1 ∈ N2 and f(n) ≤ m ∈ N1 for every n ∈ N1, then f is equivalent,

modulo F1, to [φc]F1 for some c ∈ N1, which implies [f ]F1 ∈ N1. So, N2 := i1,1(N1) ⊇
i1,1[N1] = N1 is an end-extension of N1. Note that i0,1 �N0 = i1,1 �N0 = i0,0. If V2 is

considered as the external ultrapower of V1, then N1 can be identified as NN′0
0 /F ′0 in

(7).

It is easy to check that the elementary embeddings i0,0, i0,1, i1,1 satisfy Proposition

4.1 except Part 4, which is irrelevant.

In fact, V2 can be viewed as one-step ultrapower of V0 modulo the tensor product

of F0 and F ′0 (cf. [1, Proposition 6.5.2]) where

F0 ⊗F ′0 := {A ⊆ N0 × N′0 | {n′ ∈ N′0 | {n ∈ N0 | (n, n′) ∈ A} ∈ F0} ∈ F ′0}

is a non-principle ultrafilter on N0×N′0. This indicates that V2 is countably saturated

and elements in V2 can be represented by the equivalence class, modulo F0 ⊗ F ′0, of

functions f : N0 × N′0 → V0.

Now consider a three-step ultrapower construction. Let F ′′0 := F0, N′′0 := N0, and

F2 := i1,1(F1) ∈ V2. Then

V3 = ((VN0
0 /F0)N

′
0/F ′0)N

′′
0/F ′′0 = VN′′0

2 /F ′′0 (9)

= ((VN1
1 ∩ V1)/F1)N

′
1 ∩ V1)/F ′1 = (VN′1

2 ∩ V1)/F ′1 (10)

= ((VN1
1 ∩ V1)/F1)N

′
1 ∩ V1)/F ′1 = (VN2

2 ∩ V2)/F2. (11)

The ultrapower in (9) results in the associated elementary embedding i0,2 : V2 →
V3. The ultrapower in (10) results in the associated elementary embedding i1,2 :

V2 → V3. And the ultrapower in (11) results in the associated elementary embedding

i2,2 : V2 → V3. After applying Mostowski collapsing map we can again assume that
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N3 := i1,2(N2) ⊇ N2 = i1,2[N2] and N3 is an end-extension of N2. We can also assume

that V2 ⊆ V3 via i2,2. It is also easy to check that i0,2 �V1 = i0,1 and i0,2 �V0 = i0,0.

Similarly, we have i1,2 � V1 = i1,1. Note that Part 4 in Proposition 4.1 follows from

the fact that (V3;R2,R1) is the ultrapower of (V2;R1,R0) modulo F ′0. Hence, i0,2 is

an elementary embedding from (V2;R1,R0) to (V3;R2,R1).

The validity of the remaining properties in Proposition 4.1 for im,2 with m = 0, 1, 2

is left for the reader to check.

In general, we can use the same idea to iterate the ultrapower construction. Given

0 ≤ m ≤ n, if we iterate the ultrapower construction m times internally (cf. (11))

followed by iterating ultrapower construction n − m times within Vm “externally”

(by viewing Vm as the “standard universe” ) we obtain the elementary embedding

im,n : Vn → Vn+1. These im,n’s satisfy the four parts in Proposition 4.1. For more

detailed discussion of iterating ultrapowers the reader may consult [16, §2].

The second gaol of this subsection is to present a probably the simplest proof of

Ramsey’s Theorem as a testing case for working within a nonstandard universe such

as Vn. In the remaining part of this subsection let [X]k∗ := {S ⊆ X | |S| = k} for any

set X and k ∈ N0. A coloring of a set Y with r colors is a function c : Y → [r]. A set

Z ⊆ Y is monochromatic (with respect to c) if c�Z is a constant function.

Theorem 4.3 (Ramsey’s Theorem) Let k, r ∈ N0. If c : [N0]k∗ → [r] is a coloring

of [N0]k∗ with at most r colors, then there exists an infinite set H ⊆ N0 such that [H]k∗
is monochromatic.

Proof: Work within Vk. Let x1 = [IdN0 ]F0 ∈ N1 \ N0 and xj+1 := i0,k−1(xj) for

j = 1, 2, . . . , k−1. Then x = {x1, x2, . . . , xr} ∈ [Nk]
k
∗. Note that xj is the equivalence

class represented by the identity map IdNj−1
: Nj−1 → Nj−1.

For convenience we denote still c for the extension of c from [Nj]
k
∗ to [r] in Vj. Let

c(x) = c0. We construct a sequence A = {a0 < a1 < · · ·} ⊆ N0 inductively such that

c� [A ∪ x]k∗ ≡ c0.

Suppose that Am := {a0, . . . , am−1} has been found that c � [Am ∪ x]k∗ ≡ c0. Note

that the sentence

∃y ∈ N1 (y > am−1 and c� [Am ∪ {y} ∪ {i0,k−1(x1), . . . , i0,k−1(xk−1)}]k∗ ≡ c0)

is true in (Vk;R1) where y is witnessed by x1. Hence,

∃y ∈ N0 (y > am−1 and c� [Am ∪ {y} ∪ {x1, . . . , xk−1}]k∗ ≡ c0) (12)

is true in (Vk−1;R0) by Part 4 of Proposition 4.1. Let y = am ∈ N0 be the witness of

the truth of (12) in Vk−1 and Am+1 = Am ∪ {am}. It suffices to show the following

claim.
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Claim: c� [Am+1 ∪ x]k∗ ≡ c0.

Proof of Claim: Let b = {b1 < b2 < · · · < bk} ∈ [Am+1 ∪ x]k∗. We show that

c(b) = c0.

If bk < xk, then c(b) = c0 by (12). If b1 = x1, then c(b) = c(x) = c0. So, we

can assume that b1 ∈ N0 and bk = xk. Let p = max{j ∈ 1 + [k] | xj 6∈ b}. Then

p < k, bp = xj′ for some 1 ≤ j′ < p or bp ∈ N0, and bj = xj for j = p + 1, . . . , k.

Let p′ := 0 if bp ∈ N0 or p′ = j′ if bp = xj′ for some 1 ≤ j′ ≤ p − 1. Note

that ip′,k−1(bj) = bj for j ≤ p. Note also that ip′,k−1(xj−1) = i0,k−1(xj−1) = bj for

j = p + 1, . . . , k because ip′,k−1(xj−1) is an equivalence class represented by IdNj−1
.

So, i−1
p′,k−1(b) ∈ [Am+1 ∪ {x1, . . . , xk−1}]k∗ and hence, c(i−1

p′,k−1(b)) = c0. By the transfer

principle for ip′,k−1 we have c(b) = c0. This completes the proof of the claim as well

as the theorem. 2

4.2 Multidimensional van der Waerden’s Theorem

The multidimensional van der Waerden’s Theorem is also called Gallai’s Theorem.

Fix a dimension s and let [n]s = {(x1, x2, . . . , xs) | xj ∈ [n] for j = 1, 2, . . . , s}. A

homothetic copy of [n]s is a set of the form

HC~a,d,n := ~a+ d[n]s = {~a+ d~x | ~x ∈ [n]s}

for some ~a ∈ Ns and d ∈ N, d > 0. The subscript n in HC~a,d,n will be omitted after

it is fixed.

Theorem 4.4 (T. Gallai) Given any positive r, n ∈ N0, one can find an N ∈ N0

such that for every coloring c : [N ]s → [r] there exists ~a, d such that HC~a,d,n ⊆ [N ]s

and c�HC~a,d,n ≡ c0 for some c0 ∈ [r].

The proof of Theorem 4.4 in this subsection is inspired by the proof of the one-

dimensional version in [17].

Proof: Fix n ∈ N0. Let � be the lexicographical order of HC~a,d. For each 0 ≤
l < ns let HC~a,d(l) denote the l-th element of HC~a,d under �. Note that HC~a,d(0) = ~a.

Let ϕm(r,N) be the following first-order sentence:

∀c : [N ]s → [r] ∃HC~a,d ⊆ [N ]s ∃c0 ∈ [r]

(c(HC~a,d(l)) = c0 for l = 0, 1, . . . ,m) . (13)

It suffices to prove the following claim.
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Claim 1: Let 0 ≤ m < ns. For every r ∈ N0 there exists an N ∈ N0 such that

ϕm(r,N) is true in V0.

Note that the claim when m = ns − 1 is Theorem 4.4. It suffices to prove the

claim by induction on m ≤ ns − 1. Call HC~a,d in (13) monochromatic up to m with

respect to c.

Proof of Claim 1: The case for m = 0 is trivial.

Assume that the claim is true for m − 1. We prove that the claim is true for

m < ns.

Given r ∈ N0, the task now is to find N ∈ N0 such that ϕm(r,N) is true in V0.

Work within Vr+1. Choose any Nr ∈ Nr+1\Nr. It suffices to prove that ϕm(r, 2Nr)

is true in Vr by the transfer principle.

Fix c : [2Nr]
s → [r]. It suffices to find a HC~a,d ⊆ [2Nr]

s which is monochromatic

up to m with respect to c.

Choose any Nj ∈ Nj+1 \Nj for j = 0, 1, . . . , r− 1. Since Nj+1 is an end-extension

of Nj, the number r(2Nj−1)s is infinitely smaller than Nj. Note also that Nj +Nj−1 +

· · ·+N0 < Nj+1.

For any ~x, ~y ∈ [Nr]
s we say that ~x and ~y have the same 2Nj-type if for any

~z ∈ [2Nj]
s we have c(~x + ~z) = c(~y + ~z), i.e., the color patterns of ~x + [2Nj]

s and

~y + [2Nj]
s with respect to c are the same.

Since the first-order sentence

(∀r′ ∈ N0) (∀N ∈ N1 \ N0)ϕm−1(r′, N)

is true in (V1;N0), the sentence

(∀r′ ∈ Nj) (∀N ∈ Nj+1 \ Nj)ϕm−1(r′, N)

is true in (Vj+1;Nj) for j = 1, 2, . . . , r by Part 4 of Definition 4.1. In particular,

ϕm−1(r(2Nj−1)s , Nj) is true in Vj+1 for j = 1, 2, . . . , r.

Since the number of different 2Nj−1-types is at most r(2Nj−1)s , for any ~b + [Nj]
s

we can find HC~aj ,dj ⊆ ~b + [Nj]
s such that HC~aj ,dj is monochromatic up to m − 1

with respect to 2Nj−1-types, i.e., HC~aj ,dj(l) for l = 0, 1, . . . ,m − 1 have the same

2Nj−1-type. So, we can now find a sequence of homothetic copies of [n]s

HC~ar,dr , HC~ar−1,dr−1 , . . . , HC~a0,d0

such that

• HC~ar,dr ⊆ [Nr]
s is monochromatic up to m− 1 with respect to 2Nr−1-types;
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• HC~ar−1,dr−1 ⊆ [Nr−1]s such that HC~ar,dr(0) + HC~ar−1,dr−1 is monochromatic up

to m− 1 with respect to 2Nr−2-types. Note that HC~ar,dr(l) +HC~ar−1,dr−1(l
′) for

0 ≤ l, l′ ≤ m− 1 have the same 2Nr−2-type;

• HC~ar−2,dr−2 ⊆ [Nr−2]s such that HC~ar,dr(0) + HC~ar−1,dr−1(0) + HC~ar−2,dr−2 is

monochromatic up to m−1 with respect to 2Nr−3-types. Note that HC~ar,dr(l)+

HC~ar−1,dr−1(l
′) + HC~ar−2,dr−2(l

′′) for 0 ≤ l, l′, l′′ ≤ m − 1 have the same 2Nr−3-

type;

• . . . . . .;

• HC~a1,d1 ⊆ [N1]s such that
r∑
j=2

HC~aj ,dj(0) + HC~a1,d1 is monochromatic up to

m − 1 with respect to 2N0-types. Note that
r∑
j=2

HC~aj ,dj(lj) + HC~a1,d1(l1) for

0 ≤ l1, l2, . . . , lr ≤ m− 1 have the same 2N0-type;

• HC~a0,d0 ⊆ [N0]s such that
r∑
j=1

HC~aj ,dj(0) + HC~a0,d0 is monochromatic up to

m − 1 with respect to coloring c. Note that
r∑
j=1

HC~aj ,dj(lj) + HC~a0,d0(l0) for

0 ≤ l0, l1, . . . , lr ≤ m− 1 have the same c-value.

Define HC~a,d ⊕HC~a′,d′ := HC~a+~a′,d+d′ . Clearly, for any l < ns we have

(HC~a,d ⊕HC~a′,d′)(l) = HC~a,d(l) +HC~a′,d′(l).

For each j = 0, 1, . . . , r let

~yj := HC~ar,dr(0) + · · ·+HC~aj ,dj(0) +HC~aj−1,dj−1
(m) + · · ·+HC~a0,d0(m).

Since there are r + 1 many yj’s and r colors, there must exist 0 ≤ j1 < j2 ≤ r such

that c(~yj1) = c(~yj2). Let

D := HC~ar,dr(0) + · · ·+HC~aj2 ,dj2 (0) (14)

+HC~aj2−1,dj2−1
⊕ · · · ⊕HC~aj1 ,dj1

+HC~aj1−1,dj1−1
(m) + · · ·+HC~a0,d0(m).

Then D is a homothetic copy of [n]s.

Claim 2: The homothetic copy D of [n]s in (14) is monochromatic up to m− 1

with respect to c.
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Claim 1 follows from Claim 2 because D(0) = ~yj1 and D(m) = ~yj2 have the same

c–value and hence, the homothetic copy D of [n]s is monochromatic up to m with

respect to c.

Proof of Claim 2: By the construction of HC~aj ,dj we have that

r∑
j=j2

HC~aj ,dj(0) +

j2−1∑
j=j1

HC~aj ,dj(l)

for 0 ≤ l ≤ m− 1 have the same 2Nj1−1-type. Note that

~b :=

j1−1∑
j=0

HC~aj ,dj(m) ∈ [2Nj1−1]s.

Hence,

D(l) := HC~ar,dr(0) + · · ·+HC~aj2 ,dj2 (0)

+HC~aj2−1,dj2−1
(l) + · · ·+HC~aj1 ,dj1 (l) +~b

for l = 0, 1, . . . ,m − 1 have the same c–value. This completes the proof of Claim 2,

Claim 1, and the theorem. 2

4.3 Szemerédi’s Theorem

Szemerédi’s Theorem is the center of attention in additive combinatorics for many

years which has attracted many prominent mathematicians.

Theorem 4.5 (E. Szemerédi, 1975 [26]) If D ⊆ N has a positive upper density,

then D contains a k–term arithmetic progression for every k ∈ N.

Szemerédi’s Theorem confirms a conjecture of P. Erdős and P. Turán made in

1936, which implies van der Waerden’s Theorem.

Nonstandard versions of Furstenberg’s ergodic proof and Gowers’s harmonic proof

of Szemerédi’s Theorem have been tried by T. Tao (see Tao’s blog post [28]). In Au-

gust 2017, Tao gave a series of lectures to explain Szemerédi’s original combinatorial

proof and hope to simplify it so that the proof can be better understood. He believed

that Szemerédi’s combinatorial method should have a greater impact on combina-

torics.

During these lectures Tao challenged the audience to produce a nonstandard proof

of Szemerédi’s Theorem which is noticeably simpler and more transparent than Sze-

merédi’s original proof. However, in his later blog post [29], Tao commented that “in
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fact there are now signs that perhaps nonstandard analysis is not the optimal frame-

work in which to place this argument.” We disagree. The paper [16] was written to

meet Tao’s challenge and showed that with the help of a nonstandard universe with

three levels of infinities, Szemerédi’s original argument can be made simpler and more

transparent.

The main simplification in the proof in [16] comparing to the standard proof in

[26, 27] is that a Tower of Hanoi type induction in [27, Theorem 6.6] or in [26, Lemma

5, Lemma 6, and Fact 12] is replaced by a straightforward induction, which makes

Szemerédi’s idea more transparent. To achieve this, V3 (see Proposition 4.1) is used

which supply three levels of infinities, plus various elementary embeddings from Vj
to Vj′ for some 0 ≤ j < j′ ≤ 3.

In this subsection we will do the following: (1) assume a weak regularity lemma

and derive a nonstandard form of mixing lemma; (2) prove Theorem 4.5 for k = 3;

(3) prove Theorem 4.5 for k = 4, (4) prove Theorem 4.5 for any k. The reason to

present the proof for k = 3 and k = 4 is to show how the level of difficulties arises.

Let’s fix some notation. The Greek letters α, β, γ, ε, etc. will represent standard

real numbers unless otherwise specified. All unspecified sets mentioned are either

standard or Vj-internal for j = 1, 2, or 3. If m,n ∈ N3, we write m � n if m ∈ Nj

and n ∈ Nj′ \ Nj′−1 for some 0 ≤ j < j′ ≤ 3. For example, 1 � n means that n is

hyperfinite. The words “arithmetic progression” will be abbreviated to “a.p.” The

length of an a.p. p, denoted by |p|, is the number of the terms in p. A finite a.p.,

often with length k, will be denoted by p, q, r, etc. and an a.p. of hyperfinite length

will be denoted by P,Q,R, etc. If P (or p) is an a.p., the l-th term of P is denoted by

P (l) for any 1 ≤ l ≤ |P |. By k-term a.p. or just k-a.p. we mean an a.p. with length

k. If both p and q are k-a.p., let r := p⊕ q be the k-a.p. such that r(l) = p(l) + q(l)

for 1 ≤ l ≤ k.

The following standard lemma is a consequence of Szemerédi’s Regularity Lemma

in [26]. The proof of the lemma can be found in the appendix section of [27].

Lemma 4.6 Let U,W be finite sets, let ε > 0, and for each w ∈ W , let Ew be a

subset of U . Then there exists a partition U = U1 ∪ U2 ∪ · · · ∪Unε for some nε ∈ N0,

and real numbers 0 ≤ cu,w ≤ 1 in R0 for u ∈ [nε] and w ∈ W such that for any set

F ⊆ U , one has ∣∣∣∣∣|F ∩ Ew| −
nε∑
u=1

cu,w|F ∩ Uu|

∣∣∣∣∣ ≤ ε|U |

for all but ε|W | values of w ∈ W .

For the mixing lemma we introduce some notion for slightly broader sense of Loeb

measure, as well as strong upper Banach density in Vj.
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Definition 4.7 Let 0 ≤ j < j′ ≤ 3. For any two numbers r, r′ ∈ Rj′ we write

r ≈j r′ if |r − r′| < 1/n for every n ∈ Nj. If r ∈ nsj(Rj′) where nsj(Rj′) is the

set of all near standard elements when considering Vj as the “standard” universe (cf.

Definition 1.12), denote stj(r) for the unique number α ∈ Rj such that r ≈j α. For

any bounded set A ⊆ Nj′ and n ∈ Nj′ denote

δn(A) :=
|A|
n
∈ Rj′ and µjn(A) := stj(δn(A)).

Notice that δn is a Vj′-internal function while µjn are often external functions but

definable in (Vj′ ;Rj), i.e.,

µjn(A) = α iff ∀n ∈ Nj′ ∩ Rj

(
|δH(A)− α| < 1

n

)
.

If A ⊆ Ω and |Ω| = H, then µH(A) coincides with the Loeb measure of A in Ω

(Definition 2.11). The term δH is often used for an internal argument.

Definition 4.8 Let 0 ≤ j < j′ ≤ 3 and A ⊆ Nj′ with |A| ∈ Nj′ \Nj the strong upper

Banach density SDj(A) of A in Vj is defined by

SDj(A) := supj

{
µj|P |(A ∩ P ) | |P | ∈ Nj′ \ Nj

}
. (15)

The letter P above always represents an a.p. and supj represents the least upper bound

in Rj ∪{±∞} of a subset of Rj in Vj. If S ⊆ Nj′ has SDj(S) = η ∈ Rj and A ⊆ Nj′,

the strong upper Banach density SDj
S of A relative to S is defined by

SDj
S(A) := supj

{
µj|P |(A ∩ P ) | |P | ∈ Nj′ \ Nj, and µj|P |(S ∩ P ) = η

}
. (16)

Note that if Szemeredédi’s Theorem is true, then SD(A) > 0 implies SD(A) = 1.

However, we haven’t proven the theorem yet. Similar to Proposition 3.6, we can

derive some nonstandard version of strong upper Banach density.

Proposition 4.9 Let 0 ≤ j < j′ ≤ 3. Given A ⊆ S ⊆ Nj′ with |A| ∈ Nj′ \ Nj and

α, η ∈ Rj with 0 ≤ α ≤ η ≤ 1. Then the following are true:

1. SDj(S) ≥ η iff there exists a P with |P | ∈ Nj′ \ Nj and µj|P |(S ∩ P ) ≥ η;

2. If SDj(S) = η, then there exists a P with |P | ∈ Nj′ \Nj such that µj|P |(S ∩P ) =

SDj(S ∩ P ) = η;

3. Suppose SDj(S) = η. Then SDj
S(A) ≥ α iff there exists a P with |P | ∈ Nj′ \Nj,

µj|P |(S ∩ P ) = η, and µj|P |(A ∩ P ) ≥ α;
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4. Suppose SDj(S) = η. If SDj
S(A) = α, then there exists a P with |P | ∈ Nj′ \ Nj

such that µj|P |(S ∩ P ) = η and µj|P |(A ∩ P ) = SDj
S∩P (A ∩ P ) = α.

Proof: Part 1: If SDj(S) ≥ η, then there is a Pn with |Pn| ∈ Nj′ \ Nj such that

δ|Pn|(S ∩ Pn) > η − 1/n for every n ∈ Nj. Let

A :=

{
n ∈ Nj′ | ∃P ⊆ Nj′

(
|P | ≥ n ∧ δ|P |(S ∩ P ) > η − 1

n

)}
.

Then A is Vj′–internal and A ∩ Nj is unbounded above in Nj. By Proposition 2.4,

there is a J ∈ A \ Nj. Hence there is an a.p. PJ ⊆ Nj′ such that |PJ | ≥ J ∈ Nj′ \ Nj

and δ|PJ |(S ∩ PJ) > η − 1/J ≈j η. Therefore, µj|PJ |(S ∩ PJ) ≥ η. On the other hand,

if µj|P |(S ∩ P ) ≥ η, then SDj(S) ≥ η by the definition of SDj in (15).

Part 2: If SDj(S) = η, we can find P with |P | ∈ Nj′ \Nj such that µj|P |(S ∩ P ) =

η′ ≥ η by Part 1. Clearly, η = SDj(S) ≥ SDj(S ∩ P ) ≥ µj|P |(S ∩ P ) = η′ by the

definition of SDj. Hence η = η′.

Part 3: If SDj
S(A) ≥ α, then there is a P with |P | > n such that |δ|P |(S ∩ P ) −

η| < 1/n and δ|P |(A ∩ P ) > α − 1/n for every n ∈ Nj. By Proposition 2.4 as in

the proof of Part 1 there is a PJ for some J ∈ Nj′ \ Nj with |PJ | ≥ J such that

|δ|PJ |(S ∩PJ)− η| < 1/J and δ|PJ |(A∩PJ) > α− 1/J , which implies µj|PJ |(S ∩P ) = η

and µj|PJ |(A ∩ PJ) ≥ α. On the other hand, if µ|P |(S ∩ P ) = η and µj|P |(A ∩ P ) ≥ α,

then SDj
S(A) ≥ α by the definition of SDj

S in (16).

Part 4: If SDj
S(A) = α, then µj|P |(S∩P ) = η and µj|P |(A∩P ) = α′ ≥ α for some P

with |P | ∈ Nj′ \Nj by Part 3. Clearly, α = SDj
S(A) ≥ SDj

S∩P (A∩P ) ≥ µj|P |(A∩P ) =

α′ by the definition of SDj
S. Hence α = α′. 2

The uniformity of A ∈ [N ] when µN(A) = SD(A) will be useful.

Lemma 4.10 Let 0 ≤ j < j′ ≤ 3. Given N,H ∈ Nj′ \Nj, H ≤ N/2, and C ⊆ [N ]

with µjN(C) = SDj(C) = α ∈ Rj, for each n ∈ Nj′ let

Dn,H,C :=

{
x ∈ [N −H] | |δH(C ∩ (x+ [H]))− α| < 1

n

}
. (17)

Then there exists a J ∈ Nj′ \ Nj such that µjN−H(DJ,H,C) = 1.

Notice that Dn,H,C ⊆ Dn′,H,C if n ≥ n′.

Proof: Fix N , H, and C. The subscripts H and C in Dn,H,C will be omitted in the

proof. If stj(H/N) > 0, then for every x ∈ [N −H] we have µjH(x+ [H]) = α by the
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supremality of α. Hence the maximal J with J ≤ H such that |δH(A∩(x+[H]))−α| <
1/J for every x ∈ [N −H] is in Nj′ \ Nj. Now DJ = [N −H] works.

Assume that stj(H/N) = 0. So, µjN−H and µjN coincide. If δN(Dn) ≈j 1 for every

n ∈ Nj, then the maximal J satisfying |δN(DJ) − 1| < 1/J must be in Nj′ \ Nj by

Proposition 2.4. Hence µjN(DJ) = 1. So we can assume that µjN(Dn) < 1 for some

n ∈ Nj and derive a contradiction.

Notice that for each x ∈ [N − H], it is impossible to have µjH(C ∩ (x + [H])) >

α = SDj(C) by the definition of SDj. Let Dn := [N − H] \ Dn. Then µjN(Dn) =

1 − µjN(Dn) > 0. Notice that x ∈ Dn implies δH(C ∩ (x + [H])) ≤ α − 1/n. By the

following double counting argument, by ignoring some Vj–infinitesimal amount inside

stj, we have

α = stj

(
1

H

H∑
y=1

δN(C − y)

)
= stj

(
1

HN

H∑
y=1

N∑
x=1

χC(x+ y)

)

= stj

(
1

NH

N∑
x=1

H∑
y=1

χC(x+ y)

)
= stj

(
1

N

N∑
x=1

δH(C ∩ (x+ [H]))

)

= stj

 1

N

∑
x∈Dn

δH(C ∩ (x+ [H])) +
1

N

∑
x∈Dn

δH(C ∩ (x+ [H]))


≤ αµjN(Dn) +

(
α− 1

n

)
µjN(Dn) < α

which is absurd. This completes the proof. 2

Suppose 0 ≤ j < j′ ≤ 3, N ≥ H � 1 in Nj′ , U ⊆ [N ], A ⊆ S ⊆ [N ], 0 ≤ α ≤ η ≤
1, and x ∈ [N ]. For each n ∈ Nj let ξ(x, α, η, A, S, U,H, n) be the following internal

statement:
|δH(x+ [H]) ∩ U)− 1| < 1/n,

|δH((x+ [H]) ∩ S)− η| < 1/n, and

|δH((x+ [H]) ∩ A)− α| < 1/n.

(18)

The statement ξ(x, α, η, A, S, U,H, n) infers that the densities of A, S, U in the interval

x+ [H] go to α, η, 1, respectively, as n→∞ in Nj. The statement ξ will be referred

a few times in Lemma 4.18 and its proof.

The following lemma is the application of Lemma 4.10 to the sets U, S,A simul-

taneously.

Lemma 4.11 Let 0 ≤ j < j′ ≤ 3. Let N ∈ Nj′ \ Nj, U ⊆ [N ], and A ⊆ S ⊆ [N ]

be such that µjN(U) = 1, µjN(S) = SD(S) = η, and µjN(A) = SDj
S(A) = α for some
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η, α ∈ Rj. For any n, h ∈ Nj′ let

Gn,h := {x ∈ [N − h] | Vj′ |= ξ(x, α, η, A, S, U, h, n)}. (19)

(a) For each H ∈ Nj′ \ Nj with H ≤ N/2 there exists a J ∈ Nj′ \ Nj such that

µjN−H(GJ,H) = 1;

(b) For each n ∈ Nj, there is an hn ∈ Nj with hn > n such that δN(Gn,hn) > 1−1/n.

Proof: Part (a): Applying Lemma 4.10 for U and S we can find J1, J2 ∈ Nj′ \Nj

such that µjN−H(DJ1,H,U) = 1 and µjN−H(DJ2,H,S) = 1 where Dn,h,C is defined in (17)

and α is replaced by 1 for U and η for S. Let G′ := DJ1,H,U ∩ DJ2,H,S. For each

n ≤ min{J1, J2} let

G
′′
n :=

{
x ∈ [N −H] | δH(A ∩ (x+ [H])) > α +

1

n

}
, and

G′′n :=

{
x ∈ [N −H] | δH(A ∩ (x+ [H])) < α− 1

n

}
.

Notice that both G
′′
n and G′′n are Vj′–internal. If µjN−H(G

′′
n) > 0 for some n ∈ Nj,

then G
′′
n ∩ G′ 6= ∅. Let x0 ∈ G

′′
n ∩ G′. Then we have µjH(S ∩ (x0 + [H])) = η and

µjH(A∩ (x0 + [H])) > α+ 1/n, which contradicts SDj
S(A) = α. Hence δN−H(G

′′
n) ≈j 0

for every n ∈ Nj. By Proposition 2.4 we can find J+ ∈ Nj′ \Nj such that µjN−H(G
′′
n) =

0 for any n ≤ J+. If µjN−H(G′′n) > 0 for some n ∈ Nj, then µjN−H(G
′′
m) > 0 for some

m ∈ Nj by the fact that µjN−H(A) = α. Hence δN−H(G′′n) ≈j 0 for every n ∈ Nj.

By Proposition 2.4 again we can find J− ∈ Nj′ \ Nj such that µjN−H(G′′n) = 0 for any

n ≤ J−. The proof is complete by setting J := min{J1, J2, J+, J−} and

GJ,H := (DJ,H,U ∩DJ.H,S) \ (G
′′
J ∪G′′J).

Part (b): Suppose Part (b) is not true. Then there exists an n ∈ Nj such that

δN−h(Gn,h) ≤ 1 − 1/n for any h > n in Nj. By Proposition 2.4 there is an H ∈
Nj′ \ Nj such that δN−H(Gn,H) ≤ 1 − 1/n. By Part (a) there is a J � n such that

µjN−H(GJ,H) = 1. We have a contradiction because n < J and hence GJ,H ⊆ Gn,H . 2

Notice that for a given n one can choose hn to be the least such that δN(Gn,hn) >

1 − 1/n in Lemma 4.11 (b). So we can assume that hn is an internal function of n.

Hence we can assume that Gn,hn is also an internal function of n.

We often write st for st0, µn for µ0
n, and SD for SD0. One can derive a so-called

mixing lemma from Lemma 4.6.
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Lemma 4.12 (Mixing Lemma) Let N ∈ Nj′ \N0, A ⊆ S ⊆ [N ], 1� H ≤ N/2,

and R ⊆ [N −H] be an a.p. with |R| � 1 such that

µN(S) = SD(S) = η > 0, µN(A) = SDS(A) = α > 0, (20)

µH((x+ [H]) ∩ S) = η, and µH((x+ [H]) ∩ A) = α (21)

for every x ∈ R. Then the following are true.

(i) For any set E ⊆ [H] with µH(E) > 0, there is an x ∈ R such that

µH(A ∩ (x+ E)) ≥ αµH(E);

(ii) Let m� 1 be such that the van der Waerden number Γ (3m,m) ≤ |R|. For any

internal partition {Un | n ∈ [m]} of [H] there exists an m–a.p. P ⊆ R, a set

I ⊆ [m] with µH(UI) = 1 where UI =
⋃
{Un | n ∈ I}, and an infinitesimal ε > 0

such that

|δH(A ∩ (x+ Un))− αδH(Un)| ≤ εδH(Un)

for all n ∈ I and all x ∈ P ;

(iii) Given an internal collection of sets {Ew ⊆ [H] | w ∈ W} with |W | � 1 and

µH(Ew) > 0 for every w ∈ W , there exists an x ∈ R and T ⊆ W such that

µ|W |(T ) = 1 and

µH(A ∩ (x+ Ew)) = αµH(Ew)

for every w ∈ T .

Proof: Part (i): Assume that (i) is not true. For each x ∈ R let rx be such that

δH(A∩(E+x)) = (α−rx)δH(E). Then rx must be positive non-infinitesimal. We can

set r := min{rx | x ∈ R} since the function x 7→ rx is internal. Clearly, the number

r is positive non-infinitesimal. Hence δH(A ∩ (E + x)) ≤ (α− r)δH(E) for all x ∈ R.

Notice that by (20) and (21), for µH–almost all y ∈ [H] we have µ|R|(S∩ (y+R)) = η

which implies that for µH–almost all y ∈ [H] we have µ|R|(A ∩ (y +R)) = α. So

αµH(E) ≈ 1

H

∑
y∈E

1

|R|
∑
x∈R

χA(x+ y) =
1

|R|
∑
x∈R

1

H

H∑
y=1

χA∩(E+x)(x+ y)

≤ 1

|R|
∑
x∈R

(α− r)δH(E) = (α− r)δH(E) ≈ (α− st(r))µH(E) < αµH(E),

which is absurd.
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Part (ii): To make the argument explicitly internal we use δH instead of µH . For

each t ∈ Nj′ , x ∈ R, and n ∈ [m] let

ctn(x) =


1 if δH((x+ Un) ∩ A) ≥

(
α + 1

t

)
δH(Un),

0 if
(
α− 1

t

)
δH(Un) < δH((x+ Un) ∩ A) <

(
α + 1

t

)
δH(Un),

−1 if δH((x+ Un) ∩ A) ≤
(
α− 1

t

)
δH(Un).

and let ct : P → {−1, 0, 1}[m] be such that ct(x)(n) = ctn(x). For each t ∈ N0, since

the van der Waerden number Γ(3m,m) ≤ |R|, there exists an m–a.p. Pt ⊆ R such

that ct(x) = ct(x′) for any x, x′ ∈ Pt. For each x ∈ Pt let

I+
t = {n ∈ [m] | ct(x)(n) = 1},

I−t = {n ∈ [m] | ct(x)(n) = −1}, and

It = [m] \ (I+
t ∪ I−t ), and

U+
t =

⋃
{Un | n ∈ I+

t },

U−t =
⋃
{Un | n ∈ I−t }, and

Ut = [H] \ (U+
t ∪ U−t ).

Clearly, δH((x + U−t ) ∩ A) ≤ (α − 1/t)δH(U−t ) because U−t is a disjoint union of the

Un’s for n ∈ I−t . Since t ∈ N0 we have that µH(U−t ) = 0 by (i) with Pt in the place

of R and U−t in the place of E. Notice that δH(A ∩ (x + U+
t )) ≥ (α + 1/t)δH(U+

t ).

Since α ≥ µH(A ∩ (x + U+
t )) ≥ (α + 1/t)µH(U+

t ), we have that µH(U+
t ) < 1, which

implies µH(Ut) > 0. If µH(U+
t ) > 0, then δH(A ∩ (x + U+

t )) ≥ (α + 1/t)δH(U+
t )

implies µH(A∩ (x+Ut)) < αµH(Ut) for all x ∈ Pt, which again contradicts (i). Hence

µH(U+
t ) = 0 and therefore, δH(Ut) > 1− 1/t is true for every t ∈ N0.

Since the set of all t ∈ Nj′ with δH(Ut) > 1 − 1/t is Vj′–internal, by Proposition

2.4 there is a J � 1 such that δH(UJ) > 1− 1/J ≈ 1. The proof of (ii) is completed

by letting P := PJ , I := IJ , and UI := UJ .

Part (iii): Choose a sufficiently large positive infinitesimal ε satisfying that there

is an internal partition of [H] = U0 ∪ U1 ∪ · · · ∪ Um and real numbers 0 ≤ cn,w ≤ 1

for each n ∈ [m] and w ∈ W such that the van der Waerden number Γ(3m,m) ≤ |R|,
and for any internal set F ⊆ [H] there is a TF ⊆ W with |W \ TF | ≤ ε|W | such that∣∣∣∣∣|F ∩ Ew| −

m∑
n=1

cn,w|F ∩ Un|

∣∣∣∣∣ ≤ εH (22)
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for all w ∈ TF . Notice that such ε exists because if ε is a standard positive real, then

m = nε is in N0. From (22) with F being replaced by [H] we have∣∣∣∣∣|Ew| −
m∑
n=1

cn,w|Un|

∣∣∣∣∣ ≤ εH (23)

for all w ∈ T[H]. By (ii) we can find a P ⊆ R of length m, a positive infinitesimal ε1,

and I ⊆ [m] where, for some x ∈ P ,

I := {n ∈ [m] | |δH((x+ Un) ∩ A)− αδH(Un)| < ε1δH(Un)}

(I is independent of the choice of x), and V :=
⋃
{Un | n ∈ I} with µH(V ) = 1. Let

I ′ = [m] \ I and V ′ = [H] \ V . Then for each w ∈ T := T[H] ∩ T(A−x)∩[H] we have

|δH(A ∩ (x+ Ew))− αδH(Ew)|

≤ 1

H

∣∣∣∣∣∣|A ∩ (x+ Ew)| −
∑
n∈[m]

cn,w|A ∩ (x+ Un)|

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
n∈[m]

cn,w|A ∩ (x+ Un)| −
∑
n∈[m]

cn,wα|Un|

∣∣∣∣∣∣
+

∣∣∣∣∣∣α
∑
n∈[m]

cn,w|Un| − α
∑
i∈[m]

|Ew|

∣∣∣∣∣∣


≤ ε+
1

H

∑
n∈I

cn,wε1|Un|+ 2δH(V ′) + αε

≤ ε+ ε1δH(V ) + 2δH(V ′) + αε ≈ 0.

Hence µH(A ∩ (x+Ew)) = αµH(Ew) for all w ∈ T . Notice that µ|W |(T ) = 1 because

ε ≈ 0 and µ|W |(T[H]) = µ|W |(T[H]∩(A−x)) = 1. 2

The set S in Lemma 4.12, although seems unnecessary, is needed in the proof of

Lemma 4.18.

Szemeredi’s Theorem for k = 3:

Theorem 4.13 (K. F. Roth, 1953) If U ⊆ N and SD(U) > 0, then U contains

nontrivial 3-term arithmetic progressions.

Proof: We work within V1. The elementary embedding i0,0 is represented by ∗

for notational convenience.
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Let α = SD(U). Then α > 0. Let P ⊆ N1 be an a.p. with |P | � 1 and

µ|P |(
∗U ∩P ) = α. Without loss of generality we can assume that P = [N ]∪ {0}. Let

A := ∗U ∩ [N ]. It suffices to find a 3-a.p. in A.

Let H = bN/6c and S = [N −H]. Notice that {0}∪ (H+[H])∪ (2H+2[H]) ⊆ S.

For each t ∈ [H] let

Qt = {q ⊆ [H] | q is a 3–a.p., q(1) ∈ A ∩ [H], and q(3) = t}

and Et = {q(2) | q ∈ Qt}.

Notice that µH(Et) = α/2 > 0 because p(1) − t must be even and the density of

A in an a.p. of difference 2 and length ≥ bN/16c is also α. By (iii) of Lemma 4.12,

there is an l ∈ [H] and T ⊆ [H] with µH(T ) = 1 such that

µH(A ∩ (H + l + Et)) = α2/2

for all t ∈ T . Since 2H + 2l ∈ S and µH(T ) = 1, we have

µH(A ∩ (2H + 2l + T )) = α > 0.

Let t0 ∈ T be such that 2H+2l+ t0 ∈ A∩ (2H+2l+T ). Let p0 = {0, H+ l, 2H+2l}
and q0 ∈ Qt0 with H+ l+q0(2) ∈ A∩ (H+ l+Et0). Then p0⊕q0 is an 3–a.p. Clearly,

p0(3)+q0(3) = 2H+2l+t0 ∈ (2H+2l+T )∩A ⊆ A, p0(2)+q0(2) ∈ (H+l+Et0)∩A ⊆ A,

and p0(1) + q0(1) = q(1) ∈ A by the definition of Et0 . Note that there are at least

α2H/2 many 3-a.p. q’s in Qt0 with p0 ⊕ q ⊆ A. 2

Szemeredi’s Theorem for k = 4:

We again work in V1. If one wants to count the number of 4-a.p.’s such that all

but the third (or second) term of the a.p. are in a set A, then the same idea of the

proof of Roth’s Theorem can be used to prove the following lemma.

Lemma 4.14 Let N � 1, A ⊆ [N ] be such that µN(A) = SD(A) = α > 0, and

H = bN/8c. There exists an interval x0 + [H] ⊆ [N ], a set T ⊆ x0 + [H] with

µH(T ) = 1, and

Pt := {p ⊆ [N ] | p is a 4–a.p., p(1), p(2) ∈ A, and p(4) = t}

such that µH(Pt) = α2/3 for each t ∈ T .

The reason why the number of 4-a.p.’s in A is ≥ α2H/3 instead of α2H/2 as in

Theorem 4.13 is that for a 4-a.p. p with p(4) = t fixed, p(4)−p(1) should be a multiple

of 3 in order to guarantee that p(2) and p(3) are integers.
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Lemma 4.15 Let N � 1, B, Sγ ⊆ [N ] be such that B ⊆ Sγ, µN(Sγ) = SD(Sγ) =

γ > 11/12, µN(B) = SDSγ (B) = β > 0. There exists an interval x0 + [bN/24c] ⊆ [N ]

and a set T ⊆ x0 +[bN/24c] with µN/24(T ) ≥ 1−12(1−γ), and a collection of 4-a.p.’s

{pt | t ∈ T} such that pt(1), pt(2) ∈ B, pt(3), pt(4) ∈ Sγ, and pt(3) = t for each t ∈ T .

Proof Let H := [N/8]. Notice that µH(Sγ∩(x+[H])) = γ and µH(B∩(x+[H])) = β

for every x ∈ [N − H]. Let Q be the collection of all 4–a.p.’s in [H]. For each

w ∈ [bH/3c, b2H/3c] let

Q3
w := {q ∈ Q | q(1) ∈ B and q(3) = w}

and E3
w := {q(2) | q ∈ Q3

w}.

We have that µH(E3
w) = β/2. For each w′ ∈ [H] let

Ri
w′ := {q ∈ Q | q(1) ∈ B and q(i) = w′}

and F i
w′ := {q(2) | q ∈ Ri

w′}

for i = 3, 4. Clearly, µH(F i
w′) ≤ β.

By (iii) of Lemma 4.12, there is an l ∈ [H], W3 ⊆ [bH/3c, b2H/3c] with µH(W3) =

1/3, and W i ⊆ [H] with µH(W i) = 1 such that

µH(B ∩ (H + l + E3
w)) =

β2

2
and µH(B ∩ (H + l + F i

w′)) ≤ β2

for all w ∈ W3 and w′ ∈ W i for i = 3 or 4. Clearly, µH(((i−1)H+(i−1)l+W i)∩Sγ) =

γ for i = 3 or 4.

Let T 3 := 2H + 2l +W3. For each t = 2H + 2l + w ∈ T 3 let

Pt := {p is a 4–a.p. in [N ] | p(1) ∈ B ∩ [H], p(2) ∈ B ∩ (H + l + E3
w), p(3) = t}

and P :=
⋃
i∈T 3

Pt.

Notice that µH(Pt) = µH(B ∩ (2H + 2l+E3
w)) = β2/2 for each t = 2H + 2l+w ∈ T 3.

A 4–a.p. p ∈ P is called good if p(i) ∈ Sγ ∩ ((i− 1)H + (i− 1)l+ [H]) for i = 3, 4.

Let Pg be the collection of all good 4–a.p.’s in P . A 4–a.p. p ∈ P is bad if it is not

good. Let Pb := P r Pg. Let T 3
g := {p(3) | p ∈ Pg}. Then T 3

g ⊆ Sγ. We show that

µH(T 3
g ) ≥ 1

3
− 4(1− γ).

Notice that Pb ⊆
⋃
i=3,4{p ∈ P | p(1) ∈ B∩[H], p(2) ∈ B∩(h+l+[H]), p(i) 6∈ Sγ}.

Hence

|Pb| ≤
4∑
i=3

∑
w′∈[H]r(Sγ−(i−1)H−(i−1)l)

|F i
w′ |
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≤
4∑
i=3

 ∑
w′∈[H]rW i

|F i
w′ |+

∑
w′∈W ir(Sγ−(i−1)H−(i−1)l)

|F i
w′ |

 .

So |Pg| = |P| − |Pb|

≥
∑
t∈T 3

|Pt| −
4∑
i=3

 ∑
w′∈[H]rW i

|F i
w′ |+

∑
w′∈W ir(Sγ−(i−1)H−(i−1)l)

|F i
w′ |

 .

Hence we have

µH(T 3
g ) · β

2

2
= st

 1

H

∑
t∈T 3

g

1

H
|Pt|


≥ st

(
1

H2
|Pg|

)
= st

(
1

H2
(|P| − |Pb|)

)
≥ st

(
1

H2

∑
t∈T 3

|Pt|

)

−st

 1

H2

4∑
i=3

 ∑
w′∈[H]rW i

|F i
w′ |+

∑
w′∈W ir(Sγ−(i−1)H−(i−1)l)

|F i
w′ |


≥ µH(T 3) · β

2

2
− 2(1− γ) · β2 =

(
1

3
− 4(1− γ)

)
· β

2

2
,

which implies µH(T 3
g ) ≥ 1

3
− 4(1 − γ). Hence µN/24(T 3

g ) ≥ 1 − 12(1 − γ) because

H = bN/8c. Now the lemma is proven if we set x0 := 2H + 2l+ bH/3c, T := T 3
g , and

choose one pt ∈ Pg such that Pt(3) = t for each t ∈ T . 2

Remark 4.16 The argument for showing µN/24(T 3
g ) > 1 − 12(1 − γ) is from [27,

Page 34].

Theorem 4.17 (E. Szemerédi, 1969) If U ⊆ N0 and SD(U) > 0, then U con-

tains nontrivial 4-term arithmetic progressions.

Proof Let N � 1 and A ⊆ [N ] be such that µN(A) = SD(A) = α > 0. Same as in

the beginning of the proof of Theorem 4.13, it suffices to find a 4–a.p. in A. For each

n, j ∈ N0 let

Sj,n := {x ∈ [N − n] | µn((x+ [n]) ∩ A) ≥ α− 1/j}.
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Then lim
n→∞

µN−n(Sj,n) = 1 by Lemma 4.11. So, for all sufficiently large n ∈ N0 we

have that γj,n := SD(Sj,n) > 11/12. Let Rj,n be an a.p. in [N ] with difference d and

|Rj,n| � 1 such that µ|Rj,n|(Rj,n ∩ Sj,n) = γj,n. For each τ ⊆ [n] let

Bτ, n := {x ∈ [Rj,n] | A ∩ (x+ [n]) = x+ τ}.

Then there is a τj such that µ|Rj,n|(Bj,n) = βj, n > 0 because n is finite where Bj,n :=

Bτj ,n. Let Pj,n ⊆ Rj,n be an a.p. of difference d′ = dm for some positive integer

m with |Pj,n| = N ′ � 1, µN ′(Pj,n ∩ Sj,n) = γj,n, and µN ′(Pj,n ∩ Bj,n) = βj,n. Let

ϕ : Pj,n → [N ′] be the affine map ϕ(x) = (x − minPj,n)/d′ + 1. Applying Lemma

4.15 to [N ′] for S ′ = ϕ((Sj,n) ∩ Pj,n), and B′ = ϕ(Bj,n ∩ Pj,n), and then pulling back

through ϕ−1, we obtain x0 +d′ [b|Pj,n|/24c] ⊆ Pj,n and Tj,n ⊆ x0 +d′ [b|Pj,n|/24c] with

µN ′/24(Tj,n) ≥ 1 − 12(1 − γj,n), and there exists a collection of 4–a.p.’s Pj,n = {pt |
t ∈ Tj,n} such that pt(1), pt(2) ∈ Bj,n ∩ Pj,n, pt(3), pt(4) ∈ Sj,n ∩ Pj,n, and pt(3) = t

for each t ∈ Tj,n.

By countable saturation we can find fixed hyperfinite integer H and then J such

that γ := γJ,H ≈ 1, P := PJ,H with |P | � 1, S := Sγ, B := BJ,H ⊆ S, T := TJ,H ,

and PJ,H = {pt | t ∈ T} such that pt(1), Pt(2) ∈ B, pt(3), pt(4) ∈ S, and pt(3) = t for

each t ∈ T .

Notice that µN−H(S) = 1, T ⊆ x0 + d′ [b|P |/24c], µ|P |/24(T ) = 1, γ ≈ 1, x, y ∈ B
implies ((x+[H])∩A)−x = ((y+[H])∩A)−y, and x ∈ S implies µH((x+[H])∩A) = α.

It may be the case that µ|P |(B) = 0. But the existence of the collection PJ,H = {px |
x ∈ T} is guaranteed by countable saturation.

Since µN/24(T ) = 1, we can find an a.p. of P ′ ⊆ T of difference d′ with |P ′| �
1. Let P ′ := {pt ∈ PJ,H | t ∈ P ′}. Notice that for each pt ∈ P ′ we have that

pt(1), pt(2) ∈ B, pt(3) = t ∈ S, and pt(4) ∈ S.

Let τ0 := ((x + [H]) ∩ A)− x for some x ∈ B. Then µH(τ0) = α because B ⊆ S.

By Lemma 4.14 with N being replaced by H, A being replaced by τ , we can find

x0 + [bH/8c] ⊆ [H], TQ ⊆ x0 + [bH/8c] with µH(TQ) = 1/8,

Qw := {q ⊆ [H] | q(1), q(2) ∈ τ0, and p(4) = w},

and Ew = {q(3) | q ∈ Qw} such that µH(Ew) = α2/24 for each w ∈ TQ.

By (iii) of Lemma 4.12 there is an x′ ∈ P ′ and T ′Q ⊆ TQ with µH(T ′Q) = 1/8 such

that µH((x′ + Ew) ∩ A) = αµH(Ew) = α3/24 for each w ∈ T ′Q.

Fix px′ ∈ P ′. Since px′(4) ∈ S, we have that µH((px′(4) + T ′Q) ∩A) = α/8. Hence

there is a w ∈ T ′Q such that px′(4) + w ∈ A. Let qw ∈ Qw. Then px′(4) + qw(4) =

px′(4) + w ∈ A. Notice that px′(3) + qw(3) ∈ (x + Ew) ∩ A ⊆ A. Notice also that

px′(1), px′(2) ∈ B imply A ∩ (px′(i) + [bH/8c]) = px′(i) + τ0 for i = 1, 2. Hence
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px′(i) + qw(i) ∈ px′(i) + τ0 ⊆ A for i = 1, 2. Therefore, px′ ⊕ qw is a nontrivial 4–a.p.

in A. 2

Szemerédi’s Theorem for all k ≥ 5:

We work within V2 in this section except in the proof of Claim 1 in Lemma 4.18

where V3 is needed.

Szemerédi’s Theorem is an easy consequence of Lemma 4.18, denoted by L(m) for

all m ∈ [k]. For an integer n ≥ 2k + 1 define an interval Cn ⊆ [n] by

Cn :=

[⌈
kn

2k + 1

⌉
,

⌊
(k + 1)n

2k + 1

⌋]
. (24)

The set Cn is the subinterval of [n] in the middle of [n] with the length bn/(2k+1)c±ι
for ι = 0 or 1. If n � 1, then µn(Cn) = 1/(2k + 1). For notational convenience we

denote

D := 3k3 and η0 := 1− 1

D
. (25)

�: Fix a K ∈ N1 \N0. The number K is the length of an interval which will play

an important role in Lemma 4.18. Keeping K unchanged is one of the advantages

from nonstandard analysis, which is unavailable in the standard setting.

If p is a k-a.p. and A is a set, we denote p⊕A for the sequence {p(l)+A | 1 ≤ l ≤ k}.
If p, q are k-a.p.’s and A be a set, we denote p v q ⊕ A for the statement that

p(l) ∈ q(l) + A for 1 ≤ l ≤ k.

Lemma 4.18 (L(m)) Given any α > 0, η > η0, any N ∈ N2 \N1, and any A ⊆ S ⊆
[N ] and U ⊆ [N ] with

µN(U) = 1, µN(S) = SD(S) = η, and µN(A) = SDS(A) = α, (26)

the following are true:

L1(m)(α, η,N,A, S, U,K): There exists a k–a.p. ~x ⊆ U with ~x ⊕ [K] ⊆ [N ] sat-

isfying the statement (∀n ∈ N0) ξ(~x(l), α, η, A, S, U,K, n) for l ∈ 1 + [k], where

ξ is defined in (18), and there exist Tl ⊆ CK with µ|CK |(Tl) = 1 where CK is

defined in (24) and Vl ⊆ [K] with µK(Vl) = 1 for every l ≥ m, and collections

of k–a.p.’s

P :=
⋃
{Pl,t | t ∈ Tl and l ≥ m} and

Q :=
⋃
{Ql,v | v ∈ Vl and l ≥ m} such that

Pl,t ⊆ {p v (~x⊕ [K]) ∩ U | ∀l′ < m (p(l′) ∈ A) and p(l) = ~x(l) + t} (27)
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satisfying µK(Pl,t) = αm−1/k for all l ≥ m and t ∈ Tl, and

Ql,v = {q v ~x⊕ [K] | ∀l′ < m (q(l′) ∈ A) and q(l) = ~x(l) + v} (28)

satisfying µK(Ql,v) ≤ αm−1 for all l ≥ m and v ∈ Vl.

L2(m)(α, η,N,A, S,K): There exist a set W0 ⊆ S of min{K, b1/D(1 − η)c}–
consecutive integers where D is defined in (25) and a collection of k–a.p.’s

R = {rw | w ∈ W0} such that for each w ∈ W0 we have rw(l) ∈ A for l < m,

rw(l) ∈ S for l > m, and rw(m) = w.

Remark 4.19 (a) L2(m) is an internal statement in V2. Both L1(m) and L2(m)

depend on K. Since K is fixed throughout whole proof, it, as a parameter, may

be omitted in some expressions.

(b) If H � 1 and T ⊆ [H] with µH(T ) > 1− ε, then T contains b1/εc consecutive

integers because otherwise we have µH(T ) ≤ (b1/εc− 1)/b1/εc = 1− 1/b1/εc ≤
1− 1/(1/ε) = 1− ε.

(c) The purpose of defining CK is that if t ∈ CK, then the number of k–a.p.’s

p v ~x⊕ [K] with p(l) = ~x(l) + t is guaranteed to be at least K/(k − 1).

(d) It is not essential to require specific constant c = 1/k for µK(Pl,t) = cαm−1 in

L1(m). Just requiring that µK(Pl,t) ≥ cαm−1 for some positive standard real c is

sufficient. We use more specific expression “µK(Pl,t) = αm−1/k” for notational

simplicity.

(e) Some “bad” k–a.p.’s in P in L1(m) will be thinned out so that R in L2(m) can

be constructed from P. The collection Q is only used to prevent P from being

thinned out too much. See the proof of Lemma 4.20.

(f) It is important to notice that in L1(m) the collection Pl,t is a part of the collec-

tion at the right side of (27) while the collection Ql,v is equal to the collection

at the right side of (28).

The following lemma is a generalization of Lemma 4.15.

Lemma 4.20 L1(m)(α, η,N,A, S, U) implies L2(m)(α, η,N,A, S) for

any α, η,N,A, S, U satisfying the conditions of Lemma 4.18.
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Proof Assume we have obtained the k–a.p. ~x ⊆ U with ~x⊕ [K] ⊆ [N ], sets Tl ⊆ CK
and Vl ⊆ [K] with µ|CK |(Tl) = 1 and µK(Vl) = 1, and collections of k–a.p.’s P and Q
as in L1(m).

Call a k–a.p. p ∈ Pm :=
⋃
{Pm,t | t ∈ Tm} good if p(l) ∈ S ∩ (~x(l) + [K]) for l ≥ m

and bad otherwise. Let Pgm ⊆ Pm be the collection of all good k–a.p.’s and Pbm :=

Pm \ Pgm be the collection of all bad k–a.p.’s. Let T gm := {p(m) − ~x(m) | p ∈ Pgm}.
Then T gm ⊆ Tm ∩ (S − ~x(m)) ∩ CK . We show that µ|CK |(T

g
m) > 1−D(1− η).

Let Q := {q v ~x⊕ [K] | q(l′) ∈ A for l′ < m}. Notice that

Pbm ⊆
⋃
l≥m

{q ∈ Q | q(l) 6∈ S}

and for each v ∈ Vl, q ∈ Ql,v iff q ∈ Q and q(l) = ~x(l) + v.

Hence, |Pbm| ≤
k∑

l=m

∑
w∈[K]\(S−~x(l))

|{q ∈ Q | q(l) = ~x(l) + w}|

≤
k∑

l=m

 ∑
w∈[K]\Vl

|{q ∈ Q | q(l) = ~x(l) + w}|+
∑

v∈Vl\(S−~x(l))

|Ql,v|


≤ K

k∑
l=m

(|[K] \ Vl|+ |Vl \ (S − ~x(l))|αm−1).

So |Pgm| = |Pm| − |Pbm| ≥
∑
t∈Tm

|Pm,t| −K
k∑

l=m

(|[K] \ Vl|+ |Vl \ (S − ~x(l))|αm−1).

Notice that µK([K] \ Vl) = 0. Hence we have |[K] \ Vl|/|CK | ≈ 0 and

µ|CK |(T
g
m) · α

m−1

k
= st

 1

|CK |
∑
t∈T gm

1

K
|Pm,t|

 ≥ st

(
1

|CK |K
|Pgm|

)

≥ st

(
1

|CK |
∑
t∈Tm

1

K
|Pm,t| −

1

|CK |

k∑
l=m

(|Vl \ (S − ~x(l))|αm−1)

)

≥ µ|CK |(Tm) · α
m−1

k
− (2k + 1)k(1− η) · αm−1

=

(
1

k
− (2k + 1)k(1− η)

)
· αm−1,

which implies µ|CK |(T
g
m) ≥ 1−(2k+1)k2(1−η) > 1−D(1−η). Recall that T gm ⊆ CK .

Hence ~x(m) + T gm contains a set W0 of b1/D(1− η)c consecutive integers. So, L2(m)
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is proven if we let R := {rw | w ∈ W0} where rw is one of the k–a.p.’s in Pgm such

that rw(m) = ~x(m) + w. 2

Proof of Lemma 4.18 We prove L(m) by induction on m. By Lemmas 4.20 it suffices

to prove L1(m).

For L(1), given any α > 0, η > η0, N ∈ N2 \ N1, A, S, and U satisfying (26), by

Lemma 4.11 (b) we can find a k–a.p. ~x ⊆ [N ] such that

(∀n ∈ N0) ξ(~x(l), α, η, A, S, U,K, n)

is true for l ∈ 1 + [k], where ξ is defined in (18). For each l ∈ 1 + [k] let Tl = CK ∩U
and Vl = [K]. For each l ∈ 1 + [k], t ∈ Tl, and v ∈ Vl let

Pl,t := {p v (~x⊕ [K]) ∩ U | p(l) = ~x(l) + t}

Ql,v := {q v (~x⊕ [K]) | q(l) = ~x(l) + v}.

Clearly, we have µK(Pl,t) ≥ 1/(k − 1) > 1/k. By some pruning we can assume that

µK(Pl,t) = 1/k. It is trivial that µK(Ql,v) ≤ 1 and q ∈ Ql,v iff q(l) = ~x(l) + v for each

q v ~x⊕ [K]. This completes the proof of L1(1)(α, η,N,A, S, U). L2(1)(α, η,N,A, S)

follows from Lemma 4.20.

Assume L(m− 1) is true for some 2 ≤ m ≤ k.

We now prove L(m). Given any α > 0 and η > η0, fix N ∈ N2 \N1, U ⊆ [N ], and

A ⊆ S ⊆ [N ] satisfying (26). For each n ∈ N1 \ N0, by Lemma 4.11 (b), there is an

hn > n in N1 and Gn,hn ⊆ [N ] defined in (19) such that dn := δN−hn(Gn,hn) > 1−1/n.

Notice that dn ≈1 µ
1
N−hn(Gn,hn) > η0 because n � 1 and µN−hn(Gn,hn)) = 1. Let

η1
n := µ1

N−hn(Gn,hn) and fix an n ∈ N1 \ N0.

Claim 1 The following internal statement θ(n,A,N) is true:

∃W ⊆ [N ]∃R (W is an a.p. ∧ |W | ≥ min{K, b1/2D(1− dn)c} ∧ R = {rw | w ∈
W} is a collection of k–a.p.’s such that

∀w ∈ W ((∀l ≥ m) (rw(l) ∈ Gn,hn) ∧ (rw(m− 1) = w)

∧ (∀l, l′ ≤ m− 2)((A ∩ (rw(l) + [hn]))− rw(l) = (A ∩ (rw(l′) + [hn]))− rw(l′))).

Proof of Claim 1 Working in V2 by considering V1 as the standard universe, we can

find P ⊆ [N ] with |P | ∈ N2 \ N1 by Lemma 4.9 and Proposition 4.1 such that

SD1(Gn,hn) = µ1
|P |(P ∩Gn,hn) = SD1(Gn,hn ∩ P ) = η1

n.

For each x ∈ P ∩Gn,hn let τx = ((x+ [hn])∩A)−x. Since there are at most 2hn ∈ N1

different τx’s and |P | � 2hn , we can find one, say, τn ⊆ [hn] such that the set

Bn := {x ∈ P ∩Gn,hn | τx = τn}
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satisfies µ1
|P |(Bn) ≥ η1

n/2
hn > 0. Notice that µ0

|P |(Bn) could be 0.

Let P ′ ⊆ P with |P ′| = N ′ ∈ N2 \ N1 be such that µ1
N ′(Gn,hn ∩ P ′) = η1

n and

β1
n := µ1

N ′(Bn ∩ P ′) = SD1
Gn,hn∩P (Bn ∩ P )

= SD1
Gn,hn∩P ′

(Bn ∩ P ′) ≥ µ1
|P |(Bn) > 0

by Part 4 of Lemma 4.9. Let d be the common difference of the a.p. P ′ and ϕ : P ′ →
[N ′] be the order-preserving bijection, i.e.,

ϕ(x) := 1 + (x−minP ′)/d.

Let B′ := ϕ[Bn ∩ P ′] and S ′ := ϕ[Gn,hn ∩ P ′]. We have that B′, S ′, N ′ and β1
n, η

1
n in

the place of A, S,N and α, η satisfy the V1–version of (26) with µ, SD and SDS being

replaced by µ1, SD1, and SD1
S′ .

Let N ′′ = i1,2(N ′), B′′ = i1,2(B′), and S ′′ = i1,2(S ′) where i1,2 is described in

Proposition 4.1. Recall that i1,2 �R1 is an identity map. Since N ′ ∈ N2 \N1, we have

N ′′ ∈ N3\N2. Notice also that µ1
N ′′(S

′′) = SD1(S ′′) = η1
n and µ1

N ′′(B
′′) = SD1

S′′(B
′′) =

β1
n. By the induction hypothesis that L(m− 1) is true we have

(V2;R0,R1) |= ∀α, η ∈ R0 ∀N ∈ N2 \ N1 ∀A, S ⊆ [N ] (29)

(α > 0 ∧ η > η0 ∧ A ⊆ S ∧ µN(S) = SD(S) = η ∧ µN(A) = SDS(A)

→ L2(m− 1)(α, η,N,A, S)).

Since (V2;R0,R1) and (V3;R1,R2) are elementarily equivalent by Part 4 of Propo-

sition 4.1 via i0,2, we have, by universal instantiation, that

(V3;R1,R2) |= L2(m− 1)(β1
n, η

1
n, N

′′, B′′, S ′′). (30)

Notice that the right side above no longer depends on R1 or R2. So, we have

V3 |= L2(m− 1)(i1,2(β1
n), i1,2(η1

n), i1,2(N ′), i1,2(B′), i1,2(S ′)) (31)

because i1,2(β1
n) = β1

n and i1,2(η1
n) = η1

n. Since i1,2 is an elementary embedding, we

have

V2 |= L2(m− 1)(β1
n, η

1
n, N

′, B′, S ′),

which means that there is a set W ′ ⊆ [N ′] of min{K, b1/D(1 − η1
n)c}–consecutive

integers and a collection of k–a.p.’s R′ = {r′w | w ∈ W ′} such that for every w ∈ W ′

we have r′w(l) ∈ B′ for l < m−1, r′w(m−1) = w, and r′w(l) ∈ S ′ for l ≥ m. Notice that

ϕ−1[[N ′]] ⊆ [N ]. Let W = ϕ−1[W ′] and R = {rw | w ∈ W}, where rw = ϕ−1[r′ϕ(w)],

such that for each w ∈ W we have rw(l) ∈ ϕ−1[B′] ⊆ Bn for l < m−1, rw(m−1) = w,
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and rw(l) ∈ ϕ−1[S ′] ⊆ Gn,hn for l ≥ m. If η1
n = 1, then |W | ≥ K. If η1

n < 1, then

2(1− dn) > 1− η1
n. Hence |W | ≥ min{K, b1/2D(1− dn)c}. 2 (Claim 1)

The following claim follows from Claim 1 by Proposition 2.4.

Claim 2 There exists a J ∈ N2 \N1 such that the θ(J,A,N) is true, i.e., ∃W ⊆
[N ]∃R (W is an a.p. ∧ |W | ≥ min{K, b1/2D(1 − dJ)c} ∧ R = {rw | w ∈ W} is a

collection of k–a.p.’s such that ∀w ∈ W ((∀l ≥ m) (rw(l) ∈ GJ,hJ ), rw(m − 1) = w,

and (∀l, l′ ≤ m− 2) ((A ∩ (rw(l) + [hJ ]))− rw(l) = (A ∩ (rw(l′) + [hJ ]))− rw(l′)))).

For notational convenience let WH := W and RH := R be obtained in Claim 2

and rename H := hJ , SH := GJ,hJ , τH := (A∩ (rw(l)+[hJ ]))−rw(l) for some (or any)

w ∈ WH and l < m − 1. Let {ws | 1 ≤ s ≤ |WH |} be the increasing enumeration of

WH . Notice thatH ∈ N2\N1. We now go back to consider V0 as our standard universe.

Notice that µN−H(SH) = 1, |WH | � 1, and (∀n ∈ N0) ξ(x, α, η, A, S, U,H, n) is true

for every x ∈ SH where ξ is defined in (18).

Claim 3 For each s ∈ N0 we can find an internal Us ⊆ [H] with µH(Us) = 1

such that for each y ∈ Us and each l ∈ 1+[k], rws(l)+y ∈ U and (∀n ∈ N0) ξ(rws(l)+

y, α, η, A, S, U,K, n) is true.

Proof of Claim 3 For each l ∈ 1 + [k] we have ξ(rws(l), α, η, A, S, U,H, n) is true

because rws(l) ∈ SH . By Lemma 4.11 (a), we can find a set Gl ⊆ rws(l) + [H] with

µH(Gl) = 1 such that ξ(rws(l) + y, α, η, A, S, U,K, n) is true for every rws(l) + y ∈ Gl.

Set

Us :=
k⋂
l=1

((U ∩Gl)− rws(l)).

Then we have Us ⊆ [H] and µH(Us) = 1. 2 (Claim 3)

Notice that δH(
⋂s
i=1 Ui) > 1− 1/s. By Proposition 2.4 we can find 1� I ≤ |WH |

and

U ′ :=
⋂
{Us | 1 ≤ s ≤ I}

such that δH(U ′) > 1 − 1/I. Hence µH(U ′) = 1. Applying the induction hypothesis

for L1(m − 1)(α, 1, H, τH , [H], U ′), we obtain a k–a.p. ~y ⊆ U ′ with ~y ⊕ [K] ⊆ [H],

T ′l ⊆ CK ∩ U ′ with µ|CK |(T
′
l ) = 1 and V ′l ⊆ [K] with µK(V ′l ) = 1 for each l ≥ m− 1,

and collections of k–a.p.’s

P ′ =
⋃
{P ′l,t | t ∈ T ′l and l ≥ m− 1} and

Q′ =
⋃
{Q′l,v | v ∈ V ′l and l ≥ m− 1}

such that (i) for each l ≥ m− 1 and t ∈ T ′l we have µK(P ′l,t) = αm−2/k and for each

p ∈ P ′l,t we have p v (~y⊕ [K])∩U ′, p(l′) ∈ τH for l′ < m− 1, p(l) = ~y(l) + t, and (ii)

64



for each l ≥ m− 1 and v ∈ V ′l we have µK(Q′l,v) ≤ αm−2, and for each q v ~y⊕ [K] we

have q ∈ Q′l,v iff q(l′) ∈ τH for every l′ < m− 1 and q(l) = ~y(l) + v. For each l ≥ m,

t ∈ Tl, and v ∈ Vl let

El,t := {p(m− 1) | p ∈ P ′l,t} and Fl,v := {q(m− 1) | q ∈ Q′l,v}.

Then El,t, Fl,v ⊆ ~y(m − 1) + [K], µK(El,t) = µK(P ′l,t) = αm−2/k, and µK(Fl,v) =

µK(Q′l,v) ≤ αm−2. Since ~y ⊆ U ′ we have that for each l ∈ 1+ [k], (∀n ∈ N0) ξ(rws(l)+

~y(l), α, η, A, S, U,K, n) is true.

Applying Part (iii) of Lemma 4.12 with R := {ws + ~y(m − 1) | 1 ≤ s ≤ I} and

H being replaced by K we can find s0 ∈ [I], Tl ⊆ T ′l with µ|CK |(Tl) = 1 and Vl ⊆ V ′l
with µK(Vl) = 1 for each l ≥ m such that for each t ∈ Tl and v ∈ Vl we have

µK((ws0 + El,t) ∩ ((ws0 + ~y(m− 1) + [K]) ∩ A))

= αµK(El,t) = α(αm−2/k) = αm−1/k and
(32)

µK((ws0 + Fl,v) ∩ ((ws0 + ~y(m− 1) + [K]) ∩ A))

= αµK(Fl,t) ≤ α·αm−2 = αm−1.
(33)

Let ~x := rws0 ⊕ ~y. Clearly, we have ~x ⊕ [K] ⊆ [N ]. We also have that ~x ⊆ U ,

µK((~x(l) + [K]) ∩ S) = η, and µK((~x(l) + [K]) ∩ A) = α because rws0 ⊆ SH and

~y ⊆ U ′ ⊆ Us0 . For each l ≥ m, t ∈ Tl, and v ∈ Vl let

Pl,t := {rws0 ⊕ p | p ∈ P
′
l,t and

p(m− 1) ∈ El,t ∩ (((ws0 + ~y(m− 1) + [K]) ∩ A)− ws0)},
Ql,v := {rws0 ⊕ q | q ∈ Q

′
l,t and

q(m− 1) ∈ Fl,v ∩ (((ws0 + ~y(m− 1) + [K]) ∩ A)− ws0)}.

Then µK(Pl,t) = αm−1/k by (32). If q̄ v ~x ⊕ [K], then there is a q v ~y ⊕ [K] such

that q̄ = rws0 ⊕ q. If q̄(l′) ∈ A for l′ < m and v ∈ Vl for some l ≥ m such that

q̄(l) = ~x(l)+v, then q(l′) ∈ τH for l′ < m−1, v ∈ V ′l , and q(l) = ~y(l)+v, which imply

q ∈ Q′l,v by induction hypothesis. Hence we have q(m−1) ∈ Fl,v. Clearly, q̄(m−1) =

ws0 + q(m − 1) ∈ A implies q(m − 1) ∈ Fl,v ∩ (((ws0 + ~y(m − 1) + [K]) ∩ A) − ws0).
Thus we have q̄ ∈ Ql,v. Clearly, µK(Ql,v) ≤ αm−1 by (33).

Summarizing the argument above we have that for each rws0 ⊕ p ∈ Pl,t

• rws0 (l′) + p(l′) ∈ rws0 (l′) + τH ⊆ A for l′ < m− 1 because rws0 (l′) ∈ BH ,

• rws0 (m− 1) + p(m− 1) = ws0 + p(m− 1)

∈ (ws0 + El,t) ∩ (ws0 + ~y(m− 1) + [K]) ∩ A ⊆ A,
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• rws0 (l′) + p(l′) ∈ (~x(l′) + [K]) ∩ U ⊆ U for l′ ≥ m because of p ⊆ U ′,

• rws0 (l) + p(l) = rws0 (l) + ~y(l) + t = ~x(l) + t.

For each q̄ v ~x⊕ [K], q̄ ∈ Ql,v iff there is a q v ~y ⊕ [K] with q̄ = rws0 ⊕ q such that

• rws0 (l′) + q(l′) ∈ rws0 (l′) + τH ⊆ A for l′ < m− 1 because rws0 (l′) ∈ BH ,

• rws0 (m− 1) + q(m− 1) = ws0 + q(m− 1) ∈ A which is equivalent to

ws0 + q(m− 1) ∈ (ws0 + Fl,v) ∩ (ws0 + ~y(m− 1) + [K]) ∩ A ⊆ A,

• rws0 (l) + q(l) = rws0 (l) + ~y(l) + v = ~x(l) + v.

This completes the proof of L1(m)(α, η,N,A, S, U) as well as L(m) by Lemma 4.20.

2

Theorem 4.21 (E. Szemerédi, 1975) Let k ∈ N0. If D ⊆ N0 has positive upper

density, then D contains nontrivial k-term arithmetic progressions.

Proof It suffices to find a nontrivial k–a.p. in i0(D). Let P be an a.p. such that

|P | � 1 and µ|P |(i0(D)∩P ) = SD(D) = α. Then α > 0 because α is greater than or

equal to the upper density of D. Let A = i0(D) ∩ P . Without loss of generality, we

can assume P = [N ] for some N � 1. We can also assume that N ∈ N2 \N1 because

otherwise replaceN by i1(N) andA by i1(A). Then we have µN(A) = SD(A) = α. Set

U = S = [N ]. Trivially, µN(S) = SD(S) = η = 1, A ⊆ S, and SDS(A) = SD(A) = α.

To start with k′ = k+1 instead of k, we have many k′–a.p.’s p ∈ P such that p(l) ∈ A
for l ≤ k′− 1 = k in L1(k′). So there must be many nontrivial k–a.p.’s in A ⊆ i0(D).

By V0 ≺ V2, there must be nontrivial k–a.p.’s in D. 2

4.4 Exercises

1. Prove that the map i1,1 : V1 → V2 defined in Definition 4.2 is an elementary

embedding.

2. Let s ∈ N0 and Γ(x) be a countable collection of formulas with parameters from

V0 and s free variables x = (x1, x2, . . . , xs). Prove that there exists a homothetic

copy HC~a,d of [N ]s for some N ∈ N1 \ N0 such that for any 0 ≤ l, l′ < N s

V1 |= ϕ(HC~a,d(l))⇐⇒ V1 |= ϕ(HC~a,d(l
′))

for every formula ϕ in Γ.

3. Let r ∈ R2 and |r| < α for some α ∈ R0. Prove that st(st1(r)) = st(r).
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4. Prove that the set

C :=
{
µ1
|P |(A ∩ P ) | P is an a.p. and |P | ∈ N2 \ N1

}
is an element in V1 where A ⊆ N2 is V2-internal.
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