Exercise Solutions, 2023 Fudan Logic Summer School

Nonstandard Analysis and Combinatorial Number Theory

Renling Jin
Department of Mathematics
College of Charleston
Charleston, SC 29424

Exercise Solutions

1.4.1 Prove that $1 /[I d]$ is a non-zero infinitesimal in ${ }^{*} \mathcal{R}$ as defined in Example 1.11.

Proof: Given any $m \in \mathbb{N}$, it suffices to show that $1 /[I d]<1 / m$, which is equivalent to $[I d]>m$. Since $\{n \in \mathbb{N} \mid \operatorname{Id}(n)>m\}=\{m+1, m+2, \ldots\} \in \mathcal{F}$, we have $[I d]>m$.
1.4.2 Prove that a standard sequence s of real numbers being convergent as defined in Definition 1.1.5 is equivalent to that s is a Cauchy sequence in the standard sense.

Proof: " \Rightarrow ": Suppose that the sequence s converges in the sense of Definition 1.15. Given any $\epsilon>0$, let φ be the sentence that there exists an $m \in{ }^{*} \mathbb{N}$ be the least such that for all $n, n^{\prime}>m$ we have $\left|{ }^{*} s(n)-{ }^{*} s\left(n^{\prime}\right)\right|<\epsilon$. Clearly, φ is true in ${ }^{*} \mathcal{R}$ because any hyperfinite integer witnesses the existence of m. Hence, φ is true in \mathcal{R} by the transfer principle. So, s is a Cauchy sequence.
" \Leftarrow ": Assume that s is a Cauchy sequence in the standard sense. Given any hyperfinite integers N, N^{\prime}, we show that ${ }^{*} s(N) \approx{ }^{*} s\left(N^{\prime}\right)$. So, for any standard $\epsilon>0$, it suffices to show that $\left|{ }^{*} s(N)-{ }^{*} s\left(N^{\prime}\right)\right|<\epsilon$. Since s is Cauchy, there exists an $n_{\epsilon} \in \mathbb{N}$ such that sentence $\varphi:\left|s(n)-s\left(n^{\prime}\right)\right|<\epsilon$ for any $n, n^{\prime}>n_{\epsilon}$ is true in \mathcal{R}. So the sentence φ is also true in ${ }^{*} \mathcal{R}$. Since N, N^{\prime} are hyperfinite, they are clearly greater than n_{ϵ}. Hence, $\left|{ }^{*} s(N)-{ }^{*} s\left(N^{\prime}\right)\right|<\epsilon$.
1.4.3 Let $f:[a, b] \rightarrow \mathbb{R}$ be a standard function. Prove that f being continuous at some $c \in(a, b)$ or uniformly continuous on $[a, b]$ in terms of Definition 1.17 is equivalent to that f is continuous at c or uniformly continuous on $[a, b]$, respectively, in the standard sense ($\epsilon-\delta$ definition).

Proof: Continuity: " \Rightarrow ": Assume that f is continuous at c in the sense of Definition 1.17. Given standard $\epsilon>0$, let φ be the sentence

$$
\exists \delta>0 \forall x(|x-c|<\delta \rightarrow|* f(x)-f(c)|<\epsilon)
$$

Then, φ is true in ${ }^{*} \mathcal{R}$ because any positive infinitesimal can be the witness of δ. Hence, φ is true in \mathcal{R}, i.e., there is a standard $\delta>0$ such that $|x-c|<\delta \rightarrow$ $|f(x)-f(c)|<\epsilon$ for any $x \in \mathbb{R}$.
" \Leftarrow ": Assume that f is continuous at c in the standard sense. Given any $r \in{ }^{*} \mathbb{R}$ with $r \approx c$. We show that ${ }^{*} f(r) \approx f(c)$. Given an arbitrary standard real $\epsilon>0$, it suffices to show that $\left|{ }^{*} f(r)-f(c)\right|<\epsilon$. Since there is a standard $\delta>0$ such that $|x-c|<\delta \rightarrow\left|{ }^{*} f(x)-f(c)\right|<\epsilon$ for all $x \in{ }^{*} \mathbb{R}$, we have $\left|{ }^{*} f(r)-f(c)\right|<\epsilon$ because $r \approx c$ implies $|r-c|<\delta$. Since ϵ is arbitrary, we conclude that $|* f(r)-f(c)| \approx 0$.

Uniform continuity: " \Rightarrow ": Assume that f is uniformly continuous in $[a, b]$ in the standard sense. Given any $r, r^{\prime} \in{ }^{*}[a, b]$ with $r \approx r^{\prime}$, we show that ${ }^{*} f(r) \approx{ }^{*} f\left(r^{\prime}\right)$. Given arbitrary standard $\epsilon>0$, it suffices to show that $\mid{ }^{*} f(r)-$ ${ }^{*} f\left(r^{\prime}\right) \mid<\epsilon$. Since there exists a standard $\delta>0$ such that the sentence φ :

$$
\forall x, y \in[a, b](|x-y|<\delta \rightarrow|f(x)-f(y)|<\epsilon)
$$

is true in \mathcal{R}, we have that φ is true in ${ }^{*} \mathcal{R}$. Clearly, we have $\left|r-r^{\prime}\right| \approx 0<\delta$. Therefore, $\left|{ }^{*} f(r)-{ }^{*} f\left(r^{\prime}\right)\right|<\epsilon$.
" \Leftarrow ": Assume that f is uniformly continuous in $[a, b]$ in the sense of Definition 1.17. Given standard $\epsilon>0$, let φ be the sentence

$$
\exists \delta>0 \forall x, y \in{ }^{*}[a, b]\left(|x-y|<\delta \rightarrow\left|{ }^{*} f(x)-{ }^{*} f(y)\right|<\epsilon\right)
$$

is true in ${ }^{*} \mathcal{R}$ because any positive infinitesimal can be that δ. By the transfer principle we have that φ is true in \mathcal{R}, i.e.,

$$
\exists \delta>0 \forall x, y \in[a, b](|x-y|<\delta \rightarrow|f(x)-f(y)|<\epsilon)
$$

is true in \mathcal{R}.
1.4.4 Let $f:[a, b] \rightarrow \mathbb{R}$ be a standard bounded function. Prove that f being Riemann integrable on $[a, b]$ as defined in Definition 1.22 is equivalent to that f is Riemann integrable on $[a, b]$ in the standard sense.

Proof: We introduce some notation first. Given any partition P of $[a, b]$ let $U\left({ }^{*} f, P\right)$ be the upper sum and $L\left({ }^{*} f, P\right)$ be the lower sum as defined in some standard textbook. If T is a set of tag points of P let $S\left({ }^{*} f, P, T\right)$ be the Riemann sum as defined in some standard textbook. For each positive $n \in{ }^{*} \mathbb{N}$ let P_{n} be the partition $\{a, b\} \cup\left(\left\{z / n \mid z \in{ }^{*} \mathbb{Z}\right\} \cap{ }^{*}[a, b]\right)$. If $P=\left\{a=x_{0}<x_{1}<\cdots<\right.$ $\left.x_{m}=b\right\}$ is a partition of $[a, b]$ let $\|P\|:=\max \left\{\left|x_{i}-x_{i-1}\right| \mid i=1,2, \ldots, m\right\}$.
$" \Rightarrow$ ": Assume that f is Riemann integrable on $[a, b]$ in the sense of Definition 1.22. By the assumption we have that $U\left({ }^{*} f, P_{K}\right)-L\left({ }^{*} f, P_{K}\right) \approx 0$. Given any standard $\epsilon>0$ the sentence φ :

$$
\exists n \in{ }^{*} \mathbb{N}\left(U\left({ }^{*} f, P_{K}\right)-L\left({ }^{*} f, P_{K}\right)<\epsilon\right)
$$

is true in ${ }^{*} \mathcal{R}$ because K is a witness of n. By the transfer principle we have that φ is true in \mathcal{R}. This shows that f is Riemann integrable on $[a, b]$ in the standard sense.
" \Leftarrow ": Assume that f is Riemann integrable in the standard sense. Then, there is a standard real I such that for any standard ϵ there exists a standard $\delta>0$ such that the sentence φ :

$$
\forall \text { partition } P \text { and set of tag points } T(\|P\|<\delta \rightarrow|S(f, P, T)-I|<\epsilon)
$$

is true in \mathcal{R}. Hence, it is true in ${ }^{*} \mathcal{R}$. Given any internal sets of tag points T, T^{\prime} for P_{K}, since $\left\|P_{K}\right\|=1 / K<\delta$ we have

$$
\left|S\left({ }^{*} f, P_{K}, T\right)-S\left({ }^{*} f, P_{K}, T^{\prime}\right)\right| \leq\left|S\left({ }^{*} f, P_{K}, T\right)-I\right|+\left|I-S\left({ }^{*} f, P_{K}, T^{\prime}\right)\right|<2 \epsilon .
$$

Since ϵ is arbitrary, we conclude that $S\left({ }^{*} f, P_{K}, T\right) \approx S\left({ }^{*} f, P_{K}, T^{\prime}\right)$.
2.4.1 Let A be a set in \mathcal{V}. Prove that ${ }^{*} A=\left\{{ }^{*} a \mid a \in A\right\}$ iff A is a finite set.

Proof: " \Rightarrow ": Suppose ${ }^{*} A=\left\{{ }^{*} a \mid a \in A\right\}$. If A is infinite, we can find a sequence of distinct elements $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ in A. Let $S_{n}:={ }^{*} A \backslash\left\{{ }^{*} a_{i} \mid i=\right.$ $1,2, \ldots, n\}$. Then, S_{n} is nonempty and decreasing. By countable saturation there is an element b in every S_{n} for $n \in \mathbb{N}$. This b is in ${ }^{*} A$ and different from any of these ${ }^{*} a_{n}$'s. So, ${ }^{*} A \neq\left\{{ }^{*} a \mid a \in A\right\}$.
" \Leftarrow ": Assume that $A:=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is a finite set. Then, the sentence φ :

$$
\forall x \in A\left(x=a_{1} \vee x=a_{2} \vee \cdots \vee x=a_{n}\right)
$$

is true in \mathcal{V}. By the transfer principle φ is true in ${ }^{*} \mathcal{V}$, i.e., for any $b \in{ }^{*} A$ the element b must be one of these * $a a_{i}$'s.
2.4.2 Prove that an internal set $A \in{ }^{*} \mathcal{V}$ is either finite or uncountable.

Proof: Suppose that the internal set A is countable and $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ is an enumeration of A. Let $S_{n}:=A \backslash\left\{a_{i} \mid i=1,2, \ldots, n\right\}$. Then, S_{n} is internal, nonempty, and decreasing. By countable saturation one can find an element b in every S_{n} for $n \in \mathbb{N}$. This contradicts that A is enumerated by these a_{n} 's.
2.4.3 Let N be a hyperfinite integer, $\Omega:=\{j / N \mid j=0,1, \ldots, N-1\}$, and $\left(\Omega ; \Sigma, \mu_{\Omega}\right)$ be the Loeb space on Ω. Note that $s t\lceil\Omega$ is a function from Ω to the standard unit interval $[0,1]$ (cf. Definition 1.14). Let $\Gamma:=\left\{U \subseteq[0,1] \mid s t^{-1}[U] \cap \Omega \in \Sigma\right\}$ and $\lambda(U):=\mu_{\Omega}\left(s t^{-1}[U] \cap \Omega\right)$ for each $U \in \Gamma$. Prove that $([0,1] ; \Gamma, \lambda)$ is the Lebesgue measure space on $[0,1]$.

Proof: We show first that every closed subinterval of $[0,1]$ is in Γ. Let $[a, b] \subseteq[0,1]$ and $X:=s t^{-1}([a, b])$. For each $n \in \mathbb{N}$ let $x_{n}, y_{n} \in \Omega$ such that $s t\left(x_{n}\right)=a-1 / n$ and $s t\left(y_{n}\right)=b+1 / n$. Then, $\mu_{\Omega}\left(\left[x_{n}, y_{n}\right] \cap \Omega\right)=b-a+2 \epsilon$. Since $X=\bigcap\left\{\left[x_{n}, y_{n}\right] \cap \Omega \mid n \in \mathbb{N}\right\}$ we have that $X \in \Sigma$ and

$$
\mu_{\Omega}(X)=\lim _{n \rightarrow \infty} \mu_{\Omega}\left(\left[x_{n}, y_{n}\right] \cap \Omega\right)=b-a
$$

So, $[a, b] \in \Gamma$ and $\lambda([a, b])=b-a$. It is easy to check that Γ is a σ-algebra and complete, we conclude that Γ contains all Lebesgue measurable subsets of $[0,1]$. Next we show that every set $S \in \Gamma$ is Lebesgue measurable.

Notice a fact that if $A \subseteq \Omega$ is internal, then $s t[A]$ is a closed subset of $[0,1]$. Indeed, if s is a standard convergent sequence in S with limit α and $s t\left(a_{n}\right)=s(n)$ for some $a_{n} \in A$, then the sequence $\left\{a_{n}\right\}$ can be extended to a hyperfinite sequence $\left\{a_{n} \in A \mid 0 \leq n<N\right\}$ by countable saturation. For any hyperfinite integer $K<N$ it is easy to check that $\operatorname{st}\left(a_{K}\right)=\alpha$. Hence, $\alpha \in S$.

Given $S \in \Gamma$ with $\lambda(S)=\alpha>0$, let $X=s t^{-1}(S) \in \Sigma$. Note that $\mu_{\Omega}(X)=\alpha$. Let $B_{n} \subseteq X$ be internal such that $\mu_{\Omega}\left(B_{n}\right)>\alpha-1 / n$. Then,

$$
\alpha=\mu_{\Omega}(X) \geq \mu_{\Omega}\left(s t^{-1}\left(s t\left(B_{n}\right)\right)\right)=\lambda\left(s t\left(B_{n}\right)\right) \geq \mu_{\Omega}\left(B_{n}\right)>\alpha-\frac{1}{n} .
$$

So, S contains a countable union U of closed sets $\operatorname{st}\left(B_{n}\right)$ in $[0,1]$ such that

$$
\lambda(S)=\lambda\left(\bigcup_{n=1}^{\infty} s t\left(B_{n}\right)\right) .
$$

It suffices now to show that every λ-measure zero set is Lebesgue measurable.
Suppose $\alpha=0$. We show that S is a subset of a Borel set with λ measure zero. We consider the complement S^{c} of S in $[0,1]$. Since $\lambda\left(S^{c}\right)=1$, we can find a sequence of closed sets $C_{n}=s t\left(B_{n}\right) \subseteq S^{c}$ as done above such that

$$
\lambda\left(\bigcup_{n=1}^{\infty} C_{n}\right)=1
$$

Hence, S is a subset of the complement of the union of these C_{n} 's which is Borel set and has λ-measure zero.
2.4.4 Let $\left(\Omega ; \Sigma, \mu_{\Omega}\right)$ and $\left(\Psi ; \Gamma, \nu_{\Psi}\right)$ be two Loeb spaces defined in Example 2.18. Let

$$
A:=\{(\omega, i) \in \Omega \times \Psi \mid \omega(i)=0\}
$$

Note that $A \in \Sigma \otimes \Gamma$ because A is internal. Prove that $\mu_{\Omega} \otimes \nu_{\Psi}(A)=1 / 2$ and $A \notin \sigma(\Sigma \times \Gamma)$.

Proof: For each $\omega \in \Omega$ let $\omega^{\prime}:[N] \rightarrow[2]$ be such that $\omega^{\prime}(i)=1-\omega(i)$ for every $i \in[N]$. Then, $\left\{\left(\omega^{\prime}, i\right) \mid(\omega, i) \in A\right\}=A^{c}$. So, A contains exactly half of the elements in $\Omega \times \Psi$. So, $\mu_{\Omega} \otimes \mu_{\Psi}(A)=1 / 2$.

Suppose $A \in \sigma(\Sigma \times \Gamma)$. Then we can find at least one set $B_{1} \times B_{2} \in \Sigma \times \Gamma$ such that $B_{1} \times B_{2} \subseteq A, \mu_{\Omega}\left(B_{1}\right)>0$, and $\mu_{\Psi}\left(B_{2}\right)>0$. Note that if $(\omega, i) \in B_{1} \times B_{2}$, then $\omega(i)=0$. Note also that if $i_{1}<i_{2}<\cdots<i_{m}$ are in Ψ, there are exactly $2^{N} / 2^{n}=2^{N-n}$ many $\omega \in \Omega$ with $\omega\left(i_{j}\right)=0$ for $j=1,2, \ldots, m$. If B_{2} has positive measure, $\left|B_{2}\right|$ must be hyperfinite. Hence, B_{1} can contain at most $2^{N-\left|B_{2}\right|}$ elements. This show that $\mu_{\Omega}\left(B_{1}\right)=0$, which is a contradiction.
3.4.1 Let $A \subseteq \mathbb{N}$. Prove that the limit of the sequence

$$
s_{n}:=\sup _{k \in \mathbb{N}} \frac{|A \cap(k+[n])|}{n}
$$

as $n \rightarrow \infty$ exists.

Proof: Suppose the limit does not exist. We can find two subsequences $s_{n_{i}}$ with limit α and $s_{m_{i}}$ with limit β. Assume that $d=\beta-\alpha>0$. Choose an $s_{n_{i_{0}}}<\alpha+d / 4$ and choose sufficiently large $m_{i_{0}}$ such that $s_{m_{i_{0}}}>\beta-d / 4$ and $n_{i_{0}} / m_{i_{0}}<d / 4$. Partition [$m_{i_{0}}$] into subintervals of length $n_{i_{0}}$ except the last one which has length between 0 and $n_{i_{0}}-1$. Let \mathcal{I} be the collections of these subintervals of length $n_{i_{0}}$ and J be the last one with length $<n_{i_{0}}$. By the maximality of $s_{n_{i_{0}}}$ we have that

$$
\frac{|I \cap A|}{n_{i_{0}}} \leq s_{n_{i_{0}}}
$$

for every $I \in \mathcal{I}$. Therefore, we have that

$$
s_{m_{i_{0}}} \leq s_{n_{i_{0}}}+\frac{|J \cap A|}{m_{i_{0}}}<\alpha+\frac{d}{2}<\beta-\frac{d}{4}
$$

which contrdicts the choice of $m_{i_{0}}$.
3.4.2 Prove Lemma 3.4: Let $A \subseteq \mathbb{N}$. Then, $\overline{B D}(A)$ is the largest real α in $[0,1]$ such that there exist $k_{m}, n_{m} \in \mathbb{N}$ with $n_{m} \rightarrow \infty$ as $m \rightarrow \infty$ such that

$$
\lim _{m \rightarrow \infty} \frac{\left|A \cap\left(k_{m}+\left[n_{m}\right]\right)\right|}{n_{m}}=\alpha .
$$

Proof: Let $\overline{B D}(A)=\alpha$. For each $m \in \mathbb{N}$ choose an interval $k_{m}+\left[n_{m}\right]$ such that $n_{m}>m$ and

$$
\frac{\left|A \cap\left(k_{m}+\left[n_{m}\right]\right)\right|}{n_{m}} \geq \alpha-\frac{1}{m} .
$$

Note that n_{m} exists by definitions. Clearly,

$$
\alpha=\lim _{n \rightarrow \infty} s_{n}=\alpha \geq \lim _{m \rightarrow \infty} \frac{\left|A \cap\left(k_{m}+\left[n_{m}\right]\right)\right|}{n_{m}}=\alpha .
$$

If there is a sequence of interval $k_{m}+\left[n_{m}\right]$ with $n_{m} \rightarrow \infty$ such that

$$
\lim _{m \rightarrow \infty} \frac{\left|A \cap\left(k_{m}+\left[n_{m}\right]\right)\right|}{n_{m}}=\beta
$$

then $\beta \leq \alpha$ because

$$
\frac{\left|A \cap\left(k_{m}+\left[n_{m}\right]\right)\right|}{n_{m}} \leq \sup _{k \in \mathbb{N}} \frac{\left|A \cap\left(k+\left[n_{m}\right]\right)\right|}{n_{m}} \rightarrow \alpha .
$$

3.4.3 Prove Part 2 of Proposition 3.5: Let $A \subseteq \mathbb{N}$ and $\alpha \in \mathbb{R}$. Then $\bar{d}(A) \geq \alpha$ iff $\frac{\left|{ }^{*} A \cap[N]\right|}{N} \gtrsim \alpha$ for some hyperfinite integer N.

Proof: " \Rightarrow ": Given standard $m \in \mathbb{N}$, there is an $n_{m} \in \mathbb{N}$ such that $n_{m}>m$ and $\frac{\left|A \cap\left[n_{m}\right]\right|}{n_{m}}>\alpha-1 / m$. By the overspill principle, we can find a hyperfinite integer $\stackrel{n_{m}}{K}$ such that $n_{K}>K$ and

$$
\frac{\left|A \cap\left[n_{K}\right]\right|}{n_{K}}>\alpha-\frac{1}{K} .
$$

Now $N=n_{K}$ works.
" \Leftarrow ": Given any standard $\epsilon>0$ and $m \in \mathbb{N}$, the sentence φ :

$$
\exists N \in{ }^{*} \mathbb{N}\left(N>m \wedge \frac{\left|{ }^{*} A \cap[N]\right|}{N}>\alpha-\epsilon\right)
$$

is true in ${ }^{*} \mathcal{V}$. By the transfer principle, φ is true in \mathcal{V}, i.e.,

$$
\exists n \in \mathbb{N}\left(n>m \wedge \frac{|A \cap[n]|}{n}>\alpha-\epsilon\right)
$$

This proves that $\bar{d}(A) \geq \alpha$.
3.4.4 Prove that Theorem 3.14 using Theorem 3.13 and By-one-get-one-free Thesis, i.e., prove that if B is a piecewise asymptotic basis of piecewise asymptotic average order $h_{p a}^{*}$, then for any $A \subseteq \mathbb{N}$ we have

$$
\overline{B D}(A+B) \geq \overline{B D}(A)+\frac{1}{2 h_{p a}^{*}} \overline{B D}(A)(1-\overline{B D}(A))
$$

Proof: Let B be a piecewise asymptotic basis of piecewise asymptotic average order $h_{p a}^{*}$. Given $\epsilon>0$, there exists a suitable sequence \mathcal{I} of intervals such that

$$
h_{p a}^{*}+\frac{\epsilon}{2} \geqslant h_{\mathcal{I}}^{*} .
$$

By the overspill principle, there exists an interval $k+[K]$ of hyperfinite length and $n_{0} \in \mathbb{N}$ such that

$$
\sup _{n_{0}+k \leqslant l \leqslant K+k} \frac{1}{l-n_{0}-k+1} \sum_{i=n_{0}+k}^{l} h_{k+[K]}(i) \leqslant h_{\mathcal{I}}^{*}+\frac{\epsilon}{2}
$$

where $\left.h_{k+[K]}(i)=\min \left\{h^{\prime} \in{ }^{*} \mathbb{N}: i \in h^{\prime}\left(\left({ }^{*} B-k\right) \cap{ }^{*} \mathbb{N}\right)+k\right)\right\}$. Obviously, the asymptotic average order \bar{h} of the asymptotic basis $\left({ }^{*} B-H\right) \cap \mathbb{N}$ satisfies

$$
\bar{h} \leqslant h_{\mathcal{I}}^{*}+\frac{\epsilon}{2} \leqslant h_{p a}^{*}+\epsilon
$$

Let $\overline{B D}(A)=\alpha$. Then, there exists an $a \in{ }^{*} \mathbb{N}$ such that $\underline{d}\left({ }^{*} A-a\right)=\alpha$. Applying Rohrbach's theorem, we have

$$
\underline{d}\left(\left({ }^{*} A-a\right)+\left({ }^{*} B-k\right)\right)=\underline{d}\left(\left({ }^{*} A+{ }^{*} B\right)-(a+k)\right) \geqslant \alpha+\frac{1}{2\left(h_{p a}^{*}+\epsilon\right)} \alpha(1-\alpha)
$$

which implies that

$$
\overline{B D}(A+B) \geqslant \overline{B D}(A)+\frac{1}{2\left(h_{p a}^{*}+\epsilon\right)} \overline{B D}(A)(1-\overline{B D}(A))
$$

Since ϵ can be arbitrarily small, the conclusion follows.
4.4.1 Prove that the map $i_{1,1}: \mathcal{V}_{1} \rightarrow \mathcal{V}_{2}$ defined in Definition 4.2 is an elementary embedding.

Proof: It suffices to prove the correspondent version of Łoś Theorem, i.e., for any formula $\varphi(\bar{x})$ and any $\bar{f} \in \mathcal{V}_{1}^{\mathbb{N}_{1}} \cap \mathcal{V}_{1}$ we have $\mathcal{V}_{2} \models \varphi\left(\overline{\left.[f]_{\mathcal{F}_{1}}\right) \text { iff }\{n \in, ~}\right.$ $\left.\mathbb{N}_{1} \mid \mathcal{V}_{1} \models \varphi(\overline{f(n)})\right\} \in \mathcal{F}_{1}$. The steps of the proof is the same as the steps for proving usual Łoś Theorem except one case when a formula $\varphi(\bar{x})$ has the form $\exists y \psi(y, \bar{x})$. Note that $i_{1,1}(a)=\left[\phi_{a}\right]_{\mathcal{F}_{1}}$.

Case 1: $\varphi(\bar{x})$ is an atomic formula $x \in y$. Let $[f]_{\mathcal{F}_{1}},[g]_{\mathcal{F}_{1}} \in \mathcal{V}_{2}$. It is clear by definition that $[f]_{\mathcal{F}_{1}}{ }^{*} \in[g]_{\mathcal{F}_{1}}$ iff $\left\{n \in \mathbb{N}_{1} \mid f(n) \in g(n)\right\} \in \mathcal{F}_{1}$ by definition.

Case 2: $\varphi(\bar{x})$ is $\psi(\bar{x}) \wedge \chi(\bar{x})$. Let $\overline{[f]}_{\mathcal{F}_{1}} \in \mathcal{V}_{2}$. Then, $\mathcal{V}_{2} \models \psi\left(\overline{[f]}_{\mathcal{F}_{1}}\right)$ iff $\{n \in$ $\left.\mathbb{N}_{1} \mid \mathcal{V}_{1} \models \psi(\overline{f(n)})\right\} \in \mathcal{F}_{1}$ and $\mathcal{V}_{2} \models \chi\left(\overline{[f]_{\mathcal{F}_{1}}}\right)$ iff $\left\{n \in \mathbb{N}_{1} \mid \mathcal{V}_{1} \models \chi(\overline{f(n)})\right\} \in \mathcal{F}_{1}$ by the induction hypothesis.

Case 3: $\varphi(\bar{x})$ is $\exists y \psi(y, \bar{x})$. Let $\overline{[f]}_{\overline{\mathcal{F}}_{1}} \in \mathcal{V}_{2}$. If $\mathcal{V}_{2} \models \varphi\left(\left[\overline{[f]}_{\mathcal{F}_{1}}\right)\right.$, then there is a $[g]_{\mathcal{F}_{1}} \in \mathcal{V}_{2}$ such that $\mathcal{V}_{2} \models \psi\left([g]_{\mathcal{F}_{1}}, \overline{[f]}_{\mathcal{F}_{1}}\right)$. Because ψ has lower complexity than φ has, we have, by the induction hypothesis, that $\left\{n \in \mathbb{N}_{1} \mid \mathcal{V}_{1} \models\right.$
 have that $\left\{n \in \mathbb{N}_{1} \mid \mathcal{V}_{1} \models \varphi(\overline{f(n)})\right\}=\left\{n \in \mathbb{N}_{1} \mid \mathcal{V}_{1} \models \exists y \psi(y, \overline{f(n)})\right\} \in \mathcal{F}_{1}$.

On the other hand, we can assume that $F:=\left\{n \in \mathbb{N}_{1} \mid \mathcal{V}_{1} \models \varphi\left(\overline{[f]}_{\mathcal{F}_{1}}\right)\right\} \in \mathcal{F}_{1}$. By the axiom of choice the set \mathcal{V}_{0} has a well order \triangleleft. By taking the ultrapower of the well order \triangleleft we have that \mathcal{V}_{1} has an internal well order ${ }^{*} \triangleleft$.

For each $n \in F$ let $g(n)$ be the * \triangleleft-least a such that $\mathcal{V}_{1} \models \psi(a, \overline{f(n)})$ and $g(n)=0$ for any $n \in \mathbb{N} \backslash F$. Then, $g \in \mathcal{V}_{1}$ because it can be defined by a first order formula with internal parameters. Clearly, $\left\{n \in \mathbb{N}_{1} \mid \mathcal{V}_{1} \models \psi(g(n), \overline{f(n)})\right\} \in \mathcal{F}_{1}$ because it is a \mathcal{V}_{1}-internal set and contains F. By induction hypothesis we have $\mathcal{V}_{2} \models \psi\left([g]_{\mathcal{F}_{1}}, \overline{[f]}_{\mathcal{F}_{1}}\right)$ which implies $\mathcal{V}_{2} \models \exists y \psi\left(y, \overline{[f]}_{\mathcal{F}_{1}}\right)$, i.e., $\mathcal{V}_{2} \models \varphi\left(\overline{[f]}_{\mathcal{F}_{1}}\right)$.

For a formula $\varphi(\bar{x})$ and $\bar{a} \in \mathcal{V}_{0}$ we have that $\mathcal{V}_{0} \models \varphi(\bar{a})$ iff

$$
\left\{n \in \mathbb{N}_{1} \mid \mathcal{V}_{0} \models \varphi\left(\overline{\phi_{a}(n)}\right)\right\}=\mathbb{N}_{1} \in \mathcal{F}_{1}
$$

iff $\mathcal{V}_{2} \models \varphi\left(\overline{\left[\phi_{a}\right]}\right)$ by the above version of Loś' Theorem.
4.4.2 Let $s \in \mathbb{N}_{0}$ and $\Gamma(\bar{x})$ be a countable collection of formulas with parameters from \mathcal{V}_{0} and s free variables $\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{s}\right)$. Prove that there exists a homothetic copy $H C_{\vec{a}, d}$ of $[N]^{s}$ for some $N \in \mathbb{N}_{1} \backslash \mathbb{N}_{0}$ such that for any $0 \leq l, l^{\prime}<N^{s}$

$$
\mathcal{V}_{1} \models \varphi\left(H C_{\vec{a}, d}(l)\right) \Longleftrightarrow \mathcal{V}_{1} \models \varphi\left(H C_{\vec{a}, d}\left(l^{\prime}\right)\right)
$$

for every formula φ in Γ.
Proof: Let $\left\{\varphi_{i}(\bar{x}) \mid i \in \mathbb{N}_{0}\right\}$ be an enumeration of Γ. For each i let $B_{i}:=\{\bar{b} \in$ $\left.\left[\mathbb{N}_{0}\right]^{s} \mid \mathcal{V}_{0} \models \varphi_{i}(\bar{b})\right\}$. Then, B_{i} and B_{i}^{c} form a partition of $\left[\mathbb{N}_{0}\right]^{s}$. For each $n \in \mathbb{N}_{0}$ the set $\left[\mathbb{N}_{0}\right]^{s}$ can be partitioned into 2^{n} parts by taking all intersections of B_{i} or B_{i}^{c} for each i for $i=0,1, \ldots, n-1$. By the multidimensional van der Waerden's Theorem we can find a homothetic copy $H C_{\vec{a}_{n}, d_{n}, n}$ of $[n]^{s}$ entirely in one part of the partition. Note that $\mathcal{V}_{0} \models \varphi_{i}\left(H C_{\vec{a}_{n}, d_{n}, n}(l)\right)$ iff $\mathcal{V}_{0} \models \varphi_{i}\left(H C_{\vec{a}_{n}, d_{n}, n}\left(l^{\prime}\right)\right)$ for any $i=0,1, \ldots, n-1$ and $0 \leq l, l^{\prime}<n^{s}$. By countable saturation we can find a hyperinteger N and a homothetic copy $H C_{\vec{a}, d, N} \subseteq\left[\mathbb{N}_{1}\right]^{s}$ of $[N]^{s}$ such that $\mathcal{V}_{1} \models \varphi_{i}\left(H C_{\vec{a}, d, N}(l)\right)$ iff $\mathcal{V}_{1} \models \varphi_{i}\left(H C_{\vec{a}, d, N}\left(l^{\prime}\right)\right)$ for any $\varphi_{i}(\bar{x}) \in \Gamma$ and $0 \leq l, l^{\prime}<N^{s}$.
4.4.3 Let $r \in \mathbb{R}_{2}$ and $|r|<\alpha$ for some $\alpha \in \mathbb{R}_{0}$. Prove that $s t\left(s t_{1}(r)\right)=s t(r)$.

Proof: Set $r^{\prime}:=s t_{1}(r) \in \mathbb{R}_{1}$ and $r^{\prime \prime}:=s t\left(r^{\prime}\right) \in \mathbb{R}_{0}$. It suffices to show that $s t(r)=r^{\prime \prime}$. We want to show that $\left|r-r^{\prime \prime}\right|<1 / n$ for every $n \in \mathbb{N}_{0}$. Bote that $\left|r-r^{\prime}\right|<1 / n$ for every $n \in \mathbb{N}_{1}$ and $\left|r^{\prime}-r^{\prime \prime}\right|<1 / n$ for every $n \in \mathbb{N}_{0}$. Since $\mathbb{N}_{0} \subseteq \mathbb{N}_{1}$, given any $n \in \mathbb{N}_{0}$ the number n is also in \mathbb{N}_{1}. Hence,

$$
\left|r-r^{\prime \prime}\right| \leq\left|r-r^{\prime}\right|+\left|r^{\prime}-r^{\prime \prime}\right|<\frac{1}{n}+\frac{1}{n}=\frac{2}{n}
$$

This shows that $s t(r)=r^{\prime \prime}$.
4.4.4 Prove that the set

$$
C:=\left\{\mu_{|P|}^{1}(A \cap P) \mid P \text { is an a.p. and }|P| \in \mathbb{N}_{2} \backslash \mathbb{N}_{1}\right\}
$$

is an element in \mathcal{V}_{1} where $A \subseteq \mathbb{N}_{2}$ is \mathcal{V}_{2}-internal.
Proof: Let φ be the following sentence

$$
\begin{aligned}
\forall A & \in \mathscr{P}_{1}\left(\mathbb{N}_{1}\right) \exists C \in \mathscr{P}_{0}\left(\mathbb{R}_{0}\right) \forall x \in \mathbb{R}_{0}(x \in C \\
& \longleftrightarrow \exists P\left(P \text { is an a.p. } \wedge|P| \in \mathbb{N}_{1} \backslash \mathbb{N}_{0} \wedge x=\mu_{|P|}(A \cap P)\right)
\end{aligned}
$$

where \mathscr{P}_{j} means the power set operator in \mathcal{V}_{j}. Note that φ is true in $\left(\mathcal{V}_{1} ; \mathbb{R}_{0}\right)$ because every subset of \mathbb{R}_{0} is an element in \mathcal{V}_{0}. Since $i_{0,1}$ is an elementary embedding from $\left(\mathcal{V}_{1} ; \mathbb{R}_{0}\right)$ to $\left(\mathcal{V}_{2} ; \mathbb{R}_{1}\right)$ we have that the sentence

$$
\begin{aligned}
\forall A & \in \mathscr{P}_{2}\left(\mathbb{N}_{2}\right) \exists C \in \mathscr{P}_{1}\left(\mathbb{R}_{1}\right) \forall x \in \mathbb{R}_{1}(x \in C \\
& \longleftrightarrow \exists P\left(P \text { is an a.p. } \wedge|P| \in \mathbb{N}_{2} \backslash \mathbb{N}_{1} \wedge x=\mu_{|P|}^{1}(A \cap P)\right)
\end{aligned}
$$

is true in \mathcal{V}_{2}. Therefore, the set

$$
C:=\left\{\mu_{|P|}^{1}(A \cap P) \mid P \text { is an a.p. and }|P| \in \mathbb{N}_{2} \backslash \mathbb{N}_{1}\right\}
$$

is in \mathcal{V}_{1}.

