
Exercise Solutions, 2023 Fudan Logic Summer School

Nonstandard Analysis and

Combinatorial Number Theory

Renling Jin

Department of Mathematics

College of Charleston

Charleston, SC 29424

Exercise Solutions

1.4.1 Prove that 1/[Id] is a non-zero infinitesimal in ∗R as defined in Example 1.11.

Proof: Given any m ∈ N, it suffices to show that 1/[Id] < 1/m, which is

equivalent to [Id] > m. Since {n ∈ N | Id(n) > m} = {m + 1,m + 2, . . .} ∈ F ,

we have [Id] > m. 2

1.4.2 Prove that a standard sequence s of real numbers being convergent as defined

in Definition 1.1.5 is equivalent to that s is a Cauchy sequence in the standard

sense.

Proof: “⇒”: Suppose that the sequence s converges in the sense of Definition

1.15. Given any ε > 0, let ϕ be the sentence that there exists an m ∈ ∗N be

the least such that for all n, n′ > m we have |∗s(n) − ∗s(n′)| < ε. Clearly, ϕ is

true in ∗R because any hyperfinite integer witnesses the existence of m. Hence,

ϕ is true in R by the transfer principle. So, s is a Cauchy sequence.

“⇐”: Assume that s is a Cauchy sequence in the standard sense. Given any

hyperfinite integers N,N ′, we show that ∗s(N) ≈ ∗s(N ′). So, for any standard

ε > 0, it suffices to show that |∗s(N) − ∗s(N ′)| < ε. Since s is Cauchy, there

exists an nε ∈ N such that sentence ϕ: |s(n) − s(n′)| < ε for any n, n′ > nε is

true in R. So the sentence ϕ is also true in ∗R. Since N,N ′ are hyperfinite,

they are clearly greater than nε. Hence, |∗s(N)− ∗s(N ′)| < ε. 2.
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1.4.3 Let f : [a, b] → R be a standard function. Prove that f being continuous at

some c ∈ (a, b) or uniformly continuous on [a, b] in terms of Definition 1.17

is equivalent to that f is continuous at c or uniformly continuous on [a, b],

respectively, in the standard sense (ε− δ definition).

Proof: Continuity: “⇒”: Assume that f is continuous at c in the sense of

Definition 1.17. Given standard ε > 0, let ϕ be the sentence

∃δ > 0 ∀x (|x− c| < δ → |∗f(x)− f(c)| < ε).

Then, ϕ is true in ∗R because any positive infinitesimal can be the witness of

δ. Hence, ϕ is true in R, i.e., there is a standard δ > 0 such that |x− c| < δ →
|f(x)− f(c)| < ε for any x ∈ R.

“⇐”: Assume that f is continuous at c in the standard sense. Given any

r ∈ ∗R with r ≈ c. We show that ∗f(r) ≈ f(c). Given an arbitrary standard

real ε > 0, it suffices to show that |∗f(r)− f(c)| < ε. Since there is a standard

δ > 0 such that |x − c| < δ → |∗f(x) − f(c)| < ε for all x ∈ ∗R, we have

|∗f(r) − f(c)| < ε because r ≈ c implies |r − c| < δ. Since ε is arbitrary, we

conclude that |∗f(r)− f(c)| ≈ 0.

Uniform continuity: “⇒”: Assume that f is uniformly continuous in [a, b]

in the standard sense. Given any r, r′ ∈ ∗[a, b] with r ≈ r′, we show that
∗f(r) ≈ ∗f(r′). Given arbitrary standard ε > 0, it suffices to show that |∗f(r)−
∗f(r′)| < ε. Since there exists a standard δ > 0 such that the sentence ϕ:

∀x, y ∈ [a, b] (|x− y| < δ → |f(x)− f(y)| < ε)

is true in R, we have that ϕ is true in ∗R. Clearly, we have |r − r′| ≈ 0 < δ.

Therefore, |∗f(r)− ∗f(r′)| < ε.

“⇐”: Assume that f is uniformly continuous in [a, b] in the sense of Definition

1.17. Given standard ε > 0, let ϕ be the sentence

∃δ > 0 ∀x, y ∈ ∗[a, b] (|x− y| < δ → |∗f(x)− ∗f(y)| < ε)

is true in ∗R because any positive infinitesimal can be that δ. By the transfer

principle we have that ϕ is true in R, i.e.,

∃δ > 0 ∀x, y ∈ [a, b] (|x− y| < δ → |f(x)− f(y)| < ε)

is true in R. 2
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1.4.4 Let f : [a, b]→ R be a standard bounded function. Prove that f being Riemann

integrable on [a, b] as defined in Definition 1.22 is equivalent to that f is Riemann

integrable on [a, b] in the standard sense.

Proof: We introduce some notation first. Given any partition P of [a, b] let

U(∗f, P ) be the upper sum and L(∗f, P ) be the lower sum as defined in some

standard textbook. If T is a set of tag points of P let S(∗f, P, T ) be the Riemann

sum as defined in some standard textbook. For each positive n ∈ ∗N let Pn be

the partition {a, b} ∪ ({z/n | z ∈ ∗Z} ∩ ∗[a, b]). If P = {a = x0 < x1 < · · · <
xm = b} is a partition of [a, b] let ||P || := max{|xi − xi−1| | i = 1, 2, . . . ,m}.

“⇒”: Assume that f is Riemann integrable on [a, b] in the sense of Definition

1.22. By the assumption we have that U(∗f, PK) − L(∗f, PK) ≈ 0. Given any

standard ε > 0 the sentence ϕ:

∃n ∈ ∗N (U(∗f, PK)− L(∗f, PK) < ε)

is true in ∗R because K is a witness of n. By the transfer principle we have

that ϕ is true in R. This shows that f is Riemann integrable on [a, b] in the

standard sense.

“⇐”: Assume that f is Riemann integrable in the standard sense. Then,

there is a standard real I such that for any standard ε there exists a standard

δ > 0 such that the sentence ϕ:

∀ partition P and set of tag points T (||P || < δ → |S(f, P, T )− I| < ε)

is true in R. Hence, it is true in ∗R. Given any internal sets of tag points T, T ′

for PK , since ||PK || = 1/K < δ we have

|S(∗f, PK , T )− S(∗f, PK , T
′)| ≤ |S(∗f, PK , T )− I|+ |I − S(∗f, PK , T

′)| < 2ε.

Since ε is arbitrary, we conclude that S(∗f, PK , T ) ≈ S(∗f, PK , T
′). 2

2.4.1 Let A be a set in V . Prove that ∗A = {∗a | a ∈ A} iff A is a finite set.

Proof: “⇒”: Suppose ∗A = {∗a | a ∈ A}. If A is infinite, we can find a

sequence of distinct elements {an | n ∈ N} in A. Let Sn := ∗A \ {∗ai | i =

1, 2, . . . , n}. Then, Sn is nonempty and decreasing. By countable saturation

there is an element b in every Sn for n ∈ N. This b is in ∗A and different from

any of these ∗an’s. So, ∗A 6= {∗a | a ∈ A}.
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“⇐”: Assume that A := {a1, a2, . . . , an} is a finite set. Then, the sentence ϕ:

∀x ∈ A (x = a1 ∨ x = a2 ∨ · · · ∨ x = an)

is true in V . By the transfer principle ϕ is true in ∗V , i.e., for any b ∈ ∗A the

element b must be one of these ∗ai’s. 2

2.4.2 Prove that an internal set A ∈ ∗V is either finite or uncountable.

Proof: Suppose that the internal set A is countable and {an | n ∈ N} is an

enumeration of A. Let Sn := A \ {ai | i = 1, 2, . . . , n}. Then, Sn is internal,

nonempty, and decreasing. By countable saturation one can find an element b

in every Sn for n ∈ N. This contradicts that A is enumerated by these an’s. 2

2.4.3 Let N be a hyperfinite integer, Ω := {j/N | j = 0, 1, . . . , N −1}, and (Ω; Σ, µΩ)

be the Loeb space on Ω. Note that st �Ω is a function from Ω to the standard

unit interval [0, 1] (cf. Definition 1.14). Let Γ := {U ⊆ [0, 1] | st−1[U ] ∩ Ω ∈ Σ}
and λ(U) := µΩ(st−1[U ] ∩ Ω) for each U ∈ Γ. Prove that ([0, 1]; Γ, λ) is the

Lebesgue measure space on [0, 1].

Proof: We show first that every closed subinterval of [0, 1] is in Γ. Let

[a, b] ⊆ [0, 1] and X := st−1([a, b]). For each n ∈ N let xn, yn ∈ Ω such that

st(xn) = a − 1/n and st(yn) = b + 1/n. Then, µΩ([xn, yn] ∩ Ω) = b − a + 2ε.

Since X =
⋂
{[xn, yn] ∩ Ω | n ∈ N} we have that X ∈ Σ and

µΩ(X) = lim
n→∞

µΩ([xn, yn] ∩ Ω) = b− a.

So, [a, b] ∈ Γ and λ([a, b]) = b− a. It is easy to check that Γ is a σ-algebra and

complete, we conclude that Γ contains all Lebesgue measurable subsets of [0, 1].

Next we show that every set S ∈ Γ is Lebesgue measurable.

Notice a fact that if A ⊆ Ω is internal, then st[A] is a closed subset of

[0, 1]. Indeed, if s is a standard convergent sequence in S with limit α and

st(an) = s(n) for some an ∈ A, then the sequence {an} can be extended to a

hyperfinite sequence {an ∈ A | 0 ≤ n < N} by countable saturation. For any

hyperfinite integer K < N it is easy to check that st(aK) = α. Hence, α ∈ S.

Given S ∈ Γ with λ(S) = α > 0, let X = st−1(S) ∈ Σ. Note that µΩ(X) = α.

Let Bn ⊆ X be internal such that µΩ(Bn) > α− 1/n. Then,

α = µΩ(X) ≥ µΩ(st−1(st(Bn))) = λ(st(Bn)) ≥ µΩ(Bn) > α− 1

n
.
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So, S contains a countable union U of closed sets st(Bn) in [0, 1] such that

λ(S) = λ

(
∞⋃
n=1

st(Bn)

)
.

It suffices now to show that every λ-measure zero set is Lebesgue measurable.

Suppose α = 0. We show that S is a subset of a Borel set with λ measure

zero. We consider the complement Sc of S in [0, 1]. Since λ(Sc) = 1, we can

find a sequence of closed sets Cn = st(Bn) ⊆ Sc as done above such that

λ

(
∞⋃
n=1

Cn

)
= 1.

Hence, S is a subset of the complement of the union of these Cn’s which is Borel

set and has λ-measure zero. 2

2.4.4 Let (Ω; Σ, µΩ) and (Ψ; Γ, νΨ) be two Loeb spaces defined in Example 2.18. Let

A := {(ω, i) ∈ Ω×Ψ | ω(i) = 0}.

Note that A ∈ Σ⊗ Γ because A is internal. Prove that µΩ ⊗ νΨ (A) = 1/2 and

A 6∈ σ(Σ× Γ).

Proof: For each ω ∈ Ω let ω′ : [N ] → [2] be such that ω′(i) = 1 − ω(i) for

every i ∈ [N ]. Then, {(ω′, i) | (ω, i) ∈ A} = Ac. So, A contains exactly half of

the elements in Ω×Ψ. So, µΩ ⊗ µΨ(A) = 1/2.

Suppose A ∈ σ(Σ×Γ). Then we can find at least one set B1×B2 ∈ Σ×Γ such

that B1 ×B2 ⊆ A, µΩ(B1) > 0, and µΨ(B2) > 0. Note that if (ω, i) ∈ B1 ×B2,

then ω(i) = 0. Note also that if i1 < i2 < · · · < im are in Ψ, there are exactly

2N/2n = 2N−n many ω ∈ Ω with ω(ij) = 0 for j = 1, 2, . . . ,m. If B2 has

positive measure, |B2| must be hyperfinite. Hence, B1 can contain at most

2N−|B2| elements. This show that µΩ(B1) = 0, which is a contradiction. 2

3.4.1 Let A ⊆ N. Prove that the limit of the sequence

sn := sup
k∈N

|A ∩ (k + [n])|
n

as n→∞ exists.
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Proof: Suppose the limit does not exist. We can find two subsequences sni

with limit α and smi
with limit β. Assume that d = β − α > 0. Choose an

sni0
< α + d/4 and choose sufficiently large mi0 such that smi0

> β − d/4 and

ni0/mi0 < d/4. Partition [mi0 ] into subintervals of length ni0 except the last

one which has length between 0 and ni0 − 1. Let I be the collections of these

subintervals of length ni0 and J be the last one with length < ni0 . By the

maximality of sni0
we have that

|I ∩ A|
ni0

≤ sni0

for every I ∈ I. Therefore, we have that

smi0
≤ sni0

+
|J ∩ A|
mi0

< α +
d

2
< β − d

4

which contrdicts the choice of mi0 . 2

3.4.2 Prove Lemma 3.4: Let A ⊆ N. Then, BD(A) is the largest real α in [0, 1] such

that there exist km, nm ∈ N with nm →∞ as m→∞ such that

lim
m→∞

|A ∩ (km + [nm])|
nm

= α.

Proof: Let BD(A) = α. For each m ∈ N choose an interval km + [nm] such

that nm > m and
|A ∩ (km + [nm])|

nm
≥ α− 1

m
.

Note that nm exists by definitions. Clearly,

α = lim
n→∞

sn = α ≥ lim
m→∞

|A ∩ (km + [nm])|
nm

= α.

If there is a sequence of interval km + [nm] with nm →∞ such that

lim
m→∞

|A ∩ (km + [nm])|
nm

= β,

then β ≤ α because

|A ∩ (km + [nm])|
nm

≤ sup
k∈N

|A ∩ (k + [nm])|
nm

→ α.

2
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3.4.3 Prove Part 2 of Proposition 3.5: Let A ⊆ N and α ∈ R. Then d(A) ≥ α iff
|∗A ∩ [N ]|

N
' α for some hyperfinite integer N .

Proof: “⇒”: Given standard m ∈ N, there is an nm ∈ N such that nm > m

and
|A ∩ [nm]|

nm
> α− 1/m. By the overspill principle, we can find a hyperfinite

integer K such that nK > K and

|A ∩ [nK ]|
nK

> α− 1

K
.

Now N = nK works.

“⇐”: Given any standard ε > 0 and m ∈ N, the sentence ϕ:

∃N ∈ ∗N
(
N > m ∧ |

∗A ∩ [N ]|
N

> α− ε
)

is true in ∗V . By the transfer principle, ϕ is true in V , i.e.,

∃n ∈ N
(
n > m ∧ |A ∩ [n]|

n
> α− ε

)
.

This proves that d(A) ≥ α. 2

3.4.4 Prove that Theorem 3.14 using Theorem 3.13 and By-one-get-one-free Thesis,

i.e., prove that if B is a piecewise asymptotic basis of piecewise asymptotic

average order h∗pa, then for any A ⊆ N we have

BD(A+B) ≥ BD(A) +
1

2h∗pa
BD(A)(1−BD(A)).

Proof: Let B be a piecewise asymptotic basis of piecewise asymptotic aver-

age order h∗pa. Given ε > 0, there exists a suitable sequence I of intervals such

that

h∗pa +
ε

2
> h∗I .

By the overspill principle, there exists an interval k + [K] of hyperfinite length

and n0 ∈ N such that

sup
n0+k6l6K+k

1

l − n0 − k + 1

l∑
i=n0+k

hk+[K](i) 6 h∗I +
ε

2
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where hk+[K](i) = min{h′ ∈ ∗N : i ∈ h′((∗B − k) ∩ ∗N) + k)}. Obviously, the

asymptotic average order h̄ of the asymptotic basis (∗B −H) ∩ N satisfies

h̄ 6 h∗I +
ε

2
6 h∗pa + ε.

Let BD(A) = α. Then, there exists an a ∈ ∗N such that d(∗A − a) = α.

Applying Rohrbach’s theorem, we have

d((∗A− a) + (∗B − k)) = d((∗A+ ∗B)− (a+ k)) > α +
1

2(h∗pa + ε)
α(1− α)

which implies that

BD(A+B) > BD(A) +
1

2(h∗pa + ε)
BD(A)(1−BD(A)).

Since ε can be arbitrarily small, the conclusion follows. 2

4.4.1 Prove that the map i1,1 : V1 → V2 defined in Definition 4.2 is an elementary

embedding.

Proof: It suffices to prove the correspondent version of  Loś Theorem, i.e.,

for any formula ϕ(x) and any f ∈ VN1
1 ∩ V1 we have V2 |= ϕ([f ]F1

) iff {n ∈
N1 | V1 |= ϕ(f(n))} ∈ F1. The steps of the proof is the same as the steps for

proving usual  Loś Theorem except one case when a formula ϕ(x) has the form

∃y ψ(y, x). Note that i1,1(a) = [φa]F1 .

Case 1: ϕ(x) is an atomic formula x ∈ y. Let [f ]F1 , [g]F1 ∈ V2. It is clear by

definition that [f ]F1
∗∈ [g]F1 iff {n ∈ N1 | f(n) ∈ g(n)} ∈ F1 by definition.

Case 2: ϕ(x) is ψ(x) ∧ χ(x). Let [f ]F1
∈ V2. Then, V2 |= ψ([f ]F1

) iff {n ∈
N1 | V1 |= ψ(f(n))} ∈ F1 and V2 |= χ([f ]F1

) iff {n ∈ N1 | V1 |= χ(f(n))} ∈ F1

by the induction hypothesis.

Case 3: ϕ(x) is ∃y ψ(y, x). Let [f ]F1
∈ V2. If V2 |= ϕ([f ]F1

), then there

is a [g]F1 ∈ V2 such that V2 |= ψ([g]F1 , [f ]F1
). Because ψ has lower complex-

ity than ϕ has, we have, by the induction hypothesis, that {n ∈ N1 | V1 |=
ψ(g(n), f(n))} ∈ F1. Since V1 |= ψ(g(n), f(n)) implies V1 |= ∃y ψ(y, f(n)) we

have that {n ∈ N1 | V1 |= ϕ(f(n))} = {n ∈ N1 | V1 |= ∃y ψ(y, f(n))} ∈ F1.

On the other hand, we can assume that F := {n ∈ N1 | V1 |= ϕ([f ]F1
)} ∈ F1.

By the axiom of choice the set V0 has a well order �. By taking the ultrapower

of the well order � we have that V1 has an internal well order ∗�.
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For each n ∈ F let g(n) be the ∗�-least a such that V1 |= ψ(a, f(n)) and g(n) = 0

for any n ∈ N \ F . Then, g ∈ V1 because it can be defined by a first order

formula with internal parameters. Clearly, {n ∈ N1 | V1 |= ψ(g(n), f(n))} ∈ F1

because it is aV1-internal set and contains F . By induction hypothesis we have

V2 |= ψ([g]F1 , [f ]F1
) which implies V2 |= ∃y ψ(y, [f ]F1

), i.e., V2 |= ϕ([f ]F1
).

For a formula ϕ(x) and a ∈ V0 we have that V0 |= ϕ(a) iff

{n ∈ N1 | V0 |= ϕ(φa(n))} = N1 ∈ F1

iff V2 |= ϕ([φa]) by the above version of  Loś’ Theorem. 2

4.4.2 Let s ∈ N0 and Γ(x) be a countable collection of formulas with parameters from

V0 and s free variables x = (x1, x2, . . . , xs). Prove that there exists a homothetic

copy HC~a,d of [N ]s for some N ∈ N1 \ N0 such that for any 0 ≤ l, l′ < N s

V1 |= ϕ(HC~a,d(l))⇐⇒ V1 |= ϕ(HC~a,d(l
′))

for every formula ϕ in Γ.

Proof: Let {ϕi(x) | i ∈ N0} be an enumeration of Γ. For each i let Bi := {b ∈
[N0]s | V0 |= ϕi(b)}. Then, Bi and Bc

i form a partition of [N0]s. For each n ∈ N0

the set [N0]s can be partitioned into 2n parts by taking all intersections of Bi or

Bc
i for each i for i = 0, 1, . . . , n−1. By the multidimensional van der Waerden’s

Theorem we can find a homothetic copy HC~an,dn,n of [n]s entirely in one part

of the partition. Note that V0 |= ϕi(HC~an,dn,n(l)) iff V0 |= ϕi(HC~an,dn,n(l′))

for any i = 0, 1, . . . , n − 1 and 0 ≤ l, l′ < ns. By countable saturation we

can find a hyperinteger N and a homothetic copy HC~a,d,N ⊆ [N1]s of [N ]s

such that V1 |= ϕi(HC~a,d,N(l)) iff V1 |= ϕi(HC~a,d,N(l′)) for any ϕi(x) ∈ Γ and

0 ≤ l, l′ < N s. 2

4.4.3 Let r ∈ R2 and |r| < α for some α ∈ R0. Prove that st(st1(r)) = st(r).

Proof: Set r′ := st1(r) ∈ R1 and r′′ := st(r′) ∈ R0. It suffices to show that

st(r) = r′′. We want to show that |r − r′′| < 1/n for every n ∈ N0. Bote that

|r − r′| < 1/n for every n ∈ N1 and |r′ − r′′| < 1/n for every n ∈ N0. Since

N0 ⊆ N1, given any n ∈ N0 the number n is also in N1. Hence,

|r − r′′| ≤ |r − r′|+ |r′ − r′′| < 1

n
+

1

n
=

2

n
.

This shows that st(r) = r′′. 2
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4.4.4 Prove that the set

C :=
{
µ1
|P |(A ∩ P ) | P is an a.p. and |P | ∈ N2 \ N1

}
is an element in V1 where A ⊆ N2 is V2-internal.

Proof: Let ϕ be the following sentence

∀A ∈P1(N1)∃C ∈P0(R0)∀x ∈ R0 (x ∈ C
←→ ∃P (P is an a.p. ∧ |P | ∈ N1 \ N0 ∧ x = µ|P |(A ∩ P ))

where Pj means the power set operator in Vj. Note that ϕ is true in (V1;R0)

because every subset of R0 is an element in V0. Since i0,1 is an elementary

embedding from (V1;R0) to (V2;R1) we have that the sentence

∀A ∈P2(N2)∃C ∈P1(R1)∀x ∈ R1 (x ∈ C
←→ ∃P (P is an a.p. ∧ |P | ∈ N2 \ N1 ∧ x = µ1

|P |(A ∩ P ))

is true in V2. Therefore, the set

C :=
{
µ1
|P |(A ∩ P ) | P is an a.p. and |P | ∈ N2 \ N1

}
is in V1. 2
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