Borel Chain Conditions on Borel Partial Orderings

Ming Xiao

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- Categorization of posets
- Ø Borel combinatorics on posets

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Back ground, part. I: Partially ordered sets and Boolean algebras

Definition

A set P equipped with a binary relation \leq is said to be a poset if \leq is transitive, reflexive and antisymmetric.

Definition

A Boolean algebra is algebraic structure $(B, 0, 1, \lor, \land, -)$ satisfying the usual laws of fields of sets.

A Boolean algebra *B* is considered as poset with the ordering $x \le y$ iff $x \lor y = y$.

A Boolean algebra is complete if every subset X of B has the least upper bound $\bigvee X$ or equivalently greatest lower bound \bigwedge relative to the ordering \leq of B.

Back ground, part. I: The roles of posets in set theory

- Captures the structure of posets as forcing notions and complete Boolean algebras supporting strictly positive sub-mesures and measures,
- Used in the theory of Forcing to distinguish between different forcing extensions,

Used in the theory of Forcing Axioms to calibrate their strengths.

Back ground, part. I: The statement of the general problem

Question

How to categorize posets?

Which internal properties of a given poset P have influence to the properties of its completion and the properties of its forcing extensions?

Which internal properties of a given complete Boolean algebra B determine the possibilities for the existence of various kind of strictly positive sub-measures and measures on B?

Let *P* be a poset. A pair of different elements $p \neq q \in P$ is said to be compatible if there is an *r* such that $r \leq q$ and $r \leq p$. They are incompatible if they are not compatible.

Definition

A subset $A \subset P$ is said to be:

- an antichain if every two different elements from A are incompatible.
- ② *n*-linked if for every *n* elements, there is an *r* that is \leq to all of them.
- **(a)** centred if it is n-linked for every n.

A σ -complete Boolean algebra B is (ω, ω) -distributive whenever for every sequence a_{mn} $(m, n < \omega)$ of nonzero elements of B, we have that

$$\bigwedge_{m<\omega}\bigvee_{n<\omega}a_{mn}=\bigvee_{f\in\omega^{\omega}}\bigwedge_{m<\omega}a_{mf(m)}.$$

Definition

A σ -complete Boolean algebra B is weakly (ω, ω) -distributive, or simply weakly distributive, whenever for every sequence a_{mn} $(m, n < \omega)$ of nonzero elements of B, we have that

$$\bigwedge_{m < \omega} \bigvee_{n < \omega} a_{mn} = \bigvee_{f \in \omega^{\omega}} \bigwedge_{m < \omega} \bigvee_{n < f(m)} a_{mn}.$$

◆□ → ◆圖 → ◆ 圖 → ◆ 圖 → □ ■

A poset or a Boolean algebra is said to satisfy the countable chain condition (ccc, in short) if it includes no uncountable anti-chains.

By observing that every Boolean algebra supporting strictly positive σ -additive measure is necessarily ccc and weakly distributive, Von Neumann has asked the following question:

Question (Von Neumann 1937)

Is it true that every weakly distributive ccc complete Boolean algebra supports a strictly positive σ -additive measure?

Given a Boolean algebra *B*, a function $f: P \to \mathbb{R}$ is:

- **1** Strictly positive if f(p) > 0 for all $p \in P$.
- ② Exhaustive if for every countable antichain A = {a_n}, lim_{n→∞}P(a_n) = 0.
- A submeasure if for every pair p ⊂ q we have f(p) ≤ f(q) and for every pair of incompatible p, q ∈ P, f(p) + f(q) ≤ f(p ∨ q).

Theorem (Maharam 1947, Jech 1966, Tennenbaum 1965)

It is consistent with ZFC that there is a complete ,ccc, distributive and non-atomic Boolean algebra (the Souslin algebra). Such algebra supports no strictly positive continuous submeasure and so, in particular, it supports no finitely additive strictly positive measure.

Given a poset, it is said to be:

- σ -finite chain condition (σ -fcc) if it is a union of countably many subsets which includes no infinite antichains.
- Observe of the second seco
- **③** σ -*n*-linked if it is an union of countably many *n*-linked subsets.
- **4** σ -linked if it is σ -2-linked.
- **5** σ -centred if it is a union of countable many centred subsets.

Back ground, part. I: The hierachy of chain conditions

Definition

Given a poset, it is said to be:

- σ -finite chain condition (σ -fcc) if it is a union of countably many subsets which includes no infinite antichains.
- Observe of the second seco
- **3** σ -*n*-linked if it is an union of countably many *n*-linked subsets.
- **4** σ -linked if it is σ -2-linked.
- **(**) σ -centred if it is a union of countable many centred subsets.

Theorem (Many authors)

This hierarchy is strict. Moreover, there is a poset that is σ -n-linked for every n but fails to be σ -centred.

A poset is said to satisfy the σ -n-chain condition(σ -n-cc) if it is a union of countably many subsets which includes no antichains of size $\geq n$. It is said to satisfy the Borel σ -n-chain condition(Borel σ -n-cc) if these subsets can be chosen to be Borel.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Galvin and Hajnal 1977)

Every σ -n-cc poset is σ -linked.

Back ground, part. I: Maharam's version of Von Neumann's problem

Theorem (Balcar, Jech and Pazák 2003)

Assume the P-ideal dichotomy. Let B be a complete Boolean algebra. The following are equivalent:

- **1** B is ccc and σ -weakly distributive.
- **2** There is a strictly positive exhaustive submeasure on B.

Theorem (Todorcevic 2004)

Let B be a complete Boolean algebra. The following are equivalent:

- **(**) B satisfies σ -finite chain condition and is σ -weakly distributive.
- Interest of the second seco

A Polish space is a separable completely metrizable space. Given a Polish space X, a Borel set is an element of the σ -algebra generated by its open sets.

Fact

Every Polish space is a continuous surjective image of the Baire space ω^{ω} .

A Borel graph is graph G = (V, E) such that V is a Polish space and E is a Borel subset of the product space V^2 .

Definition

A Borel poset is a poset (P, \leq) such that P is a Polish space and \leq is a Borel subset of the product space P^2 .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

The Borel chromatic number $\chi_B(G)$ of a Borel graph G = (V, E) is the smallest cardinality κ such that there is a Polish space X and an edge preserving Borel mapping from G to (X, \emptyset) .

Theorem (Kechris, Solecki and Todorcevic 1999)

There is a Borel graph G_0 so that for any Borel graph G, exactly one of the following happens:

•
$$\chi_B(G) \leq leph_0$$
, or

2 There is a continuous edge preserving mapping from G_0 to G.

Theorem (Harrington, Marker and Shelah 1988)

Let (P, \leq) be a Borel poset. If it cannot be written as a countable union of Borel chains, then it includes a perfect subset of pairwise incomparable elements.

The hierachy of Borel chain conditions

Definition

Given a poset, it is said to be:

- Borel σ-finite chain condition (σ-fcc) if it is a union of countably many Borel subsets which includes no infinite antichains.
- Observe a server of a serv
- Borel *σ*-*n*-linked if it is an union of countably many Borel *n*-linked subsets.
- **4** Borel σ -linked if it is Borel σ -2-linked.
- Borel σ-centred if it is a union of countable many Borel centred subsets.

Given a topological space X, we define the Todorcevic Order T(X) over X to be the poset consists with compact subsets of X with only finitely many limit points, ordered by reverse inclusion that preserves non-limit points.

Fact

When X is countable, T(X) can be regarded as a subspace of 2^X equipped with the usual product topology.

Theorem (Todorcevic-X.2020)

Suppose for a Borel definable topological space X there is a collection of analytic subsets $C = \{X_t : t \in 2^{<\omega}\}$ such that:

- **1** If $t \sqsubseteq s$ then $X_s \subset X_t$.
- ② For each $b \in 2^{\omega}$, ∩_{n< ω}X_{b|n} is a singleton. For each branch b, call the only element in this singleton x_b.

• For any sequence $\{b_k \in 2^{\omega}\}_{k < \omega}$ and $b \in 2^{\omega}$ such that $\lim_{k \to \infty} |b \lor b_k| = \omega$ and $b(|b \lor b_k| + 1) = 0$ for all k, then $x_{b_k} \to x_b$ in X for any $x_{b_k} \in \bigcap_{n < \omega} X_{b_k|n}$ and $x_b \in \bigcap_{n < \omega} X_{b|n}$. (Here $b_0 \lor b_1$ denote the maximum node contained in both b_0 and b_1 for two branches b_0 and b_1 of the tree $2^{<\omega}$).

Then T(X) is not Borel σ -fcc.

Corollary (Todorcevic-X.2020)

There is a poset that is σ -fcc but not Borel σ -fcc.

Proof.

Given a collection $\{X_t : t \in 2^{<\omega}\}$ as stated in the theorem, Let $P = \{\langle r_0, r_1, ..., r_n \rangle$: for all $0 < k \le n, r_k \in 2^{<\omega}$, there is an strictly increasing sequence $\{h_k\}_{0 < k \le n}$ of natural numbers so that $|r_n| > h_n, r_0(h_k) = 0$ for all $0 < k \le n$ and $r_k \sqsupseteq r_0|_{(h_k-1)} \frown 1\}$. Order it by $p_0 < p_1$ if p_0 coordinate-wisely extends a $p' \in P$ that end extends p_1 as a sequence.

continued...

Then any generic ultrafilter G of P gives a sequence as in the condition (3) of the theorem and thus gives a convergent sequence S_G with first coordinate being its limit. If $P = \bigcup_n P_n$, by Shoenfield's absoluteness theorem, there is a $p \in P$ and an integer *n* so that $S_G \in P_n$ whenever $p \in G$. Starting with a generic ultrafilter G_0 containing p, we can construct a sequence of generic ultrafilters G_n extending containing p, such that the first coordinate (the limit) of S_{G_n} is the n'th coordinate of S_{G_0} and the next *n* coordinates are the same with the corresponding coordinates of S_{G_0} . Then S_{G_n} is an infinite antichain in T(X).

Given a poset, it is said to be:

- Borel σ-finite chain condition (σ-fcc) if it is a union of countably many Borel subsets which includes no infinite antichains.
- Observe a server a server
- Sorel *σ*-*n*-linked if it is an union of countably many Borel *n*-linked subsets.
- **④** Borel σ -linked if it is Borel σ -2-linked.
- Sorel σ-centred if it is a union of countable many Borel centred subsets.

Theorem (X.)

This hierarchy is strict. Moreover, there is a Borel poset that is Borel σ -n-linked for every n but fails to be Borel σ -centred.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

A poset is said to satisfy the Borel σ -*n*-chain condition(σ -*n*-cc) if it is a union of countably many Borel subsets which includes no antichains of size $\geq n$.

It turns out that this result admits its Borel version.

Theorem (X.)

Every Borel σ -n-cc poset that has Borel incompatibility is Borel σ -linked.

A (non-directed simple) hypergraph on a set X is the pair

G = (X, E) where $E \subset \bigcup_{1 < n < \omega} X^n$.

G is a Borel hypergraph when X is a Polish space and E is Borel with the induced topology.

Definition

Let G = (X, E) be a hypergraph. The poset $\mathbb{D}(G)$ consists with the finite anticliques of G, ordered by reverse inclusion.

Fact

When G is a Borel hypergraph, then $\mathbb{D}(G)$ is naturally a Borel poset.

A family of hypergraphs inspired by the graph G_0

For each tree T, fix a dense subset $D_T \subset T$ that intersects each level exactly once. Consider the following hypergraphs:

Definition

- G₀(n) is the graph defined on the branches of the tree T = n^ω. The edges are of the form {d − {i} − {j} − t, d − {j} − t} for some d ∈ D_T, t ∈ [T] and 0 ≤ i ≠ j < n.
- ② $G_0(<\omega)$ is the graph defined on the branches of tree $T = [\bigcup_{n < \omega} n^n]$. The edges are of the form $\{d \frown \{i\} \frown t, d \frown \{j\} \frown t\}$ for some $d \in D_T$, $t \in [\bigcup_{n > |d|} n^n]$ and $0 \le i \ne j \le |d|$.

3 $G'_0(<\omega)$ is the hypergraph defined on the branches of tree $T = [\bigcup_{n < \omega} n^n]$. The edges are of the form $\{d \frown \{i\} \frown t\}_{0 \le i < |d|}$ for some $d \in D_T$, and $t \in [\bigcup_{n > |d|} n^n]$.

Theorem (X.)

- **1** $\mathbb{D}(G_0(<\omega))$ is Borel σ -fcc but is not Borel σ -bcc.
- **2** $\mathbb{D}(G_0(2))$ is Borel σ -bcc but is not σ -n-linked for any n.
- Sor every n > 2, D(G₀(n)) is Borel σ-(n-1)-linked but is not Borel σ-n-linked.

 D(G'₀(< ω)) is Borel σ-n-linked for every n but is not Borel σ-centred.

Proof.

The fact that $\mathbb{D}(G_0(2))$ cannot be Borel σ -linked follows from the classical result that the Borel chromatic number of $G_0(2)$ is uncountable:

Every non-meager Borel set is comeager in some open subset, and every open subset includes an edge.

Proof.

Use the following partition: For each integer *i* let U_i be the collection of size *i* subsets $\{t_1, ..., t_i\} \subset 2^{<\omega}$ such that for any $b_1 \sqsupset t_1, ..., b_i \sqsupset t_i, \{b_l, b_m\}$ is not an edge for $0 < l \neq m \leq i$. For each tuple $\tau = \{t_1, ..., t_i\} \in U_i$, let Q_{τ} be the collection of all size *i* subsets $\{b_1, ..., b_i\} \subset n^{\omega}$ such that $b_1 \sqsupset t_1, ..., b_i \sqsupset t_i$.

Thank you!

・ロト・(四)・(日)・(日)・(日)・(日)