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Complexity of countable structures

A structure consists of a set (called the domain) on which we have
constants, operations and relations.

Examples
• The group (Q; 0,+).

• The linear ordering (N;≤).

• The ring (Q[x ]; 0, 1,+,×).

• The ordered ring (Z; 0, 1,+,×,≤).

Some structure are more complicated than others.

Can we measure this complexity? How?
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Three aspects of complexity

Orbit complexity:
How complex are the automorphism orbits of tuples.

Identification complexity:
How difficult is it to recognize the structure from other structures?

Isomorphism complexity:
How complex are isomorphisms between representations of the structure?

Three tools used to measure complexity:

Back-and-forth relations

Borel/Baire complexity

Infinitary formulas
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Three aspects of complexity

Orbit complexity:
How complex are the automorphism orbits of tuples.

Identification complexity:
How difficult is it to recognize the structure from other structures?

Isomorphism complexity:
How complex are isomorphisms between representations of the structure?

Three tools used to measure complexity:

Back-and-forth relations for orbit complexity.

Borel/Baire complexity for identification and isomorphism complexity.

Infinitary formulas for orbit and identification complexity.
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The main theorem

Theorem: [M. 15] Let α be a succesor ordinal and A a countable structure.
The following are equivalent:

All automorphism orbits in A are Σin
α -definable.

The set of representations of A is Πα+1 in the Borel hierarchy.

There is an isomorphism function that is of Baire class α− 1.

Definition: Let Rank(A) be the least such α.

Other definitions of rank had been proposed: [Scott 65][Sacks 07][Ash–Knight 00]...
However, this is the first equivalence theorem.
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Technique 1

Technique 1: Back-and-forth relations
for orbit complexity.

Ash-Knight’s version, in the spirit of Scott’s original definition.
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Technique 1: The back-and-forth relations

Fix a structure A = (A; eA, ∗A, .. ≤A, ..).

Consider tuples ā, b̄ ∈ A<N.

Idea: For n ∈ N, define relations ā ≤n b̄ which say that ā looks like b̄.
akRank(A) = the least n (ā ≤n b̄ =⇒ ā ∼= b̄) where ∼= means automorphic.

Define:

• ā ≡0 b̄ ⇐⇒ ā and b̄ generate isomorphic structures matching ā and b̄

• ā ≤1 b̄ ⇐⇒ ∀d̄ ∈ A<N ∃c̄ ∈ A<N āc̄ ≡0 b̄d̄ .

• ā ≤2 b̄ ⇐⇒ ∀d̄ ∈ A<N ∃c̄ ∈ A<N āc̄ ≥1 b̄d̄ .

•
...

• ā ≤n+1 b̄ ⇐⇒ ∀d̄ ∈ A<N ∃c̄ ∈ A<N āc̄ ≥n b̄d̄ .

•
...

• ā ≤ω b̄ ⇐⇒ ∀n ∈ N ā ≤n b̄.

• ā ≤ω+1 b̄ ⇐⇒ ∀d̄ ∈ A<N ∃c̄ ∈ A<N āc̄ ≥ω b̄d̄ .

•
...
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• ā ≡0 b̄ ⇐⇒ ā and b̄ generate isomorphic structures matching ā and b̄
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•
...
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•
...

Antonio Montalbán (U.C. Berkeley) Scott rank August 2021 6 / 26



Technique 1: The back-and-forth relations

Fix a structure A = (A; eA, ∗A, .. ≤A, ..). Consider tuples ā, b̄ ∈ A<N.
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• ā ≤1 b̄ ⇐⇒ ∀d̄ ∈ A<N ∃c̄ ∈ A<N āc̄ ≡0 b̄d̄ .
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akRank(A) = the least n (ā ≤n b̄ =⇒ ā ∼= b̄) where ∼= means automorphic.

Define:
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Examples

• ā ≡0 b̄ ⇐⇒ ā and b̄ generate isomorphic structures matching ā and b̄

• ā ≤1 b̄ ⇐⇒ ∀d̄ ∈ A<N ∃c̄ ∈ A<N āc̄ ≡0 b̄d̄ .

Consider the order (Q;<):

• (a1, ..., ak) ≡0 (b1, ...., bk) ⇐⇒ (∀i , j < k) ai < aj ↔ bi < bj .

• ⇐⇒ (a1, ..., ak) ∼=Q (b1, ...., bk).

Thus, ā ≡0 b̄ ⇐⇒ ā ∼= b̄, and akRank(Q;<) = 0.
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Consider the order (Q;<):

• (a1, ..., ak) ≡0 (b1, ...., bk) ⇐⇒ (∀i , j < k) ai < aj ↔ bi < bj .

• ⇐⇒ (a1, ..., ak) ∼=Q (b1, ...., bk).
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• ā ≡0 b̄ ⇐⇒ ā and b̄ generate isomorphic structures matching ā and b̄
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Technique 1: The back-and-forth relations

Fix a structure A = (A; eA, ∗A, .. ≤A, ..). Consider tuples ā, b̄ ∈ A<N.

Idea: For n ∈ N, define relations ā ≤n b̄ which say that ā looks like b̄.
akRank(A) = the least n (ā ≤n b̄ =⇒ ā ∼= b̄) where ∼= means automorphic.

Define:

• ā ≡0 b̄ ⇐⇒ ā and b̄ generate isomorphic structures matching ā and b̄

• ā ≤1 b̄ ⇐⇒ ∀d̄ ∈ A<N ∃c̄ ∈ A<N āc̄ ≡0 b̄d̄ .

• ā ≤2 b̄ ⇐⇒ ∀d̄ ∈ A<N ∃c̄ ∈ A<N āc̄ ≥1 b̄d̄ .

•
...

• ā ≤n+1 b̄ ⇐⇒ ∀d̄ ∈ A<N ∃c̄ ∈ A<N āc̄ ≥n b̄d̄ .

•
...

• ā ≤ω b̄ ⇐⇒ ∀n ∈ N ā ≤n b̄.

• ā ≤ω+1 b̄ ⇐⇒ ∀d̄ ∈ A<N ∃c̄ ∈ A<N āc̄ ≥ω b̄d̄ .

•
...
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• ā ≤1 b̄ ⇐⇒ ∀d̄ ∈ A<N ∃c̄ ∈ A<N āc̄ ≡0 b̄d̄ .
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• ā ≤ω+1 b̄ ⇐⇒ ∀d̄ ∈ A<N ∃c̄ ∈ A<N āc̄ ≥ω b̄d̄ .
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• ā ≡0 b̄ ⇐⇒ ā and b̄ generate isomorphic structures matching ā and b̄
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•
...

Antonio Montalbán (U.C. Berkeley) Scott rank August 2021 9 / 26



Ordinals

0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω = ω2, ω2 + 1, ω2 + 2 ..., ω3, ..., ω4,
..., ω · ω = ω2, ... ω3 ,..., ω4,... ωω,... ωω

ω
,.......

Definition:
A linear ordering (A;≤A) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

A is isomorphic to an initial segment of B

B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Transfinite recursion: (∀H : X ordinals → X ) (∃F : ordinals → X )

F (α) = H(F �{β : β < α})
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Orbit complexity via back-and-forth relations

Fix a structure A = (A; eA, ∗A, ...,≺A, ...). Consider tuples ā, b̄ ∈ A<N.

Define:

• ā ≡0 b̄ ⇐⇒ ā and b̄ generate isomorphic structures matching ā and b̄

• ā ≤α b̄ ⇐⇒ (∀β < α) ∀d̄ ∈ A<N ∃c̄ ∈ A<N āc̄ ≥β b̄d̄ .

Theorem: [Scott ’60s]

There exists an ordinal α such that ∀ā, b̄ ∈ A<N (ā ≤α b̄ =⇒ ā ∼= b̄)

akRank(A) = the least α (ā ≤α b̄ =⇒ ā ∼= b̄) where ∼= means automorphic.

This is Ash-Knight’s version, which is in the style of Scotts original definition, but closer in value to ours.

(Do not read:) In reality we use the back-and-forth rank:

bfRank(A) = least α ∀ā ∈ A<N ∃ā′ ∈ A<N ∀b̄b̄′ ∈ A<N, āā′ ≤α b̄b̄′⇒ ā ∼=A b̄
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• ā ≤α b̄ ⇐⇒ (∀β < α) ∀d̄ ∈ A<N ∃c̄ ∈ A<N āc̄ ≥β b̄d̄ .
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• ā ≡0 b̄ ⇐⇒ ā and b̄ generate isomorphic structures matching ā and b̄
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Theorem: [Scott ’60s]

There exists an ordinal α such that ∀ā, b̄ ∈ A<N (ā ≤α b̄ =⇒ ā ∼= b̄)
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Lemma: [M. 15] akRank(A) ≤ bfRank(A) ≤ akRank(A) + 1.

Antonio Montalbán (U.C. Berkeley) Scott rank August 2021 11 / 26



Orbit complexity via back-and-forth relations

Fix a structure A = (A; eA, ∗A, ...,≺A, ...). Consider tuples ā, b̄ ∈ A<N.
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Theorem: [Scott ’60s]

There exists an ordinal α such that ∀ā, b̄ ∈ A<N (ā ≤α b̄ =⇒ ā ∼= b̄)
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Lemma: [M. 15] akRank(A) ≤ bfRank(A) ≤ akRank(A) + 1.

Antonio Montalbán (U.C. Berkeley) Scott rank August 2021 11 / 26



Orbit complexity via back-and-forth relations

Fix a structure A = (A; eA, ∗A, ...,≺A, ...). Consider tuples ā, b̄ ∈ A<N.
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Technique 2

Technique 2: Borel/Baire complexity
for identification and isomorphism complexity.
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Technique 2: Representations of structures

Note: Every countable structure is isomorphic to one with domain N.

Fix a vocabulary τ . Say τ = {e, ∗,≺}.

Definition: Let Xτ be the set of structures on vocabulary τ and domain N.

Note: C ∈ Xτ ⇐⇒ C is of the form C = (N; eC , ∗C ,≺C ),

where eC ∈ N, ∗C ∈ NN×N and ≺C∈ 2N×N.

Xτ ∼= N× NN×N × 2N×N ⊆ N1tN×NtN×N ∼= NN.

Equip Xτ with the topology from NN given by the power of the discrete topology.
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The space of structures Xτ

Definition: Let Xτ be the set of structures on vocabulary τ and domain N.

Xτ inherits its topology from NN.

Definition: For a structure A, let Copies(A) = {B ∈ Xτ : B ∼= A}.

Theorem: [Scot 65, Lopez Escobar 65] For every A, Copies(A) is Borel.

Recall:
The Borel sets are the smallest σ-algebra containing the opens sets.

They are built from the clopen sets using countable unions and intersections.

We can measure identification complexity of A in terms of the Borel complexity of Copies(A).
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Depths of Borel sets

We count alternations of
⋃

versus
⋂

.

A Σn subset of Xτ (or of NN):
⋃
i0∈N

⋂
i1∈N

⋃
i2∈N

⋂
i3∈N

· · ·︸ ︷︷ ︸
n alternations

(
Ci0,i1,...,in

)
︸ ︷︷ ︸

clopen

A Πn subset of Xτ (or of NN):

︷ ︸︸ ︷⋂
i0∈N

⋃
i1∈N

⋂
i2∈N

⋃
i3∈N

· · ·
︷ ︸︸ ︷(
Ci0,i1,...,in

)
• Σ1 same as open

• Π1 same as closed

• Σ2 same as Fσ
• Π2 same as Gδ⋃

n∈N Πn is not a σ-algebra yet, so not all the Borel sets.
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ordinal depths of Borel sets

A Σα subset of Xτ is a countable union of Πβ sets for β < α

Lemma: Every Borel set is Πα for some countable ordinal α.

Definition: Copies(A) = {B : B ∼= A and B has domain N}.
Theorem: [Scot 65, Lopez Escobar 65] For every A, Copies(A) is Borel.

Definition: Let BorelRank(A) be the least α such that Copies(A) is Πα+1.

Theorem: [M. 15] BorelRank(A) = bfRank(A).

Example2: Copies(Q;<) is Π2 and Rank(Q;<) = 1.

Copies(Z;<) is Π3 and Rank(Z;<) = 2.

Antonio Montalbán (U.C. Berkeley) Scott rank August 2021 16 / 26



ordinal depths of Borel sets

A Σα subset of Xτ is a countable union of Πβ sets for β < α

Lemma: Every Borel set is Πα for some countable ordinal α.

Definition: Copies(A) = {B : B ∼= A and B has domain N}.
Theorem: [Scot 65, Lopez Escobar 65] For every A, Copies(A) is Borel.

Definition: Let BorelRank(A) be the least α such that Copies(A) is Πα+1.

Theorem: [M. 15] BorelRank(A) = bfRank(A).

Example2: Copies(Q;<) is Π2 and Rank(Q;<) = 1.

Copies(Z;<) is Π3 and Rank(Z;<) = 2.

Antonio Montalbán (U.C. Berkeley) Scott rank August 2021 16 / 26



ordinal depths of Borel sets

A Πα subset of Xτ is a countable intersection of Σβ sets for β < α.

Lemma: Every Borel set is Πα for some countable ordinal α.

Definition: Copies(A) = {B : B ∼= A and B has domain N}.
Theorem: [Scot 65, Lopez Escobar 65] For every A, Copies(A) is Borel.

Definition: Let BorelRank(A) be the least α such that Copies(A) is Πα+1.

Theorem: [M. 15] BorelRank(A) = bfRank(A).

Example2: Copies(Q;<) is Π2 and Rank(Q;<) = 1.

Copies(Z;<) is Π3 and Rank(Z;<) = 2.

Antonio Montalbán (U.C. Berkeley) Scott rank August 2021 16 / 26



ordinal depths of Borel sets

A Πα subset of Xτ is a countable intersection of Σβ sets for β < α.

Lemma: Every Borel set is Πα for some countable ordinal α.

Definition: Copies(A) = {B : B ∼= A and B has domain N}.
Theorem: [Scot 65, Lopez Escobar 65] For every A, Copies(A) is Borel.

Definition: Let BorelRank(A) be the least α such that Copies(A) is Πα+1.

Theorem: [M. 15] BorelRank(A) = bfRank(A).

Example2: Copies(Q;<) is Π2 and Rank(Q;<) = 1.

Copies(Z;<) is Π3 and Rank(Z;<) = 2.

Antonio Montalbán (U.C. Berkeley) Scott rank August 2021 16 / 26



ordinal depths of Borel sets

A Πα subset of Xτ is a countable intersection of Σβ sets for β < α.

Lemma: Every Borel set is Πα for some countable ordinal α.

Definition: Copies(A) = {B : B ∼= A and B has domain N}.

Theorem: [Scot 65, Lopez Escobar 65] For every A, Copies(A) is Borel.

Definition: Let BorelRank(A) be the least α such that Copies(A) is Πα+1.

Theorem: [M. 15] BorelRank(A) = bfRank(A).

Example2: Copies(Q;<) is Π2 and Rank(Q;<) = 1.

Copies(Z;<) is Π3 and Rank(Z;<) = 2.

Antonio Montalbán (U.C. Berkeley) Scott rank August 2021 16 / 26



ordinal depths of Borel sets

A Πα subset of Xτ is a countable intersection of Σβ sets for β < α.

Lemma: Every Borel set is Πα for some countable ordinal α.

Definition: Copies(A) = {B : B ∼= A and B has domain N}.
Theorem: [Scot 65, Lopez Escobar 65] For every A, Copies(A) is Borel.

Definition: Let BorelRank(A) be the least α such that Copies(A) is Πα+1.

Theorem: [M. 15] BorelRank(A) = bfRank(A).

Example2: Copies(Q;<) is Π2 and Rank(Q;<) = 1.

Copies(Z;<) is Π3 and Rank(Z;<) = 2.

Antonio Montalbán (U.C. Berkeley) Scott rank August 2021 16 / 26



ordinal depths of Borel sets

A Πα subset of Xτ is a countable intersection of Σβ sets for β < α.

Lemma: Every Borel set is Πα for some countable ordinal α.

Definition: Copies(A) = {B : B ∼= A and B has domain N}.
Theorem: [Scot 65, Lopez Escobar 65] For every A, Copies(A) is Borel.

Definition: Let BorelRank(A) be the least α such that Copies(A) is Πα+1.

Theorem: [M. 15] BorelRank(A) = bfRank(A).

Example2: Copies(Q;<) is Π2 and Rank(Q;<) = 1.

Copies(Z;<) is Π3 and Rank(Z;<) = 2.

Antonio Montalbán (U.C. Berkeley) Scott rank August 2021 16 / 26



ordinal depths of Borel sets

A Πα subset of Xτ is a countable intersection of Σβ sets for β < α.

Lemma: Every Borel set is Πα for some countable ordinal α.

Definition: Copies(A) = {B : B ∼= A and B has domain N}.
Theorem: [Scot 65, Lopez Escobar 65] For every A, Copies(A) is Borel.

Definition: Let BorelRank(A) be the least α such that Copies(A) is Πα+1.

Theorem: [M. 15] BorelRank(A) = bfRank(A).

Example2: Copies(Q;<) is Π2 and Rank(Q;<) = 1.

Copies(Z;<) is Π3 and Rank(Z;<) = 2.

Antonio Montalbán (U.C. Berkeley) Scott rank August 2021 16 / 26



ordinal depths of Borel sets

A Πα subset of Xτ is a countable intersection of Σβ sets for β < α.

Lemma: Every Borel set is Πα for some countable ordinal α.

Definition: Copies(A) = {B : B ∼= A and B has domain N}.
Theorem: [Scot 65, Lopez Escobar 65] For every A, Copies(A) is Borel.

Definition: Let BorelRank(A) be the least α such that Copies(A) is Πα+1.

Theorem: [M. 15] BorelRank(A) = bfRank(A).

Example2: Copies(Q;<) is Π2 and Rank(Q;<) = 1.

Copies(Z;<) is Π3 and Rank(Z;<) = 2.

Antonio Montalbán (U.C. Berkeley) Scott rank August 2021 16 / 26



ordinal depths of Borel sets

A Πα subset of Xτ is a countable intersection of Σβ sets for β < α.

Lemma: Every Borel set is Πα for some countable ordinal α.

Definition: Copies(A) = {B : B ∼= A and B has domain N}.
Theorem: [Scot 65, Lopez Escobar 65] For every A, Copies(A) is Borel.

Definition: Let BorelRank(A) be the least α such that Copies(A) is Πα+1.

Theorem: [M. 15] BorelRank(A) = bfRank(A).

Example2: Copies(Q;<) is Π2 and Rank(Q;<) = 1.

Copies(Z;<) is Π3 and Rank(Z;<) = 2.

Antonio Montalbán (U.C. Berkeley) Scott rank August 2021 16 / 26



Isomorphism funtions

Definition: F : Copies(A)2 → NN is an isomorphism function for A if
for any two copies, C,D, of A with domain N,

F (C,D) is an isomorphism from C to D.

We can measure isomorphism complexity of A in terms of its isomorphism function.

Definition: A function is
• of Baire class 0 if it is continuous.

• of Baire class 1 if it is a pointwise limit of continuous functions.

• A funcion is Borel ⇐⇒ it is of Baire class α for some α.

• Every structure A has a Borel isomorphism function

Definition: Let Rank(A) be 1+ the least such α.
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Examples

Consider the order (Q;<):

Let C = (N;<C ) and D = (N;<D) be two copies of (Q;<).

(Q;<) has a continuous isomorphism function.

Consider the order (Z;<):

Let C = (N;<C ) and D = (N;<D) be two copies of (Z;<).
(Z;<) has an isomorphism function of Baire class 1.
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Isomorphism funtions
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for any two C,D ∈ Copies(A), F (C,D) is an isomorphism from C to D.

We can measure isomorphism complexity of A in terms of its isomorphism function.

Definition: A function is
• of Baire class 0 if it is continuous.

• of Baire class 1 if it is a pointwise limit of continuous functions.

• of Baire class 2 if it is a pointwise limit of functions of Baire class 1.
...

Definition: Let BaireRank(A) be the least α such that
A has an isomorphism function that is of Baire class α− 1.

Theorem: [M. 15] BorelRank(A) = BaireRank(A).

Recall: BorelRank(A) is the least α such that Copies(A) is Πα+1 in the Borel hierarchy.
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Technique 3

Technique 3: Infinitary formulas
for orbit and identification complexity.
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Technique 3: The infinitary 1st-order language

A vocabulary is a set of symbols for constants, functions, and relations.

For instance, τ = {0, 1,+,×, <} is a vocabulary.

We then have rules to write down formulas using the vocabulary, the
logical symbols ∧,∨, →,¬,∀, ∃, and variable symbols, x , y , z , ....

For instance, ∀y(x < y → ∀z(z + x < z + y + 1)) is a well-formed formula,
with free variable x .

Given a structure A, a formula ϕ(x̄), and ā ∈ A<N,
one can define what it means for ϕ to be true of ā in A (we write A |= ϕ(ā)).

In 1st-order languages, ∀ and ∃ range over the elements of the structure.
In infinitary languages, conjunctions and disjunctions can be infinitary.
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Infinitary 1st-order formulas

In 1st-order languages, ∀ and ∃ range over the elements of the structure.

In infinitary languages, conjunctions and disjunctions can be infinitary.

Example:

torsion(x) ≡
∨
n∈N

(x ∗ x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
n times

= e),

In a group G = (G ; e, ∗): divisible(x) ≡
∧
n∈N
∃y(y ∗

︷ ︸︸ ︷
y ∗ y ∗ · · · ∗ y = x),

Theorem: [Scott 65] For every automorphism invariant set B ⊂ Ak ,
there is an infinitary formula ϕ(x̄) such that B = {b̄ ∈ Ak : A |= ϕ(b̄)}.

We can measure orbit complexity of A using the complexity of these formulas.

Theorem: [Scott 65] For every countable structure A, there is an infinitary
sentence ψA such that, for countable structures C, C |= ψA ⇐⇒ C ∼= A.

We can measure identification complexity of A in terms of the complexity of ψA.
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Depths of infinitary formulas

We count alternations of ∃ and
∨

versus ∀ and
∧

.

A Σin
n formula is one of the form:∨
i0∈N
∃ȳ0︸ ︷︷ ︸

∧
i1∈N
∀ȳ1︸ ︷︷ ︸

∨
i2∈N
∃ȳ2︸ ︷︷ ︸

∧
i3∈N
∀ȳ3︸ ︷︷ ︸ · · ·︸ ︷︷ ︸

n alternations

(
ψi0,i1,...,in(x̄ , ȳ0, ȳ1, ..., ȳn)

)
︸ ︷︷ ︸

finitary, quantifier free

A Πin
n formula is one of the form:∧
i0∈N
∀ȳ0︸ ︷︷ ︸

∨
i1∈N
∃ȳ1︸ ︷︷ ︸

∧
i2∈N
∀ȳ2︸ ︷︷ ︸

∨
i3∈N
∃ȳ3︸ ︷︷ ︸ · · ·︸ ︷︷ ︸

n alternations

(
ψi0,i1,...,in(x̄ , ȳ0, ȳ1, ..., ȳn)

)
︸ ︷︷ ︸

finitary, quantifier free
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∃ȳ0︸ ︷︷ ︸

∧
i1∈N
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∀ȳ2︸ ︷︷ ︸

∨
i3∈N
∃ȳ3︸ ︷︷ ︸ · · ·︸ ︷︷ ︸

n alternations

(
ψi0,i1,...,in(x̄ , ȳ0, ȳ1, ..., ȳn)
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ordinal depths of infinitary formulas

A Σin
α formula is one of the form:

∨
i∈N
∃ȳ

(
ψi (x̄ , ȳ)

)
︸ ︷︷ ︸
Πin
β for β<α

Theorem: [Scott 65] For every automorphism invariant set B ⊂ Ak ,
there is an infinitary formula ϕ(x̄) such that B = {b̄ ∈ Ak : A |= ϕ(b̄)}.

Definition: Let OrbitRank(A) be the least α such that
every automorphism orbit is Σin

α -definable.

Theorem: [Scott 65] For every countable structure A, there is an infinitary sentence ψA
such that, for countable structures C, C |= ψA ⇐⇒ C ∼= A.

Definition: Let SSRank(A) be the least α such that
there is a Πin

α+1 sentence true only about A among countable structures.

Theorem:
• SSRank(A) = BorelRank(A). [Lopez Escobar 65, Vaught 75]

• SSRank(A) = OrbitRank(A). [M. 15]
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)
︸ ︷︷ ︸
Σin
γ for γ<β

Definition: Let OrbitRank(A) be the least α such that
every automorphism orbit is Σin

α -definable.

Definition: Let SSRank(A) be the least α such that
there is a Πin

α+1 sentence true only about A among countable structures.

Theorem:
• SSRank(A) = BorelRank(A). [Lopez Escobar 65, Vaught 75]

• SSRank(A) = OrbitRank(A). [M. 15]

Antonio Montalbán (U.C. Berkeley) Scott rank August 2021 24 / 26



ordinal depths of infinitary formulas

A Πin
β formula is one of the form:

∧
i∈N
∀ȳ
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Examples

Consider the order (Q;<):

• (a1, ..., ak) ∼= (b1, ...., bk) ⇐⇒ (∀i , j < k) ai < aj ↔ bi < bj .

• The automorphism orbit of (1/2, 7, 4) is defined by a formula
ϕ(x1, x2, x3) ≡ x1 < x3 ∧ x3 < x2. Σin

1

• (Q;<) is the unique countable dense linear order with no endpoints Πin
2

Rank(Q;<) = 1.

Consider the order (Z;<):

• The automorphism orbit of (−1, 2) is defined by a formula ϕ(x1, x2) ≡
x1 < x2 ∧ ∃y1, y2 (x1<y1<y2<x2 ∧ ∀z (x1 < z < x2 → z = y1 ∨ z = y2)). Σin

2

• (Z;<) is the linear order with no endpoints with all intervals finite. Πin
3

Rank(Z;<) = 2.
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Rank(·) is a robust measure of complexity

Theorem: [M. 15] Let α be an ordinal and A a countable structure.
The following are equivalent:

Orbit complexity
• ∀ā ∈ A<N ∃ā′ ∈ A<N ∀b̄, b̄′ ∈ A<N, āā′ ≤α b̄b̄′⇒ ā ∼=A b̄.

• All automorphism orbits in A are Σin
α -definable.

Identification complexity
• The set of copies of A is Πα+1 in the Borel hierachy.

• There is a Πin
α+1 sentence uniquely identifying A.

Isomorphism complexity
• A has an isomorphism function that is of Baire class α− 1.

Let Rank(A) be the least such α.
= bfRank(A) = OrbitRank(A) = BorelRank(A) = SSRank(A) = BaireRank(A).
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