Scott complexity of countable structures

Antonio Montalbán

U.C. Berkeley

August 2021 2021 Fudan Logic Summer School Shanghai

A *structure* consists of a set (called the domain) on which we have constants, operations and relations.

A *structure* consists of a set (called the domain) on which we have constants, operations and relations.

Examples

• The group $(\mathbb{Q}; 0, +)$.

A *structure* consists of a set (called the domain) on which we have constants, operations and relations.

- The group $(\mathbb{Q}; 0, +)$.
- The linear ordering $(\mathbb{N}; \leq)$.

A *structure* consists of a set (called the domain) on which we have constants, operations and relations.

- The group $(\mathbb{Q}; 0, +)$.
- The linear ordering $(\mathbb{N}; \leq)$.
- The ring (ℚ[x]; 0, 1, +, ×).

A *structure* consists of a set (called the domain) on which we have constants, operations and relations.

- The group $(\mathbb{Q}; 0, +)$.
- The linear ordering $(\mathbb{N}; \leq)$.
- The ring $(\mathbb{Q}[x]; 0, 1, +, \times)$.
- The ordered ring (\mathbb{Z} ; 0, 1, +, ×, \leq).

A *structure* consists of a set (called the domain) on which we have

constants, operations and relations.

- The group $(\mathbb{Q}; 0, +)$.
- The linear ordering $(\mathbb{N}; \leq)$.
- The ring (ℚ[x]; 0, 1, +, ×).
- The ordered ring (\mathbb{Z} ; 0, 1, +, ×, \leq).

A *structure* consists of a set (called the domain) on which we have

constants, operations and relations.

Examples

- The group $(\mathbb{Q}; 0, +)$.
- The linear ordering $(\mathbb{N}; \leq)$.
- The ring $(\mathbb{Q}[x]; 0, 1, +, \times)$.
- The ordered ring $(\mathbb{Z}; 0, 1, +, \times, \leq)$.

Some structure are more complicated than others.

A *structure* consists of a set (called the domain) on which we have

constants, operations and relations.

Examples

- The group $(\mathbb{Q}; 0, +)$.
- The linear ordering $(\mathbb{N}; \leq)$.
- The ring (ℚ[x]; 0, 1, +, ×).
- The ordered ring $(\mathbb{Z}; 0, 1, +, \times, \leq)$.

Some structure are more complicated than others.

Can we measure this complexity? How?

Orbit complexity:

How complex are the automorphism orbits of tuples.

Orbit complexity:

How complex are the automorphism orbits of tuples.

Identification complexity:

How difficult is it to recognize the structure from other structures?

Orbit complexity:

How complex are the automorphism orbits of tuples.

Identification complexity:

How difficult is it to recognize the structure from other structures?

Isomorphism complexity:

How complex are isomorphisms between representations of the structure?

Orbit complexity:

How complex are the automorphism orbits of tuples.

Identification complexity:

How difficult is it to recognize the structure from other structures?

Isomorphism complexity:

How complex are isomorphisms between representations of the structure?

Three tools used to measure complexity:

Orbit complexity:

How complex are the automorphism orbits of tuples.

Identification complexity:

How difficult is it to recognize the structure from other structures?

Isomorphism complexity:

How complex are isomorphisms between representations of the structure?

Three tools used to measure complexity:

- Back-and-forth relations
- Borel/Baire complexity
- Infinitary formulas

Orbit complexity:

How complex are the automorphism orbits of tuples.

Identification complexity:

How difficult is it to recognize the structure from other structures?

Isomorphism complexity:

How complex are isomorphisms between representations of the structure?

Three tools used to measure complexity:

- Back-and-forth relations for orbit complexity.
- Borel/Baire complexity for identification and isomorphism complexity.
- Infinitary formulas for orbit and identification complexity.

Theorem: [M. 15] Let α be a successor ordinal and A a countable structure. The following are equivalent:

- All automorphism orbits in \mathcal{A} are Σ_{α}^{in} -definable.
- The set of representations of \mathcal{A} is $\Pi_{\alpha+1}$ in the Borel hierarchy.
- There is an isomorphism function that is of Baire class $\alpha 1$.

Theorem: [M. 15] Let α be a successor ordinal and A a countable structure. The following are equivalent:

- All automorphism orbits in \mathcal{A} are Σ_{α}^{in} -definable.
- The set of representations of \mathcal{A} is $\Pi_{\alpha+1}$ in the Borel hierarchy.
- There is an isomorphism function that is of Baire class $\alpha 1$.

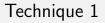
Definition: Let Rank(A) be the least such α .

Theorem: [M. 15] Let α be a successor ordinal and A a countable structure. The following are equivalent:

- All automorphism orbits in \mathcal{A} are Σ_{α}^{in} -definable.
- The set of representations of \mathcal{A} is $\Pi_{\alpha+1}$ in the Borel hierarchy.
- There is an isomorphism function that is of Baire class $\alpha 1$.

Definition: Let Rank(A) be the least such α .

Other definitions of rank had been proposed: [Scott 65][Sacks 07][Ash-Knight 00]... However, this is the first equivalence theorem.



Technique 1: Back-and-forth relations for orbit complexity.

Ash-Knight's version, in the spirit of Scott's original definition.

Fix a structure $\mathcal{A} = (A; e_A, *_A, .. \leq_A, ..).$

Fix a structure $\mathcal{A} = (A; e_A, *_A, .. \leq_A, ..)$. Consider tuples $\bar{a}, \bar{b} \in A^{<\mathbb{N}}$.

Fix a structure $\mathcal{A} = (A; e_A, *_A, .. \leq_A, ..)$. Consider tuples $\bar{a}, \bar{b} \in A^{<\mathbb{N}}$.

Idea: For $n \in \mathbb{N}$, define relations $\bar{a} \leq_n \bar{b}$ which say that \bar{a} looks like \bar{b} .

Fix a structure $\mathcal{A} = (A; e_A, *_A, .. \leq_A, ..)$. Consider tuples $\bar{a}, \bar{b} \in A^{<\mathbb{N}}$.

Idea: For $n \in \mathbb{N}$, define relations $\bar{a} \leq_n \bar{b}$ which say that \bar{a} looks like \bar{b} . $akRank(\mathcal{A}) = \text{the least } n \ (\bar{a} \leq_n \bar{b} \implies \bar{a} \cong \bar{b}) \qquad \text{where }\cong \text{ means automorphic.}$

Fix a structure $\mathcal{A} = (A; e_A, *_A, .. \leq_A, ..)$. Consider tuples $\bar{a}, \bar{b} \in A^{<\mathbb{N}}$.

Idea: For $n \in \mathbb{N}$, define relations $\bar{a} \leq_n \bar{b}$ which say that \bar{a} looks like \bar{b} . $akRank(\mathcal{A}) = \text{the least } n \ (\bar{a} \leq_n \bar{b} \implies \bar{a} \cong \bar{b}) \qquad \text{where }\cong \text{ means automorphic.}$

Define:

• $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b}

Fix a structure $\mathcal{A} = (A; e_A, *_A, .. \leq_A, ..)$. Consider tuples $\bar{a}, \bar{b} \in A^{<\mathbb{N}}$.

Idea: For $n \in \mathbb{N}$, define relations $\bar{a} \leq_n \bar{b}$ which say that \bar{a} looks like \bar{b} . $akRank(\mathcal{A}) = \text{the least } n \ (\bar{a} \leq_n \bar{b} \implies \bar{a} \cong \bar{b}) \qquad \text{where }\cong \text{ means automorphic.}$

- $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b}
- $\bar{a} \leq_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \ \exists \bar{c} \in A^{<\mathbb{N}} \ \bar{a}\bar{c} \equiv_0 \bar{b}\bar{d}.$

Fix a structure $\mathcal{A} = (A; e_A, *_A, .. \leq_A, ..)$. Consider tuples $\bar{a}, \bar{b} \in A^{<\mathbb{N}}$.

Idea: For $n \in \mathbb{N}$, define relations $\bar{a} \leq_n \bar{b}$ which say that \bar{a} looks like \bar{b} . $akRank(\mathcal{A}) = \text{the least } n \ (\bar{a} \leq_n \bar{b} \implies \bar{a} \cong \bar{b}) \qquad \text{where }\cong \text{ means automorphic.}$

- $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b}
- $\bar{a} \leq_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \ \exists \bar{c} \in A^{<\mathbb{N}} \ \bar{a}\bar{c} \equiv_0 \bar{b}\bar{d}.$

Fix a structure $\mathcal{A} = (A; e_A, *_A, .. \leq_A, ..)$. Consider tuples $\bar{a}, \bar{b} \in A^{<\mathbb{N}}$.

Idea: For $n \in \mathbb{N}$, define relations $\bar{a} \leq_n \bar{b}$ which say that \bar{a} looks like \bar{b} . $akRank(\mathcal{A}) = \text{the least } n \ (\bar{a} \leq_n \bar{b} \implies \bar{a} \cong \bar{b}) \qquad \text{where }\cong \text{ means automorphic.}$

- $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b}
- $\bar{a} \leq_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \ \exists \bar{c} \in A^{<\mathbb{N}} \ \bar{a}\bar{c} \equiv_0 \bar{b}\bar{d}.$

Fix a structure $\mathcal{A} = (A; e_A, *_A, .. \leq_A, ..)$. Consider tuples $\bar{a}, \bar{b} \in A^{<\mathbb{N}}$.

Idea: For $n \in \mathbb{N}$, define relations $\bar{a} \leq_n \bar{b}$ which say that \bar{a} looks like \bar{b} . $akRank(\mathcal{A}) = \text{the least } n \ (\bar{a} \leq_n \bar{b} \implies \bar{a} \cong \bar{b}) \qquad \text{where }\cong \text{ means automorphic.}$

- $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b}
- $\bar{a} \leq_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \ \exists \bar{c} \in A^{<\mathbb{N}} \ \bar{a}\bar{c} \equiv_0 \bar{b}\bar{d}.$

Fix a structure $\mathcal{A} = (A; e_A, *_A, .. \leq_A, ..)$. Consider tuples $\bar{a}, \bar{b} \in A^{<\mathbb{N}}$.

Idea: For $n \in \mathbb{N}$, define relations $\bar{a} \leq_n \bar{b}$ which say that \bar{a} looks like \bar{b} . $akRank(\mathcal{A}) = \text{the least } n \ (\bar{a} \leq_n \bar{b} \implies \bar{a} \cong \bar{b}) \qquad \text{where }\cong \text{ means automorphic.}$

- $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b}
- $\bar{a} \leq_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \ \exists \bar{c} \in A^{<\mathbb{N}} \ \bar{a}\bar{c} \equiv_0 \bar{b}\bar{d}.$

Fix a structure $\mathcal{A} = (A; e_A, *_A, .. \leq_A, ..)$. Consider tuples $\bar{a}, \bar{b} \in A^{<\mathbb{N}}$.

Idea: For $n \in \mathbb{N}$, define relations $\bar{a} \leq_n \bar{b}$ which say that \bar{a} looks like \bar{b} . $akRank(\mathcal{A}) = \text{the least } n \ (\bar{a} \leq_n \bar{b} \implies \bar{a} \cong \bar{b}) \qquad \text{where }\cong \text{ means automorphic.}$

- $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b}
- $\bar{a} \leq_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \ \exists \bar{c} \in A^{<\mathbb{N}} \ \bar{a}\bar{c} \equiv_0 \bar{b}\bar{d}.$

• $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b} • $\bar{a} \leq_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \equiv_0 \bar{b}\bar{d}$.

• $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b} • $\bar{a} \leq_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \equiv_0 \bar{b}\bar{d}$.

Consider the order (\mathbb{Q} ; <):

• $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b} • $\bar{a} \leq_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \equiv_0 \bar{b}\bar{d}$.

Consider the order $(\mathbb{Q}; <)$:

• $(a_1,...,a_k) \equiv_0 (b_1,...,b_k) \iff (\forall i,j < k) \ a_i < a_j \leftrightarrow b_i < b_j.$

• $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b} • $\bar{a} \leq_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \equiv_0 \bar{b}\bar{d}$.

Consider the order (\mathbb{Q} ; <):

•
$$(a_1, ..., a_k) \equiv_0 (b_1, ..., b_k) \iff (\forall i, j < k) \ a_i < a_j \leftrightarrow b_i < b_j.$$

• $(a_1, ..., a_k) \cong_{\mathbb{O}} (b_1, ..., b_k).$

• $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b} • $\bar{a} \leq_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \equiv_0 \bar{b}\bar{d}$.

Consider the order (\mathbb{Q} ; <):

•
$$(a_1, ..., a_k) \equiv_0 (b_1, ..., b_k) \iff (\forall i, j < k) \ a_i < a_j \leftrightarrow b_i < b_j.$$

• $(a_1, ..., a_k) \cong_{\mathbb{Q}} (b_1, ..., b_k).$

Thus, $\bar{a} \equiv_0 \bar{b} \iff \bar{a} \cong \bar{b}$, and $akRank(\mathbb{Q}; <) = 0$.

• $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b} • $\bar{a} \leq_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \equiv_0 \bar{b}\bar{d}$.

• $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b} • $\bar{a} \leq_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \equiv_0 \bar{b}\bar{d}$.

Consider the order (\mathbb{Z} ; <):

• $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b} • $\bar{a} \leq_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \equiv_0 \bar{b}\bar{d}$.

Consider the order $(\mathbb{Z}; <)$: • $(a_1, ..., a_k) \equiv_0 (b_1, ..., b_k) \iff (\forall i, j < k) \ a_i < a_j \leftrightarrow b_i < b_j.$

• $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b} • $\bar{a} \leq_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \equiv_0 \bar{b}\bar{d}$.

Consider the order $(\mathbb{Z}; <)$: • $(a_1, ..., a_k) \equiv_0 (b_1, ..., b_k) \iff (\forall i, j < k) \ a_i < a_j \leftrightarrow b_i < b_j.$ • $(\forall i, j < k) \ a_i < a_j \leftrightarrow b_i < b_j.$

• $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b} • $\bar{a} \leq_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \equiv_0 \bar{b}\bar{d}$.

Consider the order $(\mathbb{Z}; <)$: • $(a_1, ..., a_k) \equiv_0 (b_1, ..., b_k) \iff (\forall i, j < k) \ a_i < a_j \leftrightarrow b_i < b_j.$ • $\Leftrightarrow (a_1, ..., a_k) \cong_{\mathbb{Z}} (b_1, ..., b_k).$ • $(a_1, a_2) \leq_1 (b_1, b_2) \iff$

• $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b} • $\bar{a} \leq_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \equiv_0 \bar{b}\bar{d}$.

Consider the order $(\mathbb{Z}; <)$: • $(a_1, ..., a_k) \equiv_0 (b_1, ..., b_k) \iff (\forall i, j < k) \ a_i < a_j \leftrightarrow b_i < b_j.$ • $\Leftrightarrow (a_1, ..., a_k) \cong_{\mathbb{Z}} (b_1, ..., b_k).$ • $(a_1, a_2) \leq_1 (b_1, b_2) \iff (a_1, a_2) \equiv_0 (b_1, b_2) \text{ and}$

• $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b} • $\bar{a} \leq_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \equiv_0 \bar{b}\bar{d}$.

Consider the order $(\mathbb{Z}; <)$: • $(a_1, ..., a_k) \equiv_0 (b_1, ..., b_k) \iff (\forall i, j < k) \quad a_i < a_j \leftrightarrow b_i < b_j.$ • $(\Rightarrow) \quad (a_1, ..., a_k) \cong_{\mathbb{Z}} (b_1, ..., b_k).$ • $(a_1, a_2) \leq_1 (b_1, b_2) \iff (a_1, a_2) \equiv_0 (b_1, b_2) \text{ and } |a_2 - a_1| \geq |b_2 - b_1|.$

• $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b} • $\bar{a} \leq_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \equiv_0 \bar{b}\bar{d}$.

Consider the order (\mathbb{Z} ; <): • $(a_1, ..., a_k) \equiv_0 (b_1, ..., b_k) \iff (\forall i, j < k) \ a_i < a_j \leftrightarrow b_i < b_j.$ • $(\Rightarrow) \ (a_1, ..., a_k) \cong_{\mathbb{Z}} (b_1, ..., b_k).$ • $(a_1, a_2) \leq_1 (b_1, b_2) \iff (a_1, a_2) \equiv_0 (b_1, b_2) \text{ and } |a_2 - a_1| \geq |b_2 - b_1|.$ • $(\Rightarrow) \ (a_1, a_2) \cong_{\mathbb{Z}} (b_1, b_2).$

• $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b} • $\bar{a} \leq_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \equiv_0 \bar{b}\bar{d}$.

Consider the order (
$$\mathbb{Z}$$
; <):
• $(a_1, ..., a_k) \equiv_0 (b_1, ..., b_k) \iff (\forall i, j < k) \quad a_i < a_j \leftrightarrow b_i < b_j.$
• $(\Rightarrow) (a_1, ..., a_k) \cong_{\mathbb{Z}} (b_1, ..., b_k).$
• $(a_1, a_2) \leq_1 (b_1, b_2) \iff (a_1, a_2) \equiv_0 (b_1, b_2) \text{ and } |a_2 - a_1| \geq |b_2 - b_1|.$
• $(\Rightarrow) (a_1, a_2) \cong_{\mathbb{Z}} (b_1, b_2).$
 $\bar{a} \cong \bar{b} \iff \bar{a} \leq_1 \bar{b} \& \bar{b} \leq_1 \bar{a}.$

• $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b} • $\bar{a} \leq_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \equiv_0 \bar{b}\bar{d}$.

Consider the order
$$(\mathbb{Z}; <)$$
:
• $(a_1, ..., a_k) \equiv_0 (b_1, ..., b_k) \iff (\forall i, j < k) \ a_i < a_j \leftrightarrow b_i < b_j.$
• $(\Rightarrow) (a_1, ..., a_k) \cong_{\mathbb{Z}} (b_1, ..., b_k).$
• $(a_1, a_2) \leq_1 (b_1, b_2) \iff (a_1, a_2) \equiv_0 (b_1, b_2) \text{ and } |a_2 - a_1| \geq |b_2 - b_1|.$
• $(\Rightarrow) (a_1, a_2) \cong_{\mathbb{Z}} (b_1, b_2).$
 $\bar{a} \cong \bar{b} \iff \bar{a} <_1 \bar{b} \& \bar{b} <_1 \bar{a}.$ Therefore $akRank(\mathbb{Z}; <) = 2.$

Fix a structure $\mathcal{A} = (A; e_A, *_A, .. \leq_A, ..)$. Consider tuples $\bar{a}, \bar{b} \in A^{<\mathbb{N}}$.

Idea: For $n \in \mathbb{N}$, define relations $\bar{a} \leq_n \bar{b}$ which say that \bar{a} looks like \bar{b} . $akRank(\mathcal{A}) = \text{the least } n \ (\bar{a} \leq_n \bar{b} \implies \bar{a} \cong \bar{b}) \qquad \text{where }\cong \text{ means automorphic.}$

Define:

- $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b}
- $\bar{a} \leq_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \equiv_0 \bar{b}\bar{d}.$

Fix a structure $\mathcal{A} = (A; e_A, *_A, .. \leq_A, ..)$. Consider tuples $\bar{a}, \bar{b} \in A^{<\mathbb{N}}$.

Idea: For $n \in \mathbb{N}$, define relations $\bar{a} \leq_n \bar{b}$ which say that \bar{a} looks like \bar{b} . $akRank(\mathcal{A}) = \text{the least } n \ (\bar{a} \leq_n \bar{b} \implies \bar{a} \cong \bar{b}) \qquad \text{where }\cong \text{ means automorphic.}$

Define:

- $ar{a}\equiv_0ar{b}\iffar{a}$ and $ar{b}$ generate isomorphic structures matching $ar{a}$ and $ar{b}$
- $\bar{a} \leq_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \ \exists \bar{c} \in A^{<\mathbb{N}} \ \bar{a} \bar{c} \equiv_0 \bar{b} \bar{d}.$
- $\bar{a} \leq_2 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \geq_1 \bar{b}\bar{d}.$

Fix a structure $\mathcal{A} = (A; e_A, *_A, .. \leq_A, ..)$. Consider tuples $\bar{a}, \bar{b} \in A^{<\mathbb{N}}$.

Idea: For $n \in \mathbb{N}$, define relations $\bar{a} \leq_n \bar{b}$ which say that \bar{a} looks like \bar{b} . $akRank(\mathcal{A}) = \text{the least } n \ (\bar{a} \leq_n \bar{b} \implies \bar{a} \cong \bar{b}) \qquad \text{where }\cong \text{ means automorphic.}$

Define:

. :

• :

- $ar{a}\equiv_0ar{b}\iffar{a}$ and $ar{b}$ generate isomorphic structures matching $ar{a}$ and $ar{b}$
- $\bar{a} \leq_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \equiv_0 \bar{b}\bar{d}.$
- $\bar{a} \leq_2 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \geq_1 \bar{b}\bar{d}.$

•
$$\bar{a} \leq_{n+1} \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \geq_n \bar{b}\bar{d}.$$

Fix a structure $\mathcal{A} = (A; e_A, *_A, .. \leq_A, ..)$. Consider tuples $\bar{a}, \bar{b} \in A^{<\mathbb{N}}$.

Idea: For $n \in \mathbb{N}$, define relations $\bar{a} \leq_n \bar{b}$ which say that \bar{a} looks like \bar{b} . $akRank(\mathcal{A}) = \text{the least } n \ (\bar{a} \leq_n \bar{b} \implies \bar{a} \cong \bar{b}) \qquad \text{where }\cong \text{ means automorphic.}$

Define:

- $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b} • $\bar{a} <_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \equiv_0 \bar{b}\bar{d}$.
- $\bar{a} \leq_2 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \ \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \geq_1 \bar{b}\bar{d}.$

•
$$\bar{a} \leq_{n+1} \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \geq_n \bar{b}\bar{d}.$$

•
$$\bar{a} \leq_{\omega} \bar{b} \iff \forall n \in \mathbb{N} \ \bar{a} \leq_n \bar{b}.$$

Fix a structure $\mathcal{A} = (A; e_A, *_A, .. \leq_A, ..)$. Consider tuples $\bar{a}, \bar{b} \in A^{<\mathbb{N}}$.

Idea: For $n \in \mathbb{N}$, define relations $\bar{a} \leq_n \bar{b}$ which say that \bar{a} looks like \bar{b} . $akRank(\mathcal{A}) = \text{the least } n \ (\bar{a} \leq_n \bar{b} \implies \bar{a} \cong \bar{b}) \qquad \text{where }\cong \text{ means automorphic.}$

Define:

• $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b} • $\bar{a} \leq_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \equiv_0 \bar{b}\bar{d}$. • $\bar{a} \leq_2 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \geq_1 \bar{b}\bar{d}$. • : • $\bar{a} \leq_{n+1} \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \geq_n \bar{b}\bar{d}$. • : • $\bar{a} \leq_{\omega} \bar{b} \iff \forall n \in \mathbb{N} \quad \bar{a} \leq_n \bar{b}$. • $\bar{a} \leq_{\omega+1} \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \geq_{\omega} \bar{b}\bar{d}$.

Fix a structure $\mathcal{A} = (A; e_A, *_A, .. \leq_A, ..)$. Consider tuples $\bar{a}, \bar{b} \in A^{<\mathbb{N}}$.

Idea: For $n \in \mathbb{N}$, define relations $\bar{a} \leq_n \bar{b}$ which say that \bar{a} looks like \bar{b} . $akRank(\mathcal{A}) = \text{the least } n \ (\bar{a} \leq_n \bar{b} \implies \bar{a} \cong \bar{b}) \qquad \text{where }\cong \text{ means automorphic.}$

Define:

• $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b} • $\bar{a} \leq_1 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} \equiv_0 \bar{b}\bar{d}.$ • $\bar{a} \leq_2 \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} >_1 \bar{b}\bar{d}.$ **.** : • $\bar{a} \leq_{n+1} \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} >_n \bar{b}\bar{d}.$ • • • $\bar{a} <_{\omega} \bar{b} \iff \forall n \in \mathbb{N} \ \bar{a} <_n \bar{b}$. • $\bar{a} \leq_{\omega+1} \bar{b} \iff \forall \bar{d} \in A^{<\mathbb{N}} \exists \bar{c} \in A^{<\mathbb{N}} \quad \bar{a}\bar{c} >_{\omega} \bar{b}\bar{d}.$

 $\begin{array}{l} 0,1,2,...,\,\omega,\,\omega+1,\omega+2,...,\omega+\omega=\omega 2,\omega 2+1,\,\omega 2+2\,...,\,\omega 3,...,\omega 4,\\ ...,\,\omega\cdot\omega=\omega^2,\,\ldots\,\omega^3\,,...,\,\omega^4,\ldots\,\omega^\omega,\ldots\,\omega^{\omega^\omega},\ldots\ldots\end{array}$

 $\begin{array}{l} 0,1,2,...,\,\omega,\,\omega+1,\omega+2,...,\omega+\omega=\omega 2,\omega 2+1,\,\omega 2+2\,\,...,\,\omega 3,...,\omega 4,\\ ...,\,\omega\cdot\omega=\omega^2,\,...\,\,\omega^3\,\,,...,\,\omega^4,...\,\,\omega^\omega,...\,\,\omega^{\omega^\omega},.....\end{array}$

Definition:

A linear ordering $(A; \leq_A)$ is *well-ordered* if every subset has a least element.

 $\begin{array}{l} 0,1,2,...,\,\omega,\,\omega+1,\omega+2,...,\omega+\omega=\omega 2,\omega 2+1,\,\omega 2+2\,\,...,\,\omega 3,...,\omega 4,\\ ...,\,\omega\cdot\omega=\omega^2,\,...\,\,\omega^3\,\,,...,\,\omega^4,...\,\,\omega^\omega,...\,\,\omega^{\omega^\omega},.....\end{array}$

Definition:

A linear ordering $(A; \leq_A)$ is *well-ordered* if every subset has a least element. An *ordinal* is an isomorphism type of a well-ordering.

 $\begin{array}{l} 0,1,2,...,\,\omega,\,\omega+1,\omega+2,...,\omega+\omega=\omega 2,\omega 2+1,\,\omega 2+2\,\ldots,\,\omega 3,...,\omega 4,\\ ...,\,\omega\cdot\omega=\omega^2,\,\ldots\,\,\omega^3\,\,,...,\,\omega^4,\ldots\,\,\omega^\omega,\ldots\,\,\omega^{\omega^\omega},\ldots\ldots\end{array}$

Definition:

A linear ordering $(A; \leq_A)$ is *well-ordered* if every subset has a least element. An *ordinal* is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

- A is isomorphic to an initial segment of B
- B is isomorphic to an initial segment of A

 $\begin{array}{l} 0,1,2,...,\,\omega,\,\omega+1,\omega+2,...,\omega+\omega=\omega 2,\omega 2+1,\,\omega 2+2\,\ldots,\,\omega 3,...,\omega 4,\\ ...,\,\omega\cdot\omega=\omega^2,\,\ldots\,\,\omega^3\,\,,...,\,\omega^4,\ldots\,\,\omega^\omega,\ldots\,\,\omega^{\omega^\omega},\ldots\ldots\end{array}$

Definition:

A linear ordering $(A; \leq_A)$ is *well-ordered* if every subset has a least element. An *ordinal* is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

- A is isomorphic to an initial segment of B
- B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

 $\begin{array}{l} 0,1,2,...,\,\omega,\,\omega+1,\omega+2,...,\omega+\omega=\omega 2,\omega 2+1,\,\omega 2+2\,\,...,\,\omega 3,...,\omega 4,\\ ...,\,\omega\cdot\omega=\omega^2,\,...\,\,\omega^3\,\,,...,\,\omega^4,...\,\,\omega^\omega,...\,\,\omega^{\omega^\omega},.....\end{array}$

Definition:

A linear ordering $(A; \leq_A)$ is *well-ordered* if every subset has a least element. An *ordinal* is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:

- A is isomorphic to an initial segment of B
- B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Transfinite recursion: $(\forall H: \mathcal{X}^{ordinals} \to \mathcal{X}) (\exists F: ordinals \to \mathcal{X})$

 $F(\alpha) = H(F \upharpoonright \{\beta : \beta < \alpha\})$

Fix a structure $\mathcal{A} = (A; e_A, *_A, ..., \prec_A, ...)$. Consider tuples $\bar{a}, \bar{b} \in A^{<\mathbb{N}}$.

Fix a structure $\mathcal{A} = (A; e_A, *_A, ..., \prec_A, ...)$. Consider tuples $\bar{a}, \bar{b} \in A^{<\mathbb{N}}$.

Fix a structure $\mathcal{A} = (A; e_A, *_A, ..., \prec_A, ...)$. Consider tuples $\bar{a}, \bar{b} \in A^{<\mathbb{N}}$. Define:

• $ar{a}\equiv_0ar{b}\iffar{a}$ and $ar{b}$ generate isomorphic structures matching $ar{a}$ and $ar{b}$

Fix a structure $\mathcal{A} = (A; e_A, *_A, ..., \prec_A, ...)$. Consider tuples $\bar{a}, \bar{b} \in A^{<\mathbb{N}}$. Define:

- $ar{a}\equiv_0ar{b}\iffar{a}$ and $ar{b}$ generate isomorphic structures matching $ar{a}$ and $ar{b}$
- $\bar{a} \leq_{\alpha} \bar{b} \iff (\forall \beta < \alpha) \ \forall \bar{d} \in A^{<\mathbb{N}} \ \exists \bar{c} \in A^{<\mathbb{N}} \ \bar{a}\bar{c} \geq_{\beta} \bar{b}\bar{d}.$

Fix a structure $\mathcal{A} = (A; e_A, *_A, ..., \prec_A, ...)$. Consider tuples $\bar{a}, \bar{b} \in A^{<\mathbb{N}}$. Define:

- $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b}
- $\bar{a} \leq_{\alpha} \bar{b} \iff (\forall \beta < \alpha) \ \forall \bar{d} \in A^{<\mathbb{N}} \ \exists \bar{c} \in A^{<\mathbb{N}} \ \bar{a}\bar{c} \geq_{\beta} \bar{b}\bar{d}.$

Theorem: [Scott '60s] There exists an ordinal α such that $\forall \bar{a}, \bar{b} \in A^{<\mathbb{N}}$ $(\bar{a} \leq_{\alpha} \bar{b} \implies \bar{a} \cong \bar{b})$

Fix a structure $\mathcal{A} = (A; e_A, *_A, ..., \prec_A, ...)$. Consider tuples $\bar{a}, \bar{b} \in A^{<\mathbb{N}}$. Define:

- $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b}
- $\bar{a} \leq_{\alpha} \bar{b} \iff (\forall \beta < \alpha) \ \forall \bar{d} \in A^{<\mathbb{N}} \ \exists \bar{c} \in A^{<\mathbb{N}} \ \bar{a}\bar{c} \geq_{\beta} \bar{b}\bar{d}.$

Theorem: [Scott '60s]
There exists an ordinal
$$\alpha$$
 such that $\forall \bar{a}, \bar{b} \in A^{<\mathbb{N}}$ $(\bar{a} \leq_{\alpha} \bar{b} \implies \bar{a} \cong \bar{b})$

 $akRank(\mathcal{A}) = \text{the least } \alpha \ (\bar{a} \leq_{\alpha} \bar{b} \implies \bar{a} \cong \bar{b}) \qquad \text{where } \cong \text{ means automorphic.}$

This is Ash-Knight's version, which is in the style of Scotts original definition, but closer in value to ours.

Fix a structure $\mathcal{A} = (A; e_A, *_A, ..., \prec_A, ...)$. Consider tuples $\bar{a}, \bar{b} \in A^{<\mathbb{N}}$. Define:

- $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b}
- $\bar{a} \leq_{\alpha} \bar{b} \iff (\forall \beta < \alpha) \ \forall \bar{d} \in A^{<\mathbb{N}} \ \exists \bar{c} \in A^{<\mathbb{N}} \ \bar{a}\bar{c} \geq_{\beta} \bar{b}\bar{d}.$

Theorem: [Scott '60s]
There exists an ordinal
$$\alpha$$
 such that $\forall \bar{a}, \bar{b} \in A^{<\mathbb{N}}$ ($\bar{a} \leq_{\alpha} \bar{b} \implies \bar{a} \cong \bar{b}$)

 $akRank(\mathcal{A}) = \mathsf{the} \ \mathsf{least} \ lpha \ (ar{a} \leq_{lpha} ar{b} \implies ar{a} \cong ar{b}) \qquad \mathsf{where} \cong \mathsf{means} \ \mathsf{automorphic.}$

This is Ash-Knight's version, which is in the style of Scotts original definition, but closer in value to ours.

(Do not read:) In reality we use the back-and-forth rank: $bfRank(\mathcal{A}) = \text{least } \alpha \quad \forall \bar{a} \in A^{<\mathbb{N}} \exists \bar{a}' \in A^{<\mathbb{N}} \forall \bar{b}\bar{b}' \in A^{<\mathbb{N}}, \quad \bar{a}\bar{a}' \leq_{\alpha} \bar{b}\bar{b}' \Rightarrow \bar{a} \cong_{\mathcal{A}} \bar{b}$

Fix a structure $\mathcal{A} = (A; e_A, *_A, ..., \prec_A, ...)$. Consider tuples $\bar{a}, \bar{b} \in A^{<\mathbb{N}}$. Define:

- $\bar{a} \equiv_0 \bar{b} \iff \bar{a}$ and \bar{b} generate isomorphic structures matching \bar{a} and \bar{b}
- $\bar{a} \leq_{\alpha} \bar{b} \iff (\forall \beta < \alpha) \ \forall \bar{d} \in A^{<\mathbb{N}} \ \exists \bar{c} \in A^{<\mathbb{N}} \ \bar{a}\bar{c} \geq_{\beta} \bar{b}\bar{d}.$

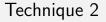
Theorem: [Scott '60s]
There exists an ordinal
$$\alpha$$
 such that $\forall \bar{a}, \bar{b} \in A^{<\mathbb{N}}$ ($\bar{a} \leq_{\alpha} \bar{b} \implies \bar{a} \cong \bar{b}$)

 $akRank(\mathcal{A}) = \text{the least } \alpha \ (\bar{a} \leq_{\alpha} \bar{b} \implies \bar{a} \cong \bar{b}) \qquad$ where \cong means automorphic.

This is Ash-Knight's version, which is in the style of Scotts original definition, but closer in value to ours.

(Do not read:) In reality we use the back-and-forth rank: $bfRank(\mathcal{A}) = \text{least } \alpha \quad \forall \bar{a} \in A^{<\mathbb{N}} \exists \bar{a}' \in A^{<\mathbb{N}} \forall \bar{b}\bar{b}' \in A^{<\mathbb{N}}, \quad \bar{a}\bar{a}' \leq_{\alpha} \bar{b}\bar{b}' \Rightarrow \bar{a} \cong_{\mathcal{A}} \bar{b}$

Lemma: [M. 15] $akRank(A) \leq bfRank(A) \leq akRank(A) + 1$.



Technique 2: Borel/Baire complexity for identification and isomorphism complexity.

Note: Every countable structure is isomorphic to one with domain \mathbb{N} .

Note: Every countable structure is isomorphic to one with domain \mathbb{N} .

Fix a vocabulary τ .

Note: Every countable structure is isomorphic to one with domain \mathbb{N} .

Fix a vocabulary τ . Say $\tau = \{e, *, \prec\}$.

Note: Every countable structure is isomorphic to one with domain \mathbb{N} .

Fix a vocabulary τ . Say $\tau = \{e, *, \prec\}$.

Definition: Let \mathcal{X}_{τ} be the set of structures on vocabulary τ and domain \mathbb{N} .

Note: $C \in \mathcal{X}_{\tau} \iff C$ is of the form $C = (\mathbb{N}; e_C, *_C, \prec_C)$,

Note: Every countable structure is isomorphic to one with domain \mathbb{N} .

Fix a vocabulary τ . Say $\tau = \{e, *, \prec\}$.

Definition: Let \mathcal{X}_{τ} be the set of structures on vocabulary τ and domain \mathbb{N} .

Note: $C \in \mathcal{X}_{\tau} \iff C$ is of the form $C = (\mathbb{N}; e_C, *_C, \prec_C)$, where $e_C \in \mathbb{N}, *_C \in \mathbb{N}^{\mathbb{N} \times \mathbb{N}}$ and $\prec_C \in 2^{\mathbb{N} \times \mathbb{N}}$.

Note: Every countable structure is isomorphic to one with domain \mathbb{N} .

Fix a vocabulary τ . Say $\tau = \{e, *, \prec\}$.

Definition: Let \mathcal{X}_{τ} be the set of structures on vocabulary τ and domain N.

Note: $C \in \mathcal{X}_{\tau} \iff C$ is of the form $C = (\mathbb{N}; e_C, *_C, \prec_C)$, where $e_C \in \mathbb{N}, *_C \in \mathbb{N}^{\mathbb{N} \times \mathbb{N}}$ and $\prec_C \in 2^{\mathbb{N} \times \mathbb{N}}$.

 $\mathcal{X}_{\tau} \cong \mathbb{N} imes \mathbb{N}^{\mathbb{N} imes \mathbb{N}} imes 2^{\mathbb{N} imes \mathbb{N}}$

Note: Every countable structure is isomorphic to one with domain \mathbb{N} .

Fix a vocabulary τ . Say $\tau = \{e, *, \prec\}$.

Definition: Let \mathcal{X}_{τ} be the set of structures on vocabulary τ and domain \mathbb{N} .

Note: $C \in \mathcal{X}_{\tau} \iff C$ is of the form $C = (\mathbb{N}; e_C, *_C, \prec_C)$, where $e_C \in \mathbb{N}, *_C \in \mathbb{N}^{\mathbb{N} \times \mathbb{N}}$ and $\prec_C \in 2^{\mathbb{N} \times \mathbb{N}}$.

 $\mathcal{X}_{\tau} \hspace{.1 in} \cong \hspace{.1 in} \mathbb{N} \times \mathbb{N}^{\mathbb{N} \times \mathbb{N}} \times 2^{\mathbb{N} \times \mathbb{N}} \hspace{.1 in} \subseteq \hspace{.1 in} \mathbb{N}^{1 \sqcup \mathbb{N} \times \mathbb{N} \sqcup \mathbb{N} \times \mathbb{N}}$

Note: Every countable structure is isomorphic to one with domain \mathbb{N} .

Fix a vocabulary τ . Say $\tau = \{e, *, \prec\}$.

Definition: Let \mathcal{X}_{τ} be the set of structures on vocabulary τ and domain \mathbb{N} .

Note: $C \in \mathcal{X}_{\tau} \iff C$ is of the form $C = (\mathbb{N}; e_C, *_C, \prec_C)$, where $e_C \in \mathbb{N}, *_C \in \mathbb{N}^{\mathbb{N} \times \mathbb{N}}$ and $\prec_C \in 2^{\mathbb{N} \times \mathbb{N}}$.

 $\mathcal{X}_{\tau} \ \cong \ \mathbb{N} \times \mathbb{N}^{\mathbb{N} \times \mathbb{N}} \times 2^{\mathbb{N} \times \mathbb{N}} \ \subseteq \ \mathbb{N}^{1 \sqcup \mathbb{N} \times \mathbb{N} \sqcup \mathbb{N} \times \mathbb{N}} \ \cong \ \mathbb{N}^{\mathbb{N}}.$

Note: Every countable structure is isomorphic to one with domain \mathbb{N} .

Fix a vocabulary τ . Say $\tau = \{e, *, \prec\}$.

Definition: Let \mathcal{X}_{τ} be the set of structures on vocabulary τ and domain \mathbb{N} . Note: $\mathcal{C} \in \mathcal{X}_{\tau} \iff \mathcal{C}$ is of the form $\mathcal{C} = (\mathbb{N}; e_{\mathcal{C}}, *_{\mathcal{C}}, \prec_{\mathcal{C}})$,

where $e_C \in \mathbb{N}$, $*_C \in \mathbb{N}^{\mathbb{N} \times \mathbb{N}}$ and $\prec_C \in 2^{\mathbb{N} \times \mathbb{N}}$.

 $\mathcal{X}_{\tau} \ \cong \ \mathbb{N} \times \mathbb{N}^{\mathbb{N} \times \mathbb{N}} \times 2^{\mathbb{N} \times \mathbb{N}} \ \subseteq \ \mathbb{N}^{1 \sqcup \mathbb{N} \times \mathbb{N} \sqcup \mathbb{N} \times \mathbb{N}} \ \cong \ \mathbb{N}^{\mathbb{N}}.$

Equip \mathcal{X}_{τ} with the topology from $\mathbb{N}^{\mathbb{N}}$ given by the power of the discrete topology.

The space of structures $\mathcal{X}_{ au}$

Definition: Let \mathcal{X}_{τ} be the set of structures on vocabulary τ and domain \mathbb{N} .

 \mathcal{X}_{τ} inherits its topology from $\mathbb{N}^{\mathbb{N}}$.

The space of structures $\mathcal{X}_{ au}$

Definition: Let \mathcal{X}_{τ} be the set of structures on vocabulary τ and domain \mathbb{N} .

 \mathcal{X}_{τ} inherits its topology from $\mathbb{N}^{\mathbb{N}}$.

Definition: For a structure \mathcal{A} , let $Copies(\mathcal{A}) = \{\mathcal{B} \in \mathcal{X}_{\tau} : \mathcal{B} \cong \mathcal{A}\}.$

The space of structures \mathcal{X}_{τ}

Definition: Let \mathcal{X}_{τ} be the set of structures on vocabulary τ and domain \mathbb{N} .

 \mathcal{X}_{τ} inherits its topology from $\mathbb{N}^{\mathbb{N}}$.

Definition: For a structure \mathcal{A} , let $Copies(\mathcal{A}) = \{\mathcal{B} \in \mathcal{X}_{\tau} : \mathcal{B} \cong \mathcal{A}\}.$

Theorem: [Scot 65, Lopez Escobar 65] For every A, Copies(A) is Borel.

The space of structures \mathcal{X}_{τ}

Definition: Let \mathcal{X}_{τ} be the set of structures on vocabulary τ and domain \mathbb{N} .

 \mathcal{X}_{τ} inherits its topology from $\mathbb{N}^{\mathbb{N}}$.

Definition: For a structure \mathcal{A} , let $Copies(\mathcal{A}) = \{\mathcal{B} \in \mathcal{X}_{\tau} : \mathcal{B} \cong \mathcal{A}\}.$

Theorem: [Scot 65, Lopez Escobar 65] For every A, Copies(A) is Borel.

Recall:

The Borel sets are the smallest σ -algebra containing the opens sets.

They are built from the clopen sets using countable unions and intersections.

The space of structures \mathcal{X}_{τ}

Definition: Let \mathcal{X}_{τ} be the set of structures on vocabulary τ and domain \mathbb{N} .

 \mathcal{X}_{τ} inherits its topology from $\mathbb{N}^{\mathbb{N}}$.

Definition: For a structure \mathcal{A} , let $Copies(\mathcal{A}) = \{\mathcal{B} \in \mathcal{X}_{\tau} : \mathcal{B} \cong \mathcal{A}\}.$

Theorem: [Scot 65, Lopez Escobar 65] For every \mathcal{A} , $Copies(\mathcal{A})$ is Borel.

Recall:

The Borel sets are the smallest σ -algebra containing the opens sets.

They are built from the clopen sets using countable unions and intersections.

We can measure identification complexity of A in terms of the Borel complexity of Copies(A).

We count alternations of \bigcup versus \bigcap .

We count alternations of \bigcup versus \bigcap .

A Σ_n subset of \mathcal{X}_{τ} (or of $\mathbb{N}^{\mathbb{N}}$):

We count alternations of \bigcup versus \bigcap .

A Σ_n subset of \mathcal{X}_{τ} (or of $\mathbb{N}^{\mathbb{N}}$):

 $\underbrace{\bigcup_{i_0 \in \mathbb{N}} \bigcap_{i_1 \in \mathbb{N}} \bigcup_{i_2 \in \mathbb{N}} \bigcap_{i_3 \in \mathbb{N}} \cdots \underbrace{\left(C_{i_0, i_1, \dots, i_n}\right)}_{\text{clopen}}}_{n \text{ alternations}}$

A \square_n subset of \mathcal{X}_{τ} (or of $\mathbb{N}^{\mathbb{N}}$):

We count alternations of \bigcup versus \bigcap .

A Σ_n subset of \mathcal{X}_{τ} (or of $\mathbb{N}^{\mathbb{N}}$):

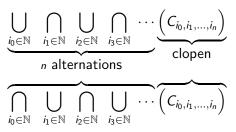
 $\underbrace{\bigcup_{i_0 \in \mathbb{N}} \bigcap_{i_1 \in \mathbb{N}} \bigcup_{i_2 \in \mathbb{N}} \bigcap_{i_3 \in \mathbb{N}} \cdots \underbrace{\left(C_{i_0, i_1, \dots, i_n}\right)}_{\text{clopen}}}_{n \text{ alternations}}$

A Π_n subset of \mathcal{X}_{τ} (or of $\mathbb{N}^{\mathbb{N}}$):

Σ₁ same as open

We count alternations of \bigcup versus \bigcap .

A Σ_n subset of \mathcal{X}_{τ} (or of $\mathbb{N}^{\mathbb{N}}$):

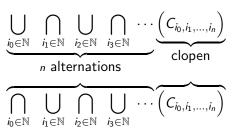


A Π_n subset of \mathcal{X}_{τ} (or of $\mathbb{N}^{\mathbb{N}}$):

- Σ₁ same as open
- Π₁ same as closed

We count alternations of \bigcup versus \bigcap .

A Σ_n subset of \mathcal{X}_{τ} (or of $\mathbb{N}^{\mathbb{N}}$):

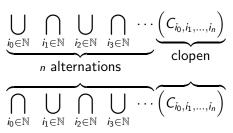


A \prod_n subset of \mathcal{X}_{τ} (or of $\mathbb{N}^{\mathbb{N}}$):

- Σ₁ same as open
- Π₁ same as closed
- Σ₂ same as F_σ

We count alternations of \bigcup versus \bigcap .

A Σ_n subset of \mathcal{X}_{τ} (or of $\mathbb{N}^{\mathbb{N}}$):

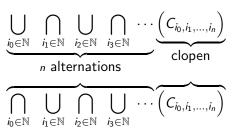


A Π_n subset of \mathcal{X}_{τ} (or of $\mathbb{N}^{\mathbb{N}}$):

- Σ₁ same as open
- Π₁ same as closed
- Σ₂ same as F_σ
- Π₂ same as G_δ

We count alternations of \bigcup versus \bigcap .

A Σ_n subset of \mathcal{X}_{τ} (or of $\mathbb{N}^{\mathbb{N}}$):



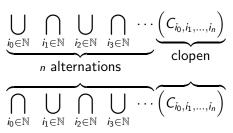
A \prod_n subset of \mathcal{X}_{τ} (or of $\mathbb{N}^{\mathbb{N}}$):

- Σ₁ same as open
- Π₁ same as closed
- Σ₂ same as F_σ
- Π₂ same as G_δ

$$\bigcup_{n\in\mathbb{N}}\mathbf{\Pi}_n$$

We count alternations of \bigcup versus \bigcap .

A Σ_n subset of \mathcal{X}_{τ} (or of $\mathbb{N}^{\mathbb{N}}$):



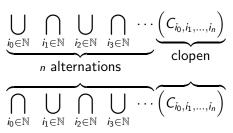
A \prod_n subset of \mathcal{X}_{τ} (or of $\mathbb{N}^{\mathbb{N}}$):

- Σ₁ same as open
- Π₁ same as closed
- Σ₂ same as F_σ
- Π_2 same as G_δ

 $\bigcup_{n\in\mathbb{N}} \mathbf{\Pi}_n$ is not a σ -algebra yet,

We count alternations of \bigcup versus \bigcap .

A Σ_n subset of \mathcal{X}_{τ} (or of $\mathbb{N}^{\mathbb{N}}$):



- A Π_n subset of \mathcal{X}_{τ} (or of $\mathbb{N}^{\mathbb{N}}$):
- Σ₁ same as open
- **Π**₁ same as closed
- Σ₂ same as F_σ
- Π_2 same as G_δ

 $\bigcup_{n\in\mathbb{N}} \mathbf{\Pi}_n$ is not a σ -algebra yet, so not all the Borel sets.

A Σ_{α} subset of \mathcal{X}_{τ} is a countable union of Π_{β} sets for $\beta < \alpha$

A Π_{α} subset of \mathcal{X}_{τ} is a countable intersection of Σ_{β} sets for $\beta < \alpha$.

A Π_{α} subset of \mathcal{X}_{τ} is a countable intersection of Σ_{β} sets for $\beta < \alpha$.

Lemma: Every Borel set is Π_{α} for some countable ordinal α .

A Π_{α} subset of \mathcal{X}_{τ} is a countable intersection of Σ_{β} sets for $\beta < \alpha$.

Lemma: Every Borel set is Π_{α} for some countable ordinal α .

Definition: $Copies(\mathcal{A}) = \{\mathcal{B} : \mathcal{B} \cong \mathcal{A} \text{ and } \mathcal{B} \text{ has domain } \mathbb{N}\}.$

A Π_{α} subset of \mathcal{X}_{τ} is a countable intersection of Σ_{β} sets for $\beta < \alpha$.

Lemma: Every Borel set is Π_{α} for some countable ordinal α .

Definition: $Copies(\mathcal{A}) = \{\mathcal{B} : \mathcal{B} \cong \mathcal{A} \text{ and } \mathcal{B} \text{ has domain } \mathbb{N}\}.$

Theorem: [Scot 65, Lopez Escobar 65] For every A, Copies(A) is Borel.

A Π_{α} subset of \mathcal{X}_{τ} is a countable intersection of Σ_{β} sets for $\beta < \alpha$.

Lemma: Every Borel set is Π_{α} for some countable ordinal α .

Definition: $Copies(\mathcal{A}) = \{\mathcal{B} : \mathcal{B} \cong \mathcal{A} \text{ and } \mathcal{B} \text{ has domain } \mathbb{N}\}.$

Theorem: [Scot 65, Lopez Escobar 65] For every A, Copies(A) is Borel.

Definition: Let BorelRank(A) be the least α such that Copies(A) is $\Pi_{\alpha+1}$.

A Π_{α} subset of \mathcal{X}_{τ} is a countable intersection of Σ_{β} sets for $\beta < \alpha$.

Lemma: Every Borel set is Π_{α} for some countable ordinal α .

Definition: $Copies(\mathcal{A}) = \{\mathcal{B} : \mathcal{B} \cong \mathcal{A} \text{ and } \mathcal{B} \text{ has domain } \mathbb{N}\}.$

Theorem: [Scot 65, Lopez Escobar 65] For every A, Copies(A) is Borel.

Definition: Let BorelRank(A) be the least α such that Copies(A) is $\Pi_{\alpha+1}$.

Theorem: [M. 15] BorelRank(A) = bfRank(A).

A Π_{α} subset of \mathcal{X}_{τ} is a countable intersection of Σ_{β} sets for $\beta < \alpha$.

Lemma: Every Borel set is Π_{α} for some countable ordinal α .

Definition: $Copies(\mathcal{A}) = \{\mathcal{B} : \mathcal{B} \cong \mathcal{A} \text{ and } \mathcal{B} \text{ has domain } \mathbb{N}\}.$

Theorem: [Scot 65, Lopez Escobar 65] For every A, Copies(A) is Borel.

Definition: Let BorelRank(A) be the least α such that Copies(A) is $\Pi_{\alpha+1}$.

Theorem: [M. 15] BorelRank(A) = bfRank(A).

Example2: Copies(\mathbb{Q} ; <) is Π_2 and $Rank(\mathbb{Q}$; <) = 1.

A Π_{α} subset of \mathcal{X}_{τ} is a countable intersection of Σ_{β} sets for $\beta < \alpha$.

Lemma: Every Borel set is Π_{α} for some countable ordinal α .

Definition: $Copies(\mathcal{A}) = \{\mathcal{B} : \mathcal{B} \cong \mathcal{A} \text{ and } \mathcal{B} \text{ has domain } \mathbb{N}\}.$

Theorem: [Scot 65, Lopez Escobar 65] For every A, Copies(A) is Borel.

Definition: Let BorelRank(A) be the least α such that Copies(A) is $\Pi_{\alpha+1}$.

Theorem: [M. 15] BorelRank(A) = bfRank(A).

Example2: $Copies(\mathbb{Q}; <)$ is Π_2 and $Rank(\mathbb{Q}; <) = 1$. $Copies(\mathbb{Z}; <)$ is Π_3 and $Rank(\mathbb{Z}; <) = 2$.

Antonio Montalbán (U.C. Berkeley)

Definition: $F: Copies(\mathcal{A})^2 \to \mathbb{N}^{\mathbb{N}}$ is an isomorphism function for \mathcal{A} if for any two copies, \mathcal{C}, \mathcal{D} , of \mathcal{A} with domain \mathbb{N} , $F(\mathcal{C}, \mathcal{D})$ is an isomorphism from \mathcal{C} to \mathcal{D} .

Definition: $F: Copies(\mathcal{A})^2 \to \mathbb{N}^{\mathbb{N}}$ is an isomorphism function for \mathcal{A} if for any two copies, \mathcal{C}, \mathcal{D} , of \mathcal{A} with domain \mathbb{N} , $F(\mathcal{C}, \mathcal{D})$ is an isomorphism from \mathcal{C} to \mathcal{D} .

We can measure isomorphism complexity of ${\mathcal A}$ in terms of its isomorphism function.

Definition: $F: Copies(\mathcal{A})^2 \to \mathbb{N}^{\mathbb{N}}$ is an isomorphism function for \mathcal{A} if for any two copies, \mathcal{C}, \mathcal{D} , of \mathcal{A} with domain \mathbb{N} , $F(\mathcal{C}, \mathcal{D})$ is an isomorphism from \mathcal{C} to \mathcal{D} .

We can measure isomorphism complexity of ${\mathcal A}$ in terms of its isomorphism function.

Definition: A function is

• of Baire class 0 if it is continuous.

Definition: $F: Copies(\mathcal{A})^2 \to \mathbb{N}^{\mathbb{N}}$ is an isomorphism function for \mathcal{A} if for any two copies, \mathcal{C}, \mathcal{D} , of \mathcal{A} with domain \mathbb{N} , $F(\mathcal{C}, \mathcal{D})$ is an isomorphism from \mathcal{C} to \mathcal{D} .

We can measure isomorphism complexity of ${\mathcal A}$ in terms of its isomorphism function.

Definition: A function is

- of Baire class 0 if it is continuous.
- of Baire class 1 if it is a pointwise limit of continuous functions.

Definition: $F: Copies(\mathcal{A})^2 \to \mathbb{N}^{\mathbb{N}}$ is an isomorphism function for \mathcal{A} if for any two copies, \mathcal{C}, \mathcal{D} , of \mathcal{A} with domain \mathbb{N} , $F(\mathcal{C}, \mathcal{D})$ is an isomorphism from \mathcal{C} to \mathcal{D} .

We can measure isomorphism complexity of ${\mathcal A}$ in terms of its isomorphism function.

- of Baire class 0 if it is continuous.
- of Baire class 1 if it is a pointwise limit of continuous functions.

Definition: $F: Copies(\mathcal{A})^2 \to \mathbb{N}^{\mathbb{N}}$ is an isomorphism function for \mathcal{A} if for any two copies, \mathcal{C}, \mathcal{D} , of \mathcal{A} with domain \mathbb{N} , $F(\mathcal{C}, \mathcal{D})$ is an isomorphism from \mathcal{C} to \mathcal{D} .

We can measure isomorphism complexity of ${\mathcal A}$ in terms of its isomorphism function.

- of Baire class 0 if it is continuous.
- of Baire class 1 if it is a pointwise limit of continuous functions.

Definition: $F: Copies(\mathcal{A})^2 \to \mathbb{N}^{\mathbb{N}}$ is an isomorphism function for \mathcal{A} if for any two copies, \mathcal{C}, \mathcal{D} , of \mathcal{A} with domain \mathbb{N} , $F(\mathcal{C}, \mathcal{D})$ is an isomorphism from \mathcal{C} to \mathcal{D} .

We can measure isomorphism complexity of ${\mathcal A}$ in terms of its isomorphism function.

- of Baire class 0 if it is continuous.
- of Baire class 1 if it is a pointwise limit of continuous functions.

Consider the order $(\mathbb{Q}; <)$: Let $\mathcal{C} = (\mathbb{N}; <_C)$ and $\mathcal{D} = (\mathbb{N}; <_D)$ be two copies of $(\mathbb{Q}; <)$.

Consider the order $(\mathbb{Q}; <)$:

Let $C = (\mathbb{N}; <_C)$ and $\mathcal{D} = (\mathbb{N}; <_D)$ be two copies of $(\mathbb{Q}; <)$. $(\mathbb{Q}; <)$ has a continuous isomorphism function.

Consider the order $(\mathbb{Q}; <)$: Let $\mathcal{C} = (\mathbb{N}; <_C)$ and $\mathcal{D} = (\mathbb{N}; <_D)$ be two copies of $(\mathbb{Q}; <)$. $(\mathbb{Q}; <)$ has a continuous isomorphism function.

Consider the order $(\mathbb{Z}; <)$: Let $\mathcal{C} = (\mathbb{N}; <_C)$ and $\mathcal{D} = (\mathbb{N}; <_D)$ be two copies of $(\mathbb{Z}; <)$.

Consider the order $(\mathbb{Q}; <)$: Let $\mathcal{C} = (\mathbb{N}; <_C)$ and $\mathcal{D} = (\mathbb{N}; <_D)$ be two copies of $(\mathbb{Q}; <)$. $(\mathbb{Q}; <)$ has a continuous isomorphism function.

Consider the order $(\mathbb{Z}; <)$: Let $C = (\mathbb{N}; <_C)$ and $\mathcal{D} = (\mathbb{N}; <_D)$ be two copies of $(\mathbb{Z}; <)$. $(\mathbb{Z}; <)$ has an isomorphism function of Baire class 1.

Definition: $F: Copies(\mathcal{A})^2 \to \mathbb{N}^{\mathbb{N}}$ is an isomorphism function for \mathcal{A} if, for any two $\mathcal{C}, \mathcal{D} \in Copies(\mathcal{A}), F(\mathcal{C}, \mathcal{D})$ is an isomorphism from \mathcal{C} to \mathcal{D} .

Definition: $F: Copies(\mathcal{A})^2 \to \mathbb{N}^{\mathbb{N}}$ is an isomorphism function for \mathcal{A} if, for any two $\mathcal{C}, \mathcal{D} \in Copies(\mathcal{A}), F(\mathcal{C}, \mathcal{D})$ is an isomorphism from \mathcal{C} to \mathcal{D} .

We can measure isomorphism complexity of $\mathcal A$ in terms of its isomorphism function.

Definition: $F: Copies(\mathcal{A})^2 \to \mathbb{N}^{\mathbb{N}}$ is an isomorphism function for \mathcal{A} if, for any two $\mathcal{C}, \mathcal{D} \in Copies(\mathcal{A}), F(\mathcal{C}, \mathcal{D})$ is an isomorphism from \mathcal{C} to \mathcal{D} .

We can measure isomorphism complexity of ${\mathcal A}$ in terms of its isomorphism function.

Definition: A function is

• of Baire class 0 if it is continuous.

Definition: $F: Copies(\mathcal{A})^2 \to \mathbb{N}^{\mathbb{N}}$ is an isomorphism function for \mathcal{A} if, for any two $\mathcal{C}, \mathcal{D} \in Copies(\mathcal{A}), F(\mathcal{C}, \mathcal{D})$ is an isomorphism from \mathcal{C} to \mathcal{D} .

We can measure isomorphism complexity of ${\mathcal A}$ in terms of its isomorphism function.

- of Baire class 0 if it is continuous.
- of Baire class 1 if it is a pointwise limit of continuous functions.

Definition: $F: Copies(\mathcal{A})^2 \to \mathbb{N}^{\mathbb{N}}$ is an isomorphism function for \mathcal{A} if, for any two $\mathcal{C}, \mathcal{D} \in Copies(\mathcal{A}), F(\mathcal{C}, \mathcal{D})$ is an isomorphism from \mathcal{C} to \mathcal{D} .

We can measure isomorphism complexity of ${\mathcal A}$ in terms of its isomorphism function.

- of Baire class 0 if it is continuous.
- of Baire class 1 if it is a pointwise limit of continuous functions.
- of Baire class 2 if it is a pointwise limit of functions of Baire class 1.

Definition: $F: Copies(\mathcal{A})^2 \to \mathbb{N}^{\mathbb{N}}$ is an isomorphism function for \mathcal{A} if, for any two $\mathcal{C}, \mathcal{D} \in Copies(\mathcal{A}), F(\mathcal{C}, \mathcal{D})$ is an isomorphism from \mathcal{C} to \mathcal{D} .

We can measure isomorphism complexity of ${\mathcal A}$ in terms of its isomorphism function.

Definition: A function is

- of Baire class 0 if it is continuous.
- of Baire class α if it is a pointwise limit of

functions of Baire class β for some $\beta < \alpha$.

Definition: $F: Copies(\mathcal{A})^2 \to \mathbb{N}^{\mathbb{N}}$ is an isomorphism function for \mathcal{A} if, for any two $\mathcal{C}, \mathcal{D} \in Copies(\mathcal{A}), F(\mathcal{C}, \mathcal{D})$ is an isomorphism from \mathcal{C} to \mathcal{D} .

We can measure isomorphism complexity of ${\mathcal A}$ in terms of its isomorphism function.

Definition: A function is

- of Baire class 0 if it is continuous.
- of Baire class α if it is a pointwise limit of

functions of Baire class β for some $\beta < \alpha$.

Definition: Let BaireRank(A) be the least α such that A has an isomorphism function that is of Baire class $\alpha - 1$.

Definition: $F: Copies(\mathcal{A})^2 \to \mathbb{N}^{\mathbb{N}}$ is an isomorphism function for \mathcal{A} if, for any two $\mathcal{C}, \mathcal{D} \in Copies(\mathcal{A}), F(\mathcal{C}, \mathcal{D})$ is an isomorphism from \mathcal{C} to \mathcal{D} .

We can measure isomorphism complexity of $\mathcal A$ in terms of its isomorphism function.

Definition: A function is

- of Baire class 0 if it is continuous.
- of Baire class α if it is a pointwise limit of

functions of Baire class β for some $\beta < \alpha$.

Definition: Let BaireRank(A) be the least α such that A has an isomorphism function that is of Baire class $\alpha - 1$.

Theorem: [M. 15] BorelRank(A) = BaireRank(A).

Recall: BorelRank(A) is the least α such that Copies(A) is $\Pi_{\alpha+1}$ in the Borel hierarchy.

Antonio Montalbán (U.C. Berkeley)

Technique 3: Infinitary formulas for orbit and identification complexity.

A vocabulary is a set of symbols for constants, functions, and relations.

A vocabulary is a set of symbols for constants, functions, and relations.

For instance, $\tau = \{0, 1, +, \times, <\}$ is a vocabulary.

A vocabulary is a set of symbols for constants, functions, and relations. For instance, $\tau = \{0, 1, +, \times, <\}$ is a vocabulary.

We then have rules to write down formulas using the vocabulary, the logical symbols $\land, \lor, \rightarrow, \neg, \forall, \exists$, and variable symbols, x, y, z, ...

A vocabulary is a set of symbols for constants, functions, and relations. For instance, $\tau = \{0, 1, +, \times, <\}$ is a vocabulary.

We then have rules to write down formulas using the vocabulary, the logical symbols $\land, \lor, \rightarrow, \neg, \forall, \exists$, and variable symbols, x, y, z, ...

For instance, $\forall y (\mathbf{x} < y \rightarrow \forall z (z + \mathbf{x} < z + y + 1))$ is a well-formed formula,

A *vocabulary* is a set of symbols for constants, functions, and relations. For instance, $\tau = \{0, 1, +, \times, <\}$ is a vocabulary.

We then have rules to write down formulas using the vocabulary, the logical symbols $\land, \lor, \rightarrow, \neg, \forall, \exists$, and variable symbols, x, y, z, ...

For instance, $\forall y (\mathbf{x} < y \rightarrow \forall z (z + \mathbf{x} < z + y + 1))$ is a well-formed formula,

with free variable x.

A vocabulary is a set of symbols for constants, functions, and relations. For instance, $\tau = \{0, 1, +, \times, <\}$ is a vocabulary.

We then have rules to write down formulas using the vocabulary, the logical symbols $\land, \lor, \rightarrow, \neg, \forall, \exists$, and variable symbols, x, y, z, ...

For instance, $\forall y (\mathbf{x} < y \rightarrow \forall z (z + \mathbf{x} < z + y + 1))$ is a well-formed formula, with free variable x

Given a structure \mathcal{A} , a formula $\varphi(\bar{x})$, and $\bar{a} \in \mathcal{A}^{<\mathbb{N}}$, one can define what it means for φ to be true of \bar{a} in \mathcal{A}

A vocabulary is a set of symbols for constants, functions, and relations. For instance, $\tau = \{0, 1, +, \times, <\}$ is a vocabulary.

We then have rules to write down formulas using the vocabulary, the logical symbols $\land, \lor, \rightarrow, \neg, \forall, \exists$, and variable symbols, x, y, z, ...

For instance, $\forall y (\mathbf{x} < y \rightarrow \forall z (z + \mathbf{x} < z + y + 1))$ is a well-formed formula, with free variable x

Given a structure \mathcal{A} , a formula $\varphi(\bar{x})$, and $\bar{a} \in \mathcal{A}^{<\mathbb{N}}$, one can define what it means for φ to be true of \bar{a} in \mathcal{A} (we write $\mathcal{A} \models \varphi(\bar{a})$).

A vocabulary is a set of symbols for constants, functions, and relations. For instance, $\tau = \{0, 1, +, \times, <\}$ is a vocabulary.

We then have rules to write down formulas using the vocabulary, the logical symbols $\land, \lor, \rightarrow, \neg, \forall, \exists$, and variable symbols, x, y, z, ...

For instance, $\forall y (\mathbf{x} < y \rightarrow \forall z (z + \mathbf{x} < z + y + 1))$ is a well-formed formula, with free variable x.

Given a structure \mathcal{A} , a formula $\varphi(\bar{x})$, and $\bar{a} \in \mathcal{A}^{<\mathbb{N}}$, one can define what it means for φ to be true of \bar{a} in \mathcal{A} (we write $\mathcal{A} \models \varphi(\bar{a})$).

In 1st-order languages, \forall and \exists range over the elements of the structure.

A vocabulary is a set of symbols for constants, functions, and relations. For instance, $\tau = \{0, 1, +, \times, <\}$ is a vocabulary.

We then have rules to write down formulas using the vocabulary, the logical symbols $\bigwedge, \bigvee, \rightarrow, \neg, \forall, \exists$, and variable symbols, x, y, z, ...

For instance, $\forall y (\mathbf{x} < y \rightarrow \forall z (z + \mathbf{x} < z + y + 1))$ is a well-formed formula, with free variable x.

Given a structure \mathcal{A} , a formula $\varphi(\bar{x})$, and $\bar{a} \in \mathcal{A}^{<\mathbb{N}}$, one can define what it means for φ to be true of \bar{a} in \mathcal{A} (we write $\mathcal{A} \models \varphi(\bar{a})$).

In 1st-order languages, \forall and \exists range over the elements of the structure. In infinitary languages, conjunctions and disjunctions can be infinitary.

In 1st-order languages, \forall and \exists range over the elements of the structure. In infinitary languages, conjunctions and disjunctions can be infinitary.

In 1st-order languages, \forall and \exists range over the elements of the structure. In infinitary languages, conjunctions and disjunctions can be infinitary.

Example:

In a group $\mathcal{G} = (G; e, *)$:

In 1st-order languages, \forall and \exists range over the elements of the structure. In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: $torsion(x) \equiv$

In a group $\mathcal{G} = (G; e, *)$:

In 1st-order languages, \forall and \exists range over the elements of the structure. In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: $torsion(x) \equiv \bigvee_{n \in \mathbb{N}} (x * \underbrace{x * x * \cdots * x}_{n \text{ times}} = e),$ In a group $\mathcal{G} = (G; e, *)$:

In 1st-order languages, \forall and \exists range over the elements of the structure. In infinitary languages, conjunctions and disjunctions can be infinitary.

Example:
$$torsion(x) \equiv \bigvee_{n \in \mathbb{N}} (x * \underbrace{x * x * \cdots * x}_{n \text{ times}} = e),$$

In a group $\mathcal{G} = (G; e, *)$: $divisible(x) \equiv$

In 1st-order languages, \forall and \exists range over the elements of the structure. In infinitary languages, conjunctions and disjunctions can be infinitary.

Example:

$$torsion(x) \equiv \bigvee_{n \in \mathbb{N}} (x * \underbrace{x * x * \cdots * x}_{n \in \mathbb{N}} = e),$$
In a group $\mathcal{G} = (G; e, *)$:

$$divisible(x) \equiv \bigwedge_{n \in \mathbb{N}} \exists y (y * \underbrace{y * y * \cdots * y}_{n \in \mathbb{N}} = x),$$

In 1st-order languages, \forall and \exists range over the elements of the structure. In infinitary languages, conjunctions and disjunctions can be infinitary.

Example:

$$torsion(x) \equiv \bigvee_{n \in \mathbb{N}} (x * \underbrace{x * x * \cdots * x}_{n \text{ times}} = e),$$
In a group $\mathcal{G} = (G; e, *)$:

$$divisible(x) \equiv \bigwedge_{n \in \mathbb{N}} \exists y (y * \underbrace{y * y * \cdots * y}_{n \text{ times}} = x),$$

Theorem: [Scott 65] For every automorphism invariant set $B \subset \mathcal{A}^k$, there is an infinitary formula $\varphi(\bar{x})$ such that $B = \{\bar{b} \in \mathcal{A}^k : \mathcal{A} \models \varphi(\bar{b})\}.$

In 1st-order languages, \forall and \exists range over the elements of the structure. In infinitary languages, conjunctions and disjunctions can be infinitary.

Example:

$$torsion(x) \equiv \bigvee_{n \in \mathbb{N}} (x * \underbrace{x * x * \cdots * x}_{n \text{ times}} = e),$$
In a group $\mathcal{G} = (G; e, *)$:

$$divisible(x) \equiv \bigwedge_{n \in \mathbb{N}} \exists y (y * \underbrace{y * y * \cdots * y}_{n \in \mathbb{N}} = x),$$

Theorem: [Scott 65] For every automorphism invariant set $B \subset \mathcal{A}^k$, there is an infinitary formula $\varphi(\bar{x})$ such that $B = \{\bar{b} \in \mathcal{A}^k : \mathcal{A} \models \varphi(\bar{b})\}.$

We can measure orbit complexity of ${\mathcal A}$ using the complexity of these formulas.

In 1st-order languages, \forall and \exists range over the elements of the structure. In infinitary languages, conjunctions and disjunctions can be infinitary.

Example:

$$torsion(x) \equiv \bigvee_{n \in \mathbb{N}} (x * \underbrace{x * x * \cdots * x}_{n \text{ times}} = e),$$
In a group $\mathcal{G} = (G; e, *)$:

$$divisible(x) \equiv \bigwedge_{n \in \mathbb{N}} \exists y (y * \underbrace{y * y * \cdots * y}_{n \in \mathbb{N}} = x),$$

Theorem: [Scott 65] For every automorphism invariant set $B \subset \mathcal{A}^k$, there is an infinitary formula $\varphi(\bar{x})$ such that $B = \{\bar{b} \in \mathcal{A}^k : \mathcal{A} \models \varphi(\bar{b})\}.$

We can measure orbit complexity of ${\mathcal A}$ using the complexity of these formulas.

Theorem: [Scott 65] For every countable structure \mathcal{A} , there is an infinitary sentence $\psi_{\mathcal{A}}$ such that, for countable structures \mathcal{C} , $\mathcal{C} \models \psi_{\mathcal{A}} \iff \mathcal{C} \cong \mathcal{A}$.

Infinitary 1st-order formulas

In 1st-order languages, \forall and \exists range over the elements of the structure. In infinitary languages, conjunctions and disjunctions can be infinitary.

Example:

$$torsion(x) \equiv \bigvee_{n \in \mathbb{N}} (x * \underbrace{x * x * \cdots * x}_{n \text{ times}} = e),$$
In a group $\mathcal{G} = (G; e, *)$:

$$divisible(x) \equiv \bigwedge_{n \in \mathbb{N}} \exists y (y * \underbrace{y * y * \cdots * y}_{n \in \mathbb{N}} = x),$$

Theorem: [Scott 65] For every automorphism invariant set $B \subset \mathcal{A}^k$, there is an infinitary formula $\varphi(\bar{x})$ such that $B = \{\bar{b} \in \mathcal{A}^k : \mathcal{A} \models \varphi(\bar{b})\}.$

We can measure orbit complexity of ${\mathcal A}$ using the complexity of these formulas.

Theorem: [Scott 65] For every countable structure \mathcal{A} , there is an infinitary sentence $\psi_{\mathcal{A}}$ such that, for countable structures \mathcal{C} , $\mathcal{C} \models \psi_{\mathcal{A}} \iff \mathcal{C} \cong \mathcal{A}$.

We can measure identification complexity of \mathcal{A} in terms of the complexity of $\psi_{\mathcal{A}}$.

Antonio Montalbán (U.C. Berkeley)

We count alternations of \exists and \bigvee versus \forall and \bigwedge .

We count alternations of \exists and \bigvee versus \forall and \bigwedge .

A $\sum_{n=1}^{in}$ formula is one of the form:

$$\underbrace{\bigvee_{i_0 \in \mathbb{N}} \exists \bar{y}_0}_{i_1 \in \mathbb{N}} \underbrace{\bigwedge_{i_1 \in \mathbb{N}} \forall \bar{y}_1}_{n \text{ alternations}} \underbrace{\bigvee_{i_2 \in \mathbb{N}} \exists \bar{y}_2}_{i_3 \in \mathbb{N}} \underbrace{\bigwedge_{i_3 \in \mathbb{N}} \forall \bar{y}_3 \cdots}_{i_3 \in \mathbb{N}} \underbrace{\left(\psi_{i_0, i_1, \dots, i_n}(\bar{x}, \bar{y}_0, \bar{y}_1, \dots, \bar{y}_n)\right)}_{\text{finitary, quantifier free}}$$

We count alternations of \exists and \bigvee versus \forall and \bigwedge .

A $\sum_{n=1}^{in}$ formula is one of the form:

$$\underbrace{\bigvee_{i_0 \in \mathbb{N}} \exists \bar{y}_0}_{i_0 \in \mathbb{N}} \underbrace{\bigwedge_{i_1 \in \mathbb{N}} \forall \bar{y}_1}_{n \text{ alternations}} \underbrace{\bigvee_{i_2 \in \mathbb{N}} \exists \bar{y}_2}_{i_3 \in \mathbb{N}} \underbrace{\bigwedge_{i_3 \in \mathbb{N}} \forall \bar{y}_3 \cdots \underbrace{\left(\psi_{i_0, i_1, \dots, i_n}(\bar{x}, \bar{y}_0, \bar{y}_1, \dots, \bar{y}_n)\right)}_{\text{finitary, quantifier free}}$$

A $\prod_{n=1}^{in}$ formula is one of the form:

$$\underbrace{\bigwedge_{i_0 \in \mathbb{N}} \forall \bar{y}_0}_{i_1 \in \mathbb{N}} \underbrace{\bigvee_{i_1 \in \mathbb{N}} \exists \bar{y}_1}_{n_1 \in \mathbb{N}} \underbrace{\bigwedge_{i_2 \in \mathbb{N}} \forall \bar{y}_2}_{i_3 \in \mathbb{N}} \underbrace{\bigvee_{i_3 \in \mathbb{N}} \exists \bar{y}_3 \cdots}_{i_3 \in \mathbb{N}} \underbrace{\left(\psi_{i_0, i_1, \dots, i_n}(\bar{x}, \bar{y}_0, \bar{y}_1, \dots, \bar{y}_n)\right)}_{\text{finitary, quantifier free}}$$

A \sum_{α}^{in} formula is one of the form: $\bigvee_{\alpha} \exists \bar{y} \quad (\psi_i(\bar{x}, \bar{y}))$ i∈ℕ

 Π^{in}_{β} for $\beta < \alpha$

A Π_{β}^{in} formula is one of the form: $\bigwedge_{i \in \mathbb{N}} \forall \bar{y} \quad \underbrace{\left(\varphi_i(\bar{x}, \bar{y})\right)}_{\Sigma_{\gamma}^{in} \text{ for } \gamma < \beta}$

A
$$\prod_{\beta}^{in}$$
 formula is one of the form: $\bigwedge_{i \in \mathbb{N}} \forall \overline{y} \quad \underbrace{\left(\varphi_i(\overline{x}, \overline{y})\right)}_{\Sigma_{\gamma}^{in} \text{ for } \gamma < \beta}$

Theorem: [Scott 65] For every automorphism invariant set $B \subset \mathcal{A}^k$, there is an infinitary formula $\varphi(\bar{x})$ such that $B = \{\bar{b} \in \mathcal{A}^k : \mathcal{A} \models \varphi(\bar{b})\}$.

Definition: Let $OrbitRank(\mathcal{A})$ be the least α such that every automorphism orbit is Σ_{α}^{in} -definable.

A
$$\Pi_{\beta}^{in}$$
 formula is one of the form: $\bigwedge_{i \in \mathbb{N}} \forall \overline{y} \quad \underbrace{\left(\varphi_i(\overline{x}, \overline{y})\right)}_{\Sigma_{\gamma}^{in} \text{ for } \gamma < \beta}$

Definition: Let $OrbitRank(\mathcal{A})$ be the least α such that every automorphism orbit is Σ_{α}^{in} -definable.

A
$$\Pi_{\beta}^{in}$$
 formula is one of the form: $\bigwedge_{i \in \mathbb{N}} \forall \overline{y} \quad \underbrace{\left(\varphi_i(\overline{x}, \overline{y})\right)}_{\Sigma_{\gamma}^{in} \text{ for } \gamma < \beta}$

Definition: Let $OrbitRank(\mathcal{A})$ be the least α such that every automorphism orbit is Σ_{α}^{in} -definable.

Theorem: [Scott 65] For every countable structure \mathcal{A} , there is an infinitary sentence $\psi_{\mathcal{A}}$ such that, for countable structures $\mathcal{C}, \mathcal{C} \models \psi_{\mathcal{A}} \iff \mathcal{C} \cong \mathcal{A}$.

Definition: Let SSRank(A) be the least α such that there is a $\prod_{\alpha+1}^{in}$ sentence true only about A among countable structures.

A
$$\prod_{\beta}^{in}$$
 formula is one of the form: $\bigwedge_{i \in \mathbb{N}} \forall \overline{y} \quad \underbrace{\left(\varphi_i(\overline{x}, \overline{y})\right)}_{\Sigma_{\gamma}^{in} \text{ for } \gamma < \beta}$

Definition: Let $OrbitRank(\mathcal{A})$ be the least α such that every automorphism orbit is Σ_{α}^{in} -definable.

Definition: Let SSRank(A) be the least α such that there is a $\Pi_{\alpha+1}^{in}$ sentence true only about A among countable structures.

A
$$\prod_{\beta}^{in}$$
 formula is one of the form: $\bigwedge_{i \in \mathbb{N}} \forall \overline{y} \quad \underbrace{\left(\varphi_i(\overline{x}, \overline{y})\right)}_{\Sigma_{\gamma}^{in} \text{ for } \gamma < \beta}$

Definition: Let $OrbitRank(\mathcal{A})$ be the least α such that every automorphism orbit is Σ_{α}^{in} -definable.

Definition: Let SSRank(A) be the least α such that there is a $\Pi_{\alpha+1}^{in}$ sentence true only about A among countable structures.

A
$$\prod_{\beta}^{in}$$
 formula is one of the form: $\bigwedge_{i \in \mathbb{N}} \forall \overline{y} \quad \underbrace{\left(\varphi_i(\overline{x}, \overline{y})\right)}_{\Sigma_{\gamma}^{in} \text{ for } \gamma < \beta}$

Definition: Let $OrbitRank(\mathcal{A})$ be the least α such that every automorphism orbit is Σ_{α}^{in} -definable.

Definition: Let SSRank(A) be the least α such that there is a $\Pi_{\alpha+1}^{in}$ sentence true only about A among countable structures.

Theorem:

[Lopez Escobar 65, Vaught 75]

A
$$\prod_{\beta}^{in}$$
 formula is one of the form: $\bigwedge_{i \in \mathbb{N}} \forall \overline{y} \quad \underbrace{\left(\varphi_i(\overline{x}, \overline{y})\right)}_{\Sigma_{\gamma}^{in} \text{ for } \gamma < \beta}$

Definition: Let $OrbitRank(\mathcal{A})$ be the least α such that every automorphism orbit is Σ_{α}^{in} -definable.

Definition: Let SSRank(A) be the least α such that there is a $\Pi_{\alpha+1}^{in}$ sentence true only about A among countable structures.

Theorem:

[Lopez Escobar 65, Vaught 75] [M. 15]

Consider the order $(\mathbb{Q}; <)$: • $(a_1, ..., a_k) \cong (b_1, ..., b_k) \iff (\forall i, j < k) \ a_i < a_j \leftrightarrow b_i < b_j.$

Consider the order (\mathbb{Q} ; <):

- $(a_1,...,a_k) \cong (b_1,...,b_k) \iff (\forall i,j < k) \ a_i < a_j \leftrightarrow b_i < b_j.$
- The automorphism orbit of (1/2, 7, 4) is defined by a formula $\varphi(x_1, x_2, x_3) \equiv x_1 < x_3 \land x_3 < x_2$.

Consider the order (\mathbb{Q} ; <):

- $(a_1,...,a_k) \cong (b_1,...,b_k) \iff (\forall i,j < k) \ a_i < a_j \leftrightarrow b_i < b_j.$
- The automorphism orbit of (1/2, 7, 4) is defined by a formula $\varphi(x_1, x_2, x_3) \equiv x_1 < x_3 \land x_3 < x_2$.

Consider the order (\mathbb{Q} ; <):

- $(a_1,...,a_k) \cong (b_1,...,b_k) \iff (\forall i,j < k) \ a_i < a_j \leftrightarrow b_i < b_j.$
- The automorphism orbit of (1/2, 7, 4) is defined by a formula $\varphi(x_1, x_2, x_3) \equiv x_1 < x_3 \land x_3 < x_2$.
- $(\mathbb{Q}; <)$ is the unique countable dense linear order with no endpoints

Consider the order (\mathbb{Q} ; <):

- $(a_1,...,a_k) \cong (b_1,...,b_k) \iff (\forall i,j < k) \ a_i < a_j \leftrightarrow b_i < b_j.$
- The automorphism orbit of (1/2, 7, 4) is defined by a formula $\varphi(x_1, x_2, x_3) \equiv x_1 < x_3 \land x_3 < x_2$.
- $(\mathbb{Q}; <)$ is the unique countable dense linear order with no endpoints

Consider the order (\mathbb{Q} ; <):

- $(a_1,...,a_k) \cong (b_1,...,b_k) \iff (\forall i,j < k) \ a_i < a_j \leftrightarrow b_i < b_j.$
- The automorphism orbit of (1/2, 7, 4) is defined by a formula $\varphi(x_1, x_2, x_3) \equiv x_1 < x_3 \land x_3 < x_2$.
- $(\mathbb{Q}; <)$ is the unique countable dense linear order with no endpoints Π_2^{in}

 $Rank(\mathbb{Q}; <) = 1.$

Consider the order (\mathbb{Q} ; <):

- $(a_1,...,a_k) \cong (b_1,...,b_k) \iff (\forall i,j < k) \ a_i < a_j \leftrightarrow b_i < b_j.$
- The automorphism orbit of (1/2, 7, 4) is defined by a formula $\varphi(x_1, x_2, x_3) \equiv x_1 < x_3 \land x_3 < x_2$.
- (Q; <) is the unique countable dense linear order with no endpoints ∏ⁱⁿ₂
 Rank(Q; <) = 1.

Consider the order (\mathbb{Z} ; <):

• The automorphism orbit of (-1, 2) is defined by a formula $\varphi(x_1, x_2) \equiv x_1 < x_2 \land \exists y_1, y_2 \ (x_1 < y_1 < y_2 < x_2 \land \forall z \ (x_1 < z < x_2 \rightarrow z = y_1 \lor z = y_2)).$

Consider the order (\mathbb{Q} ; <):

- $(a_1,...,a_k) \cong (b_1,...,b_k) \iff (\forall i,j < k) \ a_i < a_j \leftrightarrow b_i < b_j.$
- The automorphism orbit of (1/2, 7, 4) is defined by a formula $\varphi(x_1, x_2, x_3) \equiv x_1 < x_3 \land x_3 < x_2$.
- (Q; <) is the unique countable dense linear order with no endpoints ∏ⁱⁿ₂
 Rank(Q; <) = 1.

Consider the order (\mathbb{Z} ; <):

• The automorphism orbit of (-1, 2) is defined by a formula $\varphi(x_1, x_2) \equiv x_1 < x_2 \land \exists y_1, y_2 \ (x_1 < y_1 < y_2 < x_2 \land \forall z \ (x_1 < z < x_2 \rightarrow z = y_1 \lor z = y_2)).$ Σ_2^{in}

Consider the order (\mathbb{Q} ; <):

- $(a_1,...,a_k) \cong (b_1,...,b_k) \iff (\forall i,j < k) \ a_i < a_j \leftrightarrow b_i < b_j.$
- The automorphism orbit of (1/2, 7, 4) is defined by a formula $\varphi(x_1, x_2, x_3) \equiv x_1 < x_3 \land x_3 < x_2$.
- (Q; <) is the unique countable dense linear order with no endpoints Πⁱⁿ₂
 Rank(Q; <) = 1.

Consider the order (\mathbb{Z} ; <):

- The automorphism orbit of (-1, 2) is defined by a formula $\varphi(x_1, x_2) \equiv x_1 < x_2 \land \exists y_1, y_2 \ (x_1 < y_1 < y_2 < x_2 \land \forall z \ (x_1 < z < x_2 \rightarrow z = y_1 \lor z = y_2)).$ Σ_2^{in}
- $(\mathbb{Z}; <)$ is the linear order with no endpoints with all intervals finite.

Consider the order $(\mathbb{O}; <)$:

- $(a_1, ..., a_k) \cong (b_1, ..., b_k) \iff (\forall i, j < k) \ a_i < a_i \leftrightarrow b_i < b_i$
- The automorphism orbit of (1/2, 7, 4) is defined by a formula $\varphi(x_1, x_2, x_3) \equiv x_1 < x_3 \land x_3 < x_2.$
- Π_{2}^{in} • $(\mathbb{Q}; <)$ is the unique countable dense linear order with no endpoints $Rank(\mathbb{Q}; <) = 1.$

Consider the order $(\mathbb{Z}; <)$:

- The automorphism orbit of (-1, 2) is defined by a formula $\varphi(x_1, x_2) \equiv$ $x_1 < x_2 \land \exists y_1, y_2 \ (x_1 < y_1 < y_2 < x_2 \land \forall z \ (x_1 < z < x_2 \to z = y_1 \lor z = y_2)).$ Σ_2^m Π_{3}^{in}
- $(\mathbb{Z}; <)$ is the linear order with no endpoints with all intervals finite.

Consider the order $(\mathbb{O}; <)$:

- $(a_1, ..., a_k) \cong (b_1, ..., b_k) \iff (\forall i, j < k) \ a_j < a_j \leftrightarrow b_j < b_j.$
- The automorphism orbit of (1/2, 7, 4) is defined by a formula $\varphi(x_1, x_2, x_3) \equiv x_1 < x_3 \land x_3 < x_2.$
- $(\mathbb{Q}; <)$ is the unique countable dense linear order with no endpoints Π_{2}^{in} $Rank(\mathbb{Q}; <) = 1.$

Consider the order $(\mathbb{Z}; <)$:

- The automorphism orbit of (-1,2) is defined by a formula $\varphi(x_1,x_2) \equiv$ $x_1 < x_2 \land \exists y_1, y_2 \ (x_1 < y_1 < y_2 < x_2 \land \forall z \ (x_1 < z < x_2 \to z = y_1 \lor z = y_2)).$ Σ_2^m Π_{3}^{in}
- $(\mathbb{Z}; <)$ is the linear order with no endpoints with all intervals finite.

 $Rank(\mathbb{Z}; <) = 2.$

$Rank(\cdot)$ is a robust measure of complexity

Theorem: [M. 15] Let α be an ordinal and \mathcal{A} a countable structure. The following are equivalent:

- Orbit complexity
 - $\forall \bar{a} \in A^{<\mathbb{N}} \exists \bar{a}' \in A^{<\mathbb{N}} \forall \bar{b}, \bar{b}' \in A^{<\mathbb{N}}, \quad \bar{a}\bar{a}' \leq_{\alpha} \bar{b}\bar{b}' \Rightarrow \bar{a} \cong_{\mathcal{A}} \bar{b}.$
 - All automorphism orbits in \mathcal{A} are Σ^{in}_{α} -definable.
- Identification complexity
 - The set of copies of \mathcal{A} is $\Pi_{\alpha+1}$ in the Borel hierachy.
 - There is a $\prod_{\alpha+1}^{in}$ sentence uniquely identifying \mathcal{A} .
- Isomorphism complexity
 - \mathcal{A} has an isomorphism function that is of Baire class $\alpha 1$.

Let $Rank(\mathcal{A})$ be the least such α .

= bfRank(A) = OrbitRank(A) = BorelRank(A) = SSRank(A) = BaireRank(A).