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Complexity of countable structures

A structure consists of a set (called the domain) on which we have

constants, operations and relations.
Examples
The group (Q;0,+).
The linear ordering (N; <).
The ring (Q[x]; 0,1, +, x).
The ordered ring (Z;0,1, 4+, x, <).

Some structure are more complicated than others.

Can we measure this complexity? How?
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Three aspects of complexity

Orbit complexity:
How complex are the automorphism orbits of tuples.

Identification complexity:
How difficult is it to recognize the structure from other structures?

[somorphism complexity:
How complex are isomorphisms between representations of the structure?

Three tools used to measure complexity:

@ Back-and-forth relations for orbit complexity.
] BoreI/Baire complexity for identification and isomorphism complexity.

@ Infinitary formulas for orbit and identification complexity.
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The main theorem

Theorem: [M. 15] Let « be a succesor ordinal and A a countable structure.
The following are equivalent:

o All automorphism orbits in A are ¥"-definable.

@ The set of representations of A is IN,11 in the Borel hierarchy.

@ There is an isomorphism function that is of Baire class o — 1.

Antonio Montalban (U.C. Berkeley) Scott rank August 2021 4/26



The main theorem

Theorem: [M. 15] Let « be a succesor ordinal and A a countable structure.
The following are equivalent:

o All automorphism orbits in A are ¥"-definable.

@ The set of representations of A is IN,11 in the Borel hierarchy.

@ There is an isomorphism function that is of Baire class o — 1.

Definition: Let Rank(.A) be the least such a. J

Antonio Montalban (U.C. Berkeley) Scott rank August 2021 4/26



The main theorem

Theorem: [M. 15] Let « be a succesor ordinal and A a countable structure.

The following are equivalent:
o All automorphism orbits in A are ¥"-definable.
@ The set of representations of A is IN,11 in the Borel hierarchy.

@ There is an isomorphism function that is of Baire class o — 1.

Definition: Let Rank(.A) be the least such a. )

Other definitions of rank had been proposed: [Scott 65][Sacks 07][Ash—Knight 00]...
However, this is the first equivalence theorem.
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Technique 1

Technique 1: Back-and-forth relations
for orbit complexity.

Ash-Knight's version, in the spirit of Scott’s original definition.
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Technique 1: The back-and-forth relations

Fix a structure A = (A; ea, *4, .. <a,..).
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Examples

o b <= 3 and b generate isomorphic structures matching 3 and b
1b — Vde AN 3 e A<N 3=, bd.

o o
L Wi
Il

IA
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VJ e AN 3¢ e AN 32 = bd.
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[exliReyl]

Consider the order (Q; <):
° (31, ...,ak) =y (bl, ey bk) < (Vi,j < k) aj < aj < b; < bj.
° <~ (al,...,ak) g@ (bl,....,bk).
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Examples

3 and b generate isomorphic structures matching 3 and b
vd € AN 3¢ ¢ AN 3¢ = bd.

[
L Wi

IA I
= o
[exliReyl]

—
—

Consider the order (Q; <):
° (31, ...,ak) =y (bl, ey bk) < (Vi,_j < k) aj < aj < b; < bj.
° <~ (al,...,ak) g@ (bl,....,bk).

Thus, 3=¢ b <= 3= b, and akRank(Q; <) = 0.
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Consider the order (Z; <):

° (al, ...,ak) =0 (bl, ey bk) <~ (Vi,j < k) a; < aj < b; < bj.

° <7£> (al, ceey ak) =7 (bl, ceeey bk)

° (31,82) <1 (bl, b2) <~ (31,32) =y (bl, bg) and |ap — a1| > |by — by1].
= (a1, a2) =z (b1, b2).

b < 3<ib&b<;a

1

a

Antonio Montalban (U.C. Berkeley) Scott rank August 2021 8 /26



Examples

3 and b generate isomorphic structures matching 3 and b
vd € AN 3¢ € AN 3¢ =¢ bd.

e o
L Wi
IA
[ xl e yl]

0 <
1 <

Consider the order (Z; <):

° (al, ...,ak) =0 (bl, ey bk) <~ (Vi,j < k) a; < aj < b; < bj.

° @5 (al, ceey ak) =7 (bl, ceeey bk)

° (31,82) <1 (bl, b2) <~ (31,32) =y (bl, bg) and |ap — a1| > |by — by1].

= (a1, a2) =z (b1, b2).
b <= 3<; b& b <y a. Therefore akRank(Z; <) = 2.

1

a
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Ordinals

0,,2,..,w,w+lw+2 . w+w=w2w2+1, w2+2 .., uw3,.., w4

w
L wew =W, LW W W
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Ordinals
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Definition:

A linear ordering (A; <a) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.
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Definition:

A linear ordering (A; <a) is well-ordered if every subset has a least element.
An ordinal is an isomorphism type of a well-ordering.

Theorem: Given two well-orderings A and B, one of the following holds:
@ A is isomorphic to an initial segment of B

@ B is isomorphic to an initial segment of A
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Ordinals

0,1,2,..,w,w+lw+2 . w+w=w2,w2+1, w2+2 .., w3,..

w
L wew =W, LW W W

Definition:

A linear ordering (A; <a) is well-ordered if every subset has a least element.

An ordinal is an isomorphism type of a well-ordering.

, w4,

Theorem: Given two well-orderings A and B, one of the following holds:

@ A is isomorphic to an initial segment of B

@ B is isomorphic to an initial segment of A

The class of ordinals is itself well-ordered by embeddability.

Transfinite recursion: (YH: X°dnals — x) (3F : ordinals — X)
F(o) = H(FI{8: 8 < a})
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Orbit complexity via back-and-forth relations

Fix a structure A = (A; ea, *a, ..., <a, ...). Consider tuples 3, be A<M,
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Orbit complexity via back-and-forth relations

Fix a structure A = (A; ea, *a, ..., <a, ...). Consider tuples 3, be A<M,

Define:
<= 3 and b generate isomorphic structures matching 3 and b

e 3= b
e 3<, b — (Vﬁ<a)Vd€A<NE|c€A<N acngd.

1%

Theorem: [Scott '60s] B B B
There exists an ordinal « such that Va,b € A<N (3 <, b = 3= b) J
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akRank(A) = the least « (5 <a B - a= E) where 22 means automorphic.J

This is Ash-Knight's version, which is in the style of Scotts original definition, but closer in value to ours.
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Define:
o b <= 3 and b generate isomorphic structures matching 3 and b

e 3=
e 3<,b = (V8<a)Vde AN Icc AN 32> bd.

1%

Theorem: [Scott '60s] _ B _
There exists an ordinal « such that Va,b € A<N (3 <, b = 3= b) J

akRank(A) = the least « (5 <a B - a= E) where 22 means automorphic.J

This is Ash-Knight's version, which is in the style of Scotts original definition, but closer in value to ours.

(Do not read:) In reality we use the back-and-forth rank:
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Antonio Montalban (U.C. Berkeley) Scott rank August 2021 11 /26



Orbit complexity via back-and-forth relations

Fix a structure A = (A; ea, *a, ..., <a, ...). Consider tuples 3, be A<M,
Define:

e 3=g b <= 3 and b generate isomorphic structures matching 3 and b
e 3<,b = (V8<a)Vde AN Icc AN 32> bd.

1%

Theorem: [Scott '60s] _ B _
There exists an ordinal « such that Va,b € A<N (3 <, b = 3= b) J

akRank(A) = the least « (5 <a B - a= E) where 22 means automorphic.J

This is Ash-Knight's version, which is in the style of Scotts original definition, but closer in value to ours.

(Do not read:) In reality we use the back-and-forth rank:
bfRank(A) = least @ Va € A<N 33’ € AN vbb' € AN, 33’ <, bb'=3=, b J

Lemma: [M. 15] akRank(A) < bfRank(A) < akRank(A) + 1. J
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Technique 2

Technique 2: Borel /Baire complexity
for identification and isomorphism complexity.
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Technique 2: Representations of structures

Note: Every countable structure is isomorphic to one with domain N. )
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Note: Every countable structure is isomorphic to one with domain N. J

Fix a vocabulary 7. Say 7 = {e, x, <}.

Definition: Let X, be the set of structures on vocabulary 7 and domain N.J

Note: C € X, <= C is of the form C = (N; ec, *¢c, <c),
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Technique 2: Representations of structures

Note: Every countable structure is isomorphic to one with domain N. J

Fix a vocabulary 7. Say 7 = {e, x, <}.

Definition: Let X, be the set of structures on vocabulary 7 and domain N.J

Note: C € X, <= C is of the form C = (N; ec, *¢c, <c),
where ec € N, x¢ € NYXN and <€ 28xN,

XT ~ NXNNXNX2N><N g NlLINXNLINXN o~ NN.

Equip X, with the topology from NN given by the power of the discrete topology.
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The space of structures X,

Definition: Let X, be the set of structures on vocabulary 7 and domain N. )

X, inherits its topology from NV,

Antonio Montalban (U.C. Berkeley) Scott rank August 2021 14 / 26



The space of structures X,

Definition: Let X, be the set of structures on vocabulary 7 and domain N.

X, inherits its topology from N

Definition: For a structure A, let Copies(A) = {B € X, : B= A}.
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The space of structures X,

Definition: Let X, be the set of structures on vocabulary 7 and domain N. J

X, inherits its topology from N,

Definition: For a structure A, let Copies(A) = {B € X, : B = A}. J

Theorem: [Scot 65, Lopez Escobar 65] For every A, Copies(.A) is Borel. J
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The space of structures X,

Definition: Let X, be the set of structures on vocabulary 7 and domain N. )

X, inherits its topology from N

Definition: For a structure A, let Copies(A) ={B € X, : B= A}. ]
Theorem: [Scot 65, Lopez Escobar 65] For every A, Copies(.A) is Borel. J
Recall:

The Borel sets are the smallest o-algebra containing the opens sets.
They are built from the clopen sets using countable unions and intersections.
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The space of structures X,

Definition: Let X, be the set of structures on vocabulary 7 and domain N. )

X, inherits its topology from N

Definition: For a structure A, let Copies(A) ={B € X, : B= A}. ]
Theorem: [Scot 65, Lopez Escobar 65] For every A, Copies(.A) is Borel. J
Recall:

The Borel sets are the smallest o-algebra containing the opens sets.
They are built from the clopen sets using countable unions and intersections.

We can measure identification complexity of A in terms of the Borel complexity of Copies(.A).
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Depths of Borel sets

We count alternations of | J versus ().

A X, subset of X (or of NY): U ﬂ U ﬂ

eEN HeN heN ieN

n alternations

: (Cio,il,...,in)

clopen

A T, subset of X (or of N'): ﬂ U ﬂ U

heN heN heN ieN

e X; same as open
e [1; same as closed
e ¥, same as F,

e I, same as Gy

Upen Ma is not a o-algebra yet, so not all the Borel sets.

: (Cimil,...,fn)

)
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ordinal depths of Borel sets

A T, subset of X, is a countable intersection of X3 sets for § < a.

Lemma: Every Borel set is N, for some countable ordinal «.

Definition: Copies(A) = {B: B = A and B has domain N}.
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ordinal depths of Borel sets

A T, subset of A’ is a countable intersection of X3 sets for < a. J

Lemma: Every Borel set is N, for some countable ordinal a.

Definition: Copies(A) = {B: B = A and B has domain N}. |

Theorem: [Scot 65, Lopez Escobar 65] For every A, Copies(.A) is Borel. J

Definition: Let BorelRank(.A) be the least a such that Copies(.A) is I'Ia+1.J

Theorem: [M. 15] BorelRank(.A) = bfRank(A). J
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A T, subset of X, is a countable intersection of X3 sets for § < a. J

Lemma: Every Borel set is N, for some countable ordinal «.

Definition: Copies(A) = {B: B = A and B has domain N}. |

Theorem: [Scot 65, Lopez Escobar 65] For every A, Copies(.A) is Borel. J

Definition: Let BorelRank(.A) be the least a such that Copies(.A) is I'IaH.J

Theorem: [M. 15] BorelRank(.A) = bfRank(A). )

Example2: Copies(Q; <) is My and Rank(Q; <) = 1.
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ordinal depths of Borel sets

A T, subset of X, is a countable intersection of X3 sets for § < a. J

Lemma: Every Borel set is N, for some countable ordinal «.

Definition: Copies(A) = {B: B = A and B has domain N}. |

Theorem: [Scot 65, Lopez Escobar 65] For every A, Copies(.A) is Borel. J

Definition: Let BorelRank(.A) be the least a such that Copies(.A) is I'IQH.J

Theorem: [M. 15] BorelRank(.A) = bfRank(A). ]

Example2: Copies(Q; <) is M, and Rank(Q; <) = 1.
Copies(Z; <) is M3 and Rank(Z; <) = 2.
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Isomorphism funtions

Definition: F: Copies(A)? — NN is an isomorphism function for A if
for any two copies, C, D, of A with domain N,
F(C,D) is an isomorphism from C to D.
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Examples

Consider the order (Q; <):
Let C = (N; <¢) and D = (N; <p) be two copies of (Q; <).
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Consider the order (Q; <):

Let C = (N; <¢) and D = (N; <p) be two copies of (Q; <).
(Q; <) has a continuous isomorphism function.

Consider the order (Z; <):
Let C = (N; <¢) and D = (N; <p) be two copies of (Z; <).
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Examples

Consider the order (Q; <):

Let C = (N; <¢) and D = (N; <p) be two copies of (Q; <).
(Q; <) has a continuous isomorphism function.

Consider the order (Z; <):

Let C = (N;<¢) and D = (N; <p) be two copies of (Z; <).
(Z; <) has an isomorphism function of Baire class 1.
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Isomorphism funtions

Antonio Montalban (U.C. Berkeley) Scott rank August 2021 19 / 26



Isomorphism funtions

Definition: F: Copies(.A)?> — NN is an isomorphism function for A if,
for any two C, D € Copies(.A), F(C,D) is an isomorphism from C to D.

Antonio Montalban (U.C. Berkeley) Scott rank August 2021 19 / 26



Isomorphism funtions

Definition: F: Copies(.A)?> — NN is an isomorphism function for A if,
for any two C, D € Copies(.A), F(C,D) is an isomorphism from C to D.

We can measure isomorphism complexity of A in terms of its isomorphism function.

Antonio Montalban (U.C. Berkeley) Scott rank August 2021 19 / 26



Isomorphism funtions

Definition: F: Copies(.A)?> — NN is an isomorphism function for A if,
for any two C, D € Copies(.A), F(C,D) is an isomorphism from C to D.

We can measure isomorphism complexity of A in terms of its isomorphism function.

Definition: A function is
e of Baire class 0 if it is continuous.

Antonio Montalban (U.C. Berkeley) Scott rank August 2021 19 / 26



Isomorphism funtions

Definition: F: Copies(.A)?> — NN is an isomorphism function for A if,
for any two C, D € Copies(.A), F(C,D) is an isomorphism from C to D.

We can measure isomorphism complexity of A in terms of its isomorphism function.
Definition: A function is

e of Baire class 0 if it is continuous.

e of Baire class 1 if it is a pointwise limit of continuous functions.

Antonio Montalban (U.C. Berkeley) Scott rank August 2021 19 / 26



Isomorphism funtions

Definition: F: Copies(.A)?> — NN is an isomorphism function for A if,
for any two C, D € Copies(.A), F(C,D) is an isomorphism from C to D.

We can measure isomorphism complexity of A in terms of its isomorphism function.
Definition: A function is

e of Baire class 0 if it is continuous.

e of Baire class 1 if it is a pointwise limit of continuous functions.

e of Baire class 2 if it is a pointwise limit of functions of Baire class 1.
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Isomorphism funtions

Definition: F: Copies(A)? — NN is an isomorphism function for A if,
for any two C, D € Copies(.A), F(C, D) is an isomorphism from C to D.

We can measure isomorphism complexity of A in terms of its isomorphism function.

Definition: A function is
e of Baire class 0 if it is continuous.
e of Baire class «v if it is a pointwise limit of
functions of Baire class 3 for some § < a. |

Antonio Montalban (U.C. Berkeley) Scott rank August 2021 19 / 26



Isomorphism funtions

Definition: F: Copies(A)? — NN is an isomorphism function for A if,
for any two C, D € Copies(.A), F(C, D) is an isomorphism from C to D.

We can measure isomorphism complexity of A in terms of its isomorphism function.

Definition: A function is
e of Baire class 0 if it is continuous.
e of Baire class «v if it is a pointwise limit of

functions of Baire class 3 for some 3 < a.

Definition: Let BaireRank(.A) be the least « such that
A has an isomorphism function that is of Baire class oo — 1.

.
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Isomorphism funtions

Definition: F: Copies(.A)?> — NN is an isomorphism function for A if,
for any two C, D € Copies(.A), F(C, D) is an isomorphism from C to D.

v

We can measure isomorphism complexity of A in terms of its isomorphism function.

Definition: A function is
e of Baire class 0 if it is continuous.
e of Baire class « if it is a pointwise limit of
functions of Baire class 3 for some § < a. |

Definition: Let BaireRank(A) be the least « such that
A has an isomorphism function that is of Baire class oo — 1.

v

Theorem: [M. 15] BorelRank(A) = BaireRank(.A). ]

Recall: BorelRank(.A) is the least « such that Copies(A) is Ma-1 in the Borel hierarchy.
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Technique 3

Technique 3: Infinitary formulas
for orbit and identification complexity.
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J

For instance, Vy(x < y — Vz(z+x < z+ y + 1)) is a well-formed formula,
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Technique 3: The infinitary 1st-order language

A vocabulary is a set of symbols for constants, functions, and relations.

For instance, 7 = {0,1,+, x, <} is a vocabulary.

We then have rules to write down formulas using the vocabulary, the
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For instance, 7 = {0, 1, +, x, <} is a vocabulary.

We then have rules to write down formulas using the vocabulary, the
logical symbols A,\/, —,—, ¥, 3, and variable symbols, x,y, z, ....

For instance, Vy(x <y = Vz(z+x < z+ y + 1)) is a well-formed formula,
with free variable x.

Given a structure A, a formula ¢(x), and 3 € A<,
one can define what it means for ¢ to be true of 3 in A (we write A |= ¢(3)).

In 1st-order languages, V and 3 range over the elements of the structure.
In infinitary languages, conjunctions and disjunctions can be infinitary.

Antonio Montalban (U.C. Berkeley) Scott rank August 2021 21/ 26



Infinitary 1st-order formulas

In 1st-order languages, ¥V and 3 range over the elements of the structure.
In infinitary languages, conjunctions and disjunctions can be infinitary.

Antonio Montalban (U.C. Berkeley) Scott rank August 2021 22 /26



Infinitary 1st-order formulas

In 1st-order languages, ¥V and 3 range over the elements of the structure.
In infinitary languages, conjunctions and disjunctions can be infinitary.

Example:

In a group G = (G; e, *):

Antonio Montalban (U.C. Berkeley) Scott rank August 2021 22 /26



Infinitary 1st-order formulas

In 1st-order languages, ¥V and 3 range over the elements of the structure
In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: torsion(x) =
In a group G = (G; e, *):
Antonio Montalban (U.C. Berkeley) Scott rank

August 2021 22 /26



Infinitary 1st-order formulas

In 1st-order languages, ¥V and 3 range over the elements of the structure.
In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: torsion(x) = \/(x*x*x*u-*x: e),
—
neN n times
In a group G = (G; e, *):
Antonio Montalban (U.C. Berkeley) Scott rank

August 2021 22 /26



Infinitary 1st-order formulas

In 1st-order languages, ¥V and 3 range over the elements of the structure.
In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: torsion(x) = \/(x*x*x*u-*x: e),
—
neN n times

In a group G = (G; e, *): divisible(x) =

Antonio Montalban (U.C. Berkeley) Scott rank August 2021 22 /26



Infinitary 1st-order formulas

In 1st-order languages, ¥V and 3 range over the elements of the structure.
In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: torsion(x) = \/(x*x*x*u-*x: e),
—
neN n times
In a group G = (G; e, *): divisible(x) = /\ Jy(y xyxy*---xy=x),
neN
Antonio Montalban (U.C. Berkeley) Scott rank

August 2021 22 /26



Infinitary 1st-order formulas

In 1st-order languages, ¥V and 3 range over the elements of the structure.
In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: torsion(x) = \/ (xxxxx%--xx=e),
—
neN n times
In a group G = (G; e, *): divisible(x) = /\ Jy(y xyxy*---xy=x),
neN

4

Theorem: [Scott 65] For every automorphism invariant set B C Ak, B
there is an infinitary formula ¢(X) such that B = {b € Ak : A |= o(b)}.
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Infinitary 1st-order formulas

In 1st-order languages, ¥V and 3 range over the elements of the structure.
In infinitary languages, conjunctions and disjunctions can be infinitary.

Example: torsion(x) = \/ (xxxxx%--xx=e),
—
neN n times
In a group G = (G; e, *): divisible(x) = /\ Jy(y xyxy*---xy=x),
neN

v

Theorem: [Scott 65] For every automorphism invariant set B C Ak, B
there is an infinitary formula ¢(X) such that B = {b € Ak : A |= o(b)}.

We can measure orbit complexity of A using the complexity of these formulas.

Theorem: [Scott 65] For every countable structure A, there is an infinitary
sentence ¥ 4 such that, for countable structures C, C =14 <= C = A.

We can measure identification complexity of A in terms of the complexity of 1 4.
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Depths of infinitary formulas

We count alternations of 3 and \/ versus ¥ and A.
A ¥ formula is one of the form:
Viw Avwm Vi Avs-- (wio,il,...,in()_(a)_/O7)717---7)7n)>

iEN h€eN heN i3EN
— Y Y Y=

finitary, quantifier free

n alternations

A 1" formula is one of the form:
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—_—— —— —— ——
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ordinal depths of infinitary formulas

A 17 formula is one of the form: /\ vy (SOI(;G)_/))
ieN ~—

vin for y<p
Theorem: [Scott 65] For every automorphism invariant set B C A, _
there is an infinitary formula o(X) such that B = {b € A*: A |= p(b)}.

Definition: Let OrbitRank(.A) be the least « such that
every automorphism orbit is Zg’—definable.J
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Antonio Montalban (U.C. Berkeley) Scott rank August 2021 24 / 26



ordinal depths of infinitary formulas

A M7 formula is one of the form: /\ Vy (SOI(;(J/))
ieN —
vin for y<p

Definition: Let OrbitRank(.A) be the least « such that
every automorphism orbit is X7-definable.

v

Definition: Let SSRank(.A) be the least « such that
there is a 17, ; sentence true only about A among countable structures.

v

Theorem:
(] SSRank(.A) = BoreIRank(A). [Lopez Escobar 65, Vaught 75]
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Examples

Consider the order (Q; <):
° (al, ...,ak) = (b]_,...., bk) <~ (VI',_/' < k) a; < aj &< b; < bj.
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Rank(-) is a robust measure of complexity

Theorem: [M. 15] Let a be an ordinal and A a countable structure.
The following are equivalent:
@ Orbit complexity
e Vic AN 37 c AN vh b € AN, 33 <, bb'= 3=, b.
e All automorphism orbits in A are ¥/"-definable.
o ldentification complexity
e The set of copies of A is ,41 in the Borel hierachy.
e Thereis a I'Ig]Jrl sentence uniquely identifying A.
@ Isomorphism complexity
e A has an isomorphism function that is of Baire class o — 1.

Let Rank(.A) be the least such a.
= bfRank(A) = OrbitRank(A) = BorelRank(A) = SSRank(.A) = BaireRank(.A).
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