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Introduction I

I This is joint work with Nicolas Chavarria Gomez.

I The model theory of modules, or more generally abelian
structures, comprises an important chapter in model theory
and mathematical logic, feeding into geometric stability theory
(1-based groups), as well as representation theory.

I A key fact in this classical context is so-called pp-elimination:
elimination of quantifiers down to Boolean combinations of
positive primitive formulas, implying a strong form of stability.

I We want to do something analogous in a suitable “continuous
logic” environment.

I Some of the inspiration or motivation comes from
Hrushovski’s recent work on simplicity of the theory of finite
fields equipped with an additive character in a continuous
logic environment (as well as our asking the question what, if
anything, is the continuous analogue of a 1-based group).
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Introduction II

I An abelian structure is an abelian group (A,+,−, 0) equipped
with predicates for some subgroups of A,A×A, ...., including
the graph of equality.

I Elimination of quantifiers down to (Boolean combinations of)
positive primitive formulas, generalizes from modules to
abelian structures, yielding stability in a strong form,
1-basedness.

I Here we are are interested in an abelian structure
(A,+,−, 0, P )P∈S equipped with a homomorphism f from A
to a compact (Hausdorff) group T.

I We will prove that the theory of the structure
(A,+,−, 0, P, f,T)P∈S is stable, also via a suitable
pp-elimination result.

I However this will be stability in a suitable version of
continuous logic, which will be described in the next section.
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Logic I

I We are interested more generally in the following situation:

I M− is a usual first order structure in a language L−, C is a
compact Hausdorff space, and f is a map from the universe of
M− to C.

I (More generally M− could be many-sorted, and we might
have functions from various sorts in M− to various compact
spaces. But for simplicity we stick to the situation above.)

I When C is a metric space, we could treat this set up with the
formalism of BY-B-H-U, by viewing (M−, f, C) as a 2-sorted
structure, with the metric d on C, as well as all continuous
functions from C to [0, 1] as real valued relations on C. (As
Henson pointed out.)

I But it is convenient and conceptually simpler (for me at
least), to choose an essentially equivalent formalism, which is
closer to the Henson-Iovino positive bounded logic of normed
vector spaces, as well as so-called “positive logic”.
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Logic II

I Let L be the 2-sorted language, with a sort for M− equipped
with all its L−-structure, as well as a sort for C, a symbol for
the function f , and predicates for all closed subsets of the
various Cartesian powers of C (a bit of overkill, but never
mind).

I Then we can view M = (M−, f, C) as a classical first order
L-structure, and the usual notions of first order logic apply;
L-formulas, satisfaction, elementary extension, etc.

I However we will restrict both the structures and the formulas
as follows (although the semantics will be the same):

I By a CL L-structure we mean an L-structure where the
second sort is the space C, and where the interpretations of
the predicates for closed subsets of various powers of C are
tautological.

I I guess we could also call this a C-L-structure (in analogy with
ω-models in second order arithmetic).
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Logic III

I Now for CL L-formulas, or just CL-formulas, when both L
and C are understood;

I Any first order L−-formula (appropriately sorted) is a
CL-formula, and any L-formula of the form D(f̄(x̄)) (also
written f̄(x̄) ∈ D) for D a closed subset of Cn is a
CL-formula.

I Now close under ∧,∨,∃,∀ (where note all variables, in
particular quantified variables, are from the home L− sort).

I So the set of CL L-formulas is just a subset of the set of all
L-formulas.

I A CL-sentence is a CL-formula without free variables.

I So we have a class of structures, the CL-structures, a class of
formulas, the CL-formulas, together with the satisfaction
relation, induced from the L-structures and L-formulas.
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Approximations I

I All of model theory works, compactness, saturated models
etc. except that for arbitrary models (possibly including our
original structure (M−, f, C)) we have to consider
approximations to CL-formulas, and approximate truth (as in
Henson-Iovino).

I By an approximation to a closed subset D of Cn we mean
something of the form cl(U) where U is an open subset of Cn
containing D.

I An approximation to a CL-formula φ(x̄) is a CL-formula
obtained from φ(x̄) by replacing each occurrence of a closed
set D ⊆ Cn in φ by an approximation to it.

I If N is a CL-structure, φ(x̄) a CL-formula and ā a tuple
from N , then we write N |=approx φ(ā) if N |= ψ(ā) for each
approximation ψ to φ.
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from N , then we write N |=approx φ(ā) if N |= ψ(ā) for each
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Approximations II

I There are natural notions of approximate elementary
equivalence and substructure.

I A saturated CL-structure N is one such that every collection
Σ(x̄) of CL-formulas over a small set of parameters which is
finitely approximately satisfiable in N is satisfiable in N .

I The existence theorem gives the existence of an approximate
elementary extension of any given CL-structure which is
saturated (which can be obtained by composing a saturated
elementary extension qua L-structure with the standard part
map on the C-sort).

I In saturated CL-structures (our “universal domains”) which
are the right places to work, approximate truth coincides with
truth.

I The analogue of a complete theory is the approximate
CL-theory of some CL-structure, equivalently the CL-theory
of some (ω)-saturated CL-structure.
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Stability

I Let T be a complete CL-theory, as above.

I We will say that T is stable, if whenever M is a saturated
(CL)-model of T , and ((ai, bi) : i < ω) is an indiscernible
sequence in M (in the appropriate sense), then

I tp(ai, bj) = tp(aj , bi) whenever i < j.

I Here the type of a tuple ā is the set of CL-formulas true of ā
in M .

I This agrees with the notion of stability for classical first order
theories, as well as in continuous logic in the sense of
BY-B-H-U.
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Remarks and questions

I As an example, our main theorem implies that the structure
(R,+,−, 0) equipped with the canonical covering map
f : R→ R/Z is stable (i.e, its approximate CL-theory is
stable).

I Zilber intiated the model theoretic study of covering maps
such as π from (C,+) to an elliptic curve E = C/Γ and
where the elliptic curve is equipped with all “algebraic”
structure, and sometimes the kernel is fixed.

I We could look at a twist of this where the domain is
equuipped with the full field structure and the target is just
viewed as a compact space.

I There has been quite a bit of work around describing stable
expansions of (Z,+). We could more generally ask about
CL-stable “expansions” of (Z,+) by a map f : Z to [0, 1] or
to any compact space.
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pp-elimination I

I Let us specialize to the topic of this talk.

I That is, we consider a CL-L-structure
M = (A,+,−, 0, P, f,T)P∈S where (A,+,−, 0, P )P∈S is an
abelian structure which we call M− in language L− and f is a
homomorphism from A to the compact group T.

I We want to show stability of the approximate CL-theory of
M .

I We may assume M to be CL-saturated and f to be surjective.

I By a pp∗-formula we mean a CL-formula of the form

I ∃ȳ(φ(x̄, ȳ) ∧
∧

i∈I(f(xi) = ci) ∧
∧

j∈J(f(yj = dj)),

I where φ is a finite conjunction of atomic L−-formulas, I, J
are (possibly empty) subsets of the index sets of x̄, ȳ
respectively, and ci, dj are in T for i ∈ I, j ∈ J .
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pp-elimination II

I Note that when I and J are empty, then this is just a usual
positive primitive L−-formula which we will call a pp-formula
(the negation of which is also a CL L-formula).

I When the ci and dj are all 0, then the pp∗-formula above
defines a subgroup of An, called a pp∗-subgroup.

I If ψ(x̄, z̄) is a pp∗-formula and b̄ is a `(z̄)-tuple, then:

I ψ(x̄, b̄) defines a coset of a (the obvious) pp∗-subgroup of An.

Lemma 0.1
If ā and b̄ are n-tuples from A with the same pp∗ type (namely
they satisfy in M exactly the same pp∗-formulas), then ā, b̄ have
the same type in M (i.e. satisfy the same CL-formulas).
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pp-elimination III

Corollary 0.2

The (approximate) theory of M is stable, in fact also 1-based once
one gives the appropriate definition.

I The proof of the lemma is by a back and forth argument in
the saturated model M .

I The key point is to express the emptyness of the intersection
of a pp∗-formula (with parameters) with a finite conjunction
of negated pp-formulas (with parameters) by a pp∗-formula
and negated pp-formulas (in the parameters).

I It is done using the Neumann lemma and inclusion-exclusion
principle, elaborating on the classical proof of pp-elimination
for modules.
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Final remarks

I Tran and Walsberg show that if f : Z→ S1 is given by an
“irrational rotation”, then adjoining to (Z,+) the preimage of
a small interval around the identity in S1, gives a dp-minimal
proper expansion, which is hence unstable (by a result of
Conant and me).

I Nevertheless, our result above says that the structure
(Z,+, f, S1) is stable in the CL-sense, and probably the point
is that no new first order structure is induced on (Z,+).

I Note that if G is a saturated stable group (as a first order
structure), and we add a new sort for the compact group
G/G0, then the resulting CL-structure is also stable.

I But our results show that not all CL-stable structres (G, f, C)
with f a homomorphism arise this way.
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