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The Tennenbaum phenomenon
Tennenbaum famously answered a very natural question.

Natural Question

Is there a computable nonstandard model of arithmetic?

We would seek computable operations ⊕ and � for which

〈N,⊕,�〉

is a nonstandard model of PA.

Nonstandard analysis, but computably.

There answer is no, there is no such model.
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Tennenbaum’s theorem

Theorem (Tennenbaum)

There is no computable nonstandard model of PA.

Proof.

Suppose M = 〈N,⊕,�〉 is a computable nonstandard model of PA.

Let A and B be computably inseparable c.e. sets. Interpret inside M.

By overspill, exists nonstandard time t with AM
t and BM

t disjoint.

Can compute n ∈ AM
t for standard n.

The set of standard n in AM
t is a computable separation of A and B,

contradiction.
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Tennenbaum for set theory

Natural Question

Is there a computable model of ZFC?

We would seek a computable relation ε such that 〈N, ε〉 |= ZFC.

Again the answer is no.

And there is no nonstandardness requirement for the set theory
case.
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Tennenbaum for set theory
Theorem (Tennenbaum)

There is no computable model of ZF set theory.

Proof.

Suppose M = 〈N, ε〉 is a computable model of ZF.

Fix A and B computable inseparable c.e. sets.

Interpret in M.

In M, let C be the set of n put into AM before BM .

Subtle issue: the map n 7→ nM is computable.

So C provides a computable separation, contradiction.
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Generalizing Tennenbaum

We are interested in various generalizations of the
Tennenbaum phenomenon.
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Computable quotient presentations

A computable quotient presentation of a structure A is a
computable structure 〈N, ?, ∗, · · · 〉 together with an equivalence
relation E such that

A ∼= 〈N, ?, ∗, · · · 〉/E .

We do not insist that E is computable.

We may consider computable quotient presentations of graphs,
groups, orders, and so on.

In a language with relations, it is natural to consider computably
enumerable quotient presentations, which allow the
pre-quotient relation to be merely c.e.
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Khoussainov’s Program

Bakhadyr Khoussainov [Kho16] outlined a sweeping vision for
computable quotient presentations.

He proposes them as a fruitful alternative approach to
computable model theory.
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Philosophical attitude to identity
Quotient presentations offer a different attitude toward identity.

Computable presentations

In computable structures 〈N, . . .〉, we get automatic computability of
the identity relation a = b.

Distinct numbers n,m represent distinct elements of the structure.

Computable quotient presentation

In quotient structures 〈N, . . .〉/E , however, we can’t necessarily tell
whether n and m will represent the same or different objects in the
quotient.

Part of the attraction of quotient presentations is to loosen the
computational grip on the identity relation.
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Khoussainov Conjectures
Khoussainov made two conjectures at 2016 RIMS in Kyoto.

Conjecture (Khoussainov)

1 No nonstandard model of arithmetic admits a computable
quotient presentation by a computably enumerable
equivalence relation on the natural numbers.

2 Some nonstandard model of arithmetic admits a
computable quotient presentation by a co-c.e. equivalence
relation.

In this talk, I shall prove the first conjecture and refute several
natural variations of the second conjecture, including the
natural analogues in set theory.

Some variations remains open.
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Every theory has quotient presentations

Background observation

Every consistent c.e. theory T in a functional language admits a
computable quotient presentation by an equivalence relation E of low
Turing degree.

Proof.

Consider Henkin construction, the effective completeness theorem.

Add Henkin witnesses, build tree of attempts to complete the theory.

Key point: the term algebra is computable.

The equivalence E is determined by the path through the tree.

Slogan: the Henkin model is a quotient of the term algegra.
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Fundamental fact of universal algebra

Every algebraic structure is a quotient of the associated term
algebra on a sufficient number of generators.

Every countable group is a quotient of the free group on
countably many generators.
Every countable algebra is quotient of the term algebra.

For this reason, quotient presentations are often especially
relevant for universal algebra, that is, in purely functional
languages.
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The term algebra

In a functional language, the term algebra is computable:
applying a function to a term produces another term.

The difficulty is identity—to decide when two terms are equal.

The domain problem (Khoussainov)

For which equivalence relations E can a structure have a
computable presentation on domain N/E?

Problems arrive when the language has relation symbols.

Computable quotient presentations Joel David Hamkins



Introduction Quotient presentations Quotient models of arithmetic Quotient models of set theory

The term algebra

In a functional language, the term algebra is computable:
applying a function to a term produces another term.

The difficulty is identity—to decide when two terms are equal.

The domain problem (Khoussainov)

For which equivalence relations E can a structure have a
computable presentation on domain N/E?

Problems arrive when the language has relation symbols.

Computable quotient presentations Joel David Hamkins



Introduction Quotient presentations Quotient models of arithmetic Quotient models of set theory

The term algebra

In a functional language, the term algebra is computable:
applying a function to a term produces another term.

The difficulty is identity—to decide when two terms are equal.

The domain problem (Khoussainov)

For which equivalence relations E can a structure have a
computable presentation on domain N/E?

Problems arrive when the language has relation symbols.

Computable quotient presentations Joel David Hamkins



Introduction Quotient presentations Quotient models of arithmetic Quotient models of set theory

The term algebra

In a functional language, the term algebra is computable:
applying a function to a term produces another term.

The difficulty is identity—to decide when two terms are equal.

The domain problem (Khoussainov)

For which equivalence relations E can a structure have a
computable presentation on domain N/E?

Problems arrive when the language has relation symbols.

Computable quotient presentations Joel David Hamkins



Introduction Quotient presentations Quotient models of arithmetic Quotient models of set theory

Computably enumerable equivalence relations

We prove that Khoussainov’s first conjecture is true.

Theorem (Godziszewski, Hamkins)

No nonstandard model of arithmetic has a computable quotient
presentation by a c.e. equivalence relation.

We shall prove this even in the restricted (but fully expressive)
language {+, ·}.

There is no computable structure 〈N,⊕,�〉 and a c.e. relation E
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Proof

Suppose 〈N,⊕,�〉/E is a computable quotient presentation of a
nonstandard model of PA, with E c.e.

Let 0̄, 1̄ represent 0, 1. We can compute n̄ = 1̄⊕ · · · ⊕ 1̄.

Fix A, B computably inseparable c.e. sets.

Run the programs inside the model. So there is finite set C in the
model containing actual A, disjoint from actual B.

Code C with c via prime-product coding. So n ∈ C ↔ pn | c.

Let b code the complement of C up to a nonstandard height.

For any n, we search for x such that x � p̄n E c or x � p̄n E b.

This is a computable separation of A and B, contradiction.
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Only need ⊕ computable

By replacing x � p̄n with x ⊕ x ⊕ · · · ⊕ x , using pn many factors,
we may deduce Tennenbaum-style that ⊕ is not computable.

That is, we only require ⊕ to be computable, not both � and ⊕.
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Alternative proof
Consider the standard system of nonstandard model M, the
collection of sets A ⊆ N arising as standard part of a set coded
in M.

For example, all the sets Ac = {n ∈ N | M |= p̄n | c }.

Dana Scott observed that every standard system has every
computable set, is closed under relative computability, and for
every infinite binary tree coded by a set in the system, there is
an infinite branch also in the system.

It follows that every standard system must have some non-c.e.
sets.

But our argument above showed that if E is c.e., then every set
in the standard system is c.e., contradiction.
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Full language of arithmetic

Let us now consider the problem in the usual language of
arithmetic {+, ·,0,1, < }.

For computable quotient presentations, it is much too strong to
insist that < is computable, for then we could compute =.

So we shall consider weaker notions, such as c.e. quotient
presentations 〈N,⊕,�,0,1,C〉/E , where C is merely c.e.

We shall also consider the language with the reflexive order
{+, ·,0,1,≤}.
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Automatic c.e. or co-c.e.

Lemma

Suppose that E is an equivalence relation on the natural
numbers.

1 If C is computable and 〈N,C〉/E is a strict linear order,
then E is computable.

2 If C is c.e. and 〈N,C〉/E is a strict linear order, then E is
co-c.e.

3 If E is computable 〈N,E〉/E is linear order, then E is
computable.

4 If E is c.e. and 〈N,E〉/E is linear order, then E is c.e.
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Computably enumerable quotient presentations

Theorem (Godziszewski, Hamkins)

No nonstandard model of PA in the language {+, ·,0,1, < }
admits a c.e. quotient presentation by a c.e. relation E.

Proof.

Suppose E is c.e. and 〈N,⊕,�, 0̄, 1̄,C〉/E is a c.e. quotient
presentation of nonstandard model of PA.

By the lemma, E is also co-c.e., hence computable. Now pick
representatives, violate Tennenbaum.

Alternative: ignore < and apply earlier theorem.
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Refuting Khoussainov’s second conjecture
The conjecture: some nonstandard model of arithmetic has
computable quotient presentation with co-c.e. E .

Let us refute this for PA in the language {+, ·,≤}, even for
c.e. quotient presentations.

Theorem (Godziszewski, Hamkins)

No nonstandard model of arithmetic in {+, ·,≤} has a c.e. quotient
presentation by any equivalence relation, of any complexity.

Proof.

Suppose 〈N,⊕,�,E〉/E works.

By the lemma, E must be c.e.

So this reduces to the first theorem.
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Co-c.e. equivalence relations

Perhaps cheating to include < or ≤ in the language.

So let’s return to the language {+, · }.

Consider true arithmetic = theory of the standard model.

We refute the conjecture in this case. (We shall sharpen.)

Theorem (Godziszewski, Hamkins)

No nonstandard model of true arithmetic has a computable
quotient presentation 〈N,⊕,�〉 using a co-c.e. equivalence
relation E.
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First proof

Suppose M = 〈N,⊕,�〉/E is nonstandard model of true arithmetic,
where E is a co-c.e. equivalence relation.

Let 1̄ = 1M , and compute n̄ = nM .

Let h code halting problem up to some nonstandard height.

Let A and B be 0′-computably inseparable.

Let C be numbers enumerated into AM using h as (fake) oracle,
before into BM .

This separates, and is ∆2, hence computable from 0′, contradiction.
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Alternative proof

Suppose M = 〈N,⊕,�〉/E is nonstandard model of true
arithmetic, E is co-c.e.

0′ is in the standard system.

Now, argue every set coded in M is computable from 0′, using
fact E is co-c.e.

This violates Scott’s theorem that the standard system will have
sets of higher complexity.
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Sharper result

Theorem (Godziszewski, Hamkins)

No Σ1-sound nonstandard model of PA in language {+, · }
admits a computable quotient presentation by a co-c.e.
equivalence relation.

The proof we gave shows it is enough if merely 0′ is in the
standard system.

This is weaker than Σ1-sound, since a simple compactness
argument enables us to insert any particular set into standard
system.
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Another variation

Corollary

No nonstandard model of arithmetic in the language
{+, ·,0,1, < } and with 0′ in its standard system has a
computably enumerable quotient presentation by any
equivalence relation, of any complexity.

Proof.

If 〈N,⊕,�, 0̄, 1̄,C〉/E is c.e. quotient presentation, then by the
lemma, E must be co-c.e., and so this is ruled out by previous
theorem.
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Central case still open

Question

Is there a nonstandard model of PA in language {+, ·,0,1, <}
with a computably enumerable quotient presentation by some
co-c.e. equivalence relation? Equivalently, is there a
nonstandard model of PA in that language with a computably
enumerable quotient presentation by any equivalence relation,
of any complexity?

The two versions are equivalent by the lemma.

Khoussainov conjectured positive answer; we expect a
negative answer.
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Set theory

Let’s consider the question for set theory.

Theorem (Godziszewski, Hamkins)

No model of ZFC has a computable quotient presentation, by
an equivalence relation of any complexity.

That is, there is no computable relation ε and equivalence
relation E , of any complexity, such that 〈N, ε〉/E is a model of
ZFC.
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Proof—no computable quotient model of ZFC
Suppose ε is computable and M = 〈N, ε〉/E |= ZFC. (v. weak theory suffices)

Consider Kuratowski pairing 〈x , y〉 = {{x} , {x , y}}.

Fix N ∈ N which the model thinks is NM .

Let S represent { 〈n, n + 1〉 | n ∈ N }M .

Similarly, we have numbers representing sets Sing and Doub for the sets of
natural-number singletons and doubletons.

Can now compute n 7→ n̄. (More complex than one might expect, but
possible. Search through elements of N and S, unwrapping pairs via Sing
and Doub, to build a witness sequence.)

It follows that every set in standard system of 〈N, ε〉/E is computable,
contradiction.
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Alternative argument
Assume ε is computable and 〈N, ε〉/E is a model of set theory.

By extensionality, we have

x 6= y ↔ ∃z ¬(z ∈ x ↔ z ∈ y).

In pre-quotient model, this amounts to:

¬(x E y) ↔ ∃z¬(z ε x ↔ z ε y).

So E is co-c.e.

Now argue from that case. . .
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No c.e. quotients by co-c.e. E

Theorem (Godziszewski, Hamkins)

There is no c.e. relation ε with a co-c.e. equivalence relation E
for which 〈N, ε〉/E is a model of set theory.

Proof.

If ε is c.e., then by using the set coding Sing, we can make
equality of elements of a fixed set c.e.

So E is computable when restricted to the elements of a fixed
set.

This is enough to run the computable inseparability
arguments.
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Co-c.e. E on a relational structure

Observation

With a co-c.e. equivalence relation E on N, we can computably
enumerate the least representative of every equivalence class.

That a number n is least in [n]E will be revealed when it is
shown to be E-inequivalent to all smaller k < n.

Conclusion

Every computable quotient presentation of a relational structure
by a co-c.e. relation has a computable presentation.
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Finite set theory

Let ZF¬∞ be finite set theory, ZFC without infinity, plus negation
of infinity, plus ∈-induction scheme.

True in 〈HF,∈〉. Bi-interpretable with PA via the Ackermann
relation on N.

Theorem (Godzizsewski,Hamkins)

There is no computable ε and equivalence relation E, of any
complexity, such that 〈N, ε〉/E is a nonstandard model of finite
set theory ZF¬∞.

Proved by using S, Sing, Doub etc. below a nonstandard
number.
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Computably enumerable quotients by co-c.e. E

Theorem (Godziszewski, Hamkins)

There is no c.e. relation ε with a co-c.e. equivalence relation E
for which 〈N, ε〉/E is a nonstandard model of finite set theory
ZF¬∞.

Can again get E decidable for members of any given set, by
using Sing.
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Thank you.
Slides and articles available on http://jdh.hamkins.org.

Joel David Hamkins
Oxford University
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