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o-minimal structures

Definition
M = (M, <, . . . ) is o-minimal when
every definable set X ⊂ M is a finite
union of points and open intervals.

Remark
M has the order topology,
Mk has the product topology

Examples

(Q, <,+) and any other ordered divisible abelian gr.

(R, <,+, ·) and any other real closed field
(i.e. ordered field M with M(

√
−1) alg. closed)

Rexp = (R, <,+, ·, exp) (Wilkie)

Ran,exp (van den Dries - Miller)

Definition
Let X be a definable set and let P be a partition of X
in cells C. We denote by E(X) the o-minimal Euler
characteristic of X , which is given by

E(X) =
∑
C∈P

E(C) =
∑
C∈P

(−1)dim C

Theorem
Let X, Y be definable set in an
o-minimal expansion of a r.c.f.
Then there is a definable bijection
between X and Y if and only if

dim X = dim Y and E(X) = E(Y )



Definable groups and induced topology from the structure

(G, ·) is a definable group inM when G and Γ (·) are definable sets inM.

Example
LetM = (M, <,+, . . . ) be an o-minimal
expansion of an ordered group. Fix a > 0
and take G = [0, a) with the group operation

x ∗ y =

{
x + y if x + y < a
x + y − a otherwise.

The group operation is not continuous in 0
with respect to the topology induced by <

To make it continuous, set
{Uε = [0, ε)

⋃
(a− ε, a) : ε > 0}

a basis for the neighborhoods of 0.

Moreover, ifM = (M, <,+, ·, . . . ) expands
a field, then we can definably embed (G, ∗)
into M2 (take a = 1) with the map:

x 7→
{
(−4x + 1,

√
1− (4x − 1)2) if x ∈ [0, 1/2)

(4x − 3,
√

1− (4x − 3)2) if x ∈ [1/2, 1).

The group image, endowed with the topology
induced by M2, is homeomorphic to (G, ∗).



Pillay’s manifold on definable groups

Theorem (Pillay, 1988)
Let (G, ·) be a group definable in an o-minimal structure
M = (M, <, . . . ). Then

There is a topology τ on G such that (G, ·, τ) is a top group.

There are τ -open definable subsets U1, . . . ,Ur covering G,
each definably homeomorphic to an open subset of Mdim G

Fact
Every group definable in
an o-minimal expansion of
a field is affine. (That is,
we can assume τ is the
topology induced by the
structure)

Definition
A real Lie group of dimension n is a smooth
n-dimensional manifold over R, equipped
with a smooth group operation.

Corollary (Hilbert 5th)
Every group definable in an o-minimal
structure over R is a real Lie group.

Examples (of real Lie groups)

Any closed G < GLn(R) and (assuming G = G0) its universal cover G̃.

Question

Which real Lie groups are definable in an o-minimal expansion of the real field?



Classifying real Lie groups
Theorem (C., Onshuus, Post - 2021)
Let G be a real Lie group. Then the following are equivalent:

G is Lie isomorphic to a group definable in an o-minimal expansion of the reals.

G is Lie isomorphic to a group definable in Rexp .

G and Z (G) have finitely many connected components and its solvable radical is Lie
isomorphic to N o SO2(R)d , where N is simply connected and completely solvable.

Theorem (C., Mamino - 2021)
There is a connected nilpotent Lie
group that inteprets (R, <,+, ·,Z)

Theorem (C. - 2021)
A nilpotent real Lie group G has an o-minimal copy
⇐⇒ G is isomorphic to a linear algebraic group.

Questions

Are there other nilpotent groups in between or is it a dichotomy?
For instance, is there a nilpotent group that is definable in a NIP structure and is not
isomorphic to an algebraic group?

For the groups with an o-minimal copy: which ones are semialgebraic and which
ones need the exponential function?

Are (R,+, ·), Rexp, 〈Rexp, (Z,+)〉, (R, <,+, ·,Z) the only relevant structures?
For instance, is there a NIP structure that defines more than o-minimal groups (up to
Lie isomorphism) and central extensions of semisimple groups?



Topological notions

In a ℵ0-saturated ordered structure, [a, b] is not connected nor compact.

We need different notions that capture connectedness and compactness.

Definition
A definable set X is definably connected if
there are no open definable subsets A,B
such that X ⊂ A ∪ B and A ∩ B = ∅.
In a definable group G the definably
connected component of e is denoted by G0.

Theorem (Pillay, 1988)
Let G be a definable group. Then G0 is the
smallest (normal) definable subgroup of G of
finite index. Thus

G is definably connected ⇐⇒ G = G0.

(Peterzil-Steinhorn, 1999)
A definable set X is definably compact if X (with the topology induced by the ambient
space) is closed and bounded.



Semisimple groups and the solvable radical

Definition
Let G be a non-abelian definable group.

G is definably simple if the only normal
definable subgr. of G are {e} and G.

G is semisimple if G does not have
infinite abelian (⇔ solvable) - definable
or not - normal subgroups.

Theorem (Peterzil, Pillay, Starchenko - 2000)
Let G be a semisimple definably connected group
in an o-minimal structureM. Then G/Z (G) is a
direct product of definably simple groups Hi , and
each Hi is definably isomorphic to a definable
subgroup of GLn(Ri ), for some real closed field
Ri definable inM.

Fact
Every definable group G has a maximal normal definably connected solvable subgroup R
(called the solvable radical) and the quotient G/R is a semisimple definable group.

Question

Is there a definable semisimple S such that G = RS?



Levi decomposition

Levi decomposition of Lie groups
Let L be a connected Lie group. If R is the
solvable radical of L, then there is a connected
semisimple subgroup S of L such that

L = R · S and dim(R ∩ S) = 0.

If L is compact, then its Levi decomposition is
L = Z (L)0 · [L, L]

Theorem (Peterzil, Pillay, Starchenko - 2002)
If G is linear, then G has a definable Levi
decomposition.

Theorem (Hrushovski, Peterzil, Pillay - 2011)
If G is definably compact, then [G,G] is def. and
G = Z (G)0 · [G,G].

Theorem (C., Pillay - 2013)
G has a maximal ind-definable semisimple
subgroup S, unique up to conjugation, and

G = R · S

– R being the solvable radical of G,

– R ∩ S ⊆ Z (S), and Z (S) is finitely
generated.

Definition
S is ind-definable semisimple if

S is ind-definable (
∨

-def, locally def)
definably connected

S/Z (S) is definable semisimple



Iwasawa decomposition of semisimple groups, G = KAN

Example
Every matrix with determinant 1 can be decomposed as a product of an orthogonal matrix,
a diagonal matrix and a unipotent matrix. For example, for 2× 2 matrices:(

a b
c d

)
=

(
α −β
β α

)(
λ λx
0 1/λ

)
=

(
α −β
β α

)(
λ 0
0 1/λ

)(
1 x
0 1

)

Theorem (C. - 2014)
Let G be a definably simple group in an o-minimal structure. Then there exists a definable
real closed field R and some m ∈ N such that G is definably isomorphic to a definable
group G1 < GLm(R), with the following properties:

(i) G1 = KH, with K = G1 ∩ Om(R) and H = G1 ∩ T+
m (R),

(ii) H = AN, with A = G1 ∩ D+
m(R) and N = G1 ∩ UTm(R),

(iii) G1 (and therefore G) has maximal definably compact subgroups, all definably
connected and conjugate to K .

Corollary
Let G be a connected semisimple group definable in an o-minimal structure. Then G has
maximal definably compact subgroups and they are all conjugate to each other. For each
such maximal compact subgroup K there is a (maximal) torsion-free definable subgroup H
such that G = KH and K ∩ H = {e}. Moreover, H = AN where A is abelian, N is nilpotent
and A ∩ N = {e}.



Jordan-Chevalley decomposition

Jordan-Chevalley decomposition of linear algebraic groups
Let G be a connected linear algebraic group. Then

G = N o K

where N is a closed contractible torsion-free group (the unipotent radical of G) and K is a
central extension of a semisimple group S = [K ,K ] by an algebraic torus T = Z (K )0.

Theorem (C. - 2021)
Let G be a definably connected group in an o-minimal expansion of a real closed field and
S a Levi subgroup of G. Then G can be decomposed as

G = NTS

where:

N = N (G) is the maximal normal definable torsion-free subgroup of G,
T is a maximal abstract torus of the solvable radical centrealizing S,
NS is a normal subgroup of G containing all Levi subgroups of G,
N ∩ T = {e} and N ∩ S is a central finitely generated group.

S is definable ⇐⇒ N ∩ S = {e} and T ∩ S is finite.

N has a complement in G (definable or not) ⇐⇒ TS is definable.



Sketch of the proof

Strzebonski - 1994
Let G be a definable group. G is a p-group if:

p is a prime number and for any proper
definable H < G,

E(G/H) ≡ 0 mod p

p = 0 and for any proper definable
subgroup H < G,

E(G/H) = 0

A maximal p-subgroup of a definable
group G is called p-Sylow.

Each p-subgroup is contained in a
p-Sylow, and p-Sylows are all
conjugate.

Take a Levi decomposition G = RS and assume S is definable.

Step 1: Every 0-Sylow A of NG(S) is a 0-Sylow of G.

Step 2: There is an abstract torus T < A such that N o T = R.

Step 3: T centralizes S.

Step 4: Generalize to S not definable using G/Z (G) has definable Levi subgroups.



Nilpotency: classical groups vs definable groups

Theorem
Let G be a finite group. Then TFAE:

(a) G is nilpotent.

(b) G has one p-Sylow subgroup
for each p dividing |G|.

(c) All Sylow subgroups of G are
normal.

(d) G is the direct product of its
Sylow subgroups.

(e) G has no proper
self-normalizing subgroup.

Theorem
Let G be a linear nilpotent
connected Lie group. Then

G = N × T

where N is simply-connected
torsion-free and T is the maximal
torus.

Theorem (C - 2021)
Let G be a definable group such that N (G) is
nilpotent.

(1) Assume E(G) 6= 0. Then TFAE:
(a) G is nilpotent.
(b) G has exactly one p-Sylow subgroup for each

prime p dividing E(G).
(c) All p-Sylow subgroups of G are normal.
(d) G = N (G)× H, where H is the direct product of

its (unique) p-Sylow subgroups.

(2) Suppose E(G) = 0 and G = G0. Then TFAE:
(a) G is nilpotent.
(b) G has exactly one 0-Sylow subgroup.
(c) All 0-Sylow subgroups of G are normal.
(d) G = N (G)× T , for each T maximal abstract

torus of G.

(3) Let G be definably connected. Then TFAE:
(a) G is nilpotent.
(e) Every proper definable H < G is contained

properly in its normalizer.



Some questions

definable = definable with parameters in an o-minimal structure

(1) Is there a torsion-free non-nilpotent definable group with no proper self-normalizing
(definable) subgroup?

(2) Is every nilpotent torsion-free definable group elementarily equivalent to a linear
algebraic group (with same dimension)?

(3) Which definable groups are elementarily equivalent to a linear algebraic group (with
same dimension)?
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