
Computing In The Realm Of The Uncountable

National University of Singapore

chongct@nus.edu.sg
Fudan University, 23 August 2021



Generalizing Recursion Theory

Key characteristics of a computable procedure:
Driven by an algorithm
Mechanizable via a (Turing) machine

Church-Turing thesis: What is intuitively computable is indeed
computable

Motivation for a generalized recursion theory (GRT):
1 The notion of computation should be applicable, in a broad

sense, to domains other than N;



Generalizing Recursion Theory

Key characteristics of a computable procedure:
Driven by an algorithm
Mechanizable via a (Turing) machine

Church-Turing thesis: What is intuitively computable is indeed
computable

Motivation for a generalized recursion theory (GRT):
1 The notion of computation should be applicable, in a broad

sense, to domains other than N;



Generalizing Recursion Theory

Key characteristics of a computable procedure:
Driven by an algorithm
Mechanizable via a (Turing) machine

Church-Turing thesis: What is intuitively computable is indeed
computable

Motivation for a generalized recursion theory (GRT):
1 The notion of computation should be applicable, in a broad

sense, to domains other than N;



Generalizing Recursion Theory

Key characteristics of a computable procedure:
Driven by an algorithm
Mechanizable via a (Turing) machine

Church-Turing thesis: What is intuitively computable is indeed
computable

Motivation for a generalized recursion theory (GRT):
1 The notion of computation should be applicable, in a broad

sense, to domains other than N;



Generalizing Recursion Theory

Key characteristics of a computable procedure:
Driven by an algorithm
Mechanizable via a (Turing) machine

Church-Turing thesis: What is intuitively computable is indeed
computable

Motivation for a generalized recursion theory (GRT):
1 The notion of computation should be applicable, in a broad

sense, to domains other than N;



Generalizing Recursion Theory

Key characteristics of a computable procedure:
Driven by an algorithm
Mechanizable via a (Turing) machine

Church-Turing thesis: What is intuitively computable is indeed
computable

Motivation for a generalized recursion theory (GRT):
1 The notion of computation should be applicable, in a broad

sense, to domains other than N;



Generalizing Recursion Theory

Key characteristics of a computable procedure:
Driven by an algorithm
Mechanizable via a (Turing) machine

Church-Turing thesis: What is intuitively computable is indeed
computable

Motivation for a generalized recursion theory (GRT):
1 The notion of computation should be applicable, in a broad

sense, to domains other than N;



Kreisel: Two erroneous views on GRT

1 There is only one correct generalization but it is not clear
which.

2 There are possibilities too many to enumerate.

Kreisel’s view. There are only a few GRT’s which

1 Have the potential to advance classical recursion theory
(CRT);

2 Can enhance our understanding of the mathematical
character of CRT.



Kreisel: Two erroneous views on GRT

1 There is only one correct generalization but it is not clear
which.

2 There are possibilities too many to enumerate.

Kreisel’s view. There are only a few GRT’s which

1 Have the potential to advance classical recursion theory
(CRT);

2 Can enhance our understanding of the mathematical
character of CRT.



Kreisel: Two erroneous views on GRT

1 There is only one correct generalization but it is not clear
which.

2 There are possibilities too many to enumerate.

Kreisel’s view. There are only a few GRT’s which

1 Have the potential to advance classical recursion theory
(CRT);

2 Can enhance our understanding of the mathematical
character of CRT.



Kreisel: Two erroneous views on GRT

1 There is only one correct generalization but it is not clear
which.

2 There are possibilities too many to enumerate.

Kreisel’s view. There are only a few GRT’s which

1 Have the potential to advance classical recursion theory
(CRT);

2 Can enhance our understanding of the mathematical
character of CRT.



Kreisel: Two erroneous views on GRT

1 There is only one correct generalization but it is not clear
which.

2 There are possibilities too many to enumerate.

Kreisel’s view. There are only a few GRT’s which

1 Have the potential to advance classical recursion theory
(CRT);

2 Can enhance our understanding of the mathematical
character of CRT.



Kreisel: Two erroneous views on GRT

1 There is only one correct generalization but it is not clear
which.

2 There are possibilities too many to enumerate.

Kreisel’s view. There are only a few GRT’s which

1 Have the potential to advance classical recursion theory
(CRT);

2 Can enhance our understanding of the mathematical
character of CRT.



Defining characteristics of the central notions of CRT

R.E. = Σ1-definable (in the language of Peano arithmetic)
Recursive = ∆1-definable
“Finite” = coded by a number in N

Guiding principle: These characterizations should be central to
any generalization.



Defining characteristics of the central notions of CRT

R.E. = Σ1-definable (in the language of Peano arithmetic)
Recursive = ∆1-definable
“Finite” = coded by a number in N

Guiding principle: These characterizations should be central to
any generalization.



Defining characteristics of the central notions of CRT

R.E. = Σ1-definable (in the language of Peano arithmetic)
Recursive = ∆1-definable
“Finite” = coded by a number in N

Guiding principle: These characterizations should be central to
any generalization.



Defining characteristics of the central notions of CRT

R.E. = Σ1-definable (in the language of Peano arithmetic)
Recursive = ∆1-definable
“Finite” = coded by a number in N

Guiding principle: These characterizations should be central to
any generalization.



Computing in an uncountable domain: Example 1

(Kripke-Platek, Takeuti, Kreisel-Sacks) Admissible recursion
theory:

(Lα,∈), α ≥ ω a limit ordinal, which satisfies Σ1-replacement.

R.E. = Σ1, Recursive = ∆1 (in the language of ZF)
K ⊂ α is “finite” if K ∈ Lα



Computing in an uncountable domain: Example 1

(Kripke-Platek, Takeuti, Kreisel-Sacks) Admissible recursion
theory:

(Lα,∈), α ≥ ω a limit ordinal, which satisfies Σ1-replacement.

R.E. = Σ1, Recursive = ∆1 (in the language of ZF)
K ⊂ α is “finite” if K ∈ Lα



Computing in an uncountable domain: Example 1

(Kripke-Platek, Takeuti, Kreisel-Sacks) Admissible recursion
theory:

(Lα,∈), α ≥ ω a limit ordinal, which satisfies Σ1-replacement.

R.E. = Σ1, Recursive = ∆1 (in the language of ZF)
K ⊂ α is “finite” if K ∈ Lα



Computing in an uncountable domain: Example 1

(Kripke-Platek, Takeuti, Kreisel-Sacks) Admissible recursion
theory:

(Lα,∈), α ≥ ω a limit ordinal, which satisfies Σ1-replacement.

R.E. = Σ1, Recursive = ∆1 (in the language of ZF)
K ⊂ α is “finite” if K ∈ Lα



Computing in an uncountable domain: Example 1

There is a well-developed theory of computation for (Lα,∈)

The notion of an α-degree provides a natural way of
calibrating the relative complexity of subsets of α.
Ideas and methods from α-recursion theory have been
adapted to study GRT over nonstandard models of
fragments of PA.
These have been successfully applied to investigate
Ramsey type combinatorial problems in reverse
mathematics.



Computing in an uncountable domain: Example 1

There is a well-developed theory of computation for (Lα,∈)

The notion of an α-degree provides a natural way of
calibrating the relative complexity of subsets of α.
Ideas and methods from α-recursion theory have been
adapted to study GRT over nonstandard models of
fragments of PA.
These have been successfully applied to investigate
Ramsey type combinatorial problems in reverse
mathematics.



Computing in an uncountable domain: Example 1

There is a well-developed theory of computation for (Lα,∈)

The notion of an α-degree provides a natural way of
calibrating the relative complexity of subsets of α.
Ideas and methods from α-recursion theory have been
adapted to study GRT over nonstandard models of
fragments of PA.
These have been successfully applied to investigate
Ramsey type combinatorial problems in reverse
mathematics.



Computing in an uncountable domain: Example 1

There is a well-developed theory of computation for (Lα,∈)

The notion of an α-degree provides a natural way of
calibrating the relative complexity of subsets of α.
Ideas and methods from α-recursion theory have been
adapted to study GRT over nonstandard models of
fragments of PA.
These have been successfully applied to investigate
Ramsey type combinatorial problems in reverse
mathematics.



Computing in an uncountable domain: Example 1

There is a well-developed theory of computation for (Lα,∈)

The notion of an α-degree provides a natural way of
calibrating the relative complexity of subsets of α.
Ideas and methods from α-recursion theory have been
adapted to study GRT over nonstandard models of
fragments of PA.
These have been successfully applied to investigate
Ramsey type combinatorial problems in reverse
mathematics.



Computing in an uncountable domain: Example 1

Some striking diferences with N:

An r.e. set is maximal if it is maximal in the lattice of r.e. sets
modulo finite sets.

(Martin) In N, an r.e. degree a contains a maximal set iff it
is high, i.e. a′ = 0′′.
(Leman-Simpson) If α is an uncountable admissible
ordinal, then there is no maximal set in (Lα,∈).
Thus “maximality”, despite its definition, is a countability
notion.



Computing in an uncountable domain: Example 1

Some striking diferences with N:

An r.e. set is maximal if it is maximal in the lattice of r.e. sets
modulo finite sets.

(Martin) In N, an r.e. degree a contains a maximal set iff it
is high, i.e. a′ = 0′′.
(Leman-Simpson) If α is an uncountable admissible
ordinal, then there is no maximal set in (Lα,∈).
Thus “maximality”, despite its definition, is a countability
notion.



Computing in an uncountable domain: Example 1

Some striking diferences with N:

An r.e. set is maximal if it is maximal in the lattice of r.e. sets
modulo finite sets.

(Martin) In N, an r.e. degree a contains a maximal set iff it
is high, i.e. a′ = 0′′.
(Leman-Simpson) If α is an uncountable admissible
ordinal, then there is no maximal set in (Lα,∈).
Thus “maximality”, despite its definition, is a countability
notion.



Computing in an uncountable domain: Example 1

Some striking diferences with N:

An r.e. set is maximal if it is maximal in the lattice of r.e. sets
modulo finite sets.

(Martin) In N, an r.e. degree a contains a maximal set iff it
is high, i.e. a′ = 0′′.
(Leman-Simpson) If α is an uncountable admissible
ordinal, then there is no maximal set in (Lα,∈).
Thus “maximality”, despite its definition, is a countability
notion.



Computing in an uncountable domain: Example 1

Some striking diferences with N:

An r.e. set is maximal if it is maximal in the lattice of r.e. sets
modulo finite sets.

(Martin) In N, an r.e. degree a contains a maximal set iff it
is high, i.e. a′ = 0′′.
(Leman-Simpson) If α is an uncountable admissible
ordinal, then there is no maximal set in (Lα,∈).
Thus “maximality”, despite its definition, is a countability
notion.



Computing in an uncountable domain: Example 1

(Sacks) If α ≥ ω is countable and admissible, then α = ωT
1

for someT ⊆ ω, i.e. α is the least ordinal for which
(Lα[T ],∈) is admissible.
(S. Friedman) If κ > ω is a regular cardinal, then there exist
admissibles κ < α < κ+ such that no X ⊂ κ satisfies
“(Lα[X ],∈) is admissible".



Computing in an uncountable domain: Example 1

(Sacks) If α ≥ ω is countable and admissible, then α = ωT
1

for someT ⊆ ω, i.e. α is the least ordinal for which
(Lα[T ],∈) is admissible.
(S. Friedman) If κ > ω is a regular cardinal, then there exist
admissibles κ < α < κ+ such that no X ⊂ κ satisfies
“(Lα[X ],∈) is admissible".



Computing in an uncountable domain: Example 1

(Sacks) If α ≥ ω is countable and admissible, then α = ωT
1

for someT ⊆ ω, i.e. α is the least ordinal for which
(Lα[T ],∈) is admissible.
(S. Friedman) If κ > ω is a regular cardinal, then there exist
admissibles κ < α < κ+ such that no X ⊂ κ satisfies
“(Lα[X ],∈) is admissible".



Computing in an uncountable domain: Example 1

In N, the following holds for Turing degrees:

(∗) ∀a ≥ 0′∃b1,b2 > a(b1,b2 are incomparable)

(S. Friedman) Assume V = L. The Turing degrees in
(Lωω1

,∈) above 0′ are well-ordered, with successor being
the Turing jump.
(Harrington, Solovay) There exist incomparable
ℵω-degrees above 0′.
In general, (∗) holds for regular cardinals and singular
cardinals κ of countable cofinality, and is false otherwise.
In fact for such κ, if V = L or if V is a forcing extension of L
that preserves GCH at κ, then there is a d ≥ 0′ such that

{e : e ≥ d} are well-ordered with Turing jump as successor.

Hence (∗) is a property about countable cofinality.



Computing in an uncountable domain: Example 1

In N, the following holds for Turing degrees:

(∗) ∀a ≥ 0′∃b1,b2 > a(b1,b2 are incomparable)

(S. Friedman) Assume V = L. The Turing degrees in
(Lωω1

,∈) above 0′ are well-ordered, with successor being
the Turing jump.
(Harrington, Solovay) There exist incomparable
ℵω-degrees above 0′.
In general, (∗) holds for regular cardinals and singular
cardinals κ of countable cofinality, and is false otherwise.
In fact for such κ, if V = L or if V is a forcing extension of L
that preserves GCH at κ, then there is a d ≥ 0′ such that

{e : e ≥ d} are well-ordered with Turing jump as successor.

Hence (∗) is a property about countable cofinality.



Computing in an uncountable domain: Example 1

In N, the following holds for Turing degrees:

(∗) ∀a ≥ 0′∃b1,b2 > a(b1,b2 are incomparable)

(S. Friedman) Assume V = L. The Turing degrees in
(Lωω1

,∈) above 0′ are well-ordered, with successor being
the Turing jump.
(Harrington, Solovay) There exist incomparable
ℵω-degrees above 0′.
In general, (∗) holds for regular cardinals and singular
cardinals κ of countable cofinality, and is false otherwise.
In fact for such κ, if V = L or if V is a forcing extension of L
that preserves GCH at κ, then there is a d ≥ 0′ such that

{e : e ≥ d} are well-ordered with Turing jump as successor.

Hence (∗) is a property about countable cofinality.



Computing in an uncountable domain: Example 1

In N, the following holds for Turing degrees:

(∗) ∀a ≥ 0′∃b1,b2 > a(b1,b2 are incomparable)

(S. Friedman) Assume V = L. The Turing degrees in
(Lωω1

,∈) above 0′ are well-ordered, with successor being
the Turing jump.
(Harrington, Solovay) There exist incomparable
ℵω-degrees above 0′.
In general, (∗) holds for regular cardinals and singular
cardinals κ of countable cofinality, and is false otherwise.
In fact for such κ, if V = L or if V is a forcing extension of L
that preserves GCH at κ, then there is a d ≥ 0′ such that

{e : e ≥ d} are well-ordered with Turing jump as successor.

Hence (∗) is a property about countable cofinality.



Computing in an uncountable domain: Example 1

In N, the following holds for Turing degrees:

(∗) ∀a ≥ 0′∃b1,b2 > a(b1,b2 are incomparable)

(S. Friedman) Assume V = L. The Turing degrees in
(Lωω1

,∈) above 0′ are well-ordered, with successor being
the Turing jump.
(Harrington, Solovay) There exist incomparable
ℵω-degrees above 0′.
In general, (∗) holds for regular cardinals and singular
cardinals κ of countable cofinality, and is false otherwise.
In fact for such κ, if V = L or if V is a forcing extension of L
that preserves GCH at κ, then there is a d ≥ 0′ such that

{e : e ≥ d} are well-ordered with Turing jump as successor.

Hence (∗) is a property about countable cofinality.



Computing in an uncountable domain: Example 1

In N, the following holds for Turing degrees:

(∗) ∀a ≥ 0′∃b1,b2 > a(b1,b2 are incomparable)

(S. Friedman) Assume V = L. The Turing degrees in
(Lωω1

,∈) above 0′ are well-ordered, with successor being
the Turing jump.
(Harrington, Solovay) There exist incomparable
ℵω-degrees above 0′.
In general, (∗) holds for regular cardinals and singular
cardinals κ of countable cofinality, and is false otherwise.
In fact for such κ, if V = L or if V is a forcing extension of L
that preserves GCH at κ, then there is a d ≥ 0′ such that

{e : e ≥ d} are well-ordered with Turing jump as successor.

Hence (∗) is a property about countable cofinality.



Computing in an uncountable domain: Example 1

The statement
{0(n) : n ∈ ω} has a least upper bound

is false in N but true in (Lω1 ,∈) under the assumption 2ω ⊂ L.

Question. How much do these results reflect the true nature of
computation in the uncountable realm?

For example,

Can the ℵω1-degrees above 0′ be indeed well-ordered with
Turing jump as the successor, if “V = Ultimate L”
(assuming GCH holds at ℵω1)?
How much computation theory can one develop over an
uncountable domain which is not endowed with an
effective well-ordering?



Computing in an uncountable domain: Example 1

The statement
{0(n) : n ∈ ω} has a least upper bound

is false in N but true in (Lω1 ,∈) under the assumption 2ω ⊂ L.

Question. How much do these results reflect the true nature of
computation in the uncountable realm?

For example,

Can the ℵω1-degrees above 0′ be indeed well-ordered with
Turing jump as the successor, if “V = Ultimate L”
(assuming GCH holds at ℵω1)?
How much computation theory can one develop over an
uncountable domain which is not endowed with an
effective well-ordering?



Computing in an uncountable domain: Example 1

The statement
{0(n) : n ∈ ω} has a least upper bound

is false in N but true in (Lω1 ,∈) under the assumption 2ω ⊂ L.

Question. How much do these results reflect the true nature of
computation in the uncountable realm?

For example,

Can the ℵω1-degrees above 0′ be indeed well-ordered with
Turing jump as the successor, if “V = Ultimate L”
(assuming GCH holds at ℵω1)?
How much computation theory can one develop over an
uncountable domain which is not endowed with an
effective well-ordering?



Computing in an uncountable domain: Example 1

The statement
{0(n) : n ∈ ω} has a least upper bound

is false in N but true in (Lω1 ,∈) under the assumption 2ω ⊂ L.

Question. How much do these results reflect the true nature of
computation in the uncountable realm?

For example,

Can the ℵω1-degrees above 0′ be indeed well-ordered with
Turing jump as the successor, if “V = Ultimate L”
(assuming GCH holds at ℵω1)?
How much computation theory can one develop over an
uncountable domain which is not endowed with an
effective well-ordering?



Computing in an uncountable domain: Example 2

Computation over C

Questions.
1 What is the “correct” notion of a basic unit in C?
2 What operations on C are “computable”?
3 When is X ⊂ C a “finite” set?

Consider three instances:
The ω1-recursion theory approach
The computable analysis perspective
The Blum-Shub-Smale model



Computing in an uncountable domain: Example 2

Computation over C

Questions.
1 What is the “correct” notion of a basic unit in C?
2 What operations on C are “computable”?
3 When is X ⊂ C a “finite” set?

Consider three instances:
The ω1-recursion theory approach
The computable analysis perspective
The Blum-Shub-Smale model



Computing in an uncountable domain: Example 2

Computation over C

Questions.
1 What is the “correct” notion of a basic unit in C?
2 What operations on C are “computable”?
3 When is X ⊂ C a “finite” set?

Consider three instances:
The ω1-recursion theory approach
The computable analysis perspective
The Blum-Shub-Smale model



Computing in an uncountable domain: Example 2

Computation over C

Questions.
1 What is the “correct” notion of a basic unit in C?
2 What operations on C are “computable”?
3 When is X ⊂ C a “finite” set?

Consider three instances:
The ω1-recursion theory approach
The computable analysis perspective
The Blum-Shub-Smale model



Computing in an uncountable domain: Example 2

Computation over C

Questions.
1 What is the “correct” notion of a basic unit in C?
2 What operations on C are “computable”?
3 When is X ⊂ C a “finite” set?

Consider three instances:
The ω1-recursion theory approach
The computable analysis perspective
The Blum-Shub-Smale model



Computing in an uncountable domain: Example 2

Computation over C

Questions.
1 What is the “correct” notion of a basic unit in C?
2 What operations on C are “computable”?
3 When is X ⊂ C a “finite” set?

Consider three instances:
The ω1-recursion theory approach
The computable analysis perspective
The Blum-Shub-Smale model



Computing in an uncountable domain: Example 2

Computation over C

Questions.
1 What is the “correct” notion of a basic unit in C?
2 What operations on C are “computable”?
3 When is X ⊂ C a “finite” set?

Consider three instances:
The ω1-recursion theory approach
The computable analysis perspective
The Blum-Shub-Smale model



Computing in an uncountable domain: Example 2

Computation over C

Questions.
1 What is the “correct” notion of a basic unit in C?
2 What operations on C are “computable”?
3 When is X ⊂ C a “finite” set?

Consider three instances:
The ω1-recursion theory approach
The computable analysis perspective
The Blum-Shub-Smale model



Computing in an uncountable domain: Example 2

Computation over C

Questions.
1 What is the “correct” notion of a basic unit in C?
2 What operations on C are “computable”?
3 When is X ⊂ C a “finite” set?

Consider three instances:
The ω1-recursion theory approach
The computable analysis perspective
The Blum-Shub-Smale model



Computing in an uncountable domain: Example 2

Complex dynamics of quadratic polynomials:
For c ∈ C, let

fc(z) = z2 + c
f (n+1)
c (z) = fc(f (n)c (z))

The filled Julia set of fc is

Kc = {z : limn→∞f (n)c (z) 6→ ∞}

And Jc = ∂Kc is the Julia set of fc .



Computing in an uncountable domain: Example 2

Complex dynamics of quadratic polynomials:
For c ∈ C, let

fc(z) = z2 + c
f (n+1)
c (z) = fc(f (n)c (z))

The filled Julia set of fc is

Kc = {z : limn→∞f (n)c (z) 6→ ∞}

And Jc = ∂Kc is the Julia set of fc .



Computing in an uncountable domain: Example 2

Complex dynamics of quadratic polynomials:
For c ∈ C, let

fc(z) = z2 + c
f (n+1)
c (z) = fc(f (n)c (z))

The filled Julia set of fc is

Kc = {z : limn→∞f (n)c (z) 6→ ∞}

And Jc = ∂Kc is the Julia set of fc .



Computing in an uncountable domain: Example 2

Problems: Study
1 The “computability” of Jc ;
2 Relative complexity of Julia sets;
3 “Iterated jumps” of a Julia set.



Computing in an uncountable domain: Example 2

Problems: Study
1 The “computability” of Jc ;
2 Relative complexity of Julia sets;
3 “Iterated jumps” of a Julia set.



Computing in an uncountable domain: Example 2

Problems: Study
1 The “computability” of Jc ;
2 Relative complexity of Julia sets;
3 “Iterated jumps” of a Julia set.



ωL
1-recursion theory approach

In LωL
1
,

Every z ∈ C is “given”, hence computable.
Every Jc ⊂ LωL

1
is also computable.

Hence all Jc ’s have the same trivial ωL
1-degree.

Computability questions regarding Jc are therefore not
interesting.



ωL
1-recursion theory approach

In LωL
1
,

Every z ∈ C is “given”, hence computable.
Every Jc ⊂ LωL

1
is also computable.

Hence all Jc ’s have the same trivial ωL
1-degree.

Computability questions regarding Jc are therefore not
interesting.



ωL
1-recursion theory approach

In LωL
1
,

Every z ∈ C is “given”, hence computable.
Every Jc ⊂ LωL

1
is also computable.

Hence all Jc ’s have the same trivial ωL
1-degree.

Computability questions regarding Jc are therefore not
interesting.



ωL
1-recursion theory approach

In LωL
1
,

Every z ∈ C is “given”, hence computable.
Every Jc ⊂ LωL

1
is also computable.

Hence all Jc ’s have the same trivial ωL
1-degree.

Computability questions regarding Jc are therefore not
interesting.



Computable analysis approach

Define z ∈ C to be computable if it has a recursive
approximation.
Define X ⊂ C to be “computable” if it has a dense subset with
each member having a recursive approximation.

Thus, X is computable if it can be “drawn on the computer”
with any prescribed precision.
It does not provide an algorithm that decides, in finite time,
whether a given z is a member of X .

(Braverman and Yampolsky) Outcomes:

All hyperbolic and parabolic Jc ’s are computable (relative
to c).
There is a Siegel disc with a computable c such that Jc is
not computable.



Computable analysis approach

Define z ∈ C to be computable if it has a recursive
approximation.
Define X ⊂ C to be “computable” if it has a dense subset with
each member having a recursive approximation.

Thus, X is computable if it can be “drawn on the computer”
with any prescribed precision.
It does not provide an algorithm that decides, in finite time,
whether a given z is a member of X .

(Braverman and Yampolsky) Outcomes:

All hyperbolic and parabolic Jc ’s are computable (relative
to c).
There is a Siegel disc with a computable c such that Jc is
not computable.



Computable analysis approach

Define z ∈ C to be computable if it has a recursive
approximation.
Define X ⊂ C to be “computable” if it has a dense subset with
each member having a recursive approximation.

Thus, X is computable if it can be “drawn on the computer”
with any prescribed precision.
It does not provide an algorithm that decides, in finite time,
whether a given z is a member of X .

(Braverman and Yampolsky) Outcomes:

All hyperbolic and parabolic Jc ’s are computable (relative
to c).
There is a Siegel disc with a computable c such that Jc is
not computable.



Computable analysis approach

Define z ∈ C to be computable if it has a recursive
approximation.
Define X ⊂ C to be “computable” if it has a dense subset with
each member having a recursive approximation.

Thus, X is computable if it can be “drawn on the computer”
with any prescribed precision.
It does not provide an algorithm that decides, in finite time,
whether a given z is a member of X .

(Braverman and Yampolsky) Outcomes:

All hyperbolic and parabolic Jc ’s are computable (relative
to c).
There is a Siegel disc with a computable c such that Jc is
not computable.



Computable analysis approach

Define z ∈ C to be computable if it has a recursive
approximation.
Define X ⊂ C to be “computable” if it has a dense subset with
each member having a recursive approximation.

Thus, X is computable if it can be “drawn on the computer”
with any prescribed precision.
It does not provide an algorithm that decides, in finite time,
whether a given z is a member of X .

(Braverman and Yampolsky) Outcomes:

All hyperbolic and parabolic Jc ’s are computable (relative
to c).
There is a Siegel disc with a computable c such that Jc is
not computable.



Computable analysis approach

Define z ∈ C to be computable if it has a recursive
approximation.
Define X ⊂ C to be “computable” if it has a dense subset with
each member having a recursive approximation.

Thus, X is computable if it can be “drawn on the computer”
with any prescribed precision.
It does not provide an algorithm that decides, in finite time,
whether a given z is a member of X .

(Braverman and Yampolsky) Outcomes:

All hyperbolic and parabolic Jc ’s are computable (relative
to c).
There is a Siegel disc with a computable c such that Jc is
not computable.



Computable analysis approach

For each r.e. degree in N, there is a Jc of that degree.
(Hertling) If the hyperbolicity conjecture* is true, then the
Mandelbrot set is computable.

Mandelbrot set M =
{c : Jc is connected}

*Hyperbolicity Conjecture:
Hyperbolic Jc ’s are dense
in M.



Computable analysis approach

However, from the viewpoint of computation theory, there are
issues to be addressed.

1 In the language of PA, “computable” is not ∆1 but ∆2
definable.

2 Even if Jc is computable, there is no algorithm to decide, in
finite time, if a given z ∈ C is in Jc .

3 More generally, given a (real) finite set X , there is no
procedure to decide in finite time, if X ⊂ Jc or X ∩ Jc = ∅
for such X .



Computable analysis approach

However, from the viewpoint of computation theory, there are
issues to be addressed.

1 In the language of PA, “computable” is not ∆1 but ∆2
definable.

2 Even if Jc is computable, there is no algorithm to decide, in
finite time, if a given z ∈ C is in Jc .

3 More generally, given a (real) finite set X , there is no
procedure to decide in finite time, if X ⊂ Jc or X ∩ Jc = ∅
for such X .



Computable analysis approach

However, from the viewpoint of computation theory, there are
issues to be addressed.

1 In the language of PA, “computable” is not ∆1 but ∆2
definable.

2 Even if Jc is computable, there is no algorithm to decide, in
finite time, if a given z ∈ C is in Jc .

3 More generally, given a (real) finite set X , there is no
procedure to decide in finite time, if X ⊂ Jc or X ∩ Jc = ∅
for such X .



Computable analysis approach

However, from the viewpoint of computation theory, there are
issues to be addressed.

1 In the language of PA, “computable” is not ∆1 but ∆2
definable.

2 Even if Jc is computable, there is no algorithm to decide, in
finite time, if a given z ∈ C is in Jc .

3 More generally, given a (real) finite set X , there is no
procedure to decide in finite time, if X ⊂ Jc or X ∩ Jc = ∅
for such X .



Blum-Shub-Smale (BSS) model

Every z ∈ C is a basic unit of the model.
Rational maps are basic operations.
A computation or an algorithm can be viewed as a
‘flowchart”



BSS model

R.E = Σ1in a two-sorted language.
X ⊂ C is “computable” if there is an algorithm that decides,
for each z, whether z ∈ X in (real) finite time.
A set X is computable iff “z ∈ X ” is ∆1.



BSS model

R.E = Σ1in a two-sorted language.
X ⊂ C is “computable” if there is an algorithm that decides,
for each z, whether z ∈ X in (real) finite time.
A set X is computable iff “z ∈ X ” is ∆1.



BSS model

R.E = Σ1in a two-sorted language.
X ⊂ C is “computable” if there is an algorithm that decides,
for each z, whether z ∈ X in (real) finite time.
A set X is computable iff “z ∈ X ” is ∆1.



BSS model

(BSS) The Mandelbrot set is not computable.

(BSS) Except for trivial caes such as c = 0 (where
Jc = unit circle), all Jc ’s are not computable.



BSS model

(BSS) The Mandelbrot set is not computable.

(BSS) Except for trivial caes such as c = 0 (where
Jc = unit circle), all Jc ’s are not computable.



BSS model

One can define a notion of pointwise Turing reducibility ≤wT ,
allowing queries of the form “Is z ∈ Jd?” in the flowchart:



BSS model

This “weak” reducibility notion offers a way to investigae the
relative complexity of Julia sets:

(Chong) There exist c 6= d such that Jc and Jd are
incomparable under ≤wT .
(Chong) If J is the Julia set of a rational map which is
locally connected and K ◦c has more than one compoinent,
then ∅ <wT< K ◦c <wT Jc .

However, pointwise computability and reducibility do not
capture the uncountability aspect of C since only information
about finite subsets are needed for a decision.



BSS model

This “weak” reducibility notion offers a way to investigae the
relative complexity of Julia sets:

(Chong) There exist c 6= d such that Jc and Jd are
incomparable under ≤wT .
(Chong) If J is the Julia set of a rational map which is
locally connected and K ◦c has more than one compoinent,
then ∅ <wT< K ◦c <wT Jc .

However, pointwise computability and reducibility do not
capture the uncountability aspect of C since only information
about finite subsets are needed for a decision.



BSS model

This “weak” reducibility notion offers a way to investigae the
relative complexity of Julia sets:

(Chong) There exist c 6= d such that Jc and Jd are
incomparable under ≤wT .
(Chong) If J is the Julia set of a rational map which is
locally connected and K ◦c has more than one compoinent,
then ∅ <wT< K ◦c <wT Jc .

However, pointwise computability and reducibility do not
capture the uncountability aspect of C since only information
about finite subsets are needed for a decision.



BSS model

This “weak” reducibility notion offers a way to investigae the
relative complexity of Julia sets:

(Chong) There exist c 6= d such that Jc and Jd are
incomparable under ≤wT .
(Chong) If J is the Julia set of a rational map which is
locally connected and K ◦c has more than one compoinent,
then ∅ <wT< K ◦c <wT Jc .

However, pointwise computability and reducibility do not
capture the uncountability aspect of C since only information
about finite subsets are needed for a decision.



BSS model

This “weak” reducibility notion offers a way to investigae the
relative complexity of Julia sets:

(Chong) There exist c 6= d such that Jc and Jd are
incomparable under ≤wT .
(Chong) If J is the Julia set of a rational map which is
locally connected and K ◦c has more than one compoinent,
then ∅ <wT< K ◦c <wT Jc .

However, pointwise computability and reducibility do not
capture the uncountability aspect of C since only information
about finite subsets are needed for a decision.



BSS model

Questions: What is the “correct” noion of

1 “Finiteness” in C?
2 Recursive/computable set?
3 Turing reducibility ≤T in this model?

Proposal. Take the cue from α-recursion theory and focus on
definability:

X ⊂ C is finite iff it is bounded and ∆1 definable.
A ⊂ C is recursive iff for each finite set X , “X ⊂ A” and
“X ⊂ C \ A” are Σ1 definable.
A ≤T B (A is Turing reducible to B) iff there is an algorithm
to decide (in real finite time), for each finite X , if X ⊂ A or
X ⊂ C \ A using finite information about B.



BSS model

Questions: What is the “correct” noion of

1 “Finiteness” in C?
2 Recursive/computable set?
3 Turing reducibility ≤T in this model?

Proposal. Take the cue from α-recursion theory and focus on
definability:

X ⊂ C is finite iff it is bounded and ∆1 definable.
A ⊂ C is recursive iff for each finite set X , “X ⊂ A” and
“X ⊂ C \ A” are Σ1 definable.
A ≤T B (A is Turing reducible to B) iff there is an algorithm
to decide (in real finite time), for each finite X , if X ⊂ A or
X ⊂ C \ A using finite information about B.



BSS model

Questions: What is the “correct” noion of

1 “Finiteness” in C?
2 Recursive/computable set?
3 Turing reducibility ≤T in this model?

Proposal. Take the cue from α-recursion theory and focus on
definability:

X ⊂ C is finite iff it is bounded and ∆1 definable.
A ⊂ C is recursive iff for each finite set X , “X ⊂ A” and
“X ⊂ C \ A” are Σ1 definable.
A ≤T B (A is Turing reducible to B) iff there is an algorithm
to decide (in real finite time), for each finite X , if X ⊂ A or
X ⊂ C \ A using finite information about B.



BSS model

Questions: What is the “correct” noion of

1 “Finiteness” in C?
2 Recursive/computable set?
3 Turing reducibility ≤T in this model?

Proposal. Take the cue from α-recursion theory and focus on
definability:

X ⊂ C is finite iff it is bounded and ∆1 definable.
A ⊂ C is recursive iff for each finite set X , “X ⊂ A” and
“X ⊂ C \ A” are Σ1 definable.
A ≤T B (A is Turing reducible to B) iff there is an algorithm
to decide (in real finite time), for each finite X , if X ⊂ A or
X ⊂ C \ A using finite information about B.



BSS model

Questions: What is the “correct” noion of

1 “Finiteness” in C?
2 Recursive/computable set?
3 Turing reducibility ≤T in this model?

Proposal. Take the cue from α-recursion theory and focus on
definability:

X ⊂ C is finite iff it is bounded and ∆1 definable.
A ⊂ C is recursive iff for each finite set X , “X ⊂ A” and
“X ⊂ C \ A” are Σ1 definable.
A ≤T B (A is Turing reducible to B) iff there is an algorithm
to decide (in real finite time), for each finite X , if X ⊂ A or
X ⊂ C \ A using finite information about B.



BSS model

Questions: What is the “correct” noion of

1 “Finiteness” in C?
2 Recursive/computable set?
3 Turing reducibility ≤T in this model?

Proposal. Take the cue from α-recursion theory and focus on
definability:

X ⊂ C is finite iff it is bounded and ∆1 definable.
A ⊂ C is recursive iff for each finite set X , “X ⊂ A” and
“X ⊂ C \ A” are Σ1 definable.
A ≤T B (A is Turing reducible to B) iff there is an algorithm
to decide (in real finite time), for each finite X , if X ⊂ A or
X ⊂ C \ A using finite information about B.



BSS model

Questions: What is the “correct” noion of

1 “Finiteness” in C?
2 Recursive/computable set?
3 Turing reducibility ≤T in this model?

Proposal. Take the cue from α-recursion theory and focus on
definability:

X ⊂ C is finite iff it is bounded and ∆1 definable.
A ⊂ C is recursive iff for each finite set X , “X ⊂ A” and
“X ⊂ C \ A” are Σ1 definable.
A ≤T B (A is Turing reducible to B) iff there is an algorithm
to decide (in real finite time), for each finite X , if X ⊂ A or
X ⊂ C \ A using finite information about B.



BSS model

Questions: What is the “correct” noion of

1 “Finiteness” in C?
2 Recursive/computable set?
3 Turing reducibility ≤T in this model?

Proposal. Take the cue from α-recursion theory and focus on
definability:

X ⊂ C is finite iff it is bounded and ∆1 definable.
A ⊂ C is recursive iff for each finite set X , “X ⊂ A” and
“X ⊂ C \ A” are Σ1 definable.
A ≤T B (A is Turing reducible to B) iff there is an algorithm
to decide (in real finite time), for each finite X , if X ⊂ A or
X ⊂ C \ A using finite information about B.



Conclusion: Computing in the uncountable realm

1 Contrary to Kreisel’s view, there are many possible GRTs,
specific to each application.

2 Each GRT has to take into account the context in which the
theory is introduced.

3 There is no universal GRT as any axiomatic approach will
likely require supplementary features to be applicable.



Conclusion: Computing in the uncountable realm

1 Contrary to Kreisel’s view, there are many possible GRTs,
specific to each application.

2 Each GRT has to take into account the context in which the
theory is introduced.

3 There is no universal GRT as any axiomatic approach will
likely require supplementary features to be applicable.



Conclusion: Computing in the uncountable realm

1 Contrary to Kreisel’s view, there are many possible GRTs,
specific to each application.

2 Each GRT has to take into account the context in which the
theory is introduced.

3 There is no universal GRT as any axiomatic approach will
likely require supplementary features to be applicable.



Conclusion: Computing in the uncountable realm

1 Contrary to Kreisel’s view, there are many possible GRTs,
specific to each application.

2 Each GRT has to take into account the context in which the
theory is introduced.

3 There is no universal GRT as any axiomatic approach will
likely require supplementary features to be applicable.



Conclusion: Computing in the uncountable realm

The computable analysis perspective has some
foundational issues, but has useful applications in “real
world computing”.
Models such as BSS or ordinal recursion theory are
appealing from the foundational point of view, but they are
abstractions of our intuition of countable computation.
Hence,

How much does, or should, uncountable
mathematics reflect reality?



Conclusion: Computing in the uncountable realm

The computable analysis perspective has some
foundational issues, but has useful applications in “real
world computing”.
Models such as BSS or ordinal recursion theory are
appealing from the foundational point of view, but they are
abstractions of our intuition of countable computation.
Hence,

How much does, or should, uncountable
mathematics reflect reality?



Conclusion: Computing in the uncountable realm

The computable analysis perspective has some
foundational issues, but has useful applications in “real
world computing”.
Models such as BSS or ordinal recursion theory are
appealing from the foundational point of view, but they are
abstractions of our intuition of countable computation.
Hence,

How much does, or should, uncountable
mathematics reflect reality?



Question

What is Reality and what is the role of mathematics in it ?


