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Generalizing Recursion Theory

Key characteristics of a computable procedure:
Driven by an algorithm
Mechanizable via a (Turing) machine

Church-Turing thesis: What is intuitively computable is indeed
computable

Motivation for a generalized recursion theory (GRT):
1 The notion of computation should be applicable, in a broad

sense, to domains other than N;
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Kreisel: Two erroneous views on GRT

1 There is only one correct generalization but it is not clear
which.

2 There are possibilities too many to enumerate.

Kreisel’s view. There are only a few GRT’s which

1 Have the potential to advance classical recursion theory
(CRT);

2 Can enhance our understanding of the mathematical
character of CRT.
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Defining characteristics of the central notions of CRT

R.E. = Σ1-definable (in the language of Peano arithmetic)
Recursive = ∆1-definable
“Finite” = coded by a number in N

Guiding principle: These characterizations should be central to
any generalization.
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Computing in an uncountable domain: Example 1

(Kripke-Platek, Takeuti, Kreisel-Sacks) Admissible recursion
theory:

(Lα,∈), α ≥ ω a limit ordinal, which satisfies Σ1-replacement.

R.E. = Σ1, Recursive = ∆1 (in the language of ZF)
K ⊂ α is “finite” if K ∈ Lα
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Computing in an uncountable domain: Example 1

There is a well-developed theory of computation for (Lα,∈)

The notion of an α-degree provides a natural way of
calibrating the relative complexity of subsets of α.
Ideas and methods from α-recursion theory have been
adapted to study GRT over nonstandard models of
fragments of PA.
These have been successfully applied to investigate
Ramsey type combinatorial problems in reverse
mathematics.
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Computing in an uncountable domain: Example 1

Some striking diferences with N:

An r.e. set is maximal if it is maximal in the lattice of r.e. sets
modulo finite sets.

(Martin) In N, an r.e. degree a contains a maximal set iff it
is high, i.e. a′ = 0′′.
(Leman-Simpson) If α is an uncountable admissible
ordinal, then there is no maximal set in (Lα,∈).
Thus “maximality”, despite its definition, is a countability
notion.
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(Sacks) If α ≥ ω is countable and admissible, then α = ωT
1

for someT ⊆ ω, i.e. α is the least ordinal for which
(Lα[T ],∈) is admissible.
(S. Friedman) If κ > ω is a regular cardinal, then there exist
admissibles κ < α < κ+ such that no X ⊂ κ satisfies
“(Lα[X ],∈) is admissible".
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In N, the following holds for Turing degrees:

(∗) ∀a ≥ 0′∃b1,b2 > a(b1,b2 are incomparable)

(S. Friedman) Assume V = L. The Turing degrees in
(Lωω1

,∈) above 0′ are well-ordered, with successor being
the Turing jump.
(Harrington, Solovay) There exist incomparable
ℵω-degrees above 0′.
In general, (∗) holds for regular cardinals and singular
cardinals κ of countable cofinality, and is false otherwise.
In fact for such κ, if V = L or if V is a forcing extension of L
that preserves GCH at κ, then there is a d ≥ 0′ such that

{e : e ≥ d} are well-ordered with Turing jump as successor.

Hence (∗) is a property about countable cofinality.
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Computing in an uncountable domain: Example 1

The statement
{0(n) : n ∈ ω} has a least upper bound

is false in N but true in (Lω1 ,∈) under the assumption 2ω ⊂ L.

Question. How much do these results reflect the true nature of
computation in the uncountable realm?

For example,

Can the ℵω1-degrees above 0′ be indeed well-ordered with
Turing jump as the successor, if “V = Ultimate L”
(assuming GCH holds at ℵω1)?
How much computation theory can one develop over an
uncountable domain which is not endowed with an
effective well-ordering?
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Computing in an uncountable domain: Example 2

Computation over C

Questions.
1 What is the “correct” notion of a basic unit in C?
2 What operations on C are “computable”?
3 When is X ⊂ C a “finite” set?

Consider three instances:
The ω1-recursion theory approach
The computable analysis perspective
The Blum-Shub-Smale model
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Complex dynamics of quadratic polynomials:
For c ∈ C, let

fc(z) = z2 + c
f (n+1)
c (z) = fc(f (n)c (z))

The filled Julia set of fc is

Kc = {z : limn→∞f (n)c (z) 6→ ∞}

And Jc = ∂Kc is the Julia set of fc .
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ωL
1-recursion theory approach

In LωL
1
,

Every z ∈ C is “given”, hence computable.
Every Jc ⊂ LωL

1
is also computable.

Hence all Jc ’s have the same trivial ωL
1-degree.

Computability questions regarding Jc are therefore not
interesting.
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Computable analysis approach

Define z ∈ C to be computable if it has a recursive
approximation.
Define X ⊂ C to be “computable” if it has a dense subset with
each member having a recursive approximation.

Thus, X is computable if it can be “drawn on the computer”
with any prescribed precision.
It does not provide an algorithm that decides, in finite time,
whether a given z is a member of X .

(Braverman and Yampolsky) Outcomes:

All hyperbolic and parabolic Jc ’s are computable (relative
to c).
There is a Siegel disc with a computable c such that Jc is
not computable.
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Computable analysis approach

For each r.e. degree in N, there is a Jc of that degree.
(Hertling) If the hyperbolicity conjecture* is true, then the
Mandelbrot set is computable.

Mandelbrot set M =
{c : Jc is connected}

*Hyperbolicity Conjecture:
Hyperbolic Jc ’s are dense
in M.
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However, from the viewpoint of computation theory, there are
issues to be addressed.

1 In the language of PA, “computable” is not ∆1 but ∆2
definable.

2 Even if Jc is computable, there is no algorithm to decide, in
finite time, if a given z ∈ C is in Jc .

3 More generally, given a (real) finite set X , there is no
procedure to decide in finite time, if X ⊂ Jc or X ∩ Jc = ∅
for such X .
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definable.

2 Even if Jc is computable, there is no algorithm to decide, in
finite time, if a given z ∈ C is in Jc .

3 More generally, given a (real) finite set X , there is no
procedure to decide in finite time, if X ⊂ Jc or X ∩ Jc = ∅
for such X .



Blum-Shub-Smale (BSS) model

Every z ∈ C is a basic unit of the model.
Rational maps are basic operations.
A computation or an algorithm can be viewed as a
‘flowchart”



BSS model

R.E = Σ1in a two-sorted language.
X ⊂ C is “computable” if there is an algorithm that decides,
for each z, whether z ∈ X in (real) finite time.
A set X is computable iff “z ∈ X ” is ∆1.



BSS model

R.E = Σ1in a two-sorted language.
X ⊂ C is “computable” if there is an algorithm that decides,
for each z, whether z ∈ X in (real) finite time.
A set X is computable iff “z ∈ X ” is ∆1.



BSS model

R.E = Σ1in a two-sorted language.
X ⊂ C is “computable” if there is an algorithm that decides,
for each z, whether z ∈ X in (real) finite time.
A set X is computable iff “z ∈ X ” is ∆1.



BSS model

(BSS) The Mandelbrot set is not computable.

(BSS) Except for trivial caes such as c = 0 (where
Jc = unit circle), all Jc ’s are not computable.



BSS model

(BSS) The Mandelbrot set is not computable.

(BSS) Except for trivial caes such as c = 0 (where
Jc = unit circle), all Jc ’s are not computable.



BSS model

One can define a notion of pointwise Turing reducibility ≤wT ,
allowing queries of the form “Is z ∈ Jd?” in the flowchart:
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This “weak” reducibility notion offers a way to investigae the
relative complexity of Julia sets:

(Chong) There exist c 6= d such that Jc and Jd are
incomparable under ≤wT .
(Chong) If J is the Julia set of a rational map which is
locally connected and K ◦c has more than one compoinent,
then ∅ <wT< K ◦c <wT Jc .

However, pointwise computability and reducibility do not
capture the uncountability aspect of C since only information
about finite subsets are needed for a decision.
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BSS model

Questions: What is the “correct” noion of

1 “Finiteness” in C?
2 Recursive/computable set?
3 Turing reducibility ≤T in this model?

Proposal. Take the cue from α-recursion theory and focus on
definability:

X ⊂ C is finite iff it is bounded and ∆1 definable.
A ⊂ C is recursive iff for each finite set X , “X ⊂ A” and
“X ⊂ C \ A” are Σ1 definable.
A ≤T B (A is Turing reducible to B) iff there is an algorithm
to decide (in real finite time), for each finite X , if X ⊂ A or
X ⊂ C \ A using finite information about B.
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Conclusion: Computing in the uncountable realm

1 Contrary to Kreisel’s view, there are many possible GRTs,
specific to each application.

2 Each GRT has to take into account the context in which the
theory is introduced.

3 There is no universal GRT as any axiomatic approach will
likely require supplementary features to be applicable.
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abstractions of our intuition of countable computation.
Hence,

How much does, or should, uncountable
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foundational issues, but has useful applications in “real
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Question

What is Reality and what is the role of mathematics in it ?


