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Basis problems

For a class of structures K, a subclass B is a basis for K if every structure
in K has a substructure that is in B.

subsets of reals, ω1, ω∗1, Aronszajn lines.

Aronszajn tree: height ω1, no uncountable branch, every level is at most
countable.

Theorem 1 (Baumgartner)
Assume PFA. Any two ω1-dense subsets of reals are isomorphic.

Theorem 2 (Abraham-Shelah)
Assume PFA. Any two normal Aronszajn trees are club isomorphic.

Theorem 3 (Moore)
Assume PFA. There is a five element basis for uncountable linear orders.
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Basis problems

Fact 1
CH implies that the basis for uncountable subset of reals has size 2ω1 .

Fact 2
♦ implies that the basis for Aronszajn trees has size 2ω1 .

Question 1
Is it consistent that the least basis size of uncountable linear orders
(Aronszajn trees) is different from 5 (1) or 2ω1?

(Abraham-Shelah) It is consistent that the basis for Suslin trees has size ω1.

Question 2
Is it consistent to have a small basis for Suslin trees? of size 1?
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Basis problems

Theorem 4
Assume the consistency of a supercompact cardinal. Then for any positive
integer n, it is consistent that the basis for Aronszajn trees has size n and
the basis for uncountable linear orders has size 2n + 3.

Definition 1
An Aronszajn tree T ⊂ Q<ω1 is coherent if for any s, t ∈ T ,
{ξ < ht(s), ht(t) : s(ξ) 6= t(ξ)} is finite.

(T , <lex) is a linear order where <lex is the lexicographical order.

(T , <lex) and −(T , <lex) have no uncountable common suborder.
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Tree isomorphism

A bijection π : (S , <S)→ (T , <T ) is a tree isomorphism if for any
s, t ∈ S , s <S t iff π(s) <T π(t).

Equivalently, for any s, t ∈ S , ∆(s, t) = ∆(π(s), π(t)) where
∆(s, t) = max{α ≤ ht(s), ht(t) : s �α= t �α}.

Lemma 1
Suppose that T is coherent and π : T → T is a level preserving map, i.e.,
ht(π(s)) = ht(s). Then π induces a tree isomorphism on a subtree.
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Tree isomorphism

Proof.
Fix, for each limit α, sα ∈ Tα. Dsα,π(sα) = {ξ < α : sα(ξ) 6= π(sα)(ξ)} is
finite and hence bounded below α.
By the Pressing Down Lemma, we can find α0 < ω1 and a stationary
subset Γ such that for any γ ∈ Γ, Dsγ ,π(sγ) ⊂ α0. So for any γ ∈ Γ,

sγ �[α0,γ)= π(sγ) �[α0,γ) . (1)

Going to a stationary subset Γ′ ⊂ Γ, we can find s, t ∈ Tα0 such that for
any γ ∈ Γ′,

sγ �α0= s and π(sγ) �α0= t. (2)

Now by (1) and (2), for any α < β in Γ′, ∆(sα, sβ) = ∆(π(sα), π(sβ)). So
π induces a tree isomorphism from T{sα:α∈Γ′} to T{π(sα):α∈Γ′}.
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Club isomorphism

Example 1

T is coherent. T (1) is the downward closure of {s(1) : s ∈ T} where

s(1)(α) =

{
0 if α is limit
s(α− 1) if α is successor and α ≤ ht(s)

Then T is not tree isomorphic to T (1).

T �C= {s ∈ T : ht(s) ∈ C} is T ’s club-restriction subtree where C is a
club.

Two trees S ,T are club isomorphic if they are isomorphic when restricted
to a club.
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Relations on coherent trees

Definition 2
Suppose S ,T are coherent trees.

1 S ≡C T if SX �D is isomorphic to TY �D for some X ∈ [S ]ω1 ,
Y ∈ [T ]ω1 and club D.

2 S <C T if for any club D, there is an uncountable partial level
preserving map π : S → T such that for any incomparable s, t in
dom(π), ∆D(s, t) < ∆D(π(s), π(t)).

3 S ≤C T if for some club D, there is an uncountable partial level
preserving map π : S → T such that for any s, t in dom(π),
∆D(s, t) ≤ ∆D(π(s), π(t)).

∆D(s, t) = max(D ∩ (∆(s, t) + 1)).

Fact 3
Assume MAω1 . Every coherent tree can be embedded into any of its
subtree.
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Relations on coherent trees

Fact 4
1 ≡C is an equivalence relation on the class of coherent trees.
2 ≤C and <C are partial orders on equivalence classes ≡C .
3 If S ≤C T , T ≤C S , then S ≡C T .

Lemma 2
If S <C T are coherent trees and P is a ccc forcing, then 
P S <C T .

Proof.
Fix a generic filter G and a club D in V [G ]. Since P is ccc, we can find a
club E ∈ V such that E ⊂ D. Since V � S <C T , we can find a witness
π : S → T in V for E (i.e., for any incomparable s, t in dom(π),
∆E (s, t) < ∆E (π(s), π(t)). Then π is a witness for D (for some
α ∈ E ⊂ D, ∆(s, t) < α ≤ ∆(π(s), π(t)) and hence
∆D(s, t) < ∆D(π(s), π(t))).
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Relations on coherent trees

Lemma 3
If (L, <L) is a linear order, then there is a ccc forcing such that in the
forcing extension, there is a collection of coherent trees T , such that
(T , <C ) is order isomorphic to (L, <L).

Theorem 5
Assume MAω1 . <C is a linear order on coherent trees/≡C .

Theorem 6
Assume MAω1 . Let θ, λ ∈ {ω, ω1}.

1 Every <C increasing (decreasing) sequence of coherent trees of length
θ has an upper (lower) bound.

2 (coherent trees/≡C , <C ) has no (θ, λ) gap, i.e., if 〈S i : i < θ〉 is a <C

increasing sequence of coherent trees, 〈T j : j < λ〉 is a <C decreasing
sequence of coherent trees and for any i < θ, j < λ, S i <C T j , then
there is a coherent tree U such that S i <C U <C T j for any i , j .
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The forcing axiom PFA(T )

Suppose that T is a collection of coherent trees and <T is a linear order on
T . Say T is <T orderable if there is an ω1 preserving forcing that forces
“<T =<C �T , i.e., S <C T for any S <T T in T ”.

Definition 3
PFA(T ) asserts that T is a collection of coherent trees such that for some
linear order <T on T ,

1 T is <T orderable;
2 if P is a proper forcing such that 
P “T is <T orderable” and D is a

collection of ω1 many dense subsets of P, then there is a filter meets
them all.
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Consistency of PFA(T )

Theorem 7
If there is a supercompact cardinal, T is a collection of coherent trees, <T
is a linear order on T and T is <T orderable, then there is a proper forcing
that forces PFA(T ).

Corollary 1
If it is consistent to have a supercompact cardinal, then for any cardinal
κ ≤ ω2, it is consistent to have PFA(T ) with |T | = κ.
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Consequences of PFA(T )

Theorem 8 (PFA(T ))
1 <C is a linear order on T .
2 MAω1 holds.

Theorem 9 (PFA(T ))
T is dense in (coherent trees/≡C , <C ) in the sense that for any coherent
trees S <C T , either for some {S ′,T ′} ⊂ T , S ≡C S ′, T ≡C T ′ or for
some U ∈ T , S <C U <C T .

Theorem 10 (PFA(T ))
1 If T has no <C increasing or decreasing sequence of length ω2, then

(coherent tree/≡C , <C ) is the compactification of (T / ≡C , <C ), i.e.,
the least compact linear order containing T .

2 If (T , <C ) is compact, then every coherent tree is ≡C to a tree in T .
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Consequences of PFA(T )

Proposition 1 (PFA(T ))
If X ,Y are subsets of R of size ω1, then X can be embedded into Y .

Proposition 2 (PFA(T ))
If (A, <A) is an Aronszajn line and A has a partition tree that is tree
isomorphic to a coherent tree T when restricted to a club, then (A, <A)
contains either (T , <lex) or (−T , <lex).
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Back to Aronszajn trees

Definition 4
Suppose T ,U are Aronszajn trees. T ≺C U if for any club D, there is a
level preserving map π : T �D→ U �D such that for any incomparable
s, t ∈ T �D , ∆D(s, t) < ∆D(π(s), π(t)).

Theorem 11 (PFA(T ))

Suppose U is an Aronszajn tree and T is a coherent tree. Then
1 either there is a subtree R ⊂ U and a club E , R �E≤ T �E ,
2 or T ≺C U.
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Back to Aronszajn trees

Theorem 12 (PFA(T ))
Suppose that U is an Aronszajn tree. Suppose for any coherent tree T , one
of the following conditions holds,
(i) for any subtree R ⊂ U, T ≺C R .
(ii) for any subtree U ′ ⊂ U, there is a club E and a subtree R ⊂ U ′,

R �E≤ T �E .
Then for some club D, U �D is tree isomorphic to a coherent tree.
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Back to Aronszajn trees

A linear order is scattered if it contains no isomorphic copy of Q. For a
linear order (L, <L), let linear order topology be the topology generated by
{(a, b) : a < b in L} the collection of intervals. So a compact linear order
is scattered iff its linear order topology is scattered, i.e., every nonempty
subset has an isolated point.

For a compact scattered linear order (L, <L), the Cantor-Bendixson rank is
defined in the following way.

L(0) = L.
L(α+1) = {x ∈ L(α) : x is not isolated in L(α)}.
L(α) =

⋂
β<α L

(β) if α is a limit ordinal.

Then the Cantor-Bendixson rank of (L, <L) is
rankCB(L) = min{α : L(α) = ∅}.
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Back to Aronszajn trees

Theorem 13 (PFA(T ))
If (T , <C ) is scattered, then every Aronszajn tree contains a coherent
subtree when restricted to a club.

Corollary 2 (PFA(T ))
Suppose that (T , <C ) is scattered. Then there is a minimal basis for
uncountable linear orders and the minimal basis has size
3 + 2|coherent trees/ ≡C |.

Corollary 3
If it is consistent to have a supercompact cardinal, then for any cardinal n
with 1 < n < ω2, it is consistent to have a model in which the basis for
uncountable linear orders has size 3 + 2n.
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Non-scattered case

Theorem 14 (MAω1)
If (coherent trees/≡C , <C ) is non-scattered, then there is an Aronszajn
tree containing no club restriction coherent subtree.

Theorem 15 (Abraham-Shelah)
For any cardinal κ, con(MAκ+ any two normal Aronszajn trees are club
isomorphic).

||(club, club,⊃)|| = min{|C| : every club contains a sub-club in C}.

Corollary 4 (MA||(club,club,⊃)||)

There is an Aronszajn tree containing no coherent subtree.

Note that ccc forcing will not enlarge ||(club, club,⊃)||. So the consistency
of MA||(club,club,⊃)|| is easily achieved.
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If (coherent trees/≡C , <C ) is non-scattered, then there is an Aronszajn
tree containing no club restriction coherent subtree.

Theorem 15 (Abraham-Shelah)
For any cardinal κ, con(MAκ+ any two normal Aronszajn trees are club
isomorphic).

||(club, club,⊃)|| = min{|C| : every club contains a sub-club in C}.

Corollary 4 (MA||(club,club,⊃)||)

There is an Aronszajn tree containing no coherent subtree.

Note that ccc forcing will not enlarge ||(club, club,⊃)||. So the consistency
of MA||(club,club,⊃)|| is easily achieved.
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Thank you!
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