Forking and Dividing at a Generic Scale An Introduction to Kim-Independence and NSOP, Nicholas Ramsey UCLA

Last time The last session was dedicated to a proof of The Independence Theorem Suppose T is NSOP1 and M #T. Then if $a_0 \equiv M^{\alpha_1}$, $a_0 \perp^{\kappa_1} b_1$, $a_1 \perp^{\kappa_2} c_1$ and blic, then there is some ay Etp (ao/Mb) Utp ("/Mc) such that ay Jbc. (~) (ª,) (ao) C M

The proof proceeded in 3 preliminary steps:
1. Establish a weak independence theorem:
If
$$T$$
 is NSOP, and $M \models T$, if
 $a_0 \equiv_M a_1$, $a_0 \perp^t b$, $a_1 \perp^t c$,
and $b \perp^t c$, then there is
 $a_w \models +p(a_0/Mb) \cup +p(a_M) = mith$
 $a_w \perp^t bc$.

2. Prove a "consistency along trees lemma:
If T is NSOP, , M & T and a 1^kb,
Huen if
$$(b_{\eta})_{\eta \in T_{d}}$$
 is a tree consisting
if realizations of $t_{\rho}(b'/n)$, spread

out over M and satisfying by
$$\prod_{M}^{k} b_{M}$$

for all $\eta \in T_{d}$, then there is
as such that $a_{k} b_{\eta} \equiv_{M} ab$ for all
 $\eta \in T_{\alpha}$ and $a_{k} \prod_{M}^{k} (b_{\eta}) \eta \in T_{d}$.
3. Prove the "Zig- Zay Lemma":
Suppose T is NSOP₁, M FT, and
 $b \prod_{M}^{k} b'$. Then, for any global
M-finitely satisfiable type $q \equiv tp(b/m)$,
there is a tree Morkey sequence
 $((b_{i}, b_{i}'): i \in W)$ with $(b_{0}, b_{0}') = (b_{i}b')$
such that (1) if $i \leq j$, then $b_{i} b_{j}' \equiv_{M} bb'_{j}$.

Strengthened Independence Theorem Suppose T is NSDP1 and MFT, if $a_0 \equiv Ma_1$, $a_0 \downarrow Kb$, $a_1 \downarrow Kc$, and M blic, then there is an such that ay = ML ao, ay = Mca, and, additionally ay Itbc, b Itaxc, and c Itaxb.

Plan for 5th talk 2. Give 2 for the applications of the indépendence théorem. 2. Prove local character 3. Prove transitivity and witnessing.

$$\int_{K}^{K} - Morley sequences$$

Definition
An $\int_{-}^{K} - Morley sequence over M is an
M-indiscernible sequence $(a_{i}^{i})_{i \in W}$ such
that $a_{i} \int_{M}^{K} a_{i}^{i}$ for all $i \in W$.
Observation ("Chain condition for L"Morley sequences)
Suppose T is NSOP₁, $M \models T$, and
 $a \int_{M}^{K} b$. If (bi) icw is an $\int_{-}^{K} - Morley$
sequence over M with $b_{0} = b$, then
there is $a' \equiv M_{0} a$ such that T is
Ma'-indiscernible and $a' \int_{-}^{K} T$.$

Proof let
$$p(x; b) = tp(a/Mb)$$
.
By induction on n, we will choose
 $a_n \notin \bigcup_{i \leq n} p(x; b;)$ with $a_n \coprod_{k=0}^{k} b_{\leq n}$.
To begin, we set $a_0 = a$. Then
given a_n , we pick $a' \notin p(x; b_{ne1})$.
Thus, we have $a_n \equiv_m a'$, $a_n \coprod_{k=0}^{k} b_{\leq n}$.
 $a' \coprod_{m=0}^{k} b_{mn}$, and $b_{mn} \coprod_{m=0}^{k} b_{\leq n}$. Then
 $a' \coprod_{m=0}^{k} b_{mn}$, and $b_{mn} \coprod_{m=0}^{k} b_{\leq n}$. Then
 b_{q} the independence theorem, there is
 $a_{mi} \notin \bigcup_{i \leq min} p(x; b_i)$ with $a_{mi} \coprod_{m=0}^{k} b_{\leq min}$.
By compactness, there is $a_{ij} \notin \bigcup_{i \in w} p(x; b_i)$
with $a_{ij} \coprod_{m=0}^{k} I$. Extract from I an
 $Ma_{ij} - indiscervible sequence $I' = \langle b'_{i} \mid liow \rangle$.$

Note that if
$$a_{y} \downarrow_{M}^{K} I'$$
, then, by
symmetry, $I' \downarrow_{M}^{K} a_{x}$ and twos
 $b'_{sn} \downarrow_{M}^{K} a_{x}$, witnessed by some
 $\Psi(x_{0,...,Y_{N}}; a_{y}) \in tp(\frac{b'_{sn}}{Ma_{y}})$. But
because I' was extracted from I ,
it follows there are $i_{0} \le \ldots \le i_{N}$ such
that $F \Psi(b_{i_{0},...,b_{N}}; ja_{y})$, contradicting
 $I \downarrow_{M}^{K} a_{y}$. So $a_{y} \downarrow_{M}^{K} I'$ and
 $I' \le M$. So $a_{y} \downarrow_{M}^{K} I'$ and
 $I' \le M$. Choose a_{y}' such that
 $a_{y} I' \le a_{y}' I$. Then $a'_{y} \models \bigcup_{i \le \omega} p(x_{i}; b_{i})$
and I is Ma_{y}' -indiscernible, as
desired.

It - Morley Sequences Recall : Definition An It - Morley sequence over A is an A-indiscernible sequence such that a; It aci for all i< w. Proposition Suppose T is NSOP1 and M&T. The following are equivalent: (1) P(x; a) Kim-divides over M (2) There is an It-modey sequence La; liew> over M with a = a such that

Proof

So now we prove
$$(1) \Rightarrow (3)$$
.
We will need one additional tool.
Definition
Suppose $M \notin T$ and $\overline{as}(a_i)_{i \in U}$ is an
 M -indiscernible Sequence. A global
 M -invariant type $q \ge tp(\overline{a}/M)$ is
called an indiscernible type if,
whenever $\overline{a}' \nvDash q$, \overline{a}' is M -indiscernible.

Lemma
Suppose MFT and
$$\overline{a} = (a_i)_{i \in I}$$
 is an
M-indiscernible sequence.
(1) There is an indiscernible global
M-invariant type $q \ge tp(\overline{a}/M)$.
(2) If $q \ge tp(\overline{a}/M)$ is an indiscernible
global M-invariant type, then if
 $(\overline{a}_i)_{i \in W} = q^{\mathcal{B}W}|_{M_1} (a_{i,j})_{i,j \in W}$ is
a metually indiscernible array over
M.
 $i = a_i$
 \overline{a}_i is \overline{a}_i - indiscernible
for all $i \in W$.

Proof (1) (Sketch) Let
$$r \ge t_{p}(\bar{a}/M)$$

be a global M-invaniant type and
let N \ge M be an $|M|^{t}$ -saturated
model. let $\bar{a}' \not\in r|_{N}$ and let
 \bar{b} be an N-indiscernible sequence
extracted from \bar{a}' .
We claim $t_{p}(\bar{b}/N)$ is M-invariant.
If not, there are $i_{0} \in ... \in i_{n} \notin a_{n}$
 $C \equiv n c'$ in M such that, for some ℓ ,
 $\neq \Psi(b_{0},..., b_{n-1}; c) \in \neg \Psi(b_{0}, b_{0}, b_{0}; c')$.
Since \bar{b} was extracted from \bar{a}' ,
there are $j_{0} \in ... \in j_{n-1} \in w$ such that

(2) By induction on
$$n < w$$
, whe will show
that $(\overline{a}_i)_{i \leq n}$ is a motivality indiscernible
array of For $n=0$, there is nothing to
show. Assume it has been established
for n . As g is an indiscernible

type, we have
$$\bar{a}_{ne1}$$
 is
 $M \bar{a}_{sn}$ -indiscernible. By hypothesis,
if $i \leq n$, \bar{a}_i is indiscernible offer
 $M \bar{a}_{ci} \cdot \bar{a}_{in1,--}, \bar{a}_{n}$.
Since q is M -invaniant and
 $\bar{a}_{ne1} \neq q |_{M \bar{a}_{\leq} n}$,
it follows that \bar{a}_i is indiscernible

Z

over Māci āiti-ānti.

 $(1) \Longrightarrow (3)$

We want to show that if l(xia) Kin-divides over M, then for all 1⁺- Morley sequences I= (a; li=w) over M with $a_0 = a_1$, $\xi'(x;a_1)':= w$?

is inconsistent.

Suppose not, assume I= {a; liew} is an If Morley sequence over M such that $l(x', a_0)$ Kim-divides over M and $l(x', a_i)$:: cm 3 is consistent.

By induction on n, We will choose
a sequence
$$(b_i)_{i \leq n}$$
 and an elementary
chain $(N_i)_{i \leq n}$ such that, for all $n < w$,
(1) $b_{0-}, b_n \equiv m^{a_{0-}, a_n}$
(2) $M < N_n < M_{nH}$
(3) $b_n \downarrow_M^f N_n$
(4) $b_n \in N_{n+1}$. $b \leq n \in N_{nH}$
To begin, we pt $b_0 = a_0$ and take

Claim

$$E \perp f N.$$

 M
Proof First, we will show $b_{2n} \perp f N_n$
for all $n \le w$. By induction on $k \le w$,
we will show $b_{n,-r} \cdot b_{nrk} \perp f N_n$.
For $k = 0$, this follows by construction. Assume
it for $k = 0$, this follows by construction. Assume
it for $k = 0$, this follows by construction. Assume
it for $k = 0$, this follows by construction. Assume
 $H = 0$, this follows by construction. Assume
 M_{nrk} and $b_{nrk + r}$ is contained in
 N_{nrk} and $b_{nrk + r}$ is contained in
 N_{nrk} and $b_{nrk + r}$. By base
 $monotonicity, b_{nrk + r}$. By base
 $M_{nonotonicity}$, $b_{nrk + r}$. Mon.
The inductive hypothesis states that

$$b_{n,-1}b_{n+k} \int_{M}^{f} N_{n},$$
So, by left-transitivity,

$$b_{n,-1}b_{n+k+1} \int_{M} N_{n}.$$
If $\Psi(x_{0,-1},x_{n-1},m)$ is a formula over N that
fules over M, then there is some K such
that $m \in N_{K}.$ The above shows
 $(\Psi^{2}i_{2})(\Psi^{2}i_{2})...(\Psi^{2}i_{n-1})[\neg \Psi(b_{i_{0},-1},b_{i_{n-1}},m)]$
bence $\neg \Psi(c_{en},m).$ This shows
 $\overline{c} \int_{M}^{f} N.$
In partialar, we have $N \int_{M}^{K} \overline{c}.$
Let $q \ge tp(\overline{c}/M)$ be a global

M-invariant indiscernible type and let

$$(\overline{c_i})_{i \in \omega} \neq q^{\circ} |_{M}$$
 be a Morkey sequence over
Min q with $\overline{c_o} = \overline{c}$. By $N / \int_{M}^{K} \overline{c}$,
we may assume $(\overline{c_i})_{i \in \omega}$ is

N-indiscernible.

Note that because Cope ma,

We know $\ell(x;c_{0,0})$ Kin-divides own M. It follows by Kin's Lemma that $\{\ell(x;c_{1,0}):i \in J\}$

is inconsistent. But because
$$(\overline{c_i})_{i \in \omega}$$

is a mutually indiscernible array, we
know that for any function $f: \omega \longrightarrow \omega$
 $(\forall) \{ \Psi(x', c_i, F(i)) : i < \omega \}$

is inconsistent.

Moreover, because (E: Tiew is N-indiscernible

and To is a Morky sequence in an N-finitely satisfiable type, Ti is a Morkey sequence in an N-finitely satisfiable

Local Character Recall local character for simple theories. (*) for all sets A and finite types a, there is BEA with IBIS ITI such that $a \downarrow_{R}^{T} A$. This asserts the existence of one set (of Size = ITI) over which tp(ª/A) does not fork - but it immediately, by base monotonicity implies the existence of many, since it a IA, then a LtA for all sets C with BSCSA. This is what is actually used in applications.

The Generalized Club Filter

Definition Suppose X is a set and K is a cardinal. We write [X] K for {Y = X : |Y|=K}. A subset $C \subseteq [X]^{k}$ is called a club if Y is (1) closed: If <Y: : i < x = k> is a chain in C -ie. Yi = Yi+1 and Yie C for all is a - then UYie C. (2) unbounded : If Ze[X]^K, there is YEC with ZEY. The (generalized) club filter on [X] K is the filler generated by the clubs.

Example
Suppose M is on L-structure.

$$Z N \leq M | INI = I LIZ$$

is a club in $[M]^{ITI}$.
Proof Trivial if $|MI \leq ITI|$. In general
(a) $\{N \leq M | INI = ITI]$ is closed because
a union of an elementary chain is an
elementary extension.
(b) $\{N \leq M | INI = ITI]$ is unbounded by
down ward lowerhein - Skolem.

SAC # of for every club C = [X] K.

Analogy Measure 1 دلىك positive measure : stationary Our aim now is to prove the following Theorem The following are equivalent: (1) T is NSOP1 (2) If MFT, for every pE Sx (M), {N<M | INI=ITI and p daes not Kin-fork over N}

is stationary.
(3) If MET, for every pESX(M),

$$EN \prec M \mid INI = |T|$$
 and p does not Kim-fork over N}
contains a club.

We will assume T has SOP1 and construct a model M and perSx(M) such that $\{N < M \mid |N| = |T| \text{ and } p \text{ Kim-Forkes over } N\}$ contains a club. This implies $\{N < M \mid |N| = |T| \text{ and } p \text{ does not Kim-Forke over } N\}$ is not stationary. Fix a Skolemization T^{Sk} of T, with $|T^{Sk}| = |T|$.

As T has
$$SOP_{i}$$
, there is some
L-formula $U(x_{i}y)$ and an array
 $(c_{i,0}, c_{i,1})_{i < 1TI^{+}}$ such that
 $(1) \{\Psi(x_{i}; c_{i,0}): i < 1TI^{+}\}$ is consistent.
 $(2) \{\Psi(x_{i}'; c_{i,1}): i < 1TI^{+}\}$ is 2-inconsistent.
 $(3) C_{i,0} \equiv_{C_{i,1}}^{L^{SL}} \text{ for all } i < 1TI^{+}.$
 $(4) (\overline{c_{i}})_{i < 1TI^{+}}$ is L^{SL} -indiscernable.

$$S_{s,0} = S_{s,1} - S$$

$$N_{s} = S_{k}(\overline{c}_{cs}). \quad Jf \quad S \quad is a \quad limit$$

$$S_{squence} \quad in \quad a \quad global \quad N_{s} - finitely \quad sahtshable$$

$$type \quad extending \quad tp_{L}(C_{s,1}) = S \quad I \in S_{s,0} = V_{s}$$

$$L^{sk} - indiscernibility \quad of \quad (\overline{c}_{i}) = U_{s,0} = V_{s}$$

$$C_{s,0} = \sum_{z=s}^{L^{sk}} C_{s,1}, \quad vie \quad know \quad C_{s,0} = \sum_{N_{s}}^{L} C_{s,1}.$$

Heirs

Definition Suppose M < N and $q \in S_{x}(N)$. We say q is an heir of q/m it, for every formle l(x;y) e L(M), if l(x;n) eq, then there is some meM with P(xim)eg/M. Equivalently, q is an heir of q/n if, for some (equivalently, all) a =q, N La.

lemma

Proof

closed: Fix a F p and suppose (Mi)ica is a chain of elementary submodels of N such that N L^u a for all i= a. We may assume a is a limit ordinal. Then if U(z;a) e tp (N/UM;a), then the paraweters of 4 all come from Mi a for some i = a, hence flue formla in Satisfied in Mi.

• unbounded : Expand T to make

$$p$$
 definable — that is, for
each formula $\Psi(x_i)$, add a
 y_1 -ary relation symbol $R_{\varphi}(y)$,
interpreted so that
 $R_{\varphi}^N = \{c \in N^{(y)} \mid \Psi(x_ic) \in p\}$.
let L_p be this larger language.
Note that $|L_p| = |L|$ so, by
downward Lowenheim - Skolen,
 $if X \leq N$ has size $|T|$, there
is an L_p - elementary substructure
 $M \leq N$ such that $X \leq M$ and

[M]= ITI. It is easy to check that M≤⁴PN implies p is an heir of plm so M is in our set. ■

Towards transitivity

let La; ie Z' be a Morley sequence in a global N-finitely Satisfiable type with a = a. Then this sequence is a tree Modey sequence over N. let <b; "icw> be defined by bi = a_i for all iew. Then is a tree Morky sequence over NI. kle claim additionally that b: I bei N for all Μ ٢ iew.

By symmetry, it suffices to show
beiN L^K bi;
M bis:
or, equivalently,
aziN L^K azi.
M
So suppose
$$P(a_{z-i}, n; a_{z})$$
.
As azi L^aa;, there is some
N
n' EN such that
 $F Q(n', n; a_{z}),$
and as $a \equiv N a_{z}$, it follows
that $Q(z, y; a_{z})$ Kim-divides

over M if and only if
4(2, y', a) Kim-divides over M,
and also \$4(n, n', a_i) if
and only if \$4(n', n', a).
As N L'a, by symmetry,
we conclude
$$4(2, y', a_i)$$

does not tim-fork over M,
This shows bi Lt bei N.