Forking and Dividing at a Generic Scale An Introduction to Kim-Independence and NSOP1 Nicholas Ramsey UCLA

Lecture 2

Last time

Definition P(x;y) has SOP, if there is (an) yEZew such that • (paths are consistent) For all ye 2" Elxianii): icw { is consistent. • (Inconsistency)For all $\eta, v \in 2^{\omega}$, if $\eta \not \supseteq (\eta \land v)^{-} \langle v \rangle$, $v = (\eta \land v)^{-} \langle v \rangle$ $\{ \Psi(x; a_n), \Psi(x; a_n) \}$ is inconsistent.

We say Thas SOP, if some formula has SOP, modulo T; we say T is NSOP, if its not SOP,

SOP Arrays

Proposition The following are equivalent: (1) T has SOP, (2) There is 4(x;y), kew, and (ci,o, Ci,i) iew such that (a) { l(x;c;) i c w } is consistent. (b) { l(x;ci,): i < w } is k-inconsistent. (c) For all iew, Ci,o = Ci,o Cripo Cripo Cripo (3) Same as (2), but with k=2.

Note The equivalence of (1) and (3) also holds for formulas. Also, since any 4 mill witness SOP, also in any expansion of our ambient monster M (in the language L, say), we may find such an array with Cino E Cin where L'is a larger language,

once IM has been expanded to an L'-structure IM!

Invariant Types monster model
Decall
$$p(x) \in S_x(M)$$
 is called
A-invariant if $\sigma p = p$ for all $\sigma \in A_{int}(M)$
or, equivalently, for all $\Psi(x;y)$, if
 $c \equiv c'$, then
 $\Psi(x;c) \in p \iff \Psi(x;c') \in p$
Given A-invariant $p \in S_x(M)$, $q \in S_y(M)$,
we obtain an A-invariant type
 $(p \otimes q)(x,y) \in S_{x,y}(M)$ defined by
 $(p \otimes q) = tp(a,b/M)$

for some
$$b \models q|_{M}$$
 and $a \models p|_{Mb}$.
Given any linear order I and
A-invariant $p \in S_{X}(M)$, we have
another A-invariant global type
 $p^{\otimes I}(X_{d}: d \in I)$ such that
 $(a_{d})_{d \in I} \models p^{\otimes I} \iff a_{d} \models p|_{Ma_{x,h}} \stackrel{for dl}{\to} I$.
If $B \ge A$ and $(a_{d})_{d \in I} \models p^{\otimes I}|_{B}$,
then $(a_{d})_{d \in I}$ is B-indiscernible.
When I is an infinite linear order,
we refer to $(a_{d})_{d \in I}$ as a
Morley sequence in p (over B).

Note: Being a Morley sequence over
A in a global A-invariant type
p implies being a Morley sequence
over A in the sense of the
previous lecture, i.e.

$$(a_{a})_{a\in I} tp^{OT} |_{A} \Rightarrow a_{a} \int_{A} for all at I.$$

But the converse is usually false.
A verage Types
If A is a set of parameters and
 D is an uther there on A^{n} , then
for any B,

 $A_{v}(D,B) = \{ \Psi(x) \in L(B) | \{a \in A^{-} | \neq \Psi(a)\} \in D \}$ is called the average type of Dover В. (1) Ar (D,B) is a complete type over '15. (2) A. (D, M) is a global A invariant type (in fact, A-finitely satisfiable). (3) If M = T and pe Sx (M), there is some D on M'rd such that Ar (D, M)=p. Together, these imply the following

Note This fact implies that, over models, in every type, we have some notion of a generic sequencenamely, a generic sequence in p', for some pESx(M), should be a Morley sequence over M in some global M-invariant type extending p.

Kim - Independence

Definition

Fix MFT.

(1) We say l(xin) Kim-divides over M if there is a global M-invariant p= tp(ª/M) such that 4 divides with respect to a Morley sequence over Min p (or, equivalently, in every Morley sequence over Min ך **)**.

(3) If MET, then if Y(x;a) divides with respect to a Morky sequence over M in some global M-finitely satisfiable type p2 fx (m) then P(x;a) divides with respect to Morley sequences over M in every global M-finitely satisfiable q2tp(°/m).

Proct (2)=> (3) fullows from the fact that M-finitely satisfiable types are M-invariant. (1)=>(2) Assume (2) fails and we will show T has SOP. So fix MFT, Y(x;a), and global M-invariant p, g 2 tp (9/M) such that Y(x; a) divides with respect to Morley sequences over Min 9, but $\Psi(x;a)$ does not divide with respect to Morley sequences over

$$\frac{-3}{-2}$$

$$\frac{-3$$

Moreover,
$$c_{j,0} \neq p|_{M}$$
, $c_{j,1} \neq q|_{M}$ and
 $p|_{M} = q|_{M} = \pm p(a/M)$ so
 $c_{j,0} \equiv M \quad c_{j,1}$.
Because $(p \otimes q)^{\otimes w}$ is M -invariant,
we know, for all $\Psi(\overline{z}; y) \in L(M)$
 $\Psi(\overline{z}; c_{j,0}) \in (p \otimes q)^{\otimes w} \Rightarrow \Psi(\overline{z}; c_{j,1}) \in (p \otimes q)^{\otimes w}$
so we have

$$C_{j,0} \equiv C_{j,0} C_{j,1} C_{j,1}$$

$$(1) \Rightarrow (3) \quad \text{Assume } T \text{ has } SoP_{1}.$$

Let T^{sk} be an expansion of T
to a larger language that contains
Skolem functions $F_{\text{i.e.}}$ such that
for every $\Upsilon(x;y)$ in L^{sk} with $|x|=1$ there
is a function $f_{\varphi}(y)$ such that
 $T^{\text{sk}} \vdash (\forall y) [(\exists x) \forall hx|y) \rightarrow \Upsilon(f_{\varphi}(y);y)].$
Then there is an L -formula $\Psi(x;y)$
and a collection of types $(c_{i,o}, c_{i,i})$ icos
such that

concentrating on Ecis : i cu 3 CM

and let
$$\mathcal{E}$$
 be a non-principal
ultrahiller concentrating on
 $\{c_{i,i}: i \in \mathcal{N}\}$.
Let $p = A_{\mathcal{V}}(D, M)$
 $q = A_{\mathcal{V}}(\mathcal{E}, M)$.
Observation 1: If $(a_i)_{i \in \mathcal{N}}$
is a Morley sequence over M in p
Huen $\{\forall l(x_i)_{i \in \mathcal{N}}\}$ is consistent.

Observation 2: If (bi)iew is a Morley sequence over Min 9, then {{(x; b;]:i=w} is 2 -inconsistent.

Suppose
$$A(x,m) \in L(M)$$
. Then
there is a type of L^{sk} -terms t
and some k such that $A(x,m)$
is equivalent modulo T^{sk} to
 $A(x,t)(C_{k,0}C_{k,1}))$.
Because $C_{i,0} \equiv C_{i,0}^{sk} C_{i,1}$ for all
 $i \in W$, we know, in particular
 $C_{j,0} \equiv C_{i,0}C_{k,1}$

for all j>k. Hence $N(x_{im}) = p(m \in S_{i,0}) \neq N(c_{i,0}m) \in D$ ≥ {c; | + ~ + (c; ; + (ck, o, ck, 1)} € D =>{cj,0 | + + (cj,0,t (c,k,0))}?? {cj,0 | j > k} € { cj, 1 | + + (cj, 1) + (ce, 0, ce, 1) } ? { cj, 1 | j > k} ⇔{cj, [FA+(cj, im)} € € €) ~{(x;m) € 9/M. 目

Kim-forking = Kim-dividing

roposition is NSOP. Then Assume T if MET and Y(x; a) Kim-foles over M, then U(x'a) Kim-divides over M. Proof Fix MFT. Suppose l(x;a) + Vri(x;ci) where A: (x; c;) Kin-divides over M for all ick. let $q \ge tp(a, c_0, \dots, c_m/m)$

We want to show { (x;a;) i.e. S is inconsistent. Towards contradiction, suppose not and let b be a realization. Then we know, for all icw, q(x;a;) ⊢ \/ tj(x;cj,i) So for all icw, there is some j(i) < k such that $\neq \Lambda_{j_i}(b)(c_{j_i},i),$

By the pigeonhole principle, there is some jy < k such that the set $X := \xi i < w | j(i) = j_x$ is infinite. Then me have both { Afi (x; cj ; i) ; i EX) is inconsistent (by indiscernibility) and that this set of formulas is realized by b, a contradiction. E

The Kim-Pillay Criterion NSOP Theorem (Chernikov-R.) Suppose I is an Aut (M) - invariant ternany relation on small subsets of M satrebying, for all MET: (1) Existence: a L'M always holds (2) Symmetry: a I b = b I a (3) Monotonicity: aa' 1 66'=) a 1 6. (4) Strong finite character: If all's, there is $\Psi(x;b) \in tp(nb)$ such that

a' to for all a' with F P(a'; b). (S) The independence theorem: If $c_0 \equiv c_1$, $c_0 \perp a$, $c_1 \perp b$, $a \perp b$, MA, $c_1 \perp b$, $a \perp b$, $a \perp b$, then there is cx such that $C_{\psi} = Ma^{C_0}, C_{\psi} = C_{1, and} C_{\psi} \square ab.$

Then, T is NSOP1.

The Kim-Pillay Criterion NSOP Définition Suppose MFT. a jub means tp (/Mb) extends to a global M-finitely satisfiable type. (Equiv to tp(2/A6) is M-fin Sat]. a l b means tp (/ Mb) extends to a glabal M-invariant type.

Proposition
The following are equivalent:
(1)
$$T$$
 is NSOP₁
(2) (Very weak IT for L^{h})
If $M \neq T$, $a_{0} b_{0} \equiv a_{1}b_{1}$ and
 $a_{1} \perp b_{1}$, $b_{0} \perp b_{1}$, then there
 $M \equiv CO[1]$ M
is a_{y} with $a_{y} b_{0} \equiv a_{y} b_{1} \equiv a_{0} b_{0}$.
(3) (Very weak IT for L^{O})
Some a_{3} (2) but with $L^{c_{0}}$.
(3) $(Very weak IT for L^{O})
Some a_{3} (2) but with $L^{c_{0}}$.
(3) $(Very weak IT for L^{O})
 $Some (3) = D$ because $L^{T} = D \int_{-L}^{0}$ hence
 $L^{h} \Rightarrow \int_{-L}^{c_{1}}$.
(1) =) (3) : Suppose (3) fails. So for some
 $M \neq T$, there are $a_{0}b_{0} \equiv m^{2}a_{1}b_{1}$$$

l

mith a; L^{ev} bi for i=0,1, and
bo L^{ei} M
p(x;y)= p(a,b,M),
we have p(x;b) u p(x;b) is
in consistent. Let
$$\Psi(x;y) \in P$$
 be
a formula such that
 $\{\Psi(x;b_0), \Psi(x;b_1)\}$
is in consistent.
M
M

Because to It's, we know b, I bo so there is some global M-invariant q 2 tp("/mbo). Note that bot qlm so there is a Morley sequence in 9 over M starting with (bo, b,).

[Why?. Just choose be & filmon
be & filmbourbe
and so on].
Then & ((x;bi) i i < w? is 2-inconsistent
so ((x;bo) Kin-divides over M.
But we also know as I^{cc} bo,
So there is a global M-invariant
type
$$p = tp(\frac{bo}{mao})$$
. Let
(bi') iew & p^{ow}/ma with bo = bo.
Then (bi') iew is a Morley sequence over
M in p, but it is also Ma-indisentle

(2) => (1)
Suppose T has Sola vin the
formula
$$\Psi(x_iy)$$
. Work, as before,
in a Skolemized expansion TSK
of T. By compactness and Remsey,
there is an L^{sk} - indiscernible sequence
 $F(c_{i,0}, c_{i,1})_{i < \omega + 2}$ such that
 $\cdot \{\Psi(x_j c_{i,0}) : i < \omega + 2\}$ is
 $consistent.$
 $\cdot \{\Psi(x_j c_{i,1}) : i < \omega + 2\}$ is 2- inconsistent.
 $\cdot c_{i,0} \equiv \int_{c_{e_{i,0}}}^{c_{e_{i,1}}} \int_{c_{i,1}}^{c_{e_{i,0}}} \int_{c_{i,1}}^{c_{e_{i,1}}} \int_{c_{i,2}}^{c_{e_{i,1}}} \int_{c_{i,2}}^{c_{e_{i,1}}} \int_{c_{i,2}}^{c_{e_{i,1}}} \int_{c_{i,2}}^{c_{e_{i,2}}} \int_{c_{i,1}}^{c_{e_{i,1}}} \int_{c_{i,2}}^{c_{e_{i,2}}} \int_{c_{i,1}}^{c_{e_{i,2}}} \int_{c_{i,2}}^{c_{e_{i,2}}} \int_{c_{i,1}}^{c_{e_{i,2}}} \int_{c_{i,2}}^{c_{e_{i,2}}} \int_{c_{i,1}}^{c_{e_{i,2}}} \int_{c_{i,2}}^{c_{e_{i,2}}} \int_{c_{e_{i,2}}}^{c_{e_{i,1}}} \int_{c_{e_{i,2}}}^{c_{e_{i,1}}} \int_{c_{i,2}}^{c_{e_{i,2}}} \int_{c_{i,2}}^{c_{e_{i,2}}} \int_{c_{i,2}}^{c_{e_{i,2}}} \int_{c_{i,2}}^{c_{e_{i,2}}} \int_{c_{i,2}}^{c_{e_{i,2}}} \int_{c_{i,1}}^{c_{e_{i,2}}} \int_{c_{i,2}}^{c_{e_{i,2}}} \int_{c_{i,2}}^{c_{e$

By indiscernbility, we have

$$c_{w+1,0} \perp^{u} b$$
, hence
 M
 $c_{w+1,0} \perp^{u} b';$ and also
 M
 $c_{w,1} \perp^{u} c_{w+1,0}$.
 M
But since $c_{w+1,0} \equiv c_{w+1,1}$
and $\{\Psi(x)c_{w,1}), \Psi(x')c_{w+1,1}, N\}$ is
inconsistent, we have
 $\{\Psi(x'_{1}c_{w,1}), \Psi(x'_{2}c_{w+1,0})\}$
is in consistent.
 $\{\Psi(x'_{1}c_{w,1}), \Psi(x'_{2}c_{w+1,0})\}$
is in consistent.

Since
$$\ell(x_1, c_{w_{11}}, o) \in \frac{1}{p}(\frac{b}{M} c_{w_{11}}, o)$$

 $\ell(x_1, c_{w_{11}}) \in \frac{1}{p}(\frac{b}{M} c_{w_{11}}),$
We see (2) fails.

Proof of the Kim-Pillay theorem
First, we show that if
$$L^*$$
 satisfies
 $(1) - (4)$, then for any $M \neq T$,
 $a \perp^{n} b \Rightarrow a \perp^{*} b$.
M
Proof Suppose, towards contradiction, that

a
$$\int_{M}^{n} b + a \int_{M}^{n} b$$
. By strong
finite character, there is some
 $\ell(x',b) \in t_{p}(^{a}/Mb)$ such that
 $a' \int_{M}^{*} b$ whenever $\notin \ell(a';b)$.

Because a
$$\overset{n}{\underset{M}{}}b$$
, there is some
m $\in M$ such that $\neq P(m; b)$.

Teaser for next time. Symmetry in simple theories. Assume a Lib. Thun by ext, can general seq (ai)ick with a jac a; t fp(a (Ab) ai Ifacib A By ER, get (indisc) Morty Segion A Ab-indisc. Stanty what

Kim's lemmes bla. $a \downarrow b \neq a \downarrow b.$ M M (a) jew Moly G Ji Jr-Mohy (a) licw

anaz 1 9091