Combinatorial implication of computability theory

Lu Liu
Email: g.jiayi.liu@gmail.com
Central South University School of Mathematics and Statistics
Logic conference in Fudan University

November 28, 2020

Introduction

- Many questions in computability theory, even for big question as $K L$-randomness vs 1 -randomness, have close connection to combinatorics.
- We present one example in this talk. We prove that a question of Miller and Solomon-that whether every coloring $c: d^{<\omega} \rightarrow k$ admits a c-computable variable word infinite solution, is equivalent to a natural, nontrivial combinatorial question.

We thank Denis Hirschfeldt, Benoit Monin and Ludovic Patey for helpful discussion on the first example.
(1) The question of Miller and Solomon
(2) Related literature
(3) The combinatorial equivalence
(4) On Oppress ${ }_{k}^{d}\left(n_{0} \cdots n_{r}\right)$

VWI problem

We adopt the problem-instance-solution framework to introduce the following problem. We first introduce some notation.

Definition 1 (Variable word)

- An n-variable word over d is a sequence v (finite or infinite) of $\{0, \cdots, d-1\} \cup\left\{x_{0}, x_{1}, \cdots\right\}$ where there are n many variables in v.

VWI problem

We adopt the problem-instance-solution framework to introduce the following problem. We first introduce some notation.

Definition 1 (Variable word)

- An n-variable word over d is a sequence v (finite or infinite) of $\{0, \cdots, d-1\} \cup\left\{x_{0}, x_{1}, \cdots\right\}$ where there are n many variables in v.
- Given an $\vec{a} \in d^{m}$, an n-variable word v, suppose
$x_{m_{0}}, x_{m_{1}}, \cdots, x_{m_{n-1}}$ occur in v with $m_{\hat{n}-1}<m_{\hat{n}}$ for all $\hat{n}<n$. We write $v(\vec{a})$ for the $\{0, \cdots, d-1\}$-string obtained by substitute $x_{m_{\hat{n}}}$ with $\vec{a}(\hat{n})$ in v for all $\hat{n}<m$ and then truncating the result just before the first occurrence of $x_{m_{\hat{n}+1}}$.

VWI problem

We adopt the problem-instance-solution framework to introduce the following problem. We first introduce some notation.

Definition 1 (Variable word)

- An n-variable word over d is a sequence v (finite or infinite) of $\{0, \cdots, d-1\} \cup\left\{x_{0}, x_{1}, \cdots\right\}$ where there are n many variables in v.
- Given an $\vec{a} \in d^{m}$, an n-variable word v, suppose $x_{m_{0}}, x_{m_{1}}, \cdots, x_{m_{n-1}}$ occur in v with $m_{\hat{n}-1}<m_{\hat{n}}$ for all $\hat{n}<n$. We write $v(\vec{a})$ for the $\{0, \cdots, d-1\}$-string obtained by substitute $x_{m_{\hat{n}}}$ with $\vec{a}(\hat{n})$ in v for all $\hat{n}<m$ and then truncating the result just before the first occurrence of $x_{m_{\hat{n}+1}}$.
- We write $P_{x_{m}}(v)$ for the set of positions of x_{m} in v, namely $\left\{t: v(t)=x_{m}\right\}$; the first occurrence of a variable x_{m} in v refers to the integer min $P_{x_{m}}(v)$.

VWI problem

Example 2

Infinite variable word v on $\{0,1\}$:

$$
\begin{aligned}
\vec{a}=10, v(\vec{a}) & =011 & x_{0} x_{0} 011 & x_{1} & x_{0} x_{0} & x_{1} x_{1} 00
\end{aligned} x_{2} x_{2} \cdots \quad \text { (1.1) }
$$

VWI problem

Example 2

Infinite variable word v on $\{0,1\}$:

$$
\begin{array}{rlrlrr}
\vec{a}=10, v(\vec{a}) & =011 & x_{0} x_{0} 011 & x_{1} & x_{0} x_{0} & x_{1} x_{1} 00
\end{array} x_{2} x_{2} \cdots .
$$

Definition 3

- Problem: VWI (d, k).
- Instance: $c: d^{<\omega} \rightarrow k$.
- Solution: an ω-variable word v such that $\left\{v(\vec{a}): \vec{a} \in d^{<\omega}\right\}$ is monochromatic.

VWI vs RCA

Joe Miller and Solomon proposed the following question in [Miller and Solomon, 2004].

Question 4

Is $\mathrm{VWI}(d, k)$ provable in RCA ?

VWI vs RCA

Joe Miller and Solomon proposed the following question in [Miller and Solomon, 2004].

Question 4

Is $\mathrm{VWI}(d, k)$ provable in RCA?
Or in terms of computability language:

Question 5

Does every $\operatorname{VWI}(d, k)$-instance c admit c-computable solution?

Other versions of variable word problem

Definition 6 (VW, OVW)

If we require the occurrence of x_{i} being finite for all i then the problem is called VW.
If we require all the occurrence of x_{i} comes before any occurrence of x_{i+1} then it is called OVW (ordered variable word).

Other versions of variable word problem

Definition 6 (VW, OVW)

If we require the occurrence of x_{i} being finite for all i then the problem is called VW.
If we require all the occurrence of x_{i} comes before any occurrence of x_{i+1} then it is called OVW (ordered variable word).

The problem is proposed by [Carlson and Simpson, 1984] and studied in [Miller and Solomon, 2004] [Liu et al., 2017]. Clearly,

Theorem 7

$\operatorname{VWI}(d, k) \leq \mathrm{VW}(d, k) \leq \mathrm{OVW}(d, k)$.
$\operatorname{VWI}(d, k) \Leftrightarrow \operatorname{VWI}(d, k+1), \operatorname{VW}(d, k) \Leftrightarrow \operatorname{VW}(d, k+1), \operatorname{OVW}(d, k) \Leftrightarrow$ OVW $(d, k+1)$.

The complexity of OVW, VW

Theorem 8 ([Miller and Solomon, 2004])

There exists a computable instance of OVW $(2,2)$ that does not admit Δ_{2}^{0} solution. Thus $\mathrm{RCA}_{0}+\mathrm{WKL}$ does not prove $\mathrm{VW}(2,2)$.

The complexity of OVW, VW

Theorem 8 ([Miller and Solomon, 2004])

There exists a computable instance of OVW $(2,2)$ that does not admit Δ_{2}^{0} solution. Thus $\mathrm{RCA}_{0}+\mathrm{WKL}$ does not prove VW $(2,2)$.

The following result answers a question of [Miller and Solomon, 2004] and [Montalbán, 2011].

Theorem 9 (Monin, Patey, L)

- For every computable OVW (2,2)-instance c, every \emptyset^{\prime}-PA degree compute a solution to c.
- There exists a computable OVW(2,2)-instance such that every solution is \emptyset^{\prime}-DNC degree.

Corollary 10 (Monin, Patey, L)

ACA proves $\operatorname{OVW}(2,2)$.

Question 11 ([Miller and Solomon, 2004])

Does $\operatorname{OVW}(d, k)$ or $\operatorname{VW}(d, k)$ implies ACA_{0} for some l ?

A combinatorial equivalence of " $\mathrm{VWI}(2,2)$ vs RCA "

For two sets of numbers A, B, write $A<B$ iff $\max A<\min B$.

Definition 12 (Oppress $\left(n_{0} \cdots n_{r-1}\right)$)

For a finite sequence $n_{0}, n_{1}, \cdots, n_{r-1}$ of positive integers, let
$N_{0}=\left\{0, \cdots, n_{0}-1\right\}, N_{1}=\left\{n_{0}, \cdots, n_{0}+n_{1}-1\right\}, \cdots$,
$N_{r-1}=\left\{n_{0}+\cdots+n_{r-2}, \cdots, n_{0}+\cdots+n_{r-1}-1\right\}$, and $N=\cup_{s \leq r-1} N_{s}$. We write Oppress ${ }_{k}^{d}\left(n_{0} n_{1} \cdots n_{r-1}\right)$ iff the following is true. There exists a function $f: d^{N} \rightarrow k$ such that for every $s \leq r-1$, every n_{s}-variable word v over d of length N, if the first occurrence of variables in v consists of N_{s}, i.e.,

$$
\left\{\min P_{x_{m}}(v): m \in \omega\right\}=N_{s}
$$

then there exist $\vec{a}_{0}, \vec{a}_{1} \in d^{n_{s}}$ such that $f\left(v\left(\vec{a}_{0}\right)\right) \neq f\left(v\left(\vec{a}_{1}\right)\right)$. In that case we say f witnesses Oppress $_{k}^{d}\left(n_{0} \cdots n_{r-1}\right)$.

A combinatorial equivalence of " $\mathrm{VWI}(2,2)$ vs RCA "

Theorem 13

The following are equivalent:

- There exists a $\mathrm{VWI}(d, k)$-instance c that does not admit c-computable solution.
- There exists an infinite sequence of positive integers $n_{0} n_{1} \cdots$ such that for all $r \in \omega$, Oppress ${ }_{k}^{d}\left(n_{0} \cdots n_{r}\right)$ holds.

Intuition on Oppress $_{k}^{d}\left(n_{0} \cdots n_{r-1}\right)$

For $\vec{n}, \overrightarrow{\hat{n}} \in \omega^{<\omega}$ we write $\vec{n} \leq \overrightarrow{\hat{n}}$ if $|\vec{n}|=|\overrightarrow{\hat{n}}|$ and $\vec{n}(s) \leq \overrightarrow{\hat{n}}(s)$ for all $s<|\vec{n}|$. We say \vec{n} is a subsequence of \vec{n} if there are integers $s_{0}<s_{1}<\cdots<s_{m-1}<|\overrightarrow{\hat{n}}|$ such that $\vec{n}=\overrightarrow{\hat{n}}\left(s_{0}\right) \cdots \vec{n}\left(s_{m-1}\right)$. It's obvious that:

Proposition 14

If \vec{n} is a subsequence of $\overrightarrow{\hat{n}}$ or $\vec{n} \geq \overrightarrow{\hat{n}}$, then Oppress $s_{k}^{d}(\overrightarrow{\hat{n}})$ implies Oppress ${ }_{k}^{d}(\vec{n})$.

Intuition on Oppress $_{k}^{d}\left(n_{0} \cdots n_{r-1}\right)$

Proposition 15

Oppress $2_{2}^{2}(22)$, Oppress $22(222)$ holds. Oppress $2_{2}^{2}(n)$ holds for all $n>0$.

Proof.

To see $O p p r e s s_{2}^{2}(22)$, consider

$$
f(\vec{a})=\vec{a}(0)+\vec{a}(1)+\vec{a}(2) \bmod 2
$$

To see Oppress ${ }_{2}^{2}(222)$, consider

$$
f(\vec{a})=I(\vec{a}(0)+\vec{a}(1)>0)+\vec{a}(2)+\vec{a}(3)+\vec{a}(4) \bmod 2 .
$$

Where $I()$ is the indication function. To see $\operatorname{Oppress}_{2}^{2}(n)$, simply consider $f(\vec{a})=\vec{a}(0) \bmod 2$.

Intuition on Oppress $_{k}^{d}\left(n_{0} \cdots n_{r-1}\right)$

Proposition 16

Oppress ${ }_{2}^{2}(2222)$ does not hold.

Proof.

We don't know the proof. Adam P. Goucher at Mathoverflow examined this using SAT solver (https://mathoverflow.net/questions/293112/ramsey-type-theorem). It's easy to check that the following functions don't work:

$$
\begin{align*}
& f(\vec{a})=I(\vec{a}(0)+\vec{a}(1)>0)+\vec{a}(2)+\vec{a}(3)+\vec{a}(4)+\vec{a}(6) \bmod 2 ; \tag{3.1}\\
& f(\vec{a})=I(\vec{a}(0)+\vec{a}(1)>0)+I(\vec{a}(2)+\vec{a}(3)>0)+ \\
& \quad+\vec{a}(4)+\vec{a}(5)+\vec{a}(6) \bmod 2
\end{align*}
$$

Proof of theorem 13

(\Leftarrow)

- A Turing functional Ψ^{X} computes a variable word if Ψ^{X} is an enumerable set (possibly finite) $\left\{v_{0}, v_{1}, \cdots\right\}$ of finitely long variable words such that $v_{0} \preceq v_{1} \preceq \cdots$.

Proof of theorem 13

(\Leftarrow)

- A Turing functional Ψ^{X} computes a variable word if Ψ^{X} is an enumerable set (possibly finite) $\left\{v_{0}, v_{1}, \cdots\right\}$ of finitely long variable words such that $v_{0} \preceq v_{1} \preceq \cdots$.
- Let $X \in$ Oppress $_{k}^{d}$.

Proof of theorem 13

(\Leftarrow)

- A Turing functional Ψ^{X} computes a variable word if Ψ^{X} is an enumerable set (possibly finite) $\left\{v_{0}, v_{1}, \cdots\right\}$ of finitely long variable words such that $v_{0} \preceq v_{1} \preceq \cdots$.
- Let $X \in$ Oppress $_{k}^{d}$.
- Putting priority argument aside, assume each Turing functional is total. i.e., for each $r \in \omega$, let $v_{r} \in \Psi_{r}^{X}$ be such that v_{r} contains $X(r)$ many variables whose first occurrence is after $\left|v_{r-1}\right|$.

Proof of theorem 13

(\Leftarrow)

- A Turing functional Ψ^{X} computes a variable word if Ψ^{X} is an enumerable set (possibly finite) $\left\{v_{0}, v_{1}, \cdots\right\}$ of finitely long variable words such that $v_{0} \preceq v_{1} \preceq \cdots$.
- Let $X \in$ Oppress $_{k}^{d}$.
- Putting priority argument aside, assume each Turing functional is total. i.e., for each $r \in \omega$, let $v_{r} \in \Psi_{r}^{X}$ be such that v_{r} contains $X(r)$ many variables whose first occurrence is after $\left|v_{r-1}\right|$.
- Suppose ($f_{r}: r \in \omega$) witnesses Oppress $s_{k}^{d}(X \upharpoonright r)$. We transform these f_{r} to a coloring c so that there is no $v \succeq v_{r}$ such that $\left|c\left(\left\{v(\vec{a}): \vec{a} \in d^{n_{v}}\right\}\right)\right|=1$.

Proof of theorem 13

- To define c on d^{n}, let $r(n)$ be the maximal integer such that $\left|v_{r(n)}\right| \leq n$. We ensure that c on d^{n} "oppress" v_{r} for all $r \leq r(n)$.

Proof of theorem 13

- To define c on d^{n}, let $r(n)$ be the maximal integer such that $\left|v_{r(n)}\right| \leq n$. We ensure that c on d^{n} "oppress" v_{r} for all $r \leq r(n)$.
- Let P_{r} be the set of first occurrence of variables in v_{r} whose first occurrence is after $\left|v_{r-1}\right|$. W.l.o.g, suppose $\left|P_{r}\right|=X(r)$ for all $r \in \omega$.

Proof of theorem 13

- To define c on d^{n}, let $r(n)$ be the maximal integer such that $\left|v_{r(n)}\right| \leq n$. We ensure that c on d^{n} "oppress" v_{r} for all $r \leq r(n)$.
- Let P_{r} be the set of first occurrence of variables in v_{r} whose first occurrence is after $\left|v_{r-1}\right|$. W.l.o.g, suppose $\left|P_{r}\right|=X(r)$ for all $r \in \omega$.
- Define $c(\vec{a})=f_{r(n)+1}\left(\vec{a} \upharpoonright \cup_{r \leq r(n)} P_{r}\right)$.

Proof of theorem 13

(\Rightarrow)

- Take advantage of some particular algorithms $\Phi_{0}, \Phi_{1}, \cdots$ and show that their failure (to compute a solution to c) gives rise to a sequence $X \in$ Oppress $_{k}^{d}$.

Proof of theorem 13

(\Rightarrow)

- Take advantage of some particular algorithms $\Phi_{0}, \Phi_{1}, \cdots$ and show that their failure (to compute a solution to c) gives rise to a sequence $X \in$ Oppress $_{k}^{d}$.
- $\Phi_{0}^{c}, \Phi_{1}^{c}, \cdots$ are greedy algorithms in the sense that they extend their current computation (which is a finitely long variable word) whenever possible. More precisely,

Proof of theorem 13

(\Rightarrow)

- Take advantage of some particular algorithms $\Phi_{0}, \Phi_{1}, \cdots$ and show that their failure (to compute a solution to c) gives rise to a sequence $X \in O p p r e s s_{k}^{d}$.
- $\Phi_{0}^{c}, \Phi_{1}^{c}, \cdots$ are greedy algorithms in the sense that they extend their current computation (which is a finitely long variable word) whenever possible. More precisely,
- Φ_{r+1}^{c} extends its current computation from v_{r+1} to some
$\hat{v} \succeq v_{r+1}$ where \hat{v} has more variables than v_{r+1}, whenever it is found that for some $\vec{a} \in d^{\left|v_{r}\right|+1},\left|c\left(\left\{\hat{v}(\vec{b}) / \vec{a}: \vec{b} \in d^{n_{\hat{v}}}\right\}\right)\right|=1$.

Proof of theorem 13

(\Rightarrow)

- Take advantage of some particular algorithms $\Phi_{0}, \Phi_{1}, \cdots$ and show that their failure (to compute a solution to c) gives rise to a sequence $X \in O p p r e s s_{k}^{d}$.
- $\Phi_{0}^{c}, \Phi_{1}^{c}, \cdots$ are greedy algorithms in the sense that they extend their current computation (which is a finitely long variable word) whenever possible. More precisely,
- Φ_{r+1}^{c} extends its current computation from v_{r+1} to some $\hat{v} \succeq v_{r+1}$ where \hat{v} has more variables than v_{r+1}, whenever it is found that for some $\vec{a} \in d^{\left|v_{r}\right|+1},\left|c\left(\left\{\hat{v}(\vec{b}) / \vec{a}: \vec{b} \in d^{n_{\hat{v}}}\right\}\right)\right|=1$.
- Moreover, Φ_{r+1}^{c} will build its solution v_{r+1} based on $\Phi_{0}^{c}, \cdots, \Phi_{r}^{c}$ in the sense that all variables in v_{r+1} occur after $\left|v_{r}\right|$ and if some $\Phi_{\tilde{r}}^{c}$ extends its current computation, then all Φ_{r}^{c} (where $r>\tilde{r}$) will restart all over again.

Proof of theorem 13

- Since c does not admit a c-computable solution, for every $r \in \omega$, the computation of Φ_{r}^{c} stucks at some v_{r}.

Proof of theorem 13

- Since c does not admit a c-computable solution, for every $r \in \omega$, the computation of Φ_{r}^{c} stucks at some v_{r}.
- More precisely, let $\hat{v}_{r}=v_{r} x_{n_{r}-1}$ (where we assume that all variables in v_{r} are $\left\{x_{0}, \cdots, x_{n_{r}-2}\right\}$), we have

Proof of theorem 13

- Since c does not admit a c-computable solution, for every $r \in \omega$, the computation of Φ_{r}^{c} stucks at some v_{r}.
- More precisely, let $\hat{v}_{r}=v_{r}^{\vee} x_{n_{r}-1}$ (where we assume that all variables in v_{r} are $\left\{x_{0}, \cdots, x_{n_{r}-2}\right\}$), we have
- there is no $\hat{v} \succeq \hat{v}_{r}$ such that for some $\vec{a} \in d^{\left|\hat{v}_{r-1}\right|}$, $\left|c\left(\left\{\hat{v}(\vec{b}) / \vec{a}: \vec{b} \in d^{n_{\hat{v}}}\right\}\right)\right|=1$; moreover, all variables in v_{r} occur after $\left|v_{r-1}\right|$ and $\left|v_{r}\right|>\left|v_{r-1}\right|$.
- We show that $n_{0} n_{1} n_{2} \cdots \in$ Oppress $_{k}^{d}$.

Proof of theorem 13

- Fix an $r \in \omega$, let $N=n_{0}+\cdots+n_{r}$. To define $f: d^{N} \rightarrow k$ witnessing Oppress $s_{k}^{d}\left(n_{0} \cdots n_{r}\right)$, for every $\vec{a} \in d^{N}$ we map \vec{a} to a word $\overrightarrow{\hat{a}}=h(\vec{a}) \in d^{\left|\hat{v}_{r}\right|}$ and let $f(\vec{a})=c(\overrightarrow{\hat{a}})$.

Proof of theorem 13

- Fix an $r \in \omega$, let $N=n_{0}+\cdots+n_{r}$. To define $f: d^{N} \rightarrow k$ witnessing Oppress ${ }_{k}^{d}\left(n_{0} \cdots n_{r}\right)$, for every $\vec{a} \in d^{N}$ we map \vec{a} to a word $\overrightarrow{\hat{a}}=h(\vec{a}) \in d^{\left|\hat{v}_{r}\right|}$ and let $f(\vec{a})=c(\overrightarrow{\hat{a}})$.
- Intuitively, h is defined by connecting each element of N, say $n_{0}+\cdots+n_{s-1}+m$, to a set $P_{x_{m}}\left(\hat{v}_{s}\right)$ and copy the value $\vec{a}\left(n_{0}+\cdots+n_{s-1}+m\right)$ to $\hat{a}(t)$ for all $t \in P_{x_{m}}\left(\hat{v}_{s}\right)$. More precisely,

Proof of theorem 13

- Fix an $r \in \omega$, let $N=n_{0}+\cdots+n_{r}$. To define $f: d^{N} \rightarrow k$ witnessing Oppress ${ }_{k}^{d}\left(n_{0} \cdots n_{r}\right)$, for every $\vec{a} \in d^{N}$ we map \vec{a} to a word $\overrightarrow{\hat{a}}=h(\vec{a}) \in d^{\left|\hat{v}_{r}\right|}$ and let $f(\vec{a})=c(\overrightarrow{\hat{a}})$.
- Intuitively, h is defined by connecting each element of N, say $n_{0}+\cdots+n_{s-1}+m$, to a set $P_{x_{m}}\left(\hat{v}_{s}\right)$ and copy the value $\vec{a}\left(n_{0}+\cdots+n_{s-1}+m\right)$ to $\hat{a}(t)$ for all $t \in P_{x_{m}}\left(\hat{v}_{s}\right)$. More precisely,
- Suppose $\vec{a}=\vec{a}_{0} \cdots \vec{a}_{r}$ where $\left|\vec{a}_{s}\right|=n_{s}$ for all $s \leq r$. Let

$$
\overrightarrow{\hat{a}}_{s}=\left.\hat{v}_{s}\left(\vec{a}_{s}\right)\right|_{\left|\hat{v}_{s-1}\right|} ^{\left|\hat{v}_{s}\right|-1} \text { and } h(\vec{a})=\overrightarrow{\hat{a}}_{0} \cdots \overrightarrow{\hat{a}}_{r}
$$

Let Oppress ${ }_{k}^{d}$ denote the set of infinite sequence of integers n_{0}, n_{1}, \cdots such that Oppress $\left(n_{0} \cdots n_{r}\right)$ holds for all $r \in \omega$.

Theorem 17

The following two classes of oracles are equal:

$$
\begin{aligned}
& \left\{D \subseteq \omega: D^{\prime} \text { computes a member in Oppress }{ }_{k}^{d} \cdot\right\} \\
& \{D \subseteq \omega: D \text { computes a } \mathrm{VWI}(d, k) \text {-instance } c \\
& \quad \text { that does not admit a c-computable solution. }\}
\end{aligned}
$$

Relation to Hales-Jewett theorem

- Disproving Oppress ${ }_{k}^{d}$ on certain sequences is a natural generalization of Hales-Jewett theorem.

Relation to Hales-Jewett theorem

- Disproving Oppress ${ }_{k}^{d}$ on certain sequences is a natural generalization of Hales-Jewett theorem.
- For $d, k, n \in \omega$, let $H J(d, k, n)$ denote the assertion that there exists an N such that for every $c: d^{N} \rightarrow k$, there exists an n-variable word v of length N such that $\left|c\left(\left\{v(\vec{a}): \vec{a} \in d^{n}\right\}\right)\right|=1$.

Relation to Hales-Jewett theorem

- Disproving Oppress ${ }_{k}^{d}$ on certain sequences is a natural generalization of Hales-Jewett theorem.
- For $d, k, n \in \omega$, let $H J(d, k, n)$ denote the assertion that there exists an N such that for every $c: d^{N} \rightarrow k$, there exists an n-variable word v of length N such that $\left|c\left(\left\{v(\vec{a}): \vec{a} \in d^{n}\right\}\right)\right|=1$.

Theorem 18 (Hales-Jewett theorem [])

For every $d, k, n \in \omega, H J(d, k, n)$ holds.

- HJ theorem is of fundamental importance in combinatorics.
- HJ theorem \Rightarrow van der Waerden theorem (which says that for every partition of integers, every $r \in \omega$, there exists an arithmetical progression of length r in one part).
- HJ theorem is of fundamental importance in combinatorics.
- HJ theorem \Rightarrow van der Waerden theorem (which says that for every partition of integers, every $r \in \omega$, there exists an arithmetical progression of length r in one part).
- The density HJ theorem \Rightarrow the density van der Waerden theorem, namely Szemerédi's theorem, which asserts that for every set A of integers of positive density (meaning $\lim \sup _{n \rightarrow \infty}|A \cap n| / n>0$), every $r \in \omega$, there exists an arithmetical progression in A of length r (conjectured by Erdős and Turán).
- HJ theorem is of fundamental importance in combinatorics.
- HJ theorem \Rightarrow van der Waerden theorem (which says that for every partition of integers, every $r \in \omega$, there exists an arithmetical progression of length r in one part).
- The density HJ theorem \Rightarrow the density van der Waerden theorem, namely Szemerédi's theorem, which asserts that for every set A of integers of positive density (meaning $\lim \sup _{n \rightarrow \infty}|A \cap n| / n>0$), every $r \in \omega$, there exists an arithmetical progression in A of length r (conjectured by Erdős and Turán).
- Given d, k, n, the assertion that there exists an r such that $\operatorname{Oppress}{ }_{k}^{d}(n \underbrace{\ldots}_{r \text { many }} n)$ does not hold implies $H J(d, k, n)$. Thus, the following Lemma 19 directly implies Hales-Jewett theorem.

Lemma 19

For every $d, k, n \in \omega$, there exists an r such that $\operatorname{Oppress}_{k}^{d}(n \underbrace{\ldots} n)$
does not hold.

Proof.

- For example we prove this for $d, n=2$.

Lemma 19

For every $d, k, n \in \omega$, there exists an r such that $\operatorname{Oppress}_{k}^{d}(n \underbrace{\cdots} n)$
does not hold.

Proof.

- For example we prove this for $d, n=2$.
- Using $H J(4, k, 1)$, let r be the witness.
- Show that Oppress ${ }_{k}^{d}(\underbrace{\ldots}_{r \text { many }} 2)$ does not hold.

Lemma 19

For every $d, k, n \in \omega$, there exists an r such that $\operatorname{Oppress}_{k}^{d}(n \underbrace{\cdots} n)$
does not hold.

Proof.

- For example we prove this for $d, n=2$.
- Using $H J(4, k, 1)$, let r be the witness.
- Show that Oppress $s_{k}^{d}(\underbrace{\ldots}_{r \text { many }} 2)$ does not hold.
- Code $2^{2 r}$ into 4^{r} where $\vec{a}(2 t) \vec{a}(2 t+1)(00,01,10,11$ respectively) is coded into $\overrightarrow{\hat{a}}(t)$ ($0,1,2,3$ respectively).

Lemma 19

For every $d, k, n \in \omega$, there exists an r such that $\operatorname{Oppress}_{k}^{d}(n \underbrace{\ldots} n)$
does not hold.

Proof.

- For example we prove this for $d, n=2$.
- Using $H J(4, k, 1)$, let r be the witness.
- Show that Oppress $s_{k}^{d}(2 \underbrace{\ldots}_{r \text { many }} 2)$ does not hold.
- Code $2^{2 r}$ into 4^{r} where $\vec{a}(2 t) \vec{a}(2 t+1)(00,01,10,11$ respectively) is coded into $\overrightarrow{\hat{a}}(t)$ ($0,1,2,3$ respectively).
- Given a coloring $c: 2^{2 r} \rightarrow k$, consider $\hat{c}: 4^{r} \ni \overrightarrow{\hat{a}} \mapsto c(\vec{a})$.
- Let \hat{v} be a 1 -variable word monochromatic for \hat{c} and consider v such that $v(2 t) v(2 t+1)=00,01,10,11, x_{0} x_{1}$ respectively if $\hat{v}(t)=0,1,2,3, x_{0}$ respectively.

Lemma 20

There exist $n_{0} \cdots n_{r}$ such that Oppress $2_{2}^{2}\left(n_{0} \cdots n_{r}\right)$ holds but Oppress $2_{2}^{2}\left(n_{0} \cdots n_{r} n\right)$ does not hold for all n.

Proof.

For example, $n_{0} \cdots n_{r}=1$ and note that $\operatorname{Oppress}_{2}^{2}(1)$ is true but Oppress $2_{2}^{2}(1 n)$ is not true for any n.

Some open questions

Question 21

Does Oppress ${ }_{2}^{2}(2223)$ holds? Does Oppress $s_{2}^{2}(222 n)$ holds for sufficiently large n ?

Many thanks

國 Carlson，T．J．and Simpson，S．G．（1984）．
A dual form of Ramsey＇s theorem．
Adv．in Math．，53（3）：265－290．
围 Liu，L．，Monin，B．，and Patey，L．（2017）．
A computable analysis of variable words theorems．
accepted by Proceedings of the American Mathematical Society．
雷 Miller，J．S．and Solomon，R．（2004）．
Effectiveness for infinite variable words and the dual Ramsey theorem．
Arch．Math．Logic，43（4）：543－555．
－Montalbán，A．（2011）．
Open questions in reverse mathematics．
Bulletin of Symbolic Logic，17（03）：431－454．

