Combinatorial implication of computability theory

Lu Liu Email: g.jiayi.liu@gmail.com

Central South University School of Mathematics and Statistics

Logic conference in Fudan University

November 28, 2020

Lu Liu Email: g.jiayi.liu@gmail.com (Combinatorial implication of comput: November 28, 2020 1 / 26

- 不同 ト イヨト イヨト

Introduction

- Many questions in computability theory, even for big question as KL-randomness vs 1-randomness, have close connection to combinatorics.
- We present one example in this talk. We prove that a question of Miller and Solomon—that whether every coloring $c: d^{<\omega} \to k$ admits a *c*-computable variable word infinite solution, is equivalent to a natural, nontrivial combinatorial question.

We thank Denis Hirschfeldt, Benoit Monin and Ludovic Patey for helpful discussion on the first example.

- 4 周 ト 4 ヨ ト 4 ヨ ト

The question of Miller and Solomon

2 Related literature

The combinatorial equivalence

$$0 On \ Oppress^d_k(n_0 \cdots n_r)$$

Lu Liu Email: g. jiayi.liu@gmail.com (Combinatorial implication of computation November 28, 2020 4 / 26

< 4 P ►

(4) (5) (4) (5) (4)

We adopt the problem-instance-solution framework to introduce the following problem. We first introduce some notation.

Definition 1 (Variable word)

• An *n*-variable word over d is a sequence v (finite or infinite) of $\{0, \dots, d-1\} \cup \{x_0, x_1, \dots\}$ where there are n many variables in v.

< 4 P ►

(4) E (4) = (4) E

We adopt the problem-instance-solution framework to introduce the following problem. We first introduce some notation.

Definition 1 (Variable word)

- An *n*-variable word over d is a sequence v (finite or infinite) of $\{0, \dots, d-1\} \cup \{x_0, x_1, \dots\}$ where there are n many variables in v.
- Given an $\vec{a} \in d^m$, an *n*-variable word *v*, suppose

 $x_{m_0}, x_{m_1}, \dots, x_{m_{n-1}}$ occur in v with $m_{\hat{n}-1} < m_{\hat{n}}$ for all $\hat{n} < n$. We write $v(\vec{a})$ for the $\{0, \dots, d-1\}$ -string obtained by substitute $x_{m_{\hat{n}}}$ with $\vec{a}(\hat{n})$ in v for all $\hat{n} < m$ and then truncating the result just before the first occurrence of $x_{m_{\hat{n}+1}}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- 34

We adopt the problem-instance-solution framework to introduce the following problem. We first introduce some notation.

Definition 1 (Variable word)

- An *n*-variable word over d is a sequence v (finite or infinite) of $\{0, \dots, d-1\} \cup \{x_0, x_1, \dots\}$ where there are n many variables in v.
- Given an $\vec{a} \in d^m$, an *n*-variable word *v*, suppose

 $x_{m_0}, x_{m_1}, \cdots, x_{m_{n-1}}$ occur in v with $m_{\hat{n}-1} < m_{\hat{n}}$ for all $\hat{n} < n$. We write $v(\vec{a})$ for the $\{0, \cdots, d-1\}$ -string obtained by substitute $x_{m_{\hat{n}}}$ with $\vec{a}(\hat{n})$ in v for all $\hat{n} < m$ and then truncating the result just before the first occurrence of $x_{m_{\hat{n}+1}}$.

• We write $P_{x_m}(v)$ for the set of positions of x_m in v, namely $\{t: v(t) = x_m\}$; the *first occurrence* of a variable x_m in v refers to the integer min $P_{x_m}(v)$.

・ロト ・回ト ・ヨト ・ヨト … ヨ

$\mathsf{VWI}\xspace$ problem

Example 2

Infinite variable word v on $\{0, 1\}$:

011	$x_0 x_0 011$	x_1	x_0x_0	$x_1 x_1 00$	$x_2x_2\cdots$	(1.1)
$\vec{a} = 10, v(\vec{a}) = 011$	11 011	0	11	0000	•••	
$P_{x_0}(v) = \{3, 4$	$,9,10,\cdots\}.$					

イロト 不同ト イヨト イヨト

- 32

Example 2

Infinite variable word v on $\{0, 1\}$:

011	$x_0 x_0 011$	$x_1 x_0 x_0$	$x_1 x_1 00$	$x_2 x_2 \cdots$	(1.1)
$\vec{a} = 10, v(\vec{a}) = 011$	11 011	0 11	0000	•••	
$P_{x_0}(v) = \{3, 4$	$,9,10,\cdots\}.$				

Definition 3

- Problem: VWI(d, k).
- Instance: $c: d^{<\omega} \to k$.
- ▶ Solution: an ω -variable word v such that $\{v(\vec{a}) : \vec{a} \in d^{<\omega}\}$ is monochromatic.

・ロト ・回ト ・ヨト ・ヨト … ヨ

VWI vs RCA

Joe Miller and Solomon proposed the following question in [Miller and Solomon, 2004].

Question 4

Is $\mathsf{VWI}(d, k)$ provable in RCA ?

- 김 씨는 김 국가 김 국가

- 3

VWI vs RCA

Joe Miller and Solomon proposed the following question in [Miller and Solomon, 2004].

Question 4

Is $\mathsf{VWI}(d, k)$ provable in RCA?

Or in terms of computability language:

Question 5

Does every VWI(d, k)-instance c admit c-computable solution?

・ロト ・回ト ・ヨト ・ヨト … ヨ

Other versions of variable word problem

Definition 6 (VW, OVW)

If we require the occurrence of x_i being finite for all i then the problem is called VW.

If we require all the occurrence of x_i comes before any occurrence of x_{i+1} then it is called OVW (ordered variable word).

Other versions of variable word problem

Definition 6 (VW, OVW)

If we require the occurrence of x_i being finite for all i then the problem is called VW.

If we require all the occurrence of x_i comes before any occurrence of x_{i+1} then it is called OVW (ordered variable word).

The problem is proposed by [Carlson and Simpson, 1984] and studied in [Miller and Solomon, 2004] [Liu et al., 2017]. Clearly,

Theorem 7

$$\begin{split} \mathsf{VWI}(d,k) &\leq \mathsf{VW}(d,k) \leq \mathsf{OVW}(d,k).\\ \mathsf{VWI}(d,k) &\Leftrightarrow \mathsf{VWI}(d,k+1), \mathsf{VW}(d,k) \Leftrightarrow \mathsf{VW}(d,k+1), \mathsf{OVW}(d,k) \Leftrightarrow \\ \mathsf{OVW}(d,k+1). \end{split}$$

The complexity of OVW, VW

Theorem 8 ([Miller and Solomon, 2004])

There exists a computable instance of $\mathsf{OVW}(2,2)$ that does not admit Δ_2^0 solution. Thus $\mathsf{RCA}_0 + \mathsf{WKL}$ does not prove $\mathsf{VW}(2,2)$.

(本間) (本語) (本語) (語)

The complexity of $\mathsf{OVW}, \mathsf{VW}$

Theorem 8 ([Miller and Solomon, 2004])

There exists a computable instance of $\mathsf{OVW}(2,2)$ that does not admit Δ_2^0 solution. Thus $\mathsf{RCA}_0 + \mathsf{WKL}$ does not prove $\mathsf{VW}(2,2)$.

The following result answers a question of [Miller and Solomon, 2004] and [Montalbán, 2011].

Theorem 9 (Monin, Patey, L)

- ► For every computable OVW(2,2)-instance c, every Ø'-PA degree compute a solution to c.
- ► There exists a computable OVW(2, 2)-instance such that every solution is Ø'-DNC degree.

Corollary 10 (Monin, Patey, L)

ACA proves OVW(2,2).

Question 11 ([Miller and Solomon, 2004])

Does $\mathsf{OVW}(d, k)$ or $\mathsf{VW}(d, k)$ implies ACA_0 for some *l*?

Lu Liu Email: g.jiayi.liu@gmail.com (Combinatorial implication of compute November 28, 2020 10 / 26

《曰》 《圖》 《臣》 《臣》

A combinatorial equivalence of "VWI(2,2) vs RCA"

For two sets of numbers A, B, write A < B iff max $A < \min B$.

Definition 12 $(Oppress(n_0 \cdots n_{r-1}))$

For a finite sequence n_0, n_1, \dots, n_{r-1} of positive integers, let $N_0 = \{0, \dots, n_0 - 1\}, N_1 = \{n_0, \dots, n_0 + n_1 - 1\}, \dots, N_{r-1} = \{n_0 + \dots + n_{r-2}, \dots, n_0 + \dots + n_{r-1} - 1\}, \text{ and } N = \bigcup_{s \leq r-1} N_s.$ We write $Oppress_k^d(n_0n_1 \dots n_{r-1})$ iff the following is true. There exists a function $f: d^N \to k$ such that for every $s \leq r-1$, every n_s -variable word v over d of length N, if the first occurrence of variables in v consists of N_s , i.e.,

$$\{\min P_{x_m}(v): m \in \omega\} = N_s,$$

then there exist $\vec{a}_0, \vec{a}_1 \in d^{n_s}$ such that $f(v(\vec{a}_0)) \neq f(v(\vec{a}_1))$. In that case we say f witnesses $Oppress_k^d(n_0 \cdots n_{r-1})$.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

A combinatorial equivalence of "VWI(2,2) vs RCA"

Theorem 13

The following are equivalent:

- There exists a VWI(d, k)-instance c that does not admit c-computable solution.
- ► There exists an infinite sequence of positive integers $n_0n_1\cdots$ such that for all $r \in \omega$, $Oppress_k^d(n_0\cdots n_r)$ holds.

A B K A B K

Intuition on $Oppress_k^d(n_0 \cdots n_{r-1})$

For $\vec{n}, \vec{n} \in \omega^{<\omega}$ we write $\vec{n} \leq \vec{n}$ if $|\vec{n}| = |\vec{n}|$ and $\vec{n}(s) \leq \vec{n}(s)$ for all $s < |\vec{n}|$. We say \vec{n} is a subsequence of \vec{n} if there are integers $s_0 < s_1 < \cdots < s_{m-1} < |\vec{n}|$ such that $\vec{n} = \vec{n}(s_0) \cdots \vec{n}(s_{m-1})$. It's obvious that:

Proposition 14

If \vec{n} is a subsequence of $\vec{\hat{n}}$ or $\vec{n} \ge \vec{\hat{n}}$, then $Oppress_k^d(\vec{\hat{n}})$ implies $Oppress_k^d(\vec{n})$.

Intuition on
$$Oppress_k^d(n_0 \cdots n_{r-1})$$

Proposition 15

 $Oppress_2^2(22), Oppress_2^2(222) \ holds. \ Oppress_2^2(n) \ holds \ for \ all \ n>0.$

Proof.

To see $Oppress_2^2(22)$, consider

$$f(\vec{a}) = \vec{a}(0) + \vec{a}(1) + \vec{a}(2) \mod 2.$$

To see $Oppress_2^2(222)$, consider

 $f(\vec{a}) = I(\vec{a}(0) + \vec{a}(1) > 0) + \vec{a}(2) + \vec{a}(3) + \vec{a}(4) \ mod \ 2.$

Where I() is the indication function. To see $Oppress_2^2(n)$, simply consider $f(\vec{a}) = \vec{a}(0) \mod 2$.

・ロッ ・雪ッ ・ヨッ ・ヨッ

Intuition on
$$Oppress_k^d(n_0 \cdots n_{r-1})$$

Proposition 16

 $Oppress_2^2(2222)$ does not hold.

Proof.

We don't know the proof. Adam P. Goucher at Mathoverflow examined this using SAT solver (https://mathoverflow.net/questions/293112/ramsey-type-theorem). It's easy to check that the following functions don't work:

$$\begin{split} f(\vec{a}) &= I(\vec{a}(0) + \vec{a}(1) > 0) + \vec{a}(2) + \vec{a}(3) + \vec{a}(4) + \vec{a}(6) \mod 2; \quad (3.1) \\ f(\vec{a}) &= I(\vec{a}(0) + \vec{a}(1) > 0) + I(\vec{a}(2) + \vec{a}(3) > 0) + \\ &\quad + \vec{a}(4) + \vec{a}(5) + \vec{a}(6) \mod 2; \end{split}$$

くヨ⇒

(\Leftarrow)

► A Turing functional Ψ^X computes a variable word if Ψ^X is an enumerable set (possibly finite) $\{v_0, v_1, \cdots\}$ of finitely long variable words such that $v_0 \leq v_1 \leq \cdots$.

(\Leftarrow)

- ► A Turing functional Ψ^X computes a variable word if Ψ^X is an enumerable set (possibly finite) $\{v_0, v_1, \cdots\}$ of finitely long variable words such that $v_0 \leq v_1 \leq \cdots$.
- Let $X \in Oppress_k^d$.

(本語)) (本語)) (語)

(\Leftarrow)

- ► A Turing functional Ψ^X computes a variable word if Ψ^X is an enumerable set (possibly finite) $\{v_0, v_1, \cdots\}$ of finitely long variable words such that $v_0 \leq v_1 \leq \cdots$.
- Let $X \in Oppress_k^d$.

 Putting priority argument aside, assume each Turing functional is total. i.e.,

for each $r \in \omega$, let $v_r \in \Psi_r^X$ be such that v_r contains X(r) many variables whose first occurrence is after $|v_{r-1}|$.

(\Leftarrow)

- ► A Turing functional Ψ^X computes a variable word if Ψ^X is an enumerable set (possibly finite) $\{v_0, v_1, \cdots\}$ of finitely long variable words such that $v_0 \leq v_1 \leq \cdots$.
- Let $X \in Oppress_k^d$.
- Putting priority argument aside, assume each Turing functional is total. i.e.,

for each $r \in \omega$, let $v_r \in \Psi_r^X$ be such that v_r contains X(r) many variables whose first occurrence is after $|v_{r-1}|$.

► Suppose $(f_r : r \in \omega)$ witnesses $Oppress_k^d(X \upharpoonright r)$. We transform these f_r to a coloring c so that there is no $v \succeq v_r$ such that $|c(\{v(\vec{a}) : \vec{a} \in d^{n_v}\})| = 1.$

・ロン ・日ン ・ヨン ・ヨン - ヨ

► To define c on d^n , let r(n) be the maximal integer such that $|v_{r(n)}| \leq n$. We ensure that c on d^n "oppress" v_r for all $r \leq r(n)$.

・ロト ・回ト ・ヨト ・ヨト

- ▶ To define c on d^n , let r(n) be the maximal integer such that $|v_{r(n)}| \leq n$. We ensure that c on d^n "oppress" v_r for all $r \leq r(n)$.
- Let P_r be the set of first occurrence of variables in v_r whose first occurrence is after $|v_{r-1}|$. W.l.o.g, suppose $|P_r| = X(r)$ for all $r \in \omega$.

- 4 回 トーイヨ トー

- ▶ To define c on d^n , let r(n) be the maximal integer such that $|v_{r(n)}| \leq n$. We ensure that c on d^n "oppress" v_r for all $r \leq r(n)$.
- Let P_r be the set of first occurrence of variables in v_r whose first occurrence is after $|v_{r-1}|$. W.l.o.g, suppose $|P_r| = X(r)$ for all $r \in \omega$.

• Define
$$c(\vec{a}) = f_{r(n)+1}(\vec{a} \upharpoonright \cup_{r \le r(n)} P_r).$$

ヘロト 不得下 不足下 不足下

 (\Rightarrow)

► Take advantage of some particular algorithms Φ_0, Φ_1, \cdots and show that their failure (to compute a solution to c) gives rise to a sequence $X \in Oppress_k^d$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

 (\Rightarrow)

- Take advantage of some particular algorithms Φ_0, Φ_1, \cdots and show that their failure (to compute a solution to c) gives rise to a sequence $X \in Oppress_k^d$.
- $\Phi_0^c, \Phi_1^c, \cdots$ are greedy algorithms in the sense that they extend their current computation (which is a finitely long variable word) whenever possible. More precisely,

・ 同下 ・ ヨト・ ・ ヨト

 (\Rightarrow)

- Take advantage of some particular algorithms Φ_0, Φ_1, \cdots and show that their failure (to compute a solution to c) gives rise to a sequence $X \in Oppress_k^d$.
- $\Phi_0^c, \Phi_1^c, \cdots$ are greedy algorithms in the sense that they extend their current computation (which is a finitely long variable word) whenever possible. More precisely,
- Φ_{r+1}^c extends its current computation from v_{r+1} to some $\hat{v} \succeq v_{r+1}$ where \hat{v} has more variables than v_{r+1} , whenever it is found that for some $\vec{a} \in d^{|v_r|+1}$, $|c(\{\hat{v}(\vec{b})/\vec{a}: \vec{b} \in d^{n_{\hat{v}}}\})| = 1$.

((四)) (日) (日) (日)

 (\Rightarrow)

- Take advantage of some particular algorithms Φ_0, Φ_1, \cdots and show that their failure (to compute a solution to c) gives rise to a sequence $X \in Oppress_k^d$.
- $\Phi_0^c, \Phi_1^c, \cdots$ are greedy algorithms in the sense that they extend their current computation (which is a finitely long variable word) whenever possible. More precisely,
- Φ_{r+1}^c extends its current computation from v_{r+1} to some $\hat{v} \succeq v_{r+1}$ where \hat{v} has more variables than v_{r+1} , whenever it is found that for some $\vec{a} \in d^{|v_r|+1}$, $|c(\{\hat{v}(\vec{b})/\vec{a}: \vec{b} \in d^{n_{\hat{v}}}\})| = 1$.
- Moreover, Φ_{r+1}^c will build its solution v_{r+1} based on $\Phi_0^c, \dots, \Phi_r^c$ in the sense that all variables in v_{r+1} occur after $|v_r|$ and if some $\Phi_{\tilde{r}}^c$ extends its current computation, then all Φ_r^c (where $r > \tilde{r}$) will restart all over again.

《曰》 《問》 《臣》 《臣》 三臣 …

Since c does not admit a c-computable solution, for every $r \in \omega$, the computation of Φ_r^c stucks at some v_r .

< 17 ►

ヨト・イヨト

æ

- ▶ Since c does not admit a c-computable solution, for every $r \in \omega$, the computation of Φ_r^c stucks at some v_r .
- ▶ More precisely, let $\hat{v}_r = v_r x_{n_r-1}$ (where we assume that all variables in v_r are $\{x_0, \cdots, x_{n_r-2}\}$), we have

- ▶ Since c does not admit a c-computable solution, for every $r \in \omega$, the computation of Φ_r^c stucks at some v_r .
- ▶ More precisely, let $\hat{v}_r = v_r x_{n_r-1}$ (where we assume that all variables in v_r are $\{x_0, \cdots, x_{n_r-2}\}$), we have
- ▶ there is no $\hat{v} \succeq \hat{v}_r$ such that for some $\vec{a} \in d^{|\hat{v}_{r-1}|}$, $|c(\{\hat{v}(\vec{b})/\vec{a}: \vec{b} \in d^{n_{\hat{v}}}\})| = 1$; moreover, all variables in v_r occur after $|v_{r-1}|$ and $|v_r| > |v_{r-1}|$.
- We show that $n_0 n_1 n_2 \cdots \in Oppress_k^d$.

▶ Fix an $r \in \omega$, let $N = n_0 + \cdots + n_r$. To define $f : d^N \to k$ witnessing $Oppress_k^d(n_0 \cdots n_r)$, for every $\vec{a} \in d^N$ we map \vec{a} to a word $\vec{\hat{a}} = h(\vec{a}) \in d^{|\hat{v}_r|}$ and let $f(\vec{a}) = c(\vec{\hat{a}})$.

Proof of theorem 13

- ► Fix an $r \in \omega$, let $N = n_0 + \cdots + n_r$. To define $f : d^N \to k$ witnessing $Oppress_k^d(n_0 \cdots n_r)$, for every $\vec{a} \in d^N$ we map \vec{a} to a word $\vec{\hat{a}} = h(\vec{a}) \in d^{|\hat{v}_r|}$ and let $f(\vec{a}) = c(\vec{\hat{a}})$.
- Intuitively, h is defined by connecting each element of N, say $n_0 + \cdots + n_{s-1} + m$, to a set $P_{x_m}(\hat{v}_s)$ and copy the value $\vec{a}(n_0 + \cdots + n_{s-1} + m)$ to $\hat{a}(t)$ for all $t \in P_{x_m}(\hat{v}_s)$. More precisely,

Proof of theorem 13

- ► Fix an $r \in \omega$, let $N = n_0 + \cdots + n_r$. To define $f : d^N \to k$ witnessing $Oppress_k^d(n_0 \cdots n_r)$, for every $\vec{a} \in d^N$ we map \vec{a} to a word $\vec{\hat{a}} = h(\vec{a}) \in d^{|\hat{v}_r|}$ and let $f(\vec{a}) = c(\vec{\hat{a}})$.
- ▶ Intuitively, h is defined by connecting each element of N, say $n_0 + \cdots + n_{s-1} + m$, to a set $P_{x_m}(\hat{v}_s)$ and copy the value $\vec{a}(n_0 + \cdots + n_{s-1} + m)$ to $\hat{a}(t)$ for all $t \in P_{x_m}(\hat{v}_s)$. More precisely,
- ▶ Suppose $\vec{a} = \vec{a}_0 \cdots \vec{a}_r$ where $|\vec{a}_s| = n_s$ for all $s \leq r$. Let

$$\vec{\hat{a}}_s = \hat{v}_s(\vec{a}_s) \upharpoonright_{|\hat{v}_{s-1}|}^{|\hat{v}_s|-1} \text{ and } h(\vec{a}) = \vec{\hat{a}}_0 \cdots \vec{\hat{a}}_r.$$

Let $Oppress_k^d$ denote the set of infinite sequence of integers n_0, n_1, \cdots such that $Oppress(n_0 \cdots n_r)$ holds for all $r \in \omega$.

Theorem 17

The following two classes of oracles are equal:

$$\{D \subseteq \omega : D' \text{ computes a member in } Oppress_k^d. \}$$

$$\{D \subseteq \omega : D \text{ computes a } VWI(d, k)\text{-instance } c$$

$$\text{ that does not admit a c-computable solution.} \}$$

・ 同下 ・ ヨト・ ・ ヨト

Relation to Hales-Jewett theorem

 Disproving Oppress^d_k on certain sequences is a natural generalization of Hales-Jewett theorem.

æ

< 15 ►

Relation to Hales-Jewett theorem

- Disproving Oppress^d_k on certain sequences is a natural generalization of Hales-Jewett theorem.
- ▶ For $d, k, n \in \omega$, let HJ(d, k, n) denote the assertion that

there exists an N such that for every $c: d^N \to k$, there exists an *n*-variable word v of length N such that $|c(\{v(\vec{a}): \vec{a} \in d^n\})| = 1.$

Relation to Hales-Jewett theorem

- Disproving Oppress^d_k on certain sequences is a natural generalization of Hales-Jewett theorem.
- ▶ For $d, k, n \in \omega$, let HJ(d, k, n) denote the assertion that

there exists an N such that for every $c: d^N \to k$, there exists an *n*-variable word v of length N such that $|c(\{v(\vec{a}): \vec{a} \in d^n\})| = 1.$

Theorem 18 (Hales-Jewett theorem [])

For every $d, k, n \in \omega$, HJ(d, k, n) holds.

- ▶ HJ theorem is of fundamental importance in combinatorics.
- ▶ HJ theorem \Rightarrow van der Waerden theorem (which says that for every partition of integers, every $r \in \omega$, there exists an arithmetical progression of length r in one part).

- ▶ HJ theorem is of fundamental importance in combinatorics.
- ▶ HJ theorem \Rightarrow van der Waerden theorem (which says that for every partition of integers, every $r \in \omega$, there exists an arithmetical progression of length r in one part).
- ▶ The density HJ theorem \Rightarrow the density van der Waerden theorem, namely Szemerédi's theorem, which asserts that for every set A of integers of positive density (meaning $\limsup_{n\to\infty} |A \cap n|/n > 0$), every $r \in \omega$, there exists an arithmetical progression in A of length r (conjectured by Erdős and Turán).

- ▶ HJ theorem is of fundamental importance in combinatorics.
- ▶ HJ theorem \Rightarrow van der Waerden theorem (which says that for every partition of integers, every $r \in \omega$, there exists an arithmetical progression of length r in one part).
- ▶ The density HJ theorem ⇒ the density van der Waerden theorem, namely Szemerédi's theorem, which asserts that for every set A of integers of positive density (meaning $\limsup_{n\to\infty} |A \cap n|/n > 0$), every $r \in \omega$, there exists an arithmetical progression in A of length r (conjectured by Erdős and Turán).
- Given d, k, n, the assertion that there exists an r such that $Oppress_k^d(n \underbrace{\cdots}_{r \text{ many}} n)$ does not hold implies HJ(d, k, n). Thus, the following Lemma 19 directly implies Hales-Jewett theorem.

For every $d, k, n \in \omega$, there exists an r such that $Oppress_k^d(n \cup n)$

r many

does not hold.

Proof.

• For example we prove this for d, n = 2.

For every $d, k, n \in \omega$, there exists an r such that $Oppress_k^d(n \underbrace{\cdots} n)$

r many

does not hold.

Proof.

- For example we prove this for d, n = 2.
- Using HJ(4, k, 1), let r be the witness.
- Show that $Oppress_k^d(2 \ \cdots \ 2)$ does not hold.

r many

For every $d, k, n \in \omega$, there exists an r such that $Oppress_k^d(n \ \cdots \ n)$

r many

does not hold.

Proof.

- For example we prove this for d, n = 2.
- Using HJ(4, k, 1), let r be the witness.
- Show that $Oppress_k^d(2 \cdots 2)$ does not hold.

r many

▶ Code 2^{2r} into 4^r where $\vec{a}(2t)\vec{a}(2t+1)$ (00, 01, 10, 11 respectively) is coded into $\vec{a}(t)$ (0, 1, 2, 3 respectively).

For every $d, k, n \in \omega$, there exists an r such that $Oppress_k^d(n \ \cdots \ n)$

r many

does not hold.

Proof.

- For example we prove this for d, n = 2.
- Using HJ(4, k, 1), let r be the witness.
- Show that $Oppress_k^d(2 \cdots 2)$ does not hold.

r many

- ▶ Code 2^{2r} into 4^r where $\vec{a}(2t)\vec{a}(2t+1)$ (00, 01, 10, 11 respectively) is coded into $\vec{a}(t)$ (0, 1, 2, 3 respectively).
- Given a coloring $c: 2^{2r} \to k$, consider $\hat{c}: 4^r \ni \hat{\vec{a}} \mapsto c(\vec{a})$.
- Let \hat{v} be a 1-variable word monochromatic for \hat{c} and consider v such that $v(2t)v(2t+1) = 00, 01, 10, 11, x_0x_1$ respectively if $\hat{v}(t) = 0, 1, 2, 3, x_0$ respectively.

There exist $n_0 \cdots n_r$ such that $Oppress_2^2(n_0 \cdots n_r)$ holds but $Oppress_2^2(n_0 \cdots n_r n)$ does not hold for all n.

Proof.

For example, $n_0 \cdots n_r = 1$ and note that $Oppress_2^2(1)$ is true but $Oppress_2^2(1n)$ is not true for any n.

((日))((日))(日)

Some open questions

Question 21

Does $Oppress_2^2(2223)$ holds? Does $Oppress_2^2(222n)$ holds for sufficiently large n?

Lu Liu Email: g. jiayi.liu@gmail.com (Combinatorial implication of compute November 28, 2020 26 / 26

化固定 化压力 化压力

Many thanks

Lu Liu Email: g. jiayi.liu@gmail.com (Combinatorial implication of compute November 28, 2020 27 / 26

◆ロ → ◆母 → ◆臣 → ◆臣 → ○ ● ○ ○ ○ ○ ○

On $Oppress_k^d(n_0 \cdots n_r)$

- Carlson, T. J. and Simpson, S. G. (1984).
 A dual form of Ramsey's theorem.
 Adv. in Math., 53(3):265-290.
- Liu, L., Monin, B., and Patey, L. (2017).
 A computable analysis of variable words theorems.
 accepted by Proceedings of the American Mathematical Society.
- Miller, J. S. and Solomon, R. (2004). Effectiveness for infinite variable words and the dual Ramsey theorem.

Arch. Math. Logic, 43(4):543–555.

Montalbán, A. (2011).
 Open questions in reverse mathematics.
 Bulletin of Symbolic Logic, 17(03):431-454.