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Introduction

» Many questions in computability theory, even for big question as
K L-randomness vs 1—randomness, have close connection to
combinatorics.

» We present one example in this talk. We prove that a question of
Miller and Solomon that whether every coloring ¢ : d<¥ — k
admits a c-computable variable word infinite solution, is equivalent
to a natural, nontrivial combinatorial question.
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We thank Denis Hirschfeldt, Benoit Monin and Ludovic Patey for
helpful discussion on the first example.
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@ The question of Miller and Solomon

© Related literature

© The combinatorial equivalence

© On Oppressi(ng---n,)
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The question of Miller and Solomon

VWI problem

We adopt the problem-instance-solution framework to introduce the
following problem. We first introduce some notation.

Definition 1 (Variable word)

» An n-variable word over d is a sequence v (finite or infinite) of
{0,--+,d—1}U{zp, 1, -} where there are n many variables in v
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VWI problem

We adopt the problem-instance-solution framework to introduce the
following problem. We first introduce some notation.

Definition 1 (Variable word)

» An n-variable word over d is a sequence v (finite or infinite) of
{0,--- ,d—1}U{zp, 1, -} where there are n many variables in v.

» Given an @ € d", an n-variable word v, suppose
Tmgs Tmys " s Tm,_, occur in v with mp_1 < my, for all n < n. We
write v(d@) for the {0, -- ,d — 1}-string obtained by substitute z,,
with @(n) in v for all 7 < m and then truncating the result just
before the first occurrence of xy,, ;.
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VWI problem

We adopt the problem-instance-solution framework to introduce the
following problem. We first introduce some notation.

Definition 1 (Variable word)

» An n-variable word over d is a sequence v (finite or infinite) of
{0,--- ,d—1}U{zp, 1, -} where there are n many variables in v.

» Given an @ € d", an n-variable word v, suppose
Tmgs Tmys " s Tm,_, occur in v with mp_1 < my, for all n < n. We
write v(d@) for the {0, -- ,d — 1}-string obtained by substitute z,,
with @(n) in v for all 7 < m and then truncating the result just
before the first occurrence of xy,, ;.

» We write P, (v) for the set of positions of x,, in v, namely

{t : v(t) = @y }; the first occurrence of a variable z,, in v refers to
the integer min P, (v).

Lu Liu Email: (Combinatorial implication of compute November 28, 2020 5/ 26


g.jiayi.liu@gmail.com

The question of Miller and Solomon

VWI problem

Example 2

Infinite variable word v on {0, 1}:
011  xgxo 011 x1 xorg 12100 Toxo .- (1.1)

@ = 10,v(a@) =011 11 011 0 11 0000
Py, (v) ={3,4 ,9,10,---}.
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VWI problem

Example 2

Infinite variable word v on {0, 1}:

011  zgxo 011 1 zoro 12100 o (1.1)
@=10,0(@) =011 11011 0 11 0000
Py (v) ={3,4 ,9,10,---}.

Definition 3
» Problem: VWI(d, k).

» Instance: c: d<¥ — k.

| A\

» Solution: an w-variable word v such that {v(@) : @ € d<*“} is
monochromatic.

\
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The question of Miller and Solomon

VWI vs RCA

Joe Miller and Solomon proposed the following question in
[Miller and Solomon, 2004].

Question 4
Is VWI(d, k) provable in RCA?
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The question of Miller and Solomon

VWI vs RCA

Joe Miller and Solomon proposed the following question in
[Miller and Solomon, 2004].

Question 4

Is VWI(d, k) provable in RCA?

Or in terms of computability language:

Question 5

Does every VWI(d, k)-instance ¢ admit c-computable solution?
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Related literature

Other versions of variable word problem

Definition 6 (VW, OVW)

If we require the occurrence of x; being finite for all ¢ then the problem
is called VW.

If we require all the occurrence of z; comes before any occurrence of
x;+1 then it is called OVW (ordered variable word).
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Related literature

Other versions of variable word problem

Definition 6 (VW, OVW)

If we require the occurrence of x; being finite for all ¢ then the problem
is called VW.

If we require all the occurrence of z; comes before any occurrence of
xit1 then it is called OVW (ordered variable word).

The problem is proposed by [Carlson and Simpson, 1984] and studied
in [Miller and Solomon, 2004] [Liu et al., 2017]. Clearly,

Theorem 7

VWI(d, k) < VW(d, k) <
VWI(dk)(:)V I(d, k +
OVW(d, k + 1).
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Related literature

The complexity of OVW, VW

Theorem 8 ([Miller and Solomon, 2004])

There exists a computable instance of OVW(2,2) that does not admit
AY solution. Thus RCAg + WKL does not prove VW(2,2).

Lu Liu Email:

(Combinatorial implication of compute

November 28, 2020 9/ 26


g.jiayi.liu@gmail.com

Related literature

The complexity of OVW, VW

Theorem 8 ([Miller and Solomon, 2004])

There exists a computable instance of OVW(2,2) that does not admit
AY solution. Thus RCAg + WKL does not prove VW(2,2).

The following result answers a question of [Miller and Solomon, 2004]
and [Montalbédn, 2011].

Theorem 9 (Monin, Patey, L)

» For every computable OVW(2,2)-instance ¢, every (/-PA degree
compute a solution to c.

» There exists a computable OVW (2, 2)-instance such that every
solution is ('-DNC' degree.

Corollary 10 (Monin, Patey, L)

ACA proves OVW(2,2).
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Related literature

Question 11 ([Miller and Solomon, 2004])

Does OVW(d, k) or VW(d, k) implies ACA for some [?
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The combinatorial equivalence

A combinatorial equivalence of “VWI(2,2) vs RCA”

For two sets of numbers A, B, write A < B iff max A < min B.

Definition 12 (Oppress(ng---n,—1))

For a finite sequence ng, n1,--- ,n,—1 of positive integers, let
No={0,--- ,mp— 1}, Ny = {no,--- ,no+m1 — 1}, - -,

Ny = {nO +oF N, Mo+ Npo1 — 1}, and N = Usﬁr—le-
We write Oppressg (ngnq - - -ny—1) iff the following is true. There exists
a function f : dY — k such that for every s < r — 1, every ng-variable
word v over d of length N, if the first occurrence of variables in v
consists of Ng, i.e.,

{min P,, (v) : m € w} = N,

then there exist dp, @1 € d™ such that f(v(dp)) # f(v(d1)). In that
case we say f witnesses Oppressg(no e Mp_).
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The combinatorial equivalence

A combinatorial equivalence of “VWI(2,2) vs RCA”

Theorem 13

The following are equivalent:
» There exists a VWI(d, k)-instance ¢ that does not admit
c-computable solution.
» There exists an infinite sequence of positive integers ngny - -
that for all v € w, Oppresst(ng - --ny) holds.

- such
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The combinatorial equivalence

Intuition on Oppress{(ng -+ n,_1)

For 1,7 € w<¥ we write 71 < 7 if |ii| = || and 7(s) < A(s) for all
s < |fi|. We say 7i is a subsequence of 7 if there are integers

S0 < 81 <+ < Sm_1 < |A| such that @ = A(sg) - - - f(Sm_1). It’s
obvious that:

—

If 1 is a subsequence ofﬁ or i > n,
Oppressi(i).

then Oppressk(:‘) implies
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The combinatorial equivalence

Intuition on Oppress{(ng -+ n,_1)

Proposition 15
Oppress3(22), Oppress3(222) holds. Oppress3(n) holds for all n > 0.

To see Oppress3(22), consider

fl@ =da0)+d() + da(2) mod 2.
To see Oppress3(222), consider
f(@) =1(a(0)+a(l) > 0)+ a(2) + a(3) + a(4) mod 2.

Where I() is the indication function. To see Oppress3(n), simply
consider f(@) = d(0) mod 2. O

v
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The combinatorial equivalence

Intuition on Oppress{(ng -+ n,_1)

Proposition 16
Oppress3(2222) does not hold.

We don’t know the proof. Adam P. Goucher at Mathoverflow
examined this using SAT solver (

https://mathoverflow.net /questions /293112 /ramsey-type-theorem ).
It’s easy to check that the following functions don’t work:

f(@) = I(@(0) + a(1) > 0) + a(2) + @(3) + @(4) + a(6) mod 2; (3.1)
f(@) = 1(a(0) +a(l) > 0) + I(a(2) +a(3) > 0)+
+ d(4) + d(5) + a(6) mod 2;
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The combinatorial equivalence

Proof of theorem 13

(<)

» A Turing functional ¥X computes a variable word if UX is an
enumerable set (possibly finite) {vg,v1, -} of finitely long
variable words such that vg < vy <---.
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The combinatorial equivalence

Proof of theorem 13

(<)
» A Turing functional ¥X computes a variable word if UX is an
enumerable set (possibly finite) {vg,v1, -} of finitely long
variable words such that vg < vy <---.

> Let X € Oppresst.
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The combinatorial equivalence

Proof of theorem 13

(<)
» A Turing functional ¥X computes a variable word if UX is an
enumerable set (possibly finite) {vg,v1, -} of finitely long
variable words such that vg < vy < ---.

> Let X € Oppressz.

» Putting priority argument aside, assume each Turing functional is
total. i.e.,
for each 7 € w, let v, € ¥X be such that v, contains X (r) many
variables whose first occurrence is after |v,_1] .
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The combinatorial equivalence

Proof of theorem 13

(<)
» A Turing functional ¥X computes a variable word if UX is an
enumerable set (possibly finite) {vg, v1,- -} of finitely long
variable words such that vg < vy < ---.

> Let X € Oppressz.

» Putting priority argument aside, assume each Turing functional is
total. i.e.,
for each 7 € w, let v, € ¥X be such that v, contains X (r) many
variables whose first occurrence is after |v,_1] .

> Suppose (f, : 7 € w) witnesses Oppress?(X | 7). We transform
these f, to a coloring ¢ so that there is no v > v, such that
lc({v(a@) : @ € d™})| = 1.
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The combinatorial equivalence

Proof of theorem 13

» To define ¢ on d", let r(n) be the maximal integer such that
[Up(n)| < n. We ensure that ¢ on d" “oppress” v, for all r < r(n).
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The combinatorial equivalence

Proof of theorem 13

» To define ¢ on d", let r(n) be the maximal integer such that
[Up(n)| < n. We ensure that ¢ on d" “oppress” v, for all r < r(n).

» Let P, be the set of first occurrence of variables in v, whose first
occurrence is after |v,_;|. W.lo.g, suppose |P.| = X(r) for all
T Ew.
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The combinatorial equivalence

Proof of theorem 13

» To define ¢ on d", let r(n) be the maximal integer such that
[Up(n)| < n. We ensure that ¢ on d" “oppress” v, for all r < r(n).

» Let P, be the set of first occurrence of variables in v, whose first
occurrence is after |v,_;|. W.lo.g, suppose |P.| = X(r) for all
T Ew.

> Define C(a) = fr(n)+1(a ) UrSr(n)PT)'
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The combinatorial equivalence

Proof of theorem 13

(=)
» Take advantage of some particular algorithms ®q, @1, --- and show
that their failure (to compute a solution to c) gives rise to a
sequence X € Oppressz.
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The combinatorial equivalence

Proof of theorem 13

(=)
» Take advantage of some particular algorithms ®q, @1, --- and show
that their failure (to compute a solution to c) gives rise to a
sequence X € Oppressz.

> &F, 7, --- are greedy algorithms in the sense that they extend
their current computation (which is a finitely long variable word)
whenever possible. More precisely,
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The combinatorial equivalence

Proof of theorem 13

(=)
» Take advantage of some particular algorithms ®q, @1, --- and show
that their failure (to compute a solution to c) gives rise to a
sequence X € Oppressi.

> &F, 7, --- are greedy algorithms in the sense that they extend

their current computation (which is a finitely long variable word)
whenever possible. More precisely,

> <I>;f +1 extends its current computation from v,y to some
U > vp41 where v has more variables than v,41, whenever it is
found that for some @ € dl*r*t, |c({6(b)/d@ : b € d™})| = 1.
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The combinatorial equivalence

Proof of theorem 13

(=)
» Take advantage of some particular algorithms ®q, @1, --- and show
that their failure (to compute a solution to ¢) gives rise to a
sequence X € Oppressd.

> &F, 7, --- are greedy algorithms in the sense that they extend

their current computation (which is a finitely long variable word)
whenever possible. More precisely,

> <I>;f +1 extends its current computation from v,y to some
U > vp41 where v has more variables than v,41, whenever it is
found that for some @ € dl*r*t, |c({6(b)/d@ : b € d™})| = 1.

» Moreover, @7 ; will build its solution v,y based on ®g,---,® in

T

the sense that all variables in v,4; occur after |v,| and if some o
extends its current computation, then all ¢ (where r > 7) will
restart all over again.
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The combinatorial equivalence

Proof of theorem 13

» Since ¢ does not admit a c-computable solution, for every r € w,
the computation of ®¢ stucks at some v,.
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The combinatorial equivalence

Proof of theorem 13

» Since ¢ does not admit a c-computable solution, for every r € w,

the computation of ®¢ stucks at some v,.

» More precisely, let 9, = v, x,,—1 (Where we assume that all
variables in v, are {xg, - ,2Zp,.—2}), we have
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The combinatorial equivalence

Proof of theorem 13

v

Since ¢ does not admit a c-computable solution, for every r € w,
the computation of ®¢ stucks at some v,.

» More precisely, let 9, = v, x,,—1 (Where we assume that all
variables in v, are {xg, - ,2Zp,.—2}), we have

v

there is no ¢ > o, such that for some @ € dl—1l,
le({o(b)/d : b € d*})| = 1; moreover, all variables in v, occur after
|vr—1| and |vy| > |vp_1]-

v

We show that ngning--- € Oppressg.
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The combinatorial equivalence

Proof of theorem 13

» Fix an r € w, let N =ng + --- +n,. To define f: dV — k

witnessing Oppressz(no ---n,), for every @ € d¥ we map @ to a

word & = h(@) € d”! and let £(a@) = c(a).
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The combinatorial equivalence

Proof of theorem 13

» Fix an r € w, let N =ng + --- +n,. To define f: dV — k
witnesEing Oppressﬁ(no -+-n,), for every a € dY we map dto a
word @ = h(@) € di*rl and let f(@) = c(a).

» Intuitively, h is defined by connecting each element of N, say
no+---+mns—1 +m, to a set P, (0s) and copy the value

a(ng+---+ns—1+m) to a(t) for all t € P,, (vs). More precisely,
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The combinatorial equivalence

Proof of theorem 13

» Fix an r € w, let N =ng + --- +n,. To define f: dV — k
witnesEing Oppres(?%(no -+-n,), for every a € dY we map dto a
word @ = h(@) € di*rl and let f(@) = c(a).

» Intuitively, h is defined by connecting each element of N, say
no+---+mns—1 +m, to a set P, (0s) and copy the value
a(ng+---+ns—1+m) to a(t) for all t € P,, (vs). More precisely,

» Suppose d@ = dg - - - d, where |@s| = ns for all s < r. Let

—

~ N Us|—1 —» A A
Gy = 0s(ds) rlgiu s ) = oy ==
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The combinatorial equivalence

Let Oppressg denote the set of infinite sequence of integers ng,nq, - - -
such that Oppress(ng - --n,) holds for all r € w.

Theorem 17

The following two classes of oracles are equal:

{D Cw: D' computes a member in Oppressg.}
{D Cw:D computes a VWI(d, k)-instance c

that does not admit a c-computable solution.}
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On Oppre

Relation to Hales-Jewett theorem

» Disproving Oppressg on certain sequences is a natural
generalization of Hales-Jewett theorem.
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Relation to Hales-Jewett theorem

» Disproving Oppressg on certain sequences is a natural
generalization of Hales-Jewett theorem.

» For d, k,n € w, let HJ(d, k,n) denote the assertion that

there exists an N such that for every ¢ : d¥ — k,

there exists an n-variable word v of length N such that
lc({v(@) : @ € d"})| =1.
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On Oppressj (ng - nyr)

Relation to Hales-Jewett theorem

» Disproving Oppressg on certain sequences is a natural
generalization of Hales-Jewett theorem.

» For d, k,n € w, let HJ(d, k,n) denote the assertion that

there exists an N such that for every ¢ : d¥ — k,

there exists an n-variable word v of length N such that
lc({v(@) : @ € d"})| =1.

Theorem 18 (Hales-Jewett theorem [])

For every d,k,n € w, HJ(d, k,n) holds.
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» HJ theorem is of fundamental importance in combinatorics.

» HJ theorem = van der Waerden theorem (which says that for
every partition of integers, every r € w, there exists an
arithmetical progression of length 7 in one part).
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On Oppressj (ng - ny)

» HJ theorem is of fundamental importance in combinatorics.

» HJ theorem = van der Waerden theorem (which says that for
every partition of integers, every r € w, there exists an
arithmetical progression of length 7 in one part).

» The density HJ theorem = the density van der Waerden theorem,
namely Szemerédi’s theorem, which asserts that for every set A of
integers of positive density (meaning limsup,,_, . |4 Nn|/n > 0),
every r € w, there exists an arithmetical progression in A of length
r (conjectured by Erdés and Turdn).
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On Oppressj (ng - ny)

» HJ theorem is of fundamental importance in combinatorics.

» HJ theorem = van der Waerden theorem (which says that for
every partition of integers, every r € w, there exists an
arithmetical progression of length 7 in one part).

» The density HJ theorem = the density van der Waerden theorem,
namely Szemerédi’s theorem, which asserts that for every set A of
integers of positive density (meaning limsup,,_, . |4 Nn|/n > 0),
every r € w, there exists an arithmetical progression in A of length
r (conjectured by Erdés and Turdn).

» Given d, k,n, the assertion that there exists an r such that
Opp'ressg(n -+ n) does not hold implies HJ(d, k,n). Thus, the

T many
following Lemma 19 directly implies Hales-Jewett theorem.
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On Oppressy (ng - -

For every d,k,n € w, there exists an 7 such that Oppressi(n -+ n)

r many

does not hold.

v

» For example we prove this for d,n = 2.
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On Oppressj (ng - ny)

For every d,k,n € w, there exists an r such that Oppressg(n ceoon)

r many

does not hold.

» For example we prove this for d,n = 2.

» Using HJ(4,k, 1), let r be the witness.
» Show that Oppress?(2 -+ 2) does not hold.

T many
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On Oppressj (ng - ny)

For every d,k,n € w, there exists an r such that Oppressg(n ceoon)

r many

does not hold.

» For example we prove this for d,n = 2.

» Using HJ(4,k, 1), let r be the witness.
» Show that Oppress?(2 -+ 2) does not hold.
T many
» Code 22" into 4" where @(2t)a(2t + 1) (00,01, 10, 11 respectively) is
coded into a(t) (0,1,2,3 respectively).
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On Oppressj, (ng - - - ny)

For every d,k,n € w, there exists an r such that Oppressg(n ceoon)

r many

does not hold. )
» For example we prove this for d,n = 2.

» Using HJ(4,k, 1), let r be the witness.
» Show that Oppress?(2 -+ 2) does not hold.

T many

» Code 22" into 4" where @(2t)a(2t + 1) (00,01, 10, 11 respectively) is
coded into a(t) (0,1,2,3 respectively).

» Given a coloring ¢ : 22" — k, consider é: 4" 3 a + ¢(@).

» Let © be a 1-variable word monochromatic for ¢ and consider v
such that v(2t)v(2t + 1) = 00,01, 10, 11, zgz; respectively if
0(t) = 0,1,2,3, zo respectively.

[
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On Oppressj (ng - ny)

Lemma 20

There exist ng - - - n,. such that Oppress3(ng---n,) holds but

Oppress3(ng - --n,n) does not hold for all n.

Proof.

For example, ng - --n, = 1 and note that Oppress3(1) is true but
Oppress3(1n) is not true for any n.

| A\

A\
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On Oppressj (ng - nyr)

Some open questions

Question 21

Does Oppress3(2223) holds? Does Oppress3(222n) holds for
sufficiently large n?
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