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Introduction

I Many questions in computability theory, even for big question as
KL-randomness vs 1−randomness, have close connection to
combinatorics.

I We present one example in this talk. We prove that a question of
Miller and Solomon——that whether every coloring c : d<ω → k
admits a c-computable variable word infinite solution, is equivalent
to a natural, nontrivial combinatorial question.
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We thank Denis Hirschfeldt, Benoit Monin and Ludovic Patey for
helpful discussion on the first example.
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The question of Miller and Solomon

VWI problem

We adopt the problem-instance-solution framework to introduce the
following problem. We first introduce some notation.

Definition 1 (Variable word)

I An n-variable word over d is a sequence v (finite or infinite) of
{0, · · · , d− 1}∪ {x0, x1, · · · } where there are n many variables in v.

I Given an ~a ∈ dm, an n-variable word v, suppose
xm0 , xm1 , · · · , xmn−1 occur in v with mn̂−1 < mn̂ for all n̂ < n. We
write v(~a) for the {0, · · · , d− 1}-string obtained by substitute xmn̂

with ~a(n̂) in v for all n̂ < m and then truncating the result just
before the first occurrence of xmn̂+1

.

I We write Pxm(v) for the set of positions of xm in v, namely
{t : v(t) = xm}; the first occurrence of a variable xm in v refers to
the integer minPxm(v).
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The question of Miller and Solomon

VWI problem

Example 2

Infinite variable word v on {0, 1}:

011 x0x0 011 x1 x0x0 x1x100 x2x2 · · · (1.1)

~a = 10, v(~a) =011 11 011 0 11 0000 · · ·
Px0(v) ={3, 4 , 9, 10, · · · }.

Definition 3

I Problem: VWI(d, k).

I Instance: c : d<ω → k.

I Solution: an ω-variable word v such that {v(~a) : ~a ∈ d<ω} is
monochromatic.
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The question of Miller and Solomon

VWI vs RCA

Joe Miller and Solomon proposed the following question in
[Miller and Solomon, 2004].

Question 4

Is VWI(d, k) provable in RCA?

Or in terms of computability language:

Question 5

Does every VWI(d, k)-instance c admit c-computable solution?
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Related literature

Other versions of variable word problem

Definition 6 (VW,OVW)

If we require the occurrence of xi being finite for all i then the problem
is called VW.
If we require all the occurrence of xi comes before any occurrence of
xi+1 then it is called OVW (ordered variable word).

The problem is proposed by [Carlson and Simpson, 1984] and studied
in [Miller and Solomon, 2004] [Liu et al., 2017]. Clearly,

Theorem 7

VWI(d, k) ≤ VW(d, k) ≤ OVW(d, k).
VWI(d, k)⇔ VWI(d, k + 1),VW(d, k)⇔ VW(d, k + 1),OVW(d, k)⇔
OVW(d, k + 1).
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Related literature

The complexity of OVW,VW

Theorem 8 ([Miller and Solomon, 2004])

There exists a computable instance of OVW(2, 2) that does not admit
∆0

2 solution. Thus RCA0 + WKL does not prove VW(2, 2).

The following result answers a question of [Miller and Solomon, 2004]
and [Montalbán, 2011].

Theorem 9 (Monin, Patey, L)

I For every computable OVW(2, 2)-instance c, every ∅′-PA degree
compute a solution to c.

I There exists a computable OVW(2, 2)-instance such that every
solution is ∅′-DNC degree.

Corollary 10 (Monin, Patey, L)

ACA proves OVW(2, 2).
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Related literature

Question 11 ([Miller and Solomon, 2004])

Does OVW(d, k) or VW(d, k) implies ACA0 for some l?
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The combinatorial equivalence

A combinatorial equivalence of “VWI(2, 2) vs RCA”

For two sets of numbers A,B, write A < B iff maxA < minB.

Definition 12 (Oppress(n0 · · ·nr−1))

For a finite sequence n0, n1, · · · , nr−1 of positive integers, let
N0 = {0, · · · , n0 − 1}, N1 = {n0, · · · , n0 + n1 − 1}, · · · ,
Nr−1 = {n0 + · · ·+ nr−2, · · · , n0 + · · ·+ nr−1 − 1}, and N = ∪s≤r−1Ns.
We write Oppressdk(n0n1 · · ·nr−1) iff the following is true. There exists
a function f : dN → k such that for every s ≤ r − 1, every ns-variable
word v over d of length N , if the first occurrence of variables in v
consists of Ns, i.e.,

{minPxm(v) : m ∈ ω} = Ns,

then there exist ~a0,~a1 ∈ dns such that f(v(~a0)) 6= f(v(~a1)). In that
case we say f witnesses Oppressdk(n0 · · ·nr−1).
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The combinatorial equivalence

A combinatorial equivalence of “VWI(2, 2) vs RCA”

Theorem 13

The following are equivalent:

I There exists a VWI(d, k)-instance c that does not admit
c-computable solution.

I There exists an infinite sequence of positive integers n0n1 · · · such
that for all r ∈ ω, Oppressdk(n0 · · ·nr) holds.
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The combinatorial equivalence

Intuition on Oppressdk(n0 · · ·nr−1)

For ~n, ~̂n ∈ ω<ω we write ~n ≤ ~̂n if |~n| = |~̂n| and ~n(s) ≤ ~̂n(s) for all
s < |~n|. We say ~n is a subsequence of ~̂n if there are integers
s0 < s1 < · · · < sm−1 < |~̂n| such that ~n = ~̂n(s0) · · · ~̂n(sm−1). It’s
obvious that:

Proposition 14

If ~n is a subsequence of ~̂n or ~n ≥ ~̂n, then Oppressdk(~̂n) implies
Oppressdk(~n).

Lu Liu Email: g.jiayi.liu@gmail.com (Central South University School of Mathematics and Statistics Logic conference in Fudan University )Combinatorial implication of computability theoryNovember 28, 2020 13 / 26

g.jiayi.liu@gmail.com


The combinatorial equivalence

Intuition on Oppressdk(n0 · · ·nr−1)

Proposition 15

Oppress22(22), Oppress22(222) holds. Oppress22(n) holds for all n > 0.

Proof.

To see Oppress22(22), consider

f(~a) = ~a(0) + ~a(1) + ~a(2) mod 2.

To see Oppress22(222), consider

f(~a) = I(~a(0) + ~a(1) > 0) + ~a(2) + ~a(3) + ~a(4) mod 2.

Where I() is the indication function. To see Oppress22(n), simply
consider f(~a) = ~a(0) mod 2.
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The combinatorial equivalence

Intuition on Oppressdk(n0 · · ·nr−1)

Proposition 16

Oppress22(2222) does not hold.

Proof.

We don’t know the proof. Adam P. Goucher at Mathoverflow
examined this using SAT solver (
https://mathoverflow.net/questions/293112/ramsey-type-theorem ).
It’s easy to check that the following functions don’t work:

f(~a) = I(~a(0) + ~a(1) > 0) + ~a(2) + ~a(3) + ~a(4) + ~a(6) mod 2; (3.1)

f(~a) = I(~a(0) + ~a(1) > 0) + I(~a(2) + ~a(3) > 0)+

+ ~a(4) + ~a(5) + ~a(6) mod 2;
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The combinatorial equivalence

Proof of theorem 13

(⇐)

I A Turing functional ΨX computes a variable word if ΨX is an
enumerable set (possibly finite) {v0, v1, · · · } of finitely long
variable words such that v0 � v1 � · · · .

I Let X ∈ Oppressdk.

I Putting priority argument aside, assume each Turing functional is
total. i.e.,
for each r ∈ ω, let vr ∈ ΨX

r be such that vr contains X(r) many
variables whose first occurrence is after |vr−1| .

I Suppose (fr : r ∈ ω) witnesses Oppressdk(X � r). We transform
these fr to a coloring c so that there is no v � vr such that
|c({v(~a) : ~a ∈ dnv})| = 1.
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The combinatorial equivalence

Proof of theorem 13

I To define c on dn, let r(n) be the maximal integer such that
|vr(n)| ≤ n. We ensure that c on dn “oppress” vr for all r ≤ r(n).

I Let Pr be the set of first occurrence of variables in vr whose first
occurrence is after |vr−1|. W.l.o.g, suppose |Pr| = X(r) for all
r ∈ ω.

I Define c(~a) = fr(n)+1(~a � ∪r≤r(n)Pr).
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The combinatorial equivalence

Proof of theorem 13

(⇒)

I Take advantage of some particular algorithms Φ0,Φ1, · · · and show
that their failure (to compute a solution to c) gives rise to a
sequence X ∈ Oppressdk.

I Φc
0,Φ

c
1, · · · are greedy algorithms in the sense that they extend

their current computation (which is a finitely long variable word)
whenever possible. More precisely,

I Φc
r+1 extends its current computation from vr+1 to some

v̂ � vr+1 where v̂ has more variables than vr+1, whenever it is
found that for some ~a ∈ d|vr|+1, |c({v̂(~b)/~a : ~b ∈ dnv̂})| = 1.

I Moreover, Φc
r+1 will build its solution vr+1 based on Φc

0, · · · ,Φc
r in

the sense that all variables in vr+1 occur after |vr| and if some Φc
r̃

extends its current computation, then all Φc
r (where r > r̃) will

restart all over again.
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The combinatorial equivalence

Proof of theorem 13

I Since c does not admit a c-computable solution, for every r ∈ ω,
the computation of Φc

r stucks at some vr.

I More precisely, let v̂r = var xnr−1 (where we assume that all
variables in vr are {x0, · · · , xnr−2}), we have

I there is no v̂ � v̂r such that for some ~a ∈ d|v̂r−1|,
|c({v̂(~b)/~a : ~b ∈ dnv̂})| = 1; moreover, all variables in vr occur after
|vr−1| and |vr| > |vr−1|.

I We show that n0n1n2 · · · ∈ Oppressdk.
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The combinatorial equivalence

Proof of theorem 13

I Fix an r ∈ ω, let N = n0 + · · ·+ nr. To define f : dN → k
witnessing Oppressdk(n0 · · ·nr), for every ~a ∈ dN we map ~a to a

word ~̂a = h(~a) ∈ d|v̂r| and let f(~a) = c(~̂a).

I Intuitively, h is defined by connecting each element of N , say
n0 + · · ·+ ns−1 + m, to a set Pxm(v̂s) and copy the value
~a(n0 + · · ·+ ns−1 + m) to â(t) for all t ∈ Pxm(v̂s). More precisely,

I Suppose ~a = ~a0 · · ·~ar where |~as| = ns for all s ≤ r. Let

~̂as = v̂s(~as) �
|v̂s|−1
|v̂s−1| and h(~a) = ~̂a0 · · · ~̂ar.
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The combinatorial equivalence

Let Oppressdk denote the set of infinite sequence of integers n0, n1, · · ·
such that Oppress(n0 · · ·nr) holds for all r ∈ ω.

Theorem 17

The following two classes of oracles are equal:{
D ⊆ ω : D′ computes a member in Oppressdk.

}{
D ⊆ ω : D computes a VWI(d, k)-instance c

that does not admit a c-computable solution.
}
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On Oppressdk(n0 · · ·nr)

Relation to Hales-Jewett theorem

I Disproving Oppressdk on certain sequences is a natural
generalization of Hales-Jewett theorem.

I For d, k, n ∈ ω, let HJ(d, k, n) denote the assertion that

there exists an N such that for every c : dN → k,

there exists an n-variable word v of length N such that

|c({v(~a) : ~a ∈ dn})| = 1.

Theorem 18 (Hales-Jewett theorem [])

For every d, k, n ∈ ω, HJ(d, k, n) holds.
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On Oppressdk(n0 · · ·nr)

I HJ theorem is of fundamental importance in combinatorics.

I HJ theorem ⇒ van der Waerden theorem (which says that for
every partition of integers, every r ∈ ω, there exists an
arithmetical progression of length r in one part).

I The density HJ theorem ⇒ the density van der Waerden theorem,
namely Szemerédi’s theorem, which asserts that for every set A of
integers of positive density (meaning lim supn→∞ |A ∩ n|/n > 0),
every r ∈ ω, there exists an arithmetical progression in A of length
r (conjectured by Erdős and Turán).

I Given d, k, n, the assertion that there exists an r such that
Oppressdk(n · · ·︸︷︷︸

r many

n) does not hold implies HJ(d, k, n). Thus, the

following Lemma 19 directly implies Hales-Jewett theorem.
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On Oppressdk(n0 · · ·nr)

Lemma 19

For every d, k, n ∈ ω, there exists an r such that Oppressdk(n · · ·︸︷︷︸
r many

n)

does not hold.

Proof.

I For example we prove this for d, n = 2.

I Using HJ(4, k, 1), let r be the witness.

I Show that Oppressdk(2 · · ·︸︷︷︸
r many

2) does not hold.

I Code 22r into 4r where ~a(2t)~a(2t + 1) (00, 01, 10, 11 respectively) is
coded into ~̂a(t) (0, 1, 2, 3 respectively).

I Given a coloring c : 22r → k, consider ĉ : 4r 3 ~̂a 7→ c(~a).

I Let v̂ be a 1-variable word monochromatic for ĉ and consider v
such that v(2t)v(2t + 1) = 00, 01, 10, 11, x0x1 respectively if
v̂(t) = 0, 1, 2, 3, x0 respectively.

Lu Liu Email: g.jiayi.liu@gmail.com (Central South University School of Mathematics and Statistics Logic conference in Fudan University )Combinatorial implication of computability theoryNovember 28, 2020 24 / 26

g.jiayi.liu@gmail.com


On Oppressdk(n0 · · ·nr)

Lemma 19

For every d, k, n ∈ ω, there exists an r such that Oppressdk(n · · ·︸︷︷︸
r many

n)

does not hold.

Proof.

I For example we prove this for d, n = 2.

I Using HJ(4, k, 1), let r be the witness.

I Show that Oppressdk(2 · · ·︸︷︷︸
r many

2) does not hold.

I Code 22r into 4r where ~a(2t)~a(2t + 1) (00, 01, 10, 11 respectively) is
coded into ~̂a(t) (0, 1, 2, 3 respectively).

I Given a coloring c : 22r → k, consider ĉ : 4r 3 ~̂a 7→ c(~a).
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I Let v̂ be a 1-variable word monochromatic for ĉ and consider v
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On Oppressdk(n0 · · ·nr)

Lemma 20

There exist n0 · · ·nr such that Oppress22(n0 · · ·nr) holds but
Oppress22(n0 · · ·nrn) does not hold for all n.

Proof.

For example, n0 · · ·nr = 1 and note that Oppress22(1) is true but
Oppress22(1n) is not true for any n.

Lu Liu Email: g.jiayi.liu@gmail.com (Central South University School of Mathematics and Statistics Logic conference in Fudan University )Combinatorial implication of computability theoryNovember 28, 2020 25 / 26

g.jiayi.liu@gmail.com


On Oppressdk(n0 · · ·nr)

Some open questions

Question 21

Does Oppress22(2223) holds? Does Oppress22(222n) holds for
sufficiently large n?
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On Oppressdk(n0 · · ·nr)

Many thanks
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