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1 Completeness

Recall that a theory T is

• . . . consistent if there is no sentence σ such that

T ` σ and T ` ¬σ.

• . . . complete if for every sentence σ, exactly one of the following is true:

T ` σ or T ` ¬σ.

Equivalently, T is complete if T has a unique model, up to elementary equivalence. Complete
theories are useful for proving decidability/computability results:

Example 1.1. If T is a computably-enumberable complete theory and M |= T , then the set

Th(M) = {σ :M |= σ}

is decidable, i.e., computable.

This can be used to prove the decidability of Th(M) for many rings and �elds appearing
in algebra, such as

• The �eld C of complex numbers.

• The �eld R of real numbers.

• The �eld Qp of p-adic numbers, and the ring Zp ⊆ Qp of p-adic integers.

• The algebraic closure Falgp of the �eld with p elements.

• The algebraic closure Qalg of the rational numbers.

• The ring O ⊆ Qalg of algebraic integers.
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• The rings C[[X]] and R[[X]] of formal power series in one variable.

In each case, one writes down a computable theory T , often very complicated1, and one then
veri�es

• M |= T .

• T is complete. (This usually takes a lot of work)

2 Categoricity and completeness

De�nition 2.1. A theory T is categorical (in the absolute sense) if T has exactly one model,
up to isomorphism: T has a model M and every model M ′ |= T is isomorphic M ∼= M ′.

If T is categorical, then T is complete. However, essentially no theories are categorical,
because of the Löwenheim-Skolem theorem:

Theorem 2.2 (Löwenheim-Skolem). Let T be a countable theory with at least one in�nite
model. Let κ be an in�nite cardinal number.2 Then there is M |= T with |M | = κ.

As a corollary, if T is categorical, the unique model M of T is �nite. So absolute
categoricity is unfortunately not a very helpful concept. However, a related notion turns
out to work correctly. First note that we can rephrase the Löwenheim-Skolem theorem as
follows:

Theorem 2.3 (Löwenheim-Skolem, variant form). LetM be an in�nite structure in a count-
able language. Let κ be an in�nite cardinal. Then there is an elementarily equivalent struc-
ture M ′ ≡M with cardinality |M ′| = κ.

Then de�ne

De�nition 2.4. A theory T is κ-categorical if there is a unique model of cardinality κ, up
to isomorphism.

Using the variant form of Löwenheim-Skolem, one can prove

Theorem 2.5 (�o±-Vaught criterion). Let T be a countable theory. If T is κ-categorical,
then any two in�nite models of T are elementarily equivalent. In particular, if all models of
T are in�nite, then T is complete.

1For example, for Zp, the theory says that Zp is a valuation ring, the value group is a model of Pressburger
arithmetic, the valuation v(p) of p is the minimal positive element of the value group, the residue �eld has
p elements, and the valuation ring is henselian.

2More generally, we can let T be uncountable, and then we must take κ ≥ |T |.
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3 Examples of κ-categoricity

If K is an algebraically closed �eld, then K is determined up to isomorphism by two invari-
ants:

• The characteristic char(K), which is the unique number p ∈ {0, 2, 3, 5, 7, . . .} such that
pZ is the kernel of the unique ring homomorphism

Z→ K.

More concretely, the characteristic determines the minimal sub�eld F ≤ K:

� If char(K) = 0, the minimal sub�eld is Q.
� If char(K) = p > 0, the minimal sub�eld is Fp = Z/pZ.

• The transcendence degree tr. deg(K/F ) of K over the minimal sub�eld.

For example, up to isomorphism there is a unique �eld of characteristic 0 and transcendence
degree 2, namely

Q(X1, X2)
alg,

the algebraic closure of the �eld of rational functions in two variables.
Moreover, |K| = ℵ0 + tr. deg(K/F ). From this, one sees that the following theories are

κ-categorical for all κ > ℵ0:

• ACF0, the theory of algebraically closed �elds of characteristic 0.

• ACFp, the theory of algebraically closed �elds of characteristic p.

The models of these theories are in�nite, so it follows that ACF0 and ACFp are complete.
As a consequence, Th(C) is decidable.

If K is a �eld, similar methods show that the theory of in�nite K-vector spaces3 is
complete and κ-categorical for κ > |K|. The proof uses dimension of vector spaces instead
of transcendence degree.

All these examples are instances of a more general fact:

Proposition 3.1. If T is strongly minimal and complete, then T is κ-categorical for κ >
|T |+ ℵ0.

Proof sketch. The proof of this is essentially as follows: �x a monster model M of T . Let
M,M ′ be two models of T of the same cardinality κ > |T |+ℵ0. We may assumeM,M ′ �M.
Let B and B′ be acl(−)-bases of M and M ′, respectively. By cardinal arithmetic,

|B′| = |M ′| = κ = |M | = |B|,
3A model of this theory is a structure (V, 0,+, αa : a ∈ K) where V is a K-vector space, 0 ∈ V is zero,

+ : V ×V → V is addition, and for each a ∈ K, the unary operation αa : V → V is the map x 7→ a ·x. Note
that K is �xed as part of the language; K is not a sort in the structure. Note also that the language and
theory are usually in�nite, and uncountable if |K| > ℵ0.
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so we can �nd a bijection f : B → B′. Using Lemma 1.3 in Wednesday's notes, one shows
that f is a partial elementary map. As M is a monster, f extends to an automorphism
σ ∈ Aut(M). Then

f(M) = f(acl(B)) = acl(f(B)) = acl(B′) =M ′,

so M ∼= M ′.

In combination with the �o±-Vaught criterion, Proposition 3.1 tells us nothing, since
we assumed T was complete. Nevertheless, Proposition 3.1 turns out to be important for
understanding κ-categoricity abstractly.4

So there are several examples of theories which are κ-categorical for all κ > ℵ0. It turns
out there are also several theories which are ℵ0-categorical, but not κ-categorical for any
κ > ℵ0. The most notable examples are

• DLO, the theory of dense linear orders without endpoints. The unique countable model
is (Q,≤).

• The theory T of the Rado graph.

• The theory of atomless boolean algebras. See �A below for the de�nition of Boolean
algebras. A boolean algebra B is atomless if for every 0 < x ∈ B there is y ∈ B with
0 < y < x.

The vast majority of complete theories arising in practice are not κ-categorical for any κ.
For example, if K is an in�nite �eld and Th(K) is κ-categorical for some κ, then K |= ACF .

4 Morley's theorem

�o± conjectured, and Morley proved

Theorem 4.1 (Morley's theorem). Let T be a countable theory. If T is κ-categorical for
some κ > ℵ0, then T is κ-categorical for all κ > ℵ0.

Consequently, one can talk about uncountably categorical theories�theories that are κ-
categorical for any/every uncountable κ.

For Morley's theorem, the journey is more interesting than the destination: the statement
of Morley's theorem is useless and boring, but the proof develops many of the central tools
of modern model theory. We sketch some highlights of the proof in the next few sections,
following the proof in the �nal chapter of Hodges' Shorter Model Theory.

Here is the brief summary of the proof. Let T be κ-categorical for some κ > ℵ0. As in
the case of strongly minimal theories, we want to associate a �rank� to any model M |= T ,
such that

4As in the proof of Theorem 7.4 below.
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• The rank of M determines M up to isomorphism.

• The cardinality of M is ℵ0 plus the rank of M .

This will then ensure that M is κ-categorical for all uncountable κ.
In fact, one directly reduces to the case of strongly minimal theories: every uncountably

categorical theory is �governed� by a strongly minimal theory, in some precise sense.

5 Totally transcendental theories

Let M be a monster model. For X ⊆ Mn a de�nable set, recursively de�ne Morley rank
RM(X) as follows:

• RM(X) ≥ 0 i� X 6= ∅.

• RM(X) ≥ α+1 i� there exist de�nable subsets X1, X2, X3, . . . ⊆ X, pairwise disjoint,
with RM(Xi) ≥ α for each i < ω.

• If α is a limit ordinal, then

RM(X) ≥ α ⇐⇒ (∀β < α : RM(X) ≥ β)

Then de�ne the Morley rank to be

RM(X) = max{α : RM(X) ≥ α},

or +∞ if there is no maximum, or −∞ if X = ∅.
This de�nition looks odd, but is closely related to the Cantor-Bendixson theorem. See

the Appendix.
If −∞ < RM(X) <∞, there is a maximum value d < ω such that we can �ndX1, . . . , Xd

disjoint de�nable subsets of X, with RM(Xi) = RM(X). The maximum such d is always
�nite, and is called the Morley degree of X, often denoted dM(X).

Aside 5.1. If M is not a monster model, one can still de�ne RM(X) and dM(X), but
one must pass to elementary extensions. For example, RM(X) ≥ α + 1 i� there is an
elementary extension M ′ � M and M ′-de�nable disjoint subsets X1, X2, . . . ⊆ X(M ′) with
RM(Xi) ≥ α. It turns out that this de�nition agrees with the earlier de�nition when M is
a monster model, and ensures that Morley rank is preserved in elementary extensions:

Speci�cally, if M �M ′ and φ(~x;~a) is a formula over M , then the Morley rank of φ(M ;~a)
in M equals the Morley rank of φ(M ′;~a) in M ′.

De�nition 5.2. A structure M is totally transcendental5 if RM(X) <∞ for all de�nable
sets X.

5This name is terrible and I have no idea where it comes from. We're stuck with it now, though.
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This is really a property of the theory. For countable theories, there is an alternate
criterion:

De�nition 5.3. A theory T is ℵ0-stable if for every countable model M |= T , the space of
n-types Sn(M) over M is countable.

Fact 5.4. If T is a countable complete theory, then T is totally transcendental if and only if
T is ℵ0-stable.

This is closely related to the Cantor-Bendixson theorem. See the appendix.
The �rst step of Morley's theorem is the following

Proposition 5.5. Let T be a countable complete theory. Suppose T is κ-categorical for some
κ > ℵ0. Then T is totally transcendental.

Proof sketch. Otherwise, by Fact 5.4, there is a countable model M0 such that Sn(M0) is
uncountable. Pick ℵ1-many distinct types inM0, and realize them in an elementary extension
M1 � M0 with |M1| = ℵ1. As κ ≥ ℵ1, we can �nd M2 � M1 � M0 with |M2| = κ. In the
model M2, there is a countable subset M0 ⊆ M2 over which uncountably many n-types are
realized.

Meanwhile,

Lemma 5.6 (Ehrenfeucht-Mostowksi). If T is a consistent countable theory and κ is a
cardinal, there is a model M |= T of size κ with the property that for any countable set
A ⊆M , only countably many types over A are realized in the structure M .

The proof of this lemma is a clever argument using Skolemization and indiscernible
sequences�see the �nal chapter of Hodges' Shorter Model Theory.

Anyways, the Lemma produces a modelM ′ of size κ, in which not many types are realized
over any countable set. So M ′ 6∼= M2, contradicting κ-categoricity.

6 Morley rank and strongly minimality

Morley rank and degree agree with the �dimension� and �degree� we de�ned for strongly
minimal theories.

Fact 6.1. If M is strongly minimal, then for every interpretable set X,

RM(X) = dim(X) < ω

dM(X) = deg(X)

In fact, the �right� way to de�ne dimension and degree in strongly minimal structures is
to de�ne Morley rank and Morley degree, and then to prove that Morley rank agrees with
the dimension from the pregeometry.

Morley rank and degree are related to strong minimality in a second way:
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Fact 6.2. A structure M is strongly minimal i� RM(M) = dM(M) = 1.
More generally, a de�nable set X ⊆Mn is strongly minimal i� RM(X) = dM(X) = 1.

Here, a de�nable set X is minimal6 if X is in�nite and X is not a disjoint union of
two in�nite de�nable sets. A de�nable set X is strongly minimal if X remains minimal in
elementary extensions. A structure M is minimal (resp. strongly minimal) i� the de�nable
set M ⊆M1 is minimal (resp. strongly minimal).

Strongly minimal sets are prevalent in totally transcendental theories:

Fact 6.3. If M is a totally transcendental monster model, then every in�nite de�nable set
X contains a strongly minimal de�nable subset Y ⊆ X.

To prove this, one takes de�nable in�nite Y ⊆ X minimizing (RM(Y ), dM(Y )), and
veri�es that RM(Y ) = dM(Y ) = 1.

7 The proof idea of Morley's theorem

De�nition 7.1. A model M |= T is prime over a subset A ⊆ M if for every model M ′

and partial elementary map7, there is an elementary embedding of M into M ′ making the
diagram commute

A //

!!

M

��
M ′.

Fact 7.2. Let M be a totally transcendental monster model. For every small set A ⊆M, there
is a small model M �M which is prime over A. Moreover, M is unique up to isomorphism
over A.

De�nition 7.3. A theory T has Vaughtian pairs if there is an elementary extensionM �M ′

and a formula φ(~x,~a) over M such that

M 6=M ′

φ(M ;~a) = φ(M ′;~a)

and the set φ(M ;~a) is in�nite.

Theorem 7.4. Let T be a countable complete theory. The following are equivalent:

1. T is κ-categorical for some κ > ℵ0.

2. T is totally transcendental and has no Vaughtian pairs.

3. T is κ-categorical for all κ > ℵ0.
6As I understand it, this is the true origin of the term �minimal� in the name �strongly minimal theories.�
7See De�nition 8.3 in Tuesday's notes.
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Proof sketch. For 1 =⇒ 2, we have already seen that T is totally transcendental (Proposi-
tion 5.5). Suppose T is totally transcendental and has a Vaughtian pair

M1 �M2

M1 6=M2

φ(M1;~a) = φ(M2;~a).

Then one can arrange for M1,M2 to be countable, using downwards Löwenheim-Skolem. It
turns out that in totally transcendental theories, one can �stretch� Vaughtian pairs, producing
an arbitrarily long elementary chain

M1 �M2 � · · · �Mω � · · ·

such that for all α,

φ(M ;~a) = φ(Mα;~a)

Mα+1 6=Mα.

After κ steps, one gets Mκ of size κ, with

|φ(Mκ;~a)| = |φ(M1;~a)| = ℵ0 < κ

On the other hand, one can �nd a model of size κ in which every in�nite de�nable set has
size κ, so κ-categoricity must fail. This proves 1 =⇒ 2.

Now suppose 2 holds: T is totally transcendental with no Vaughtian pairs. Using Fact 6.3,
one can �nd a formula φ(~x) such that the set φ(M) is strongly minimal.8 Now given any
small model M , we may assume M � M. There is a pregeometry on φ(M) induced by
acl(−). Let B be a basis for this pregeometry. It turns out that. . .

• M is a prime model over B. Otherwise, if M ′ is the actual prime model over B, one
gets M � M ′, M 6= M ′, and φ(M) = φ(M ′), contradicting no vaughtian pairs. (This
takes some work.)

• If B and B′ are two acl(−)-independent sets in φ(M) of the same size, and f : B → B′

is a bijection, then f is a partial elementary map. (This takes some work, and is
similar to Lemma 1.3 in Wednesday's notes.) Consequently, there is an automorphism
σ ∈ Aut(M) sending B to B′.

8This isn't quite right. The formula φ(~x) actually should have parameters from the prime model M0

over ∅. Fact 6.3 could involve parameters from outside M0. However, using No Vaughtian Pairs, one can
prove that ∃∞ is eliminated. This then allows one to prove that any minimal set in M0 is strongly minimal.
Minimal sets exist in M0 by a Cantor-Bendixson argument. In the remainder of the proof of Theorem 7.4,
we should really work over the prime model M0, not over ∅. For example, the pregeometry rank should
probably be with respect to acl(− ∪M0), and the automorphism should be in Aut(M/M0).
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• The size of B is a complete isomorphism invariant for M : if M ′ is another model and
B′ is an acl-basis for φ(M ′), then

|B| = |B′| =⇒ M ∼= M ′.

Indeed, if |B| = |B′|, we can �nd σ ∈ Aut(M) sending σ(B) = B′. Then σ(M) is a
prime model over B′, so

M ∼= σ(M) ∼= M ′.

As in the proof of Proposition 3.1, it follows that T is κ-categorical for all κ > ℵ0.

So in some sense, an uncountably categorical structure M is �governed� by a strongly
minimal structure φ(M) interpretable in M .

8 Stability

Lurking in the background of Morley's theorem is the notion of stability :

De�nition 8.1. A theory T is κ-stable if for every model M and n ≥ 1,

|M | ≤ κ =⇒ |Sn(M)| ≤ κ,

where Sn(M) is the space of (complete) n-types over M .

We encountered ℵ0-stability earlier (De�nition 5.3).

De�nition 8.2. Fix a theory T . A formula φ(~x; ~y) is unstable if there is a model M |= T
and elements

~a1,~a2, . . .

~b1,~b2, . . .

in M such that for every i, j < ω,

i < j ⇐⇒ M |= φ(~ai,~bj)

Otherwise, we say that φ(~x, ~y) is stable.

Both κ-stability and stability of formulas look very unenlightening. The two concepts
are related by the following non-trivial theorem:

Theorem 8.3. The following are equivalent for a theory T :

• T is κ-stable for some in�nite cardinal κ ≥ |T |.

• Every formula φ(x; y) is stable.

We say that a theory T is stable if it satis�es these equivalent conditions.

Stability can be de�ned in several other equivalent ways.9

9For example, T is stable i� all types are de�nable. T is stable i� all indiscernible sequences are totally
indiscernible. T is stable i� T is NSOP and NIP. T is stable i� for every formula φ, the boolean algebra
generated by sets of the form φ(M;~a) has Cantor-Bendixson rank less than ∞.
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9 Shelah's classi�cation theory

In spite of its odd de�nition, stability is central to much of modern model theory. Initial
research on stability was driven by Shelah's program of Classi�cation Theory, which we now
describe.

Given a countable, complete theory T and an uncountable10 cardinal κ, let fT (κ) be the
number of models of T of size κ, counted up to isomorphism. The function fT (−) is called
the spectrum of T .

Example 9.1. If T is uncountably categorical, then fT is the constant function 1.

Example 9.2. Let T be the theory of 2-sorted structures (X, Y ) where X, Y are in�nite and
there is no further structure. This theory is complete�it is ℵ0-categorical. The spectrum fT
is given by

fT (ℵα) = 2 · |α|+ 1.

For example, there are �ve models of size ℵ2, namely

(ℵ0,ℵ2), (ℵ1,ℵ2), (ℵ2,ℵ2), (ℵ2,ℵ1), (ℵ2,ℵ0).

Shelah's program of Classi�cation Theory proposed to classify theories according to
their spectra. This classi�cation was completed by Hart, Hrushovski, and Laskowski. See
Wikipedia for a list of possible spectra.

Stability enters the picture because of the following theorem

Theorem 9.3 (Shelah). If T is unstable, then fT (κ) = 2κ for all uncountable κ.

So, from the point of view of classi�cation theory, the only interesting theories are stable
theories.

10 Examples of stable theories

It turns out that the following theories and structures are stable:

• Any �nite structure.

• Any strongly minimal theory/structure.

• More generally, any uncountably categorical theory/structure.

• More generally, any totally transcendental theory/structure.

• T eq, for any stable theory T .

10It would be more natural to let κ range over in�nite cardinals, but some odd things happen when κ = ℵ0,
related to Vaught's conjecture.
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• The in�nite set with no structure.

• The theory ACF of algebraically closed �elds.

• More generally, the theory SCF of separably closed �elds.

• The theory DCF0 of di�erentially closed �elds of characteristic 0. A di�erential �eld
is a �eld (K,+, ·, ∂) with an operator ∂ : K → K satisfying the usual addition and
multiplication rules

∂(x · y) = x∂y + y∂x

∂(x+ y) = ∂x+ ∂y.

For example, the �eld K of germs of complex-valued meromorphic functions at 0 is
a di�erential �eld.11 A di�erentially closed �eld is an existentially closed di�erential
�eld. These turn out to be the models of a theory DCF0, which is stable, and even
totally transcendental.

• The theory of abelian groups.

• More generally, the theory of R-modules for any ring R.

• The free non-abelian group on n generators, by deep work of Sela.

Of these theories, the most important is probably DCF0. The study of stability and totally
transcendental theories has o�ered new insights into the algebraic properties of di�erential
�elds.

11 Groups of �nite Morley rank

In class, especially on Friday, we proved several statements about groups and �elds inter-
pretable in strongly minimal theories.

All these results generalize to groups and �elds of �nite Morley rank. See Poizat's book
Stable Groups for the general treatment. For example, Macintyre's theorem really says that
any �eld K of �nite Morley rank is algebraically closed.12

In fact, groups of �nite Morley rank essentially reduce to groups in strongly minimal
theories:

Fact 11.1. If (G, ·) is a group of �nite Morley rank, there is a chain

1 = G0 CG1 C · · ·CGn = G

of de�nable subgroups, such that each quotient Gi+1/Gi is a group interpretable in a strongly
minimal theory. More speci�cally, there is a strongly minimal subset Xi ⊆ Gi+1/Gi which
generates Gi+1/Gi as a group.

11Conversely, any countable di�erential �eld of characteristic 0 embeds into K, so the axioms of di�erential
�elds are somehow reasonable.

12Actually, Macintyre proved that any totally transcendental �eld is algebraically closed.
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(cf Theorem 2.13 in Poizat's Stable Groups, especially the proof. The key ingredient is
Zilber's theorem on indecomposable sets, which holds in a �nite Morley rank setting. See
Theorem 2.9 in Poizat.)

This fact ensures that simple groups of �nite Morley rank are equivalent to simple groups
interpretable in strongly minimal theories.13

More importantly, this fact ensures that there is a good dimension theory, by the following
general nonsense:

Fact 11.2. Let M be a totally transcendental structure. Let X1, . . . , Xn be strongly minimal
sets inM . Suppose thatM is �governed� by the Xi, in the sense that for anyM ′′ �M ′ �M ,
if M ′′ 6=M ′, then Xi(M

′′) 6= Xi(M
′) for some i. Then M has a good dimension theory:

1. Morley rank satis�es all the additivity properties (Lemma 2.3, Theorem 2.4 in Wednes-
day's notes).

2. Morley rank is de�nable in families (as in Theorem 2.5 = Theorem 7.3 in Wednesday's
notes).

For a proof, see Corollary 2.14 in Poizat's Stable Groups.

Remark 11.3. Fact 11.2 also shows that uncountably categorical theories have a good di-
mension theory.

The study of groups of �nite Morley rank is motivated in part by the example of DCF0.
If G is a �di�erential algebraic group,�14 then G is often a group of �nite Morley rank, and
the facts about groups of �nite Morley rank apply to G.

12 Beyond stability

Unfortunately, many algebraic structures of interest fail to be stable. In fact, we can split
stability into two related concepts.

De�nition 12.1. Let T be a theory.

1. A formula φ(~x; ~y) has the strict order property if there is a model M |= T and a

sequence ~b1,~b2, . . . from M such that

φ(M ;~b1) ( φ(M ;~b2) ( φ(M ;~b3) ( · · ·

2. T is NSOP i� no formula has the strict order property.

13Consequently, the version of the Cherlin-Zilber conjecture given in class (Conjecture 5.4 in Friday's
notes) agrees with the usual version: simple groups of �nite Morley rank are algebraic.

14Such as G = {x ∈ K : ∂∂x = 0} with addition. There are more interesting examples of di�erential
algebraic groups coming from the Manin connection on a moving family of abelian varieties.
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3. A formula φ(~x; ~y) has the independence property if there is a model M |= T and

elements {~ai}i∈N, {~bS}S⊆N such that for every i ∈ N and S ⊆ N,

i ∈ S ⇐⇒ M |= φ(~ai;~bS).

4. T is NIP i� no formula has the independence property.

Then it turns out that

Fact 12.2. T is stable i� T is both NIP and NSOP.

Most of the structures from algebra which admit QE results, such as R and Qp, fail to
be NSOP, because of the following general problem:

Fact 12.3. If M |= T is NSOP and (P,≤) is an interpretable poset in M , then there is a
�nite number n < ω such that P contains no chains of length n.

For example, R cannot be NSOP because (R,≤) contains chains of unbounded length.
In the �eld Qp of p-adic numbers, the value group

Q×p /Z×p ∼= Z

is an interpretable in�nite totally ordered set, so Qp cannot be NSOP.
On the other hand, all of the following structures are NIP:

• Any totally ordered set (X,≤) or totally ordered abelian group (X,+,≤).

• The �elds R of real numbers, Qp of p-adic numbers, and their �nite extensions.

• The exponential �eld (R,+, ·, exp).

• An algebraically closed �eld (K,+, ·,O) expanded with a unary predicate for a valua-
tion ring O ⊆ K.

• The rings of formal power series

C[[X]],R[[X]],Qp[[X]]

and the �elds of formal Laurent series

C((X)),R((X)),Qp((X))

So there has been a lot of work put into generalizing the methods of stability theory to NIP
theories.

There are several other generalizations of stability, such as simple theories and NTP2

theories. Gabe Conant has made a handy map of these notions.15

15For a good reference for NIP theories, see Pierre Simon's Guide to NIP theories. For a brief introduction
to simple theories, see Grossberg, Iovino, and Lessman's Primer of Simple Theories.
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13 O-minimality

De�nition 13.1. An ordered structure (M,≤, . . .) is o-minimal if every de�nable subset
X ⊆M is a �nite union of points {a} and open intervals (a, b) ⊆M .

This de�nition is meant to be analogous to the de�nition of (strong) minimality: we are
assuming something about de�nable subsets X ⊆Mn for n = 1.

Unlike the situation with (strong) minimality, one has

Theorem 13.2. If M ≡M ′ and M is o-minimal, then M ′ is o-minimal.

So there is no need to talk about �strong� o-minimality�it would agree with plain o-
minimality.

There are two important things to know about o-minimality, which become remarkable
when taken together:

1. The real �eld (R,+, ·) is o-minimal, and many expansions of R are also o-minimal,
such as

(R,+, ·, exp)
(R,+, ·, exp, tan−1)

In fact, there is an o-minimal expansion Ran,pfaff of R in which

• For every de�nable function f : R→ R, the integral
∫
f : R→ R is also de�nable.

• For every analytic or meromorphic function f : R → R, the retriction f � [0, 1] :
[0, 1]→ R is de�nable.

2. O-minimal structures are extremely well-behaved and tame. For example,

• De�nable closure and algebraic closure agree, and satisfy exchange, giving a pre-
geometry.

• There is a resulting dimension theory on de�nable sets, satisfying all the conditions
of Theorems 2.3-2.5 in Wednesday's notes.

• Elimination of imaginaries holds.16

• Every de�nable function f : Mn → Mm is piecewise continuous. If M is an
expansion of a �eld, then f is piecewise di�erentiable.

• IfM is (R,≤, . . .), then every de�nable set X has �nitely many connected compo-
nents, each of which is path connected. If X is compact, then X is homeomorphic
to a �nite simplicial complex.

The canonical reference for o-minimal theories, especially point 2, is van den Dries' book
Tame topology and o-minimal structures.

O-minimal theories are NIP but never stable. They can (arguably) be seen as the analogue
of strongly minimal theories in the NIP setting.

16. . . at least if we're working in an expansion of real closed �elds. See https://arxiv.org/abs/1404.3175
for an exotic counterexample.
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14 Geometries and pregeometries

We now take a brief digression into combinatorics and pregeometries.

De�nition 14.1. A pregeometry (X, cl) is a geometry if cl(∅) = ∅ and for every a ∈ X,
cl({a}) = {a}.

Given any pregeometry (X, cl), we can construct an associated geometry (Y, cl) as follows:

• Let X0 be cl(∅). Let X1 = X \X0.

• On X1, let ∼ be the equivalence relation.

a ∼ b ⇐⇒ cl({a}) = cl({b}).

• Let Y be X1/ ∼. There is an induced closure operation cl on Y making (Y, cl) into a
geometry. It is related to the original pregeometry (X, cl) as follows. Let f : X1 → Y
be the quotient map

X1 � X1/ ∼∼= Y.

Then for any a ∈ X and S ⊆ X,

a ∈ cl(S) ⇐⇒ f(a) ∈ cl(f(S \X0)).

Here are two of the motivating examples that explain the term �geometry:�

1. If K is a �eld, the n-dimensional a�ne geometry over K is the geometry on Kn whose
closed sets are

• the empty set

• translates a+ V of K-linear subspaces V ≤ Kn.

2. If K is a �eld, the n-dimensional projective geometry over K is the geometry whose
underlying set is the n-dimensional projective space over K

Pn(K) = (Kn+1 \ {~0})/(K×),

and whose closed sets are the projectivizations of linear subspces V ⊆ Kn+1:

(V \ {~0})/(K×).

Note that the n-dimensional projective geometry over K is exactly the geometry asso-
ciated to the linear-independence pregeometry on Kn+1 (in which the closed sets are
the K-linear subspaces of Kn+1).17

17There is also a more explicit way to view projective n-space over K as a�ne n-space over K with an
attached �hyperplane at in�nity.� For example, the projective line is the a�ne line plus a point at in�nity.
The projective plane is the a�ne plane plus a (projective) line at in�nity. Projective 3-space is obtained
from a�ne 3-space by adding a plane at in�nity.
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Both of these examples generalize to the case where K is a skew �eld18, i.e., an associative
non-commutative unital ring (K,+, ·, 1) in which every non-zero a ∈ K has a two-sided
inverse, i.e., an element a−1 such that

a · a−1 = a−1 · a = 1.

The most famous skew �eld is Hamilton's quaternions. Wedderburn's Little theorem says
that �nite skew �elds are commutative (i.e., �nite skew �elds are �elds).

15 Modular geometries and division rings

De�nition 15.1. A pregeometry (X, cl) is modular if for any two closed sets C1, C2 ⊆ X
of �nite rank,

rank(C1 ∪ C2) = rank(C1) + rank(C2)− rank(C1 ∩ C2).

The term �modular� is a reference to modular lattices.19

A pregeometry M is modular i� the associated geometry is modular.
Given a modular geometry (X, cl), say that a, b ∈ X are �connected� if a = b or

cl({a, b}) ) {a, b}. This turns out to be an equivalence relation. Every modular geome-
try breaks into its connected components, which don't really interact with each other.

The connected modular geometries are classi�ed by the following non-trivial theorem

Theorem 15.2 (Synthetic projective geometry). Let (X, cl) be a connected modular geom-
etry.

1. If rank(X) = 1, then X is a singleton.

2. If rank(X) = 2, then X is a �projective line:� X has at least 3 points, and the closure
of two distinct points is all of X.

3. If rank(X) = 3, then X is a �projective plane:�

18Also known as a division ring. . .
19A (bounded) lattice is a poset (P,≤) in which every �nite set has an in�mum and a supremum. One only

needs to check the empty set and sets of size 2, so an equivalent condition is that P is a (bounded) lattice
if P has a maximum 1 and a minimum 0, and for every x, y ∈ P the set {x, y} has an in�mum x ∧ y and a
supremum x∨y. The partial order is determined by algebraic structure (P, 0, 1,∧,∨), and one can write down
algebraic identities which characterize lattices. So alternatively, one can view lattices as algebraic structure
(P, 0, 1,∧,∨) satisfying some list of identities. For example, boolean algebras are a type of lattice. A modular

lattice is a lattice satisfying the identity (x ∧ b) ∨ a = (x ∨ a) ∧ b whenever a ≤ b. This identity ensures that
the Jordan-Hölder theorem works out: if x = c0 < c1 < · · · < cn = y and x = c′0 < c′1 < · · · < c′m = y,
and if there are no z strictly between ci and ci+1 or between c′i and c′i+1, then n = m. If G is a group,
the lattice of normal subgroups of G is always a modular lattice. If M is an R-module, then the lattice of
R-submodules is always a modular lattice. (This is probably the origin for the term �modular.�) It turns out
that a pregeometry (X, cl) is modular i� the lattice of closed sets is modular. In fact, modular geometries
are equivalent to atomic modular lattices, where a modular lattice (P,≤) is atomic if every element is of the
form a1 ∨ · · · ∨ an with the ai atoms.
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• X is a set of points

• The rank-1 closed sets in X are a set of �lines�

• Any two points lie on exactly one line.

• Any two lines intersect in exactly one point.

4. If rank(X) ≥ 4, then X is projective space20 over some division ring.

It would be nice if every projective plane was a projective plane over a division ring, but
this only holds for projective planes satisfying Desargues theorem. For model theory, this
isn't a big deal, because most of the pregeometries we care about have in�nite rank.

16 The false Zilber trichotomy conjecture

Fact 16.1. If K |= ACF , the pregeometry (K, acl) is not modular. In fact, if a, b, x are
independent transcendentals over the prime �eld F and

y = ax+ b,

and K1 = acl(a, b) and K2 = acl(x, y), then

tr. deg(K1/F ) = 2

tr. deg(K2/F ) = 2

tr. deg(K1K2/F ) = 3

tr. deg((K1 ∩K2)/F ) = 0

but 3 6= 2 + 2− 0.

At one time, it was hoped that

Conjecture 16.2 (Zilber trichotomy conjecture). If M is a strongly minimal structure, then
either

• (M, acl) is a modular pregeometry.

• M is bi-interpretable with an algebraically closed �eld.

So one hoped that ACF was the �only� complicated strongly minimal structure.
If (M, acl) is a modular pregeometry, it turns out that one of two things happens:

• The geometry (M, acl) is �trivial�: the associated pregeometry is a disconnnected union
of points, and acl(X) =

⋃
p∈X acl({p}).

• The geometry (M, acl) is projective space over a division ring.

20Possibly in�nite dimensional. . .
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These two possibilities, plus the ACF case of Conjecture 16.2, are the �trichotomy.�
One can say something about groups and �elds in each case:

1. If (M, acl) has a trivial geometry, there are no in�nite de�nable groups or �elds.

2. If (M, acl) has a projective geometry, there is a 1-dimensional de�nable abelian group
(G,+).21 The set G is strongly minimal, and is in �nite-to-�nite correspondence toM .
So M essentially �is� G. There are no de�nable �elds. The structure of de�nable sets
on Gn is constrained by Fact 16.4 below.

3. IfM is bi-interpretable with an algebraically closed �eldK, thenK is the only de�nable
�eld, and the de�nable groups are algebraic groups over K.

In case 2, it turns out that every connected de�nable group G0 is abelian (See Fact 16.4
below). So the Zilber trichotomy conjecture implies

Conjecture 16.3 (Cherlin-Zilber). If G is a simple non-abelian group interpretable in a
strongly minimal theory, then G is an algebraic group over an algebraically closed �eld.
More generally22, if G is a simple non-abelian group of �nite Morley rank, then G is an
algebraic group over an algebraically closed �eld.

Ultimately, Hrushovski disproved Conjecture 16.2, �nding a large bank of counterexam-
ples via a complicated variant of Fraisse limits.

Nevertheless, there are several special situations in which Conjecture 16.2 is known.

• If M is ℵ0-categorical, then M is modular, hence satis�es the Zilber trichotomy con-
jecture.

• If M is pseudo-�nite (elementarily equivalent to an ultraproduct of �nite structures),
then M is modular, hence satis�es the Zilber trichotomy conjecture.23

• If M admits a �Zariski topology�24, then M satis�es the Zilber trichotomy conjecture:
either M interprets an algebraically closed �eld or M is modular.

This third point�the case where a Zariski topology exists�can be used to verify the tri-
chotomy in DCF0, the theory of di�erentially closed �elds of characteristic 0. More speci�-
cally, if K |= DCF0 and X is a K-de�nable strongly minimal set, then either

21The proof uses Hrushovski's group con�guration theorem. See e.g. Theorem V.4.5 in Pillay's Geometric

Stability Theory.
22See Fact 11.1 and the comments thereafter.
23Interestingly, both this and the ℵ0-categorical case use the classi�cation of group actions on strongly min-

imal sets (Theorem 9.12 in Friday's notes), in combination with Hrushovski's group con�guration theorem.
See Proposition II.4.15 and V.3.2 in Pillay's Geometric Stability Theory for the essential points.

24In algebraic geometry, the Zariski topology on Kn (for K |= ACF ) is the topology in which V ⊆ Kn is
closed i� V is the set V (P1, . . . , Pn) = {~x ∈ Kn : P1(~x) = · · · = Pn(~x) = 0} for some polynomials P1, . . . , Pn

in K[X1, . . . , Xn]. This topology is a bit unintuitive, because it fails to be Hausdor�. On the other hand,
it is compact and T1. If M is a structure, an abstract �Zariski topology� on M is a collection of topologies
on Mn for each n, satisfying abstract properties chosen by Zilber and Hrushovski. See the book Zariski

geometries by Zilber for details.
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• The acl-pregeometry on X is modular, OR

• X is an algebraic curve over the ��eld of constants� C

C = {x ∈ K : ∂x = 0}.

This fact has been used to deduce new results about di�erential �elds and di�erential alge-
braic geometry.

In the setting of groups of �nite Morley rank, it is worth noting the following fact:

Fact 16.4. Let G be a de�nable group of �nite Morley rank which is �governed�25 by �nitely
many strongly minimal sets X1, . . . , Xn. Suppose that every Xi has a modular geometry.
Then

• The connected component G0 is abelian.

• Every de�nable subset X ⊆ Gn is a �nite boolean combination of cosets of de�nable
subgroups of Gn.

This forces the induced structure on G to be very restricted, basically just an R-module for
some ring R.

(See �IV.4 in Pillay's Geometric Stability Theory for details.)
The conclusion of Fact 16.4 looks obscure, but turns out to be tightly related to certain

problems in diophantine geometry, like the Mordell-Lang conjecture26 The characteristic p
analogue of the Mordell-Lang conjecture was proven by Hrushovski, by

• Using Zariski geometries to prove an appropriate analogue of the Zilber trichotomy in
the theory SCF of separably closed �elds.

• Using properties of stable groups, including variants of Fact 16.4, to prove the desired
result.

For more details, see the MSRI publication Model Theory, Algebra, and Geometry, or the
book Model Theory and Algebraic Geometry: an Introduction to E. Hrushovski's proof of the
geometric Mordell-Lang Conjecture, edited by Elisabeth Bouscaren.

25In other words, if M ′ �M and G(M ′) is strictly greater than G(M), then Xi(M
′) ) Xi(M) for some i.

26This says: if A is an abelian variety over an algebraically closed �eld K of characteristic 0, and Γ is a
�nitely generated subgroup of A(K), and V ⊆ A is an irreducible subvariety such that V (K) ∩ Γ is Zariski-
dense in V , then V is a coset of an algebraic subgroup. The motivation is that if C is a curve over Q of genus
at least 1, and A is the Jacobian variety of C, then C embeds into A as a subvariety, and the Q-rational
points Γ = A(Q) form a �nitely-generated subgroup of A(Qalg) by the Mordell-Weil theorem. If C had
in�nitely many rational points, then C ∩ Γ would be in�nite, hence Zariski dense in C. So C would need to
be a de�nable coset. The only 1-dimensional de�nable subgroups of A are elliptic curves, so C would have
genus 1. Thus the Mordell-Lang conjecture implies the Mordell conjecture (also proven by Faltings).
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A Stone duality

A boolean algebra is a structure (B,∩,∪, 0, 1,¬) satisfying some equational axioms

x ∪ y = y ∪ x
x ∪ x = x

x ∪ (x ∩ y) = y

x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z)
· · ·

More importantly, boolean algebras are characterized as follows:

Fact A.1. If X is a set, then (Pow(X),∩,∪, 0, 1,¬) is a boolean algebra, where 0 = ∅,
1 = X, and ¬S = (X \ S).

Moreover, a structure (B,∩,∪, 0, 1,¬) is a Boolean algebra i� it is isomorphic to a sub-
algebra of Pow(X) for some set X.

So up to isomorphism, a boolean algebra is essentially a non-empty collection B of subsets
of a set X, such that B is closed under unions, intersections, and complements.

There is a category Bool of boolean algebras, in which the morphisms are the maps
B1 → B2 preserving all the structure 0, 1,∩,∪,¬.

De�nition A.2. A stone space is a topological space S which is compact and totally dis-
connected: for any a, b ∈ S with a 6= b, there is a clopen set U ⊆ S such that a ∈ U and
b /∈ U .

For example, the cantor set is a stone space, and so is the one-point compacti�cation of
N. The interval [0, 1] isn't a stone space, because it's not totally disconnected. The rationals
Q are totally disconnected, but not compact, so they aren't a stone space either.

There is a category Stone of stone spaces, with morphisms being the continuous maps.
If S is a stone space, there is a boolean algebra B(S) of clopen subsets of S. A continuous

map f : S1 → S2 of stone spaces induces a pullback morphism of boolean algebras

B(S2)→ B(S1)

U 7→ f−1(U).

So B is a contravariant functor from Stone to Bool.

Theorem A.3 (Stone duality). The functor B is an anti-equivalence of categories from
Stone to Bool, i.e., B is an equivalence of categories from Stoneop to Bool.

So there is a contravariant functor S(−) from boolean algebras back to stone spaces, and
natural isomorphisms

B(S(X)) ∼= X for X ∈ Bool
S(B(X)) ∼= X for X ∈ Stone.
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What is the stone space S(X) associated to a boolean algebra X? From the anti-equivalence,
we can at least read o� the underlying set:

|S(X)| ∼= HomStone(∗, S(X)) ∼= HomBool(X,B(∗)) ∼= HomBool(X, {0, 1}),

where ∗ is the one-point set and B(∗) = {0, 1} is the two-element boolean algebra. So the
points of S(X) correspond exactly to Boolean-algebra homomorphisms from X to {0, 1}.
Giving a function from X to {0, 1} is equivalent to giving a subset F ⊆ X, and the resulting
function is a homomorphism i� F is an ultra�lter on B. So

The stone space S(X) associated to X is the set of ultra�lters on X.

Stone duality preserves several properties of morphisms. For example, a morphism of boolean
algebras

f : B1 → B2

is injective i� and only if the dual morphism

f ∗ : S2 → S1

of stone spaces is surjective.

B Type spaces and quanti�er elimination

If M is a structure and n ≥ 1, then there is a boolean algebra Bn consisting of the de�nable
subsets of Mn.

Theorem B.1. Let A ⊆M be a subset.

1. The A-de�nable subsets of Mn form a boolean subalgebra Bn(A) ≤ Bn.

2. An ultra�lter on Bn(A) is equivalent to a (complete) n-type p(x1, . . . , xn) over A.

3. The stone space dual to Bn(A) is the space Sn(A) of n-types over A. So Sn(A) admits
a natural stone space topology.

4. The boolean algebra of clopen sets in Sn(A) is isomorphic to Bn(A).

One can play the same game with quanti�er-free de�nable sets and quanti�er-free types.
Let Bqf

n (A) denote the boolean algebra of sets quanti�er-free de�nable over A, and let Sqfn (A)
denote the space of quanti�er-free n-types over A. Then Sqfn (A) is naturally a stone space
dual to Bqf

n (A).
There is an inclusion of boolean algebras Bqf

n (∅) ↪→ Bn(∅). By Stone duality, one gets
the following equivalence:

Theorem B.2. Let M be a structure. The following are equivalent:
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1. The theory Th(M) has quanti�er elimination.

2. For every n, the inclusion
Bqf
n (∅) ↪→ Bn(∅)

is onto, hence an isomorphism.

3. For every n, the continuous surjection

Sn(∅)� Sqfn (∅)

is injective, hence an isomorphism.27

4. For every M ′ �M and every ~a,~b ∈ (M ′)n,

qftp(~a/∅) = qftp(~b/∅) =⇒ tp(~a/∅) = tp(~b/∅).

The equivalences 1⇐⇒ 2 and 3⇐⇒ 4 are by de�nition, and the equivalence 2⇐⇒ 3 is
by stone duality.

Theorem B.2 was essentially the criterion we used to prove quanti�er elimination for
ACF, with all the complicated compactness arguments condensed into Stone duality. More
precisely, we used the following criterion to show that an individual set is quanti�er-free
de�nable:

Theorem B.3. Let X be an ∅-de�nable subset of Mn. Let X∗ be the corresponding clopen
set in Sn(∅). Then X is quanti�er-free de�nable over ∅ i� X∗ is the preimage of some set
under the surjection

Sn(∅)� Sqfn (∅).

In other words, X is quanti�er-free i� for every M ′ �M and every ~a,~b ∈ (M ′)n,

qftp(~a/∅) = qftp(~b/∅) =⇒ (~a ∈ X ⇐⇒ ~b ∈ X).

(Compare with Lemma 6.5 in Monday's notes.) This theorem holds because of the
following exercise in topology:

Exercise B.4. Let f : S1 � S2 be a surjective map of stone spaces, and X ⊆ S1 be clopen.
If X = f−1(Y ) for some Y ⊆ S2, then Y is clopen.

27If f : S1 → S2 is a continuous bijection between stone spaces, then f is a homeomorphism (an isomor-
phism). This doesn't hold for general topological spaces, but does hold for compact Hausdor� spaces.
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C Cantor-Bendixson rank

If X is a closed set in a topological space, the derived set X ′ is the set of a ∈ X such that
a is in the closure of X \ {a}. So X ′ is X minus the isolated points in X. For example,
if X = {1, 1/2, 1/3, 1/4, . . . , 0} ⊆ R, then X ′ = {0}, and (X ′)′ = ∅. A perfect set is a
non-empty closed set X without isolated points, so X = X ′.

Fix a stone space S. De�ne a sequence of closed sets

S = S(0) ⊇ S(1) ⊇ · · ·S(ω) ⊇ · · ·

by trans�nite induction as follows:

• S(0) = S

• S(α+1) is the derived set (S(α))′.

• If α is a limit ordinal, then

S(α) =
⋂
β<α

S(β)

The sequence must eventually stabilize at some closed set S(∞) ⊆ S. The set S(∞) is either
empty or a perfect set.

Theorem C.1. If V ⊆ S is perfect, there is a tree {Ua}a∈{0,1}<ω of clopen subsets of S such
that

• U∅ = S

• For any a ∈ {0, 1}<ω, the set Ua is the disjoint union of Ua0 and Ua1.

• For any a ∈ {0, 1}<ω, the set Ua intersects V .

For every a ∈ {0, 1}ω, the intersection

X ∩
∞⋂
n=1

Ua�n

is non-empty by compactness, and so |X| ≥ 2ℵ0.

Proof sketch. One de�nes Ua by induction on |a|, using perfection of V to �nd two distinct
points in V ∩ Ua, and total disconnectedness of S to split Ua into two clopen sets Ua0 and
Ua1.

To every point p ∈ S, we can associate a �Cantor-Bendixson rank� CB(p), which is the
maximum α such that p ∈ S(α), or ∞ if p ∈ S(∞).

Very concretely, CB(p) is characterized by the fact that CB(p) ≥ α + 1 i� for every
neighborhood U 3 p, there are in�nitely many points p′ ∈ U with CB(p′) ≥ α.
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If X ⊆ S is closed, then the set

{CB(p) : p ∈ X}

has a maximum, essentially by compactness. We denote this maximum by CB(X), the
Cantor-Bendixson rank of X. If CB(X) <∞, then there are only �nitely many p ∈ X such
that CB(p) = CB(X). (Otherwise, these points would accumulate at some q ∈ X, and then
CB(q) ≥ CB(X) + 1, a contradiction.) The size of the �nite set

{p ∈ X : CB(p) = CB(X)}

is the �Cantor-Bendixson degree� of X.
Using Cantor-Bendixson ranks and degrees, one can prove

Theorem C.2. Let S be a stone space. Then the following are equivalent:

• S(∞) 6= ∅.

• S contains a perfect closed set.

• There is a tree {Ua}a∈{0,1}<ω of non-empty clopen sets, such that for every a ∈ {0, 1}<ω,
the set Ua is the disjoint union of Ua0 and Ua1.

One proves 1 =⇒ 2 =⇒ 3. If 3 holds and 1 fails, one can �nd a path through the tree on
which (CB(Ua), deg(Ua)) is strictly decreasing, contradicting DCC on ordinals.

If there is a basis of size κ for the topology on S, then |S \ S(∞)| ≤ κ. (Each basic open
is responsible for removing at most one point from S(∞).) When S is dual to a countable
boolean algebra, then S is second countable. Using Theorem C.1, one gets

Theorem C.3. Let S be dual to countable boolean algebra B. Then the following are equiv-
alent:

• S(∞) = ∅

• |S| ≤ ℵ0

• |S| < 2ℵ0.

• In B there is a tree {xa}a∈{0,1}<ω where

xa > 0

xa0 ∩ xa1 = 0

xa0 ∪ xa1 = xa

for all a ∈ {0, 1}<ω.

The equivalence of 1, 4 holds without the assumption that B is countable. In particular,
Sn(B) contains a perfect set i� there is a countable subalgebra B′ ≤ B such that Sn(B

′) is
uncountable.
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D CB-rank and Morley rank

If S is a stone space, X ⊆ S is clopen, and α is an ordinal, then one can verify that the
following are equivalent:

• CB(X) ≥ α + 1

• For every d < ω, there exist disjoint clopens X1, . . . , Xd ⊆ X with CB(Xi) ≥ α.

• There exist disjoint clopens X1, X2, X3, . . . ⊆ X with CB(Xi) ≥ α.

If M is a monster model and S is the space Sn(M) of n-types over M, then Cantor-Bendixson
rank and degree in S are therefore exactly Morley rank and Morley degree. The structure M
is totally transcendental i� S(∞) = ∅. If the language is countable, then the boolean algebra
Bn(M) is a directed union of countable boolean algebras of the form Bn(M0) where M0

ranges over countable models M0 � M. Thus M is totally transcendental i� |Sn(M0)| ≤ ℵ0
for every countable M0 �M. This explains the equivalence

T is ℵ0-stable ⇐⇒ T is totally transcendental

mentioned in Fact 5.4.
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